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Abstract. Systems with long-range interactions often relax towards statistical equilibrium

over timescales that diverge withN , the number of particles. A recent work [S. Gupta and D.

Mukamel, J. Stat. Mech.: Theory Exp. P03015 (2011)] analyzed a model system comprising

N globally coupled classical Heisenberg spins and evolving under classical spin dynamics. It

was numerically shown to relax to equilibrium over a time that scales superlinearly with N .

Here, we present a detailed study of the Lenard-Balescu operator that accounts at leading

order for the finite-N effects driving this relaxation. We demonstrate that corrections at

this order are identically zero, so that relaxation occurs over a time longer than of order N ,

in agreement with the reported numerical results.

PACS numbers: 05.20.Dd, 45.50.-j, 52.25.Dg

Keywords: Kinetic theory of gases and liquids, Metastable states

http://arxiv.org/abs/1311.3471v2


Contents

1 Introduction 2

2 The model 4

3 The Klimontovich equation 5

4 The Vlasov equation, and a class of stationary solutions 6

5 The Lenard-Balescu equation 7

5.1 Formal derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.2 Solution of the linearized Vlasov equation . . . . . . . . . . . . . . . . . . . 7

5.3 Computing the Lenard-Balescu operator . . . . . . . . . . . . . . . . . . . . 10

5.3.1 Computing
〈
δgφ

∂δf
∂φ

〉
. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.3.2 Computing
〈
δgu

∂δf
∂u

〉
. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Example of a Vlasov-stationary state: Relaxation to equilibrium 16

7 Conclusions 19

8 Acknowledgements 19

1. Introduction

Long-range interacting systems are characterized by an interparticle potential with a range

that is of the order of the system size. In d dimensions, this corresponds to potentials

decaying at large separation, r, as 1/rα, where α lies in the range 0 ≤ α ≤ d [1,2]. Examples

include gravitational systems [3], plasmas [4], two-dimensional hydrodynamics [5], charged

and dipolar systems [6], and many others.

Despite obvious differences, these systems often share a common phenomenology (see

[1,2]). In particular, the relaxation to equilibrium of an isolated long-range interacting system

of N particles proceeds in two steps: first, a collisionless relaxation, described by a Vlasov-

type equation, brings the system close to a nonequilibrium state, called the ”quasistationary

state” (QSS), whose lifetime increases with N ; second, on timescales diverging with N ,

discreteness effects due to finite value of N drive the system towards Boltzmann-Gibbs

equilibrium. This second step is usually described by a Lenard-Balescu-type equation [7,8].

This scenario is well established for plasmas and self-gravitating systems [9], and has been

studied in detail in various toy models for long-range interactions [10–14]. The QSS lifetime,

which may be regarded to be of the same order of magnitude as the relaxation time, is thus

an important quantity: knowing it allows to distinguish between non-relaxed systems, which
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should be described by a QSS, and relaxed ones, for which collisional effects need to be

taken into account and an equilibrium description may be relevant. This lifetime depends

on the system under consideration. Kinetic theory usually predicts a QSS lifetime of order

N , e.g., for 3d plasmas or 1d self-gravitating systems (see [15] for recent numerical tests),

but this is not always the case; for example, the QSS lifetime is of order N/ lnN for 3d self-

gravitating systems [16]. Furthermore, it is known that the Lenard-Balescu collision term

vanishes for 1d systems which do not develop any spatial inhomogeneity (see [17] for the 1d

Coulomb case); one thus expects a relaxation time much longer than N in these cases. This

is indeed numerically observed, see [12], where a time of order N1.7 is reported, and [18],

where larger systems sizes are studied and the relaxation time is claimed to be of order N2.

A similar vanishing of the Lenard-Balescu operator has been found for point vortices in an

axisymmetric configuration [19–21].

In a recent work, QSSs have been looked for and found in a dynamical setting different

from the ones reviewed above, namely, in an anisotropic Heisenberg model with mean-field

interactions [22]. Note that similar spin models with mean field interactions have been

suggested to be relevant to describe some layered spin structures [23]. Specifically, the

model in [22] comprises N globally coupled three-component Heisenberg spins evolving under

classical spin dynamics. An associated Vlasov-type equation is introduced, and QSSs are

stationary solutions of this equation. In addition, numerical simulations for axisymmetric

QSS suggest a QSS lifetime increasing superlinearly with N . In order to understand this

observation analytically, we present in this work a detailed study of the Lenard-Balescu

operator that accounts for leading finite-N corrections of order 1/N to the Vlasov equation.

With respect to 1D Hamiltonian systems, the spin dynamics introduces a new term in

the Lenard-Balescu operator; it also complicates the analytical structure of the dispersion

relation for the Vlasov-type equation. Nevertheless, we can still demonstrate that corrections

at order 1/N are identically zero, so that relaxation occurs over a time longer than of order

N , in agreement with the reported numerical results.

The paper is structured as follows. In section 2, we describe the model of study and its

equilibrium phase diagram. As a step towards deriving the Vlasov equation to analyze the

evolution of the phase space distribution in the limit N → ∞, in section 3, we first write

down the so-called Klimontovich equation; this leads to a derivation of the Vlasov equation

and a discussion of a class of its stationary solutions in section 4. Section 5 contains our

main results: it is devoted to the derivation of the Lenard-Balescu equation for our model

of study, that is, the leading 1/N correction to the Vlasov equation; we show that this

correction identically vanishes. In section 6, we consider an example of a Vlasov-stationary

solution. In the energy range in which it is Vlasov stable, we demonstrate by performing

numerical simulations of the dynamics that indeed its relaxation to equilibrium occurs over

a timescale that does not grow linearly but rather superlinearly with N , in support of our

analysis. The paper ends with conclusions.
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2. The model

The model studied in Ref. [22] comprises N globally coupled classical Heisenberg spins of

unit length, denoted by Si = (Six, Siy, Siz), i = 1, 2, . . . , N . In terms of spherical polar angles

θi ∈ [0, π] and φi ∈ [0, 2π], one has Six = sin θi cosφi, Siy = sin θi sinφi, Siz = cos θi. The

Hamiltonian of the system is

H = − J

2N

N∑

i,j=1

Si · Sj +D
N∑

i=1

S2
iz. (1)

Here, the first term with J > 0 describes a ferromagnetic mean-field coupling between the

spins, while the second term is the energy due to a local anisotropy. We consider D > 0, for

which the energy is lowered by having the magnetization

m ≡ 1

N

N∑

i=1

Si (2)

pointing in the xy plane. The coupling constant J in equation (1) is scaled by N to make

the energy extensive [24], but the system is non-additive, implying thereby that it cannot

be trivially subdivided into independent macroscopic parts, as is possible with short-range

systems. In this work, we take unity for J and the Boltzmann constant.

In equilibrium, the system (1) shows a continuous phase transition as a function of the

energy density e, from a low-energy magnetized phase in which the system is ordered in the

xy plane to a high-energy non-magnetized phase, across a critical threshold given by [22]

ec = D
(
1− 2

βc

)
, (3)

where the inverse temperature βc satisfies

2

βc
= 1− 1

2βcD
+

e−βcD

√
πβcDErf[

√
βcD]

. (4)

Here, Erf[x] = (2/
√
π)

∫ x

0
dt e−t2 is the error function.

The microcanonical dynamics of the system (1) is given by the set of coupled first-order

differential equations

dSi

dt
= {Si, H}; i = 1, 2, . . . , N. (5)

Here, noting that the canonical variables for a classical spin are φ and

u ≡ cos θ, (6)

the Poisson bracket {A,B} for two functions of the spins are given by {A,B} ≡∑N
i=1(∂A/∂φi∂B/∂ui − ∂A/∂ui∂B/∂φi), which may be rewritten as [25]

{A,B} =
N∑

i=1

Si ·
∂A

∂Si

× ∂B

∂Si

. (7)
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Using equations (5) and (7), we obtain the equations of motion of the system as

Ṡix = Siymz − Sizmy − 2DSiySiz, (8)

Ṡiy = Sizmx − Sixmz + 2DSixSiz, (9)

Ṡiz = Sixmy − Siymx, (10)

where the dots denote derivative with respect to time. Summing over i in equation (10), we

find that mz is a constant of motion. The dynamics also conserves the total energy and the

length of each spin. Using equations (8), (9), and (10), we obtain the time evolution of the

variables θi and φi as

θ̇i = mx sinφi −my cosφi, (11)

φ̇i = mx cot θi cosφi +my cot θi sin φi −mz + 2D cos θi. (12)

3. The Klimontovich equation

The state of the N -spin system is described by the discrete one-spin time-dependent density

function

fd(u, φ, t) =
1

N

N∑

i=1

δ(u− ui(t))δ(φ− φi(t)), (13)

which is defined such that fd(u, φ, t)dudφ counts the number of spins with its canonical

coordinates in [u, u + du] and [φ, φ + dφ]. Here, δ is the Dirac delta function, (u, φ) are

the Eulerian coordinates of the phase space, while (ui, φi) are the Lagrangian coordinates

of the spins. Note that fd satisfies fd(u, φ, t) = fd(u, φ + 2π, t) and the normalization∫ 2π

0
dφ

∫ 1

−1
du fd(u, φ, t) = 1.

Differentiating fd with respect to time and using the equations of motion, (11) and (12),

we get the Klimontovich equation for the time evolution of fd as

∂fd(u, φ, t)

∂t
= −gu

∂

∂u
fd(u, φ, t)− gφ

∂

∂φ
fd(u, φ, t), (14)

where

gu ≡ gu[fd](u, φ)

=
√
1− u2(my[fd] cosφ−mx[fd] sinφ), (15)

gφ ≡ gφ[fd](u, φ)

= mx[fd]
u√

1− u2
cosφ+my[fd]

u√
1− u2

sinφ−mz [fd] + 2Du, (16)

(mx, my, mz)[fd]

=

∫ 2π

0

dφ

∫ 1

−1

du (
√
1− u2 cosφ,

√
1− u2 sin φ, u)fd(u, φ, t). (17)
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4. The Vlasov equation, and a class of stationary solutions

We now define an averaged one-spin density function f0(u, φ, t), corresponding to averaging

fd(u, φ, t) over an ensemble of initial conditions close to the same macroscopic initial state.

We write, quite generally, for an initial condition of the ensemble that

fd(u, φ, t) = f0(u, φ, t) +
1√
N
δf(u, φ, t), (18)

where, denoting by angular brackets the averaging with respect to the initial ensemble, we

have 〈fd〉 = f0. Here, δf gives the difference between fd, which depends on the given initial

condition, and f0, which depends on the average with respect to the ensemble of initial

conditions.

Using equation (18) in equation (14), we get

∂f0
∂t

+ g0u
∂f0
∂u

+ g0φ
∂f0
∂φ

+
1

N

[
δgu

∂δf

∂u
+ δgφ

∂δf

∂φ

]

+
1√
N

[∂δf
∂t

+ δgu
∂f0
∂u

+ g0u
∂δf

∂u
+ δgφ

∂f0
∂φ

+ g0φ
∂δf

∂φ

]
= 0, (19)

where g0u = gu[f0], g
0
φ = gφ[f0], and

δgu =
√
1− u2(my[δf ] cosφ−mx[δf ] sinφ), (20)

δgφ = mx[δf ]
u√

1− u2
cosφ+my[δf ]

u√
1− u2

sinφ−mz [δf ]. (21)

We now average equation (19) with respect to the ensemble of initial conditions, and note

that 〈δf〉 = 0 implies 〈mx[δf ]〉 = 〈my[δf ]〉 = 〈mz[δf ]〉 = 0. Thus 〈δgu〉 = 〈δgφ〉 = 0, and we

get

∂f0
∂t

+ g0u
∂f0
∂u

+ g0φ
∂f0
∂φ

= − 1

N

〈
δgu

∂δf

∂u
+ δgφ

∂δf

∂φ

〉
. (22)

For finite times and in the limit N → ∞ (or, for times t ≪ N), we obtain the Vlasov

equation satisfied by the averaged one-spin density function f0 [26] as

∂f0
∂t

+ g0u
∂f0
∂u

+ g0φ
∂f0
∂φ

= 0. (23)

Note that the Vlasov equation has been formally obtained after averaging over an

ensemble of initial conditions. However, if the fluctuations in the initial conditions are

weak and do not grow too fast in time, we expect the Vlasov equation to also describe

the time evolution of a single initial condition in the limit N → ∞. This is put on firm

mathematical grounds in [27–29], for systems with a standard kinetic energy and a regular

enough interaction potential.

From equations (15), (16), and (17), it is clear that any distribution that does not

depend on the angle φ (thus, axisymmetric about the z-axis) is a stationary solution of the

Vlasov equation (23).
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5. The Lenard-Balescu equation

We obtain in this section the main result of our paper: for model (1), the Lenard-Balescu

operator, computed for stationary solutions of the Vlasov equation of the form f0(u),

identically vanishes.

5.1. Formal derivation

The Lenard-Balescu equation describes the slow evolution of a stable stationary solution of

the Vlasov equation under the influence of finite-N corrections, at leading order in 1/N [26].

From equation (22), we get the Lenard-Balescu equation as

∂f0
∂t

= − 1

N

〈
δgu

∂δf

∂u
+ δgφ

∂δf

∂φ

〉
, (24)

where, subtracting equation (23) from equation (19), and keeping only the terms of order

1/
√
N , we find that δf follows the Vlasov equation linearized around its stable stationary

solution f0:

∂δf

∂t
=

√
1− u2

[
δmx sinφ− δmy cosφ

]∂f0
∂u

− (2Du−mz[f0])
∂δf

∂φ
. (25)

Here, we have used g0φ = 2Du − mz[f0] and δmx,y ≡ mx,y[δf ]. Now, a natural timescale

separation hypothesis greatly reduces the complexity of finding the solutions of the coupled

system of PDEs, equations (24) and (25): The first of the two equations evolves on a slow

O(1/N) timescale, while the second one evolves on a fast O(1) timescale. Then, we may first

solve equation (25), and then use its solution to compute the right-hand side of (24) in the

limit t → ∞.

At this point, it is useful to make a comparison of our case with the standard case of

particles with a kinetic energy moving in a classical potential, for example, a 1d system of

particles with Coulomb interactions. The equivalent of the axisymmetric stationary solutions

(independent of φ) introduced in section 4 are the homogeneous solutions which depend only

on velocity in this standard setting, so that the analog of δgφ vanishes, whereas in our case

of the spin dynamics, we have to deal with the extra term
〈
δgφ

∂δf
∂φ

〉
.

5.2. Solution of the linearized Vlasov equation

We now solve equation (25) for δf , using Fourier-Laplace transforms

δf(u, φ, t) =

∞∑

k=−∞

∫

Γ

dω

2π
δ̃fk(u, ω)e

i(kφ−ωt), (26)

δ̃fk(u, ω) =

∫ 2π

0

dφ

2π

∫ ∞

0

dt δf(u, φ, t)e−i(kφ−ωt), (27)
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where the Laplace contour Γ is a horizontal line in the complex-ω plane that passes above

all singularities of δ̃fk(u, ω).

We have

δmx =

∫

Γ

dω

2π
e−iωt

∫ 1

−1

du π
√
1− u2

(
δ̃f−1(u, ω) + δ̃f+1(u, ω)

)
, (28)

δmy =

∫

Γ

dω

2π
e−iωt

∫ 1

−1

du
π

i

√
1− u2

(
δ̃f−1(u, ω)− δ̃f+1(u, ω)

)
, (29)

δmz = mz[δf ] =

∫

Γ

dω

2π
e−iωt

∫ 1

−1

du πuδ̃f0(u, ω), (30)

so that equation (25) gives

δ̃f±1(u, ω) = − π
√
1− u2f ′

0(u)

2Du−mz[f0]∓ ω

∫ 1

−1

du′
√
1− u′2 δ̃f±1(u

′, ω)

∓ iδf±1(u, 0)

2Du−mz[f0]∓ ω
, (31)

where f ′
0(u) = ∂f0(u)/∂u and δf±1(u, 0) is the Fourier transform of the initial fluctuations

δf(u, φ, 0). Multiplying both sides of the above equation by
√
1− u2 and then integrating

over u, we get

ǫ±1(ω)

∫ 1

−1

du
√
1− u2 δ̃f±1(u, ω) = ∓i

∫ 1

−1

du

√
1− u2δf±1(u, 0)

2Du−mz[f0]∓ ω
, (32)

where ǫ±1(ω) is the so-called “Plasma response dielectric function” [26]:

ǫ±1(ω) = 1 + π

∫

LC

du
(1− u2)f ′

0(u)

2Du−mz[f0]∓ ω
. (33)

To make the dielectric function ǫ+1 (also, ǫ−1) analytic in the vicinity of the real axis

(Im(ω) = 0), which will be needed for later purpose, the above integral has to be performed

along the Landau contour shown in Fig. 1, as discussed in [26]; we have in this case

ǫ±1(ω) =





1 + π
∫
LC

du
(1−u2)f ′

0(u)

2Du−mz [f0]∓ω
; (Im(ω) > 0),

1 + πP
∫
LC

du
(1−u2)f ′

0(u)

2Du−mz[f0]∓ω

±i π
2

2D
(1− u2)f ′

0(u)|(mz [f0]±ω)/(2D) ; (Im(ω) = 0),

1 + π
∫
LC

du
(1−u2)f ′

0(u)

2Du−mz [f0]∓ω

±i2π
2

2D
(1− u2)f ′

0(u)|(mz [f0]±ω)/(2D) ; (Im(ω) < 0),

(34)
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where P denotes the principal part. If ω /∈ [−2D − mz[f0]; 2D − mz[f0]] (respectively,

ω /∈ [−2D + mz[f0]; 2D + mz[f0]]), equation (33) already defines an analytic function ǫ+1

(respectively. ǫ−1) in the vicinity of a real ω, without the need to take into account extra

pole contributions as in (34). Note that ǫ±1(ω) has two branch cut singularities on the real

axis at ω = 2D − mz[f0] and ω = −2D − mz[f0], which is the reason why these functions

may be seen as multi-valued in the lower-half ω-plane.

Im(u)

Re(u)

Im(u)

Re(u)

Im(u)

Re(u)

Im(u)

0

0

0

Im(ω) < 0,−2D −mz[f0] < Re(ω) < 2D −mz[f0]

Im(ω) = 0,−2D −mz[f0] < Re(ω) < 2D −mz[f0]

−1

−1

−1

1

1

1

Im(ω) > 0,−2D −mz[f0] < Re(ω) < 2D −mz[f0]

Figure 1. The Landau contour LC to evaluate ǫ+1(ω), shown as the dashed red line in the

complex-u plane.

Using equation (32) in equation (31) gives

δ̃f±1(u, ω) = ± iπ
√
1− u2f ′

0(u)

ǫ±(ω)[2Du−mz[f0]∓ ω]

∫ 1

−1

du

√
1− u2δf±1(u, φ, 0)

2Du−mz[f0]∓ ω

∓ iδf±1(u, 0)

2Du−mz[f0]∓ ω
. (35)

We see from the above expression that the real pole at ω = ±(2Du −mz[f0]) is due to the

free part of the evolution that does not involve interaction among the spins, and results in

undamped oscillations of the fluctuations δf(u, φ, t), see equation (26). The other set of

9



poles corresponds to the zeros of the dielectric function ǫ±(ω), i.e., values ωp (complex in

general) that satisfy

ǫ±1(ωp) = 0. (36)

Equation (26) implies that these poles determine the growth or decay of the fluctuations

δf(u, φ, t) in time, depending on their location in the complex-ω plane. For example, when

the poles lie in the upper-half complex ω-plane, the fluctuations grow in time. On the other

hand, when the poles are either on or below the real-ω axis, the fluctuations do not grow in

time, but rather oscillate or decay in time, respectively. Then, the condition ensuring linear

stability of a stationary solution of the Vlasov equation reads

ǫ±1(ωp) = 0 ⇒ Im(ωp) ≤ 0. (37)

The condition Im(ωp) = 0 corresponds to marginal stability.

To end this section, let us define for later use the quantities

δm± ≡ δmx ± iδmy. (38)

On using equation (32), we get the corresponding Laplace transforms as

δ̃m+(ω) =
2iπ

ǫ−1(ω)

∫ 1

−1

du

√
1− u2δf−1(u, 0)

2Du−mz[f0] + ω
, (39)

δ̃m−(ω) = − 2iπ

ǫ+1(ω)

∫ 1

−1

du

√
1− u2δf+1(u, 0)

2Du−mz[f0]− ω
. (40)

Equation (35) may now be expressed in terms of δ̃m± as

δ̃f+1(u, ω) = −
√
1− u2f ′

0(u)

2[2Du−mz [f0]− ω]
δ̃m−(ω)−

iδf+1(u, 0)

2Du−mz [f0]− ω
, (41)

δ̃f−1(u, ω) = −
√
1− u2f ′

0(u)

2[2Du−mz [f0] + ω]
δ̃m+(ω) +

iδf−1(u, 0)

2Du−mz[f0] + ω
. (42)

5.3. Computing the Lenard-Balescu operator

We now compute the Lenard-Balescu operator, given by the right hand side of equation (24),

in the limit t → ∞, by using the results of the preceding subsection. We have
〈
δgφ

∂δf

∂φ

〉
=

∑

k,l

∫

Γ

∫

Γ′

dωdω′

4π2
ei(k+l)φe−i(ω+ω′)til

〈
δ̃gφ,k(u, ω)δ̃f l(u, ω

′)
〉
, (43)

〈
δgu

∂δf

∂u

〉
=

∑

k,l

∫

Γ

∫

Γ′

dωdω′

4π2
ei(k+l)φe−i(ω+ω′)t

〈
δ̃gu,k(u, ω)

∂δ̃f l(u, ω
′)

∂u

〉
. (44)

From equations (20) and (21), we have

δgφ =
(δm+ + δm−

2

)
cosφ

u√
1− u2

+
(δm+ − δm−

2i

)
sin φ

u√
1− u2

− δmz[δf ],

10



(45)

δgu =
√
1− u2

[(δm+ − δm−

2i

)
cosφ−

(δm+ + δm−

2

)
sinφ

]
, (46)

so that we have

δ̃gφ,±1(u, ω) = δ̃m∓(ω)
u

2
√
1− u2

, δ̃gφ,0(u, ω) = δ̃mz(ω), (47)

δ̃gu,±1(u, ω) = ∓
√
1− u2

2i
δ̃m∓(ω). (48)

From equations (39) and (40), we see that δ̃m+ (respectively, δ̃m−) depends on δf−1(u, 0)

(respectively, δf+1(u, 0)). Then, to compute the right hand hand side of equations (43) and

(44), we need to evaluate averages of the type 〈δfk(u, 0)δfl(v, 0)〉 for the initial fluctuations

at t = 0. Note that t = 0 as a notation is somewhat inappropriate, since actually this

computation has to be repeated for any value of the slow time. We may assume that at

t = 0, the spins are almost independent (i.e., the two-spin correlation is of order 1/N). In

this case, one gets

〈δfk(u, 0)δfl(v, 0)〉 =
δk,−l

2π
[f0(u)δ(u− v) + h(u, v)] , (49)

where δk,−l is the Kronecker delta function, and h(u, v) is a smooth function. The precise

form of this undetermined smooth function will play no role in the computation, as we will

show below.

5.3.1. Computing
〈
δgφ

∂δf
∂φ

〉
Combining equations (47) and (49), we see that on the right

hand side of equation (43), only the terms (k = +1, l = −1) and (k = −1, l = +1) give

a non-zero contribution. We detail below the computation for the (k = +1, l = −1) case,

the other being similar. Note that
〈
δgφ

∂δf
∂φ

〉
is real; thus, we have to compute only the real

part of the (k = +1, l = −1) term, since its imaginary part must cancel with that of the

(k = −1, l = +1) term. In the following computation, we set h(u, v) = 0; we will check at

the end that indeed the contributions containing h vanish.

We have

〈δ̃gφ,+1(u, ω)δ̃f−1(u, ω
′)〉 = − uf ′

0(u)

4(2Du−mz[f0] + ω′)
〈δ̃m−(ω)δ̃m+(ω

′)〉

+ i
u

2
√
1− u2(2Du−mz[f0] + ω′)

〈δ̃m−(ω)δf−1(u, 0)〉. (50)

We thus need

〈δ̃m−(ω)δ̃m+(ω
′)〉

=
2π

ǫ+1(ω)ǫ−1(ω′)

∫ 1

−1

dv
(1− v2)f0(v)

(2Dv −mz[f0]− ω)(2Dv −mz [f0] + ω′)
, (51)

〈δ̃m−(ω)δf−1(u, 0)〉 = −i

√
1− u2f0(u)

ǫ+1(ω)(2Du−mz[f0]− ω)
, (52)

11



where we have used equation (49). Using these equations in equation (50), we obtain

〈δ̃gφ,+1(u, ω)δ̃f−1(u, ω
′)〉

= − πuf ′
0(u)

2(2Du−mz[f0] + ω′)ǫ+1(ω)ǫ−1(ω′)

×
∫ 1

−1

dv
(1− v2)f0(v)

(2Dv −mz[f0]− ω)(2Dv −mz[f0] + ω′)

+
uf0(u)

2(2Du−mz[f0] + ω′)(2Du−mz[f0]− ω)ǫ+1(ω)

≡ b1 + b2. (53)

Now, to compute the contribution to
〈
δgφ

∂δf
∂φ

〉
for (k = +1, l = −1), we have to

integrate b1 and b2 over ω and ω′; we define

B1 ≡
∫

Γ

∫

Γ′

dωdω′

4π2
(−i)e−i(ω+ω′)tb1, B2 ≡

∫

Γ

∫

Γ′

dωdω′

4π2
(−i)e−i(ω+ω′)tb2. (54)

We want to compute B1 and B2 in the limit t → ∞; thus, we will discard all terms decaying

for large t.

Let us start with B1. We have

B1 = i
πuf ′

0(u)

2

∫

Γ′

dω′

2π

e−iω′t

(2Du−mz[f0] + ω′)(2Dv −mz[f0] + ω′)ǫ−1(ω′)

×
∫

Γ

dω

2π
e−iωt

∫ 1

−1

dv
(1− v2)f0(v)

ǫ+1(ω)(2Dv −mz[f0]− ω)
. (55)
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Im(ω)

Zeros of ǫ+1(ω)

2D −mz[f0]− iδ

−2D −mz[f0]− iδ

Re(ω)
Γ

2Dv −mz[f0]− iδ′

Figure 2. The Γ contour to evaluate the integral in equation (56). Here, δ → 0 and δ′ → 0

are infinitesimal positive numbers. The thick vertical lines denote branch-cut singularities.
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First, note that for large t,
∫

Γ

dω

2π

e−iωt

ǫ+1(ω)(2Dv −mz[f0]− ω)
∼ i

e−i(2Dv−mz [f0])t

ǫ+1(2Dv −mz[f0])
, (56)

which is obtained by deforming the Γ contour into the Im(ω) < 0 half-plane, see Fig. 2,

and noting that due to the e−iωt factor, the only contribution to the contour integral in the

limit t → ∞ comes from the pole 2Dv − mz[f0] − iδ′. Indeed, since f0 is assumed stable,

the zeros of ǫ+1, if any, have a negative imaginary part; their contributions thus decay

exponentially in time. Similarly, the branch-cut singularities, see Fig. 2, contribute terms

decaying algebraically in time. Note also that the important singularity at 2Dv −mz[f0] is

real, and is in the range [−2D −mz[f0]; 2D −mz[f0]]. Then, according to the discussion in

section 5.2, one needs to use the expression (34) for ǫ+1. The same remark applies to all the

computations below, and we will not recall it each time.

The integration over ω′ in equation (55) is a bit more complicated, since there are two

poles on the real axis, at ω′ = −2Du + mz[f0] and ω′ = −2Dv + mz[f0]. With the same

method as for ω, we obtain
∫

Γ′

dω′

2π

e−iω′t

(2Du−mz[f0] + ω′)(2Dv −mz[f0] + ω′)ǫ−1(ω′)

= −i

[
ei(2Du−mz [f0])t

2D(v − u)ǫ−1(−2Du+mz[f0])
− ei(2Dv−mz [f0])t

2D(v − u)ǫ−1(−2Dv +mz[f0])

]
.(57)

We finally get

B1 = i
πuf ′

0(u)

2

∫ 1

−1

dv
(1− v2)f0(v)

ǫ+1(2Dv −mz[f0])

×
{

e−i2D(v−u)t

2D(v − u)ǫ−1(−2Du+mz[f0])
− 1

2D(v − u)ǫ−1(−2Dv +mz[f0])

}
. (58)

To perform the integral over v, we will use the following lemma.

Lemma:

lim
t→∞

∫ 1

−1

dv
ϕ(v)

v − u

(
e−i2D(v−u)t

ǫ−1(−2Du+m0)
− 1

ǫ−1(−2Dv +m0)

)
= −iπ

ϕ(u)

ǫ−1(−2Du+m0)
.(59)

Proof:
∫ 1

−1

dv
ϕ(v)

v − u

(
e−i2D(v−u)t

ǫ−1(−2Du+m0)
− 1

ǫ−1(−2Dv +m0)

)

=

∫ 2D(1−u)t

−2D(1+u)t

dx
ϕ(u+ x

2Dt
)

x

(
e−ix

ǫ−1(−2Du+m0)
− 1

ǫ−1(−2Du+m0 − x
t
)

)
.(60)

Recalling that −1 < u < 1, and taking the limit t → ∞, the above expression simplifies to
∫ ∞

−∞

dx
ϕ(u)

x

(
e−ix

ǫ−1(−2Du+m0)
− 1

ǫ−1(−2Du+m0)

)
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=
ϕ(u)

ǫ−1(−2Du+m0)

∫ ∞

−∞

dx
e−ix − 1

x
. (61)

The last integral is −iπ, which completes the proof of the lemma.

Using the lemma, we conclude that

B1 =
π2uf ′

0(u)(1− u2)f0(u)

4Dǫ+1(2Du−mz[f0])ǫ−1(−2Du+mz [f0])
. (62)

We now turn to the computation of B2. The integration over ω and ω′ is performed as

above, deforming the contours in the lower-half ω′-plane, and keeping only the contributions

of the poles on the real axis. We obtain

B2 = − i
uf0(u)

2

1

ǫ+1(2Du−mz[f0])

= − i
uf0(u)

2

ǫ−1(−2Du+mz[f0])

ǫ+1(2Du−mz[f0])ǫ−1(−2Du+mz[f0])
. (63)

As explained above, we need to compute only the real part of B2; thus, we keep only the

contribution coming from the imaginary part of ǫ−1(−2Du +mz[f0]). Using from equation

(34) that

Im[ǫ−1(−2Du+mz[f0])] = − π2

2D
(1− u2)f ′

0(u), (64)

we conclude that

Re(B2) = − π2uf0(u)(1− u2)f ′
0(u)

4Dǫ+1(2Du−mz[f0])ǫ−1(−2Du+mz[f0])
. (65)

From equations (62) and (65), we find that B1+Re(B2) = 0. Similar to above, one can show

that the real part of the contribution to
〈
δgφ

∂δf
∂φ

〉
from (k = −1, l = +1) also vanishes, while,

as discussed above, the imaginary part of the contribution to
〈
δgφ

∂δf
∂φ

〉
from (k = −1, l = +1)

must cancel that from (k = +1, l = −1). So, we conclude that for our model,
〈
δgφ

∂δf

∂φ

〉
= 0. (66)

We need now to check that the contributions containing the function h introduced in

(49) indeed vanish. For example, let us compute its contribution to B2. First, its contribution

to 〈δ̃m−(ω)δf−1(u, 0)〉 is

− i

ǫ+1(ω)

∫ 1

−1

dv

√
1− v2

2Dv −mz[f0]− ω
h(v, u). (67)

Thus, its contribution to B2 is

u

2
√
1− u2

∫ 1

−1

dv
√
1− v2h(v, u)

∫

Γ

∫

Γ′

dωdω′

4π2
e−i(ω+ω′)t 1

ǫ+1(ω)(2Dv −mz[f0]− ω)

× 1

(2Du−mz[f0] + ω′)
. (68)

14



The integrals over ω and ω′ can be performed as before. Since the poles for ω and ω′ are

different, we see that for large t, a factor e−2Di(v−u)t oscillating rapidly in time remains in

the integral over v; this leads to this integral vanishing in the limit t → ∞. A similar

phenomenon ensures that all terms containing the function h vanish in the same way. Thus,

we set h = 0 in the following, without modifying the results.

5.3.2. Computing
〈
δgu

∂δf
∂u

〉
As for

〈
δgφ

∂δf
∂φ

〉
, we see that on the right hand side of equation

(44), only the terms (k = +1, l = −1) and (k = −1, l = +1) are non-zero. We give below

the computation for the case (k = +1, l = −1) case, the other being similar. Again, we can

restrict the computations to the real part of each term, since
〈
δgu

∂δf
∂u

〉
is real.

From equations (42) and (48), we get
〈
δ̃gu,+1(u, ω)

∂δ̃f−1(u, ω
′)

∂u

〉

=

√
1− u2

4i

∂

∂u

[ √
1− u2f ′

0(u)

[2Du−mz[f0] + ω′]
〈δ̃m−(ω)δ̃m+(ω

′)〉
]

− 1

2

√
1− u2

∂

∂u

[ 1

2Du−mz[f0] + ω′
〈δ̃m−(ω)δf−1(u, 0)〉

]

=
π

2i

√
1− u2

ǫ+1(ω)ǫ−1(ω′)

∂

∂u

[ √
1− u2f ′

0(u)

[2Du−mz[f0] + ω′]

×
∫ 1

−1

dv
(1− v2)f0(v)

(2Dv −mz[f0]− ω)(2Dv −mz[f0] + ω′)

]

+
i

2

√
1− u2

ǫ+1(ω)

∂

∂u

[ √
1− u2f0(u)

(2Du−mz[f0] + ω′)(2Du−mz[f0]− ω)

]

≡ a1 + a2, (69)

where, in obtaining the second equality, we have used equations (51) and (52).

Now, to compute the contribution to
〈
δgu

∂δf
∂u

〉
for (k = +1, l = −1), we have to

integrate a1 and a2 over ω and ω′. Let us define

A1 ≡
∫

Γ

∫

Γ′

dωdω′

4π2
e−i(ω+ω′)ta1, A2 ≡

∫

Γ

∫

Γ′

dωdω′

4π2
e−i(ω+ω′)ta2. (70)

We want to compute A1 and A2 in the limit t → ∞, so that we may discard all terms

decaying for large t.

Let us first compute A1. Integration over ω and ω′ may be carried out by deforming

the contours Γ and Γ′, as done in the preceding subsection. One gets
∫

Γ

dω

2π

e−iωt

ǫ+1(ω)(2Dv −mz[f0]− ω)
= i

e−i(2Dv−mz [f0])t

ǫ+1(2Dv −mz[f0])
, (71)

and ∫

Γ′

dω′

2π

e−iω′t

(2Du−mz[f0] + ω′)(2Dv −mz[f0] + ω′)ǫ−1(ω′)
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= −i
[ ei(2Du−mz [f0])t

2D(v − u)ǫ−1(−2Du+mz [f0])
− ei(2Dv−mz [f0])t

2D(v − u)ǫ−1(−2Dv +mz[f0])

]
, (72)

so that in the limit t → ∞, we have

A1 = −i
π

2

√
1− u2

∂

∂u

[√
1− u2f ′

0(u)

∫ 1

−1

dv
(1− v2)f0(v)

2D(v − u)ǫ+1(2Dv −mz[f0])

×
[ e−i2D(v−u)t

ǫ−1(−2Du+mz[f0])
− 1

ǫ−1(−2Dv +mz[f0])

]]

= − π2

4D

√
1− u2

∂

∂u

[ √
1− u2(1− u2)f0(u)f

′
0(u)

ǫ+1(2Du−mz[f0])ǫ−1(−2Du+mz[f0])

]
, (73)

where, in obtaining the second equality, we have used the lemma (59).

Now, A2 may be computed along the same lines as done for B2 in the preceding

subsection. One gets

Re(A2) =
i

2

√
1− u2

∂

∂u

[ √
1− u2f0(u)

ǫ+1(2Du−mz[f0]

]

=
π2

4D

√
1− u2

∂

∂u

[ √
1− u2(1− u2)f0(u)f

′
0(u)

ǫ+1(2Du−mz[f0])ǫ−1(−2Du+mz[f0])

]
, (74)

where, in obtaining the second equality, we have used equation (64). From equations (73)

and (74), we see that A1 + Re(A2) = 0. Similarly, one can show that the real part of the

contribution to
〈
δgu

∂δf
∂u

〉
from (k = −1, l = +1) also vanishes, while the imaginary part of

the contribution to
〈
δgu

∂δf
∂u

〉
from (k = −1, l = +1) must cancel that from (k = +1, l = −1).

So, we conclude that for our model,
〈
δgu

∂δf

∂u

〉
= 0. (75)

Combining equations (66) and (75), we see that the Lenard-Balescu operator identically

vanishes for our model, which is the announced result.

6. Example of a Vlasov-stationary state: Relaxation to equilibrium

In this section, let us consider as an example of an axisymmetric Vlasov stationary state f0
a state prepared by sampling independently for each of the N spins the angle φ uniformly

over [0, 2π] and the angle θ uniformly over an interval of length (a + b) asymmetric about

θ = π/2, that is, θ ∈ [π/2− a : π/2 + b]. The corresponding single-spin distribution is

f0(u, φ) =
1

2π
p(u), (76)

with p(u), the distribution for u, given by

p(u) =





1
sin a+sin b

if u ∈ [− sin b, sin a],

0 otherwise.

(77)
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It is easily verified that this state has the energy

e =
(D
3
− 1

8

)
(sin2 a+ sin2 b)−

(D
3
− 1

4

)
sin a sin b. (78)

Since mx[f0] = my[f0] = 0, we have g0u = 0, and also, ∂f0/∂φ = 0; it then follows that the

state (76) is stationary under the Vlasov dynamics (23). Note that we have

mz[f0] =
sin a− sin b

2
. (79)

As mentioned after equation (37), the condition Im(ωp) = 0 will correspond to the

marginal stability of the state (76), so that the zeros ωp of the dielectric function lie on the

real-ω axis. Let us denote these zeros as ω∗
pr. From equation (34), we find that ω∗

pr satisfies

1 + πP

∫ 1

−1

du
(1− u2)f ′

0(u)

2Du−mz[f0]∓ ω∗
pr

± iπ2 (1− u2)f ′
0(u)

∣∣
(mz [f0]±ω∗

pr)/(2D)
= 0. (80)

Equating the real and the imaginary parts to zero, we get

1 + πP

∫ 1

−1

du
(1− u2)f ′

0(u)

2Du−mz[f0]∓ ω∗
pr

= 0, (81)

(1− u2)f ′
0(u)

∣∣
(mz [f0]±ω∗

pr)/(2D)
= 0. (82)

Now, equation (76) gives

f ′
0(u) =

1

2π(sin a+ sin b)
[δ(u+ sin a)− δ(u− sin b)], (83)

so that we obtain from equation (82) that

δ
(mz[f0]± ω∗

pr

2D
+ sin a

)
= δ

(mz[f0]± ω∗
pr

2D
− sin a

)
, (84)

implying that

ω∗
pr = −mz[f0]. (85)

Using equation (85) in equation (81), we get

4D =
cos2 a sin b+ cos2 b sin a

sin a sin b (sin a + sin b)
, (86)

which when combined with equation (78) gives the energy

e = e∗ =
A

B
;

A = 2(sin a− sin b) cos2 a+ 2 cot a sin2 b cos a+ 2 cos b cot b sin2 a

+ 2 cos2 b (sin b− sin a)− 3(sin a− sin b)2(sin a + sin b),

B = 24(sin a+ sin b), (87)
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for which the state (76) is a marginally stable stationary solution of the Vlasov equation

(23). For energies e > e∗, such a state is linearly stable under the Vlasov dynamics. On

the basis of our analysis in this paper showing the Lenard-Balescu operator being identically

zero, we expect that for finite N , the state relaxes to Boltzmann-Gibbs equilibrium on a

timescale ∼ N δ, with δ > 1. This was indeed observed in Ref. [22] for the class of initial

states (76) that is non-magnetized, that is, a = b; in this case, combining equations (86) and

(87), we get

e∗|a=b =
D

3 + 12D
. (88)

For energies e < e∗|a=b, the state being linearly unstable under the Vlasov dynamics was seen

to relax for finite N to the Boltzmann-Gibbs equilibrium state over a timescale ∼ lnN [22].
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Figure 3. Magnetization m(t) as a function of tN−2 in the energy range in which the

state (76) with a = 0.1, b = 0.3 is linearly stable under the Vlasov dynamics. Here, e = 0.22,

D = 8.224, while the system sizes are marked in the figure. The figure suggests a relaxation

timescale ∼ N δ with δ = 2, but the data do not allow a precise determination of the

exponent δ: any value of δ between about 1.7 and 2 is compatible with the data.

Let us choose a = 0.1, b = 0.3. Then, equation (87) gives D ≈ 8.224, while equation

(87) gives e∗ ≈ 0.181. Thus, for this value of D, the state (76) with a = 0.1, b = 0.3 is

marginally stable under the linearized Vlasov dynamics at energy e∗ ≈ 0.181. Let us then

choose a value of energy in the range e∗ < e < ec, where ec can be computed from equation

(3) to be ec ≈ 0.258. We expect on the basis of the analysis presented in this paper that in

this energy range, when the state (76) is Vlasov-stable, the relaxation to equilibrium should

occur over a timescale that scales superlinearly with N . For e = 0.22, results of numerical

simulations of the dynamics shown in Fig. 3 indeed suggest a relaxation timescale ∼ N δ,
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with δ > 1; for the range of system sizes explored in this numerical experiment, any value

of δ between about 1.7 and 2 is compatible with the data.

7. Conclusions

In this paper, we have shown that the Lenard-Balescu operator identically vanishes for a

system of globally coupled anisotropic Heisenberg spins, in an axially symmetric Vlasov-

stable state. This result explains the numerical findings of [22], reporting a relaxation

time for this system that scales superlinearly with N . To our knowledge, it is the first

time that this kind of results has been obtained for a spin dynamics. This raises further

questions, e.g., what are the general conditions to ensure that the Lenard-Balescu operator

vanishes? The classical explanation relies on the structure of resonances between the particle

trajectories: in the absence of resonances between particles with different momentum, the

Lenard-Balescu operator should vanish. This heuristic argument applies to systems of

particles moving in a 1d position space, thus with a 2d phase space, when the system is

homogeneous [17,30], implying a relaxation time growing superlinearly with N . This is also

the case for axisymmetric configurations of point vortices [19–21], where the phase space

is again two-dimensional. In a similar manner, it can be argued for the model we have

studied that spins with different projections on the z-axis cannot exchange energy because

they cannot be in resonance. In a sense, our precise computations validate this qualitative

picture. However, recent numerical simulations of a model with a 4d phase space have

also shown a relaxation time that appears superlinear in N over the range of system sizes

studied [14]: one would expect resonances to appear in this case. Thus, understanding the

general conditions under which the Lenard-Balescu operator vanishes may still remain a

partly open question.

One may also wonder how the relaxation occurs when the Lenard-Balescu operator

vanishes. Formally, the Klimontovich expansion suggests that the next leading term is of

order 1/N2. Although writing down this term is possible in principle, its evaluation is

difficult. However, it is not quite clear that the expansion is valid over such long timescales.

Finally, let us stress that the standard route to a formal derivation of the Lenard-

Balescu equation, as followed in this article, involves an averaging over initial conditions.

Just as what happens for the Vlasov equation, one may actually expect that the equation

approximately describes a single initial condition. Putting this on firm mathematical grounds

is an outstanding question, on which some preliminary progress has been made recently [31].
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