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ABSTRACT  

Atopic dermatitis (AD) is a chronic allergic dermatosis characterized by epidermal thickening 

and dermal inflammatory infiltrates with a dominant Th2 profile during the acute phase, while 

a Th1 profile is characteristic of the chronic stage. Among chemokines and chemokine 

receptors associated with inflammation, increased levels of CX3CL1 (fractalkine) and its 

unique receptor, CX3CR1, have been observed in human AD. We have thus investigated their 

role and mechanism of action in experimental models of AD and psoriasis. AD pathology and 

immune responses, but not psoriasis, were profoundly decreased in CX3CR1-deficient mice 

and upon blocking CX3CL1/CX3CR1 interactions in wild type mice. CX3CR1 deficiency 

neither affected antigen presentation nor T cell proliferation in vivo upon skin sensitization, 

but CX3CR1 expression by both Th2 and Th1 cells was required to induce AD. Surprisingly, 

unlike in allergic asthma, where CX3CL1 and CX3CR1 regulate the pathology by controlling 

effector CD4+ T cell survival within inflamed tissues, adoptive transfer studies established 

CX3CR1 as a key regulator of CD4+ T cell retention in inflamed skin, indicating a new 

function for this chemokine receptor. Therefore, while CX3CR1 and CX3CL1 act through 

distinct mechanisms in different pathologies, our results further evidence their interest as 

promising therapeutic targets in allergic diseases. 
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INTRODUCTION  

Atopic dermatitis (AD) is a common, chronic inflammatory dermatosis frequently occuring in 

individuals with a personal or family history of atopic diseases. AD pathophysiology is 

complex and results from skin barrier dysfunction and a dysregulated immune response, 

influenced by genetic and environmental factors (Guttman-Yassky et al., 2011a; Guttman-

Yassky et al., 2011b). Indeed, most patients with AD have increased serum IgE levels, with 

specific IgE directed against allergens or microbial proteins such as Staphylococcus aureus 

(Leung et al., 2004). Lesions in AD are characterized by increased epidermal thickness and a 

dermal inflammatory cell infiltrate, consisting of mast cells, eosinophils and T lymphocytes. 

In acute AD lesions, a preferential recruitment of Th2 cells occurs, whereas in the chronic 

lesions a Th1 profile is predominant (Grewe et al., 1998), while allergic asthma or allergic 

rhinitis are more exclusively Th2-dominated diseases. 

Chemokines and their receptors play a key role in leukocyte recruitment to inflamed skin 

(Schall and Proudfoot, 2011). Eotaxins 1, 2 and 3 (CCL11, 24, 26) bind to CCR3 and attract 

eosinophils, and CCL26 appears to be particularly involved in AD (Kagami et al., 2003; 

Owczarek et al., 2011). CCL27 together with CCR10 and CCR4 expression insure T cell skin 

domiciliation (Homey et al., 2002; Reiss et al., 2001). More recently, CCR8 and CCL8 have 

been elegantly demonstrated to direct Th2 cell recruitment into allergen-inflamed skin and 

draining lymph nodes in a murine model of AD (Islam et al., 2011). 

Besides chemoattraction, chemokine - chemokine receptor interactions also regulate other 

functions. Indeed, we have recently demonstrated that CX3CR1, the receptor for CX3CL1 

(fractalkine -CX3-), identified also as a receptor for CCL26 (Nakayama et al., 2010) in 

humans, controls the development of allergic asthma by providing a survival signal to the 

CD4+ effector T lymphocytes in the inflammatory airways (Julia, 2012; Mionnet et al., 2010). 

In AD patients, CX3CL1 is upregulated in both endothelial cells and skin lesions and serum 
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CX3CL1 levels are positively associated with disease severity (Echigo et al., 2004). Another 

study reported that, while CX3CR1 mRNA expression is consistently upregulated in AD skin, 

CX3CL1 mRNA levels are only increased in some patients with a significant correlation to the 

disease severity (Nakayama et al., 2010), a result likely to explain the earlier failure to detect 

CX3CL1 in skin lesions (Fraticelli et al., 2001). Furthermore, two CX3CR1 single nucleotide 

polymorphisms have been associated with asthma and atopy in French-Canadian populations 

(Tremblay et al., 2006) and German children (Depner et al., 2007).  

Thus, in order to functionally delineate the role of CX3CL1/CX3CR1 in AD, we used a mouse 

model of epicutaneous sensitization, by a protein antigen in the absence of adjuvant, faithfully 

mimicking features of human AD. Unexpectedly, we found that CX3CL1/CX3CR1 controlled 

atopic dermatitis to an even greater extent than allergic asthma through a new and distinct 

mechanism.  
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RESULTS  

Upon skin sensitization, CX3CR1-deficient mice develop neither AD nor subsequent 

lung inflammation. 

To assess the contribution of CX3CR1 to AD development, we used a previously described 

model of AD based on repeated epicutaneous sensitizations (Spergel et al., 1998) with 

Leishmania major activated C Kinase (LACK) as antigen and compared the response of 

CX3CR1-deficient (gfp/gfp) mice, in which the CX3CR1 gene has been replaced by gfp (Jung et 

al., 2000), to that from their proficient (+/+) WT counterparts. Neither strain exhibited an 

inflammatory phenotype in the absence of LACK sensitization (Fig. 1A). Compared to 

vehicle (i.e. PBS)-sensitized CX3CR1+/+ mice, LACK-sensitized CX3CR1+/+ mice exhibited a 

significant skin inflammatory response, characterized by a 50% increase in epidermal 

thickening (Fig. 1B) associated with more pronounced hyperkeratosis, spongiosis and dermal 

cellular infiltrates including mast cells, eosinophils, MHC-II+ and CD4+ T cells (Fig. 1C) as 

well as increased skin and inguinal lymph node (LN) expression of inflammatory and Th1- 

and Th2-associated cytokines, chemokines and chemokine receptors (not shown). In sharp 

contrast, CX3CR1gfp/gfp mice did not develop a skin inflammatory response upon LACK 

sensitization (Fig. 1A-B). Compared with PBS-sensitized CX3CR1gfp/gfp mice, only MHC-II+ 

cell numbers were increased, but to a lesser extent than in LACK-sensitized CX3CR1+/+ 

animals (Fig. 1C). Furthermore, expression of Th1- and inflammatory response genes was 

also significantly decreased (not shown).  

Humoral response was also altered in CX3CR1gfp/gfp compared to CX3CR1+/+ mice, with 

decreased total Th2-associated IgE concentrations (but not IgG1 titers), as well as decreased 

Th1-associated antigen-specific IgG2a titers (Fig. 1D).  
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As in the human pathology, epicutaneous sensitization also induced lung inflammation and 

airway hyperreactivity (AHR) following a single antigenic airway challenge. Airway 

resistance upon LACK-sensitization was significantly lower in CX3CR1gfp/gfp compared to 

CX3CR1+/+ animals (Fig. 1E). Furthermore, cellular inflammatory infiltrates in the broncho-

alveolar fluid (BALF) of LACK-sensitized CX3CR1gfp/gfp mice were decreased by 32% for 

macrophages, 70% for lymphocytes and eosinophils, and 40% for neutrophils compared to 

BALF from CX3CR1+/+ mice (Fig. 1F).   

 

A CX3CL1 antagonist strongly reduces features of AD.  

To further confirm the key role of CX3CR1 in AD development, we next investigated whether 

inhibition of CX3CL1/CX3CR1 interactions would inhibit the pathology in WT animals. We 

investigated the efficacy of a CX3CR1 antagonist (CX3-AT), whose potency was already 

validated in an allergic asthma model (Mionnet et al., 2010), using prophylactic or therapeutic 

administration protocols (Fig. 2A). Both administration schedules fully inhibited antigen-

induced epidermal thickening (Fig. 2B), as well as dermal mast cell, eosinophil and CD4+ T 

cell infiltration (Fig. 2C). Upon LACK aerosol challenge, AHR and inflammatory cell 

infiltration in the airways were also significantly decreased upon both prophylactic and 

therapeutic treatments (Fig. 2C-D). Taken together, these results confirm the key role of 

CX3CR1/CX3CL1 in AD in non-genetically manipulated mice and further demonstrate that 

pharmacological inhibition of CX3CL1/CX3CR1 interactions abrogate skin and lung 

inflammation. 

 

CX3CR1 is neither required for antigen presentation nor for naïve T cell proliferation 

but regulates both Th1- and Th2- induced skin inflammation 

As CX3CR1 is expressed by various myeloïd cells, such as blood monocytes, dendritic cell 
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(DC) progenitors, plasmacytoid DC, and macrophages (Bar-On et al., 2010; Kim et al., 2011; 

Zhang et al., 2012), we next assessed whether antigen presentation was affected in the 

absence of CX3CR1. To this aim, antigen-specific CD4+ T cells from WT15 TCR transgenic 

mice (Wang et al., 2001), were labeled with CSFE and injected to both CX3CR1+/gfp and 

CX3CR1gfp/gfp mice that were further sensitized via epicutaneous LACK administration. 

Frequencies of divided antigen-specific CD4+ T cells in the draining LN were comparable in 

both CX3CR1+/gfp and CX3CR1gfp/gfp mice (Fig. 3A), suggesting that, upon epicutaneous 

sensitization, CX3CR1 deficiency does not affect antigen presentation. We next investigated 

whether CX3CR1 deficiency affected T cell proliferation induced upon epicutaneous antigen 

sensitization. To address this issue, we generated Thy1+/- CX3CR1+/gfp and Thy1+/+ 

CX3CR1gfp/gfp LACK-specific TCR transgenic mice that respectively expressed the Thy1.1 

and Thy1.2 antigens or the Thy1.1 antigen only. CD4+ T cells from both genotypes were 

prepared, stained with CSFE and co-injected into WT Thy1.1-/- Thy1.2+/+ mice. Upon 

epicutaneous sensitization with LACK, frequencies of dividing CX3CR1+/gfp and 

CX3CR1gfp/gfp WT15 cells were comparable (Fig. 3B). Altogether these results suggest that 

CX3CR1 deficiency does not alter naïve T cell proliferation. 

 

CX3CR1 expression regulates both Th1- and Th2- induced skin inflammation.  

As both Th2 and Th1 cells are associated to the acute and chronic phases of AD, respectively 

(Spergel et al., 1999), we investigated whether CX3CR1 expression was required by Th1, Th2 

cells or both to induce skin inflammation. LACK-specific CD4+ T cells were prepared from 

either Thy1+/- CX3CR1+/gfp or Thy1+/+ CX3CR1gfp/gfp WT15 mice, differentiated in vitro into 

Th1 or Th2 cells and injected into WT mice that were further sensitized to LACK. While both 

CX3CR1-proficient Th1 and Th2 cells alone were able to induce a 4 to 5-fold epidermal 

thickening upon a single round of epicutaneous antigen exposure, CX3CR1-deficient Th2 
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cells only induced a less than 2- fold increase in epidermal thickness and injection of 

CX3CR1-deficient Th1 cells barely led to epidermal thickening compared to PBS-treated 

animals (Fig. 3C). Likewise, dermal mast cell infiltration was also induced by both CX3CR1-

proficient Th1 and Th2 cells, but not upon injection of CX3CR1-deficient effector T cells 

(Fig. 3D). Eosinophil infiltration was only induced upon transfer of CX3CR1-proficient Th2 

cells and strongly reduced when CX3CR1-deficient Th2 cells were injected (Fig. 3D). Taken 

together, these results suggest that CX3CR1 expression by Th2- and Th1-cells regulates the 

key features of AD.  

 

CX3CR1 expression confers a selective advantage to skin-infiltrating T cells.  

To decipher the mechanisms accounting for the role of CX3CR1 expression by T helper cells 

in skin inflammation, we monitored the recruitment and proliferative capacities of both 

CX3CR1-proficient and CX3CR1-deficient LACK-specific Th1 and Th2 cells upon co-

injection into WT mice that were exposed to LACK and further fed with BrdU. Three days 

following antigen exposure, while Th1 and Th2 donor cells of both genotypes had not yet 

incorporated BrdU (data not shown), CX3CR1-proficient and CX3CR1-deficient LACK-

specific donor cells were detected at the same frequency in skin, suggesting that early 

migration of effector T cells into the skin did not require CX3CR1 (Fig. 4A). It is worth 

noting that antigen-induced recruitment of LACK-specific Th1 cells was more pronounced 

than recruitment of Th2 cells as early as 3 days after antigen exposure. In sharp contrast, 

frequencies of CX3CR1-proficient donor cells outnumbered CX3CR1-deficient cells on day 7 

(Fig. 4B). However, donor cells of both genotypes proliferated at the same rate (Fig. 4C). 

Therefore, as observed for naïve T cells, CX3CR1 deficiency neither affects the early 

recruitment, nor the proliferation of Th1- and Th2- effector cells.  

We next monitored CX3CR1 expression using GFP as a surrogate marker for CX3CR1 
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expression (Geissmann et al., 2003; Jung et al., 2000). Upon differentiation, antigen-specific 

effector cells remained GFP- as previously described (Mionnet et al., 2010). At day 3 after 

initial sensitization, less than 0.3% of antigen-specific effector cells expressed CX3CR1 (i.e. 

GFP) in draining LN, and around 4% of these cells expressed CX3CR1 (i.e. GFP) in skin (Fig. 

4D). At day 7, while the frequencies of CX3CR1-expressing Th1 and Th2 cells in the draining 

LN slightly increased to 3.6 and 1.4 %, respectively, their frequencies in skin steadily 

increased to 12.3 and 8.3 %, respectively (Fig. 4D). These latter results suggest that CX3CR1 

expression is likely to be induced early in skin. 

 

CX3CR1-deficiency impairs effector T cell retention into inflamed skin. 

The higher frequency of CX3CR1-proficient CD4+ effector cells in skin could be explained by 

several hypotheses: the preferential late recruitment of CX3CR1+ effector T cells into the skin, 

their prolonged survival, or their selective advantage for residence in the inflamed skin. As 

CX3CR1 is involved in effector T cell survival in allergic lung inflammation (Mionnet et al., 

2010), and as the role of CX3CR1/CX3CL1 in microglial cell (Meucci et al., 1998) and 

monocyte survival (Landsman et al., 2009) has also been reported, we next assessed whether 

this was also the case in inflamed skin. WT mice were co-injected with CX3CR1-proficient 

and -deficient antigen-specific Th1- or Th2- donor cells, sensitized by epicutaneous antigen 

administration and the frequencies of apoptotic and/or necrotic donor cells were measured. 

Similar frequencies of annexin-V+ and/or 7-AAD+ CX3CR1+/gfp and CX3CR1gfp/gfp donor cells 

were found in both skin and draining LN (Fig. 5A and not shown), suggesting that CX3CR1 

is not involved in T cell survival. However, as Th2 donor cells were difficult to monitor in 

skin due to their low frequencies, additional experiments were performed to confirm these 

data. CX3CR1+/gfp and CX3CR1gfp/gfp antigen-specific Th2 cells were transduced with a 

retroviral construct leading to the expression of anti-apoptotic BCL-2 (an empty vector was 
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used as control) and transferred into WT recipients that were sensitized by LACK. While 

overexpression of BCL-2 led to a decrease, and respectively an increase in the recovery of 

transduced cells in the skin and draining LN, it did not affect the ratio between CX3CR1-

proficient and -deficient Th2 cells within these tissues, ruling out a role of CX3CR1 in T cell 

survival (Fig. 5B).  

We next compared the migration of CX3CR1-proficient and -deficient effector T cells into the 

inflamed skin and draining LN of WT mice with established AD. Recipient mice were 

submitted to two rounds of epicutaneous sensitization prior to the injection of CX3CR1-

proficient and -deficient Th1 or Th2 cells the day before the third and last antigen application. 

Three days later, while BrdU incorporation was very low, frequencies of donor cells of both 

genotypes were similar (Fig. 5C), demonstrating that CX3CR1 is not required for the late 

migration of effector T cells into the inflamed skin.  

To investigate whether CX3CR1 was required for T cell retention into the inflamed skin, mice 

were co-injected with CX3CR1-proficient and -deficient LACK-specific effector T cells, 

challenged for 4 days with LACK, and further challenged with the antigen while topically 

treated with CX3-AT for 3 days. Upon topical CX3-AT treatment, frequency of skin CX3CR1-

proficient T cells decreased to the level of co-injected CX3CR1-deficient cells, while their 

frequency increased in draining LN (Fig. 5D), demonstrating that blocking CX3CR1-CX3CL1 

interactions in situ prevents CX3CR1+ T cell retention.  

Next, to further corroborate these findings with endogenously generated T cells, WT mice 

were treated topically with CX3-AT for the last 3 days of the third and last round of 

epicutaneous sensitization. CX3-AT strongly decreased epidermal thickening, mildly inhibited 

mast cell infiltration and did not significantly affect eosinophil infiltration (Fig. 5E-G). 

Finally, to further confirm that the effect of CX3CR1 in AD was due to its expression on T 

cells, we adoptively transferred CX3CR1-proficient or -deficient naïve T cells into CX3CR1-
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deficient animals and induced AD. After 7 weeks, animals reconstituted with CX3CR1-

proficient T cells developed a pathology (epidermal thickening, mast cell and eosinophil 

infiltration) that was comparable to that of CX3CR1-proficient animals. Reconstitution with 

CX3CR1-deficient T cells did not induce symptoms of AD (Fig. 5H-J). Furthermore, topical 

application of CX3-AT during the last 3 days of sensitization, to CX3CR1-deficient mice 

reconstituted with CX3CR1-proficient T cells, the only cells expressing CX3CR1 in this 

experimental setting, exerted similar effect than on (non-reconstituted) CX3CR1-

proficientanimals  (Fig. 5H-J). 

Altogether, these data demonstrate that blocking interactions between CX3CR1 and CX3CL1 

in situ prevents disease symptoms by impairing effector T cell retention in inflamed skin.  

 

Human Th2 - and Th1- CX3CR1+ cells infiltrate AD skin lesions. 

In order to assess the human relevance of our observations, we investigated whether 

CX3CR1+ CD4+ T cells could be detected in AD patients. In agreement with the absence of 

CX3CR1 expression on circulating mouse CD4+ T cells, even upon antigenic sensitization, in 

human, we detected a very low expression on circulating CD4+ T from AD patients. In 

addition, no significant differences were found between healthy individuals, AD and psoriasis 

patients patients in agreement with previously published work (Echigo et al., 2004) (Fig. 6A). 

About 7% of skin isolated CD4+ T cells expressed CX3CR1, in keeping with our findings in 

the murine model of AD. As CX3CR1- cells, CX3CR1+ CD4+ T cells display a very 

heterogeneous cytokine profile with the Th1 and Th2 subsets being the most represented as 

compared to Th17 (Fig. 6B, C). Taken together, these data confirm the presence and 

functional properties of CX3CR1 cells in human.  
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DISCUSSION 

We have demonstrated that in an AD model based on epicutaneous antigen sensitization, 

CX3CR1 deficiency prevented skin inflammatory response and severely reduced the 

pulmonary symptoms as well as humoral responses. This defect was solely due to CX3CR1 

expression by CD4+ T cells as demonstrated by reconstitution experiments in which transfer 

of WT CD4+ T cells in CX3CR1-deficient mice restored skin disease that could be further 

blocked upon CX3CR1 antagonist treatment. Paradoxically for an allergic disease and unlike 

asthma, the most pronounced inhibitory effects were observed on the Th1-associated rather 

than Th2-associated response (Fig. 3A and not shown). These findings further underline the 

major role exerted by CX3CR1 on Th1 cells, prominently associated to the chronic phase of 

the disease, which adds to its key effect on Th2 cells in allergic asthma (Mionnet et al., 2010). 

CX3CL1 and expression of its unique receptor, CX3CR1 on T cells play a crucial role in the 

development of AD by retaining effector T cells in the inflamed skin. Indeed, neither 

proliferation, early or late migration, nor survival were affected by CX3CR1 deficiency on 

CD4+ effector T cells, while blocking CX3CR1/CX3CL1 interactions in situ prevented WT 

allergen-specific T cell accumulation in skin and induced their accumulation in draining LN 

(Fig. 5D). Interestingly, upon such treatment, while allergen-specific T cells were more 

abundant in the periphery, this later also prevented the development of pulmonary symptoms 

observed upon intranasal antigen challenge. A phenomenon that might suggest that residence 

into inflammatory skin leads to further T cell education and subsequent preferential access to 

the lungs. This hypothesis fits with our unpublished observations in which T-cell containing 

lung inflammatory foci develop even in the absence of the single terminal airway antigen 

challenge in AD mice. Such "reprogramming" for distal mucosal homing is reminiscent of 

previously reported reprogramming from gut to skin homing (Oyoshi et al., 2011). 

Furthermore, it was recently shown that lung DC promotes T cell lung homing through 
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induction of CCR4, which is also a skin-homing receptor (Mikhak et al., 2013). These 

findings illustrate the mechanisms at play to insure lymphocyte (re)circulation between 

distinct sites within the common mucosal immune system (Lazarus et al., 2003). 

Chemokines known so far to be involved in skin diseases contribute to the pathology by 

inducing migration of inflammatory cells towards the skin and not by facilitating their 

retention in the inflammatory sites. Indeed, Islam et al demonstrated that CCL8 is involved in 

skin homing of CCR8-expressing Th2 cells in the same animal model of AD (Islam et al., 

2011). Likewise, Homey et al showed that intradermal CCL27 injection attracted 

lymphocytes in vivo and, conversely, neutralization of interactions between CCL27 and its 

receptor CCR10 impaired lymphocyte recruitment to the skin leading to the suppression of 

DNFB (dinitrofluorobenzene)-induced skin inflammation in a murine model of contact 

hypersensitivity (Homey et al., 2002). While the membrane form of CX3CL1 had been 

previously shown to mediate adhesion of CX3CR1-expressing leukocytes in vitro, to our 

knowledge this is the first report demonstrating such a role in vivo. It remains, however to be 

determined which cell types interact with CD4+ T cells to retain them within the skin and 

why/how the CX3CR1 pathway plays a different role in the skin compared to the lung. To this 

latter point, we can hypothesize that CX3CL1-expressing cells required for the delivery of 

CX3CR1 signaling are different in skin and lung. While in skin CX3CL1 is expressed in 

epithelial cells, endothelium as well as in lesional skin of AD patients, in asthmatic lungs it is 

also highly upregulated within airway smooth muscle (El-Shazly et al., 2006). Indeed, we 

have also found in our LACK-induced asthma model that infiltrating antigen-specific CD4+ T 

cells can be localized within the smooth muscle cells (our unpublished data). 

The particular importance of CX3CR1 in the development of AD, compared to a "pure" Th2 

pathology such as allergic asthma, probably results from its combined action on both Th1 and 

Th2 arms of the disease. Such a major effect could be evidenced in a model of mild-
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inflammation induced by epicutaneous sensitization in the absence of adjuvant and might not 

have been found by using models of highly polarized Th2 inflammation obtained upon 

immunization with adjuvant. 

CX3CR1 does not appear involved in every skin disease as CX3CR1-deficient and -proficient 

mice displayed similar epidermal thickening and inflammation in a well established 

experimental model mimicking human psoriasis by repeated applications of Imiquimod (a 

TLR7/8 agonist) (van der Fits et al., 2009) (not shown). Likewise, earlier studies had 

demonstrated that CX3CR1-deficient and -proficient mice also exhibited similar responses in 

a model of contact hypersensitivity/DTH to oxazolone (Jung et al., 2000). This reinforces the 

high potential of CX3CR1 and CX3CL1 as therapeutic targets in allergic diseases. 

In conclusion, the identification of a new mode of action for a chemokine and the full 

inhibition of AD by a CX3CR1 antagonist further demonstrates that the CX3CR1/CX3CL1 

axis represents a new promising therapeutic target in allergic inflammatory diseases like 

allergic asthma and atopic dermatitis. 
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MATERIALS AND METHODS   

Animals 

Littermate CX3CR1gfp/gfp, CX3CR1+/gfp, CX3CR1gfp/gfp and CX3CR1+/gfp Thy1.1+/- WT15 TCR 

transgenic mice were generated in a Balb/c ByJ background (12 backcrosses) as previously 

described (Mionnet et al., 2010). Eight- to 12-week-old female mice were used for all 

experiments. Animals were housed within the specific pathogen-free facility from the Institut 

Pasteur de Lille or from the Institut de Pharmacologie Moléculaire et Cellulaire in Sophia-

Antipolis. Experiments were performed after approval by the Ethics Committee for Animal 

Experimentation from Lille and Nice. 

 

Experimental atopic dermatitis 

As previously described, AD was induced by epicutaneous sensitization (Staumont-Salle et 

al., 2008) with LACK antigen. Briefly, patches soaked with 25 μL of 0.2% LACK solution in 

PBS or with vehicle were applied on abdominal skin 24 hours after shaving and were left on 

for three 1-week periods (with patch renewal at midweek), with a 2-week interval between 

applications. At the time of the last patch removal (day 49), animals were challenged for 20 

minutes by means of aerosol nebulization with LACK (0.2% in PBS) by using an ultrasonic 

nebulizer (Systam, Villeneuve sur Lot, France) and serum was collected. On the next day, 

airway hyperresponsiveness (AHR) to increasing concentrations of methacholine was 

measured by means of invasive plethysmography using a FlexiVent and expressed by 

dynamic lung resistance (SCIREQ) (Kanda et al., 2009). Animals were sacrificed by cervical 

dislocation. Bronchoalveolar lavage fluid (BALF) was collected and analyzed on cytospin 

preparations after RAL 555 staining. Skin and inguinal lymph nodes were collected for 

histological analyses and real-time PCR after RNA extraction. LACK was produced and 
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detoxified using Endotrap columns (Profos). Endotoxin levels assessed by LAL assay (Pierce) 

were below 5 ng/mg of protein.  

 

Treatment with a CX3CL1 antagonist (CX3-AT) in a model of AD  

CX3-AT blocking reagent was prepared as described (Mionnet et al., 2010) and administered 

by weekly intraperitoneal injections (50 µg/mouse) either during the 3 sensitization periods 

(prophylactic protocol) or only during the last week of sensitization (therapeutic protocol) and 

animals were analyzed as described above. Alternatively, CX3-AT was applied topically (50 

µg/mouse) by patch together with the antigen during the last 3 days of a single round of 

sensitization or during the third and last week-long round of sensitization. 

 

Histology and immunohistochemistry 

Tissue biopsy specimens were processed as previously described (Staumont-Salle et al., 

2008). Briefly, samples were fixed in ImmunoHistoFix (Interstiles, Brussels, Belgium) and 

embedded in ImmunoHistoWax (Interstiles) at 37°C. Five µm sections were stained with May 

Grünwald Giemsa for measurement of epidermal thickness and eosinophil and mast cells 

counts (Staumont-Salle et al., 2008) by using a microscope with Arcturus XT software.  

Epidermal thickness was determined at 250-fold magnification; an average of 10 measures 

was calculated for each sample. Eosinophils and mast cells were enumerated by examining 20 

random fields at 400-fold magnification; cell frequency was converted to cells per square 

millimeter and results were expressed as mean ± SD. For immunohistochemical analysis, 

sections embedded in ImmunoHistoWax were immunostained with anti-I-Ad/I-Ed (MHC II) 

mAb (clone M5/114, rat IgG2b, BD Biosciences) and cryopreserved sections were stained 

with anti-CD4 mAb (clone RM4-5, rat IgG2a, BD Biosciences) as previously described 

(Angeli et al., 2004). For each section, 10 random fields were examined at x400.  
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Immunoglobulin concentrations 

Immunoglobulin (IgE, IgG1 and IgG2a) concentrations in serum were measured as previously 

described by ELISA (Staumont-Salle et al., 2008). Two-fold serial dilutions were prepared for 

each serum (starting dilution 1:25 for IgE, 1:5000 for IgG1, 1:1000 for IgG2a). Antibody titers 

were calculated as the dilution corresponding to twice the mean absorbance value obtained for 

non-sensitized mouse sera.  

 

Murine cell purification and in vivo assays 

For the antigen-presenting capacity assay, splenic CD4+ T cells were purified from 

CX3CR1+/+ WT15 Thy1.1+/+ Rag-2-/- TCR transgenic mice, encoding a LACK specific TCR, 

by positive selection using anti-CD4 beads (MACS, Miltenyi) (purity >95%), stained with 

CFSE (Sigma) and further injected (2 X 106 cells) via the lateral tail vein into CX3CR1gfp/gfp 

and CX3CR1+/gfp recipient mice, 1 day before epicutaneous LACK sensitization. Proliferation 

of donor cells in the inguinal LN was assessed by flow cytometry 5 days later.  

For analysis of CX3CR1+/+ and CX3CR1gfp/gfp T cell proliferation, splenic CD4+ T cells were 

purified from CX3CR1gfp/gfp Thy1.1+/+ and CX3CR1+/gfp Thy1.1+/- WT15 donor mice, stained 

with CFSE, and co-injected (2 X 106 of each population) into Thy1.1-/- CX3CR1+/+ wild-type 

mice, one day before epicutaneous LACK sensitization. Proliferation was assessed in the 

inguinal LN 4 days later by flow cytometry.   

For preparation of Th1 and Th2 cells, CD4+ T cells from TCR transgenic mice were purified 

by negative selection and 1.5 X 106 cells were incubated for 3 days with 0.75 X 106 T cell-

depleted splenocytes in complete RPMI with 50 nM LACK156-173 peptide and (i) 10 ng/ml r-

IL-4 and 10 µg /ml antibody to IFN (R4-6A2) for Th2 cells or (ii) 10 ng/ml r-IL-12 and 10 

µg /ml antibody to IL-4 (11B11) for Th1 cells. In some experiments, Thy1.1-/- Thy1.2+/+ WT 
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mice received either CX3CR1gfp/gfp or CX3CR1+/gfp LACK-specific Th1 or Th2 cells (2 X 106 

cells per mouse) by intravenous injection and then underwent one single round of LACK 

epicutaneous sensitization. Animals were sacrificed at day 7 and skin samples were collected 

for histological analysis of AD characteristics as previously described. In other experiments, 

the same number of both CX3CR1gfp/gfp and CX3CR1+/gfp LACK-specific Th1 or CX3CR1gfp/gfp 

and CX3CR1+/gfp LACK-specific Th2 cells were co-injected in Thy1.1-/- Thy1.2+/+ WT mice 

mice (1.5 X 106 of each genotype per mouse), one day before LACK epicutaneous 

sensitization. When indicated, recipient mice treated as described above, were injected i.p. 

with BrdU (BD Biosciences) (200 µg) for the last 18 hrs. BrdU incorporation of CX3CR1 -

proficient and -deficient Th1 and Th2 donor cells was studied by flow cytometry in inguinal 

LN. Survival of Th1 and Th2 donor cells was analyzed by annexin-V and 7-

aminoactinomycin D (7-AAD) staining in both skin and inguinal LN.  

In reconstitution experiments, 5 X 106 naïve CX3CR1gfp/gfp or CX3CR1+/gfp CD4+ T cells were 

adoptively transferred into CX3CR1gfp/gfp mice 24h prior to induction of AD.  

 

Human T cells 

PBMC and skin samples were obtained from patients with AD from the Department of 

Dermatology or from healthy donors from the Department of Plastic Surgery. This study was 

approved by the Ethical Committee from the University Hospital of Lille. All subjects 

provided written informed consent. Patients with AD were selected according to the Hanifin 

and Rajka criteria (Hanifin and Rajka, 1980). PBMC were obtained after elimination of 

granulocytes on a Ficoll gradient. Punch skin biopsies (diameter 5 mm) were cultured in 

complete RPMI 1640 supplemented with 100 U/ml penicillin, 100 g/ml streptomycin (all 

Invitrogen), 5% human serum (Sigma) and 20U IL-2/ml (Novartis). After 10-13 days, 

emigrating cells were collected and characterized by surface and intracellular staining by flow 
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cytometry. Surface and intracellular cytokine staining was performed using the 

Cytofix/Cytoperm kit (BD Biosciences) according to the manufacturer’s instructions. The 

following fluorochrome-conjugated antibodies were used: ant-IFN--V450 (B27), anti-TNF-

Alexa flluor 700 (Mab11), anti-IL-4-PerCP-Cy5.5 (8D4-8), anti-IL17A-PE (N49-653), anti-

IL-5-APC (TRFK5), anti-IL-9 PerCP-Cy5.5 (MH9A3), anti-CD4-APC-Cy7 (RPA-T4), anti-

IL-13-Horizon-V450 (JES10-5A2) (all BD Bioscience), anti-IL4-PE (3010.211), (BD 

FastImmune), anti-IL22-APC (142928) (R&D), CX3CR1-FITC (2A9-1) Biolegend. 

 

Retroviral transduction 

The human Bcl2 cDNA was cloned into the mouse bi-cistronic retroviral expression vector 

MIGR. Th2 differentiated cells were incubated with viral supernatant containing 5 µg/ml 

Polybrene (Sigma) and spun at 32°C for 8 h as described (Mionnet et al., 2010). Viral 

supernatant was replaced with fresh medium. GFP-expressing T cells were sorted 3 d later. 

 

Statistical analysis 

Statistical significance was determined by Student T test, except for plethysmographic data, 

for which ANOVA for repeated measures was used. Graphpad and STATview softwares were 

used, respectively. Results were expressed as means ± SEM. A P value <0.05 was considered 

significant. 
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FIGURE LEGENDS   

Figure 1. Absence of atopic dermatitis and attenuation of associated humoral and lung 

inflammatory response in CX3CR1-deficient mice. AD was induced on abdominal skin in 

CX3CR1+/+ and CX3CR1gfp/gfp mice by epicutaneous LACK sensitization for three 1-week 

periods, with a 2-week interval between applications. At day 49, sera were collected and 

animals were challenged by LACK nebulization. At day 50, AHR to increasing 

concentrations of methacholine was measured by invasive plethysmography. Then, mice were 

sacrificed and BAL fluid was collected and analyzed on cytospin preparations. Skin samples 

were collected at the site of sensitization. A. May Grünwald Giemsa staining of skin sections 

(original magnification X10 for the main panels and X63 for the inset). Black arrows indicate 

mast cells and, in the inset, eosinophils. B. Epidermal thickness. C. Eosinophil, mast cell, 

MHC II+ and CD4+ T cell numbers in dermis. D. Immunoglobulin concentrations in serum. 

Total IgE (upper left panel), -LACK-specific IgG1 (bottom left panel) and LACK-specific 

IgG2a (bottom right panel) concentrations. E. Airway hyperreactivity to increasing 

methacholine concentrations. Resistance was evaluated by invasive plethysmography. F. 

Lung inflammatory response: total number of cells, macrophages, neutrophils, lymphocytes 

and eosinophils in BAL fluid.  Data are expressed as mean ± SEM (n=6-10 animals per 

group). One out of two independent experiments is shown for each panel.  * P < 0.05; ** p< 

0.01. 

 

Figure 2. Abrogation of AD features in wild-type mice treated with CX3-AT. A. Timeline 

of CX3-AT administration during AD induction. B. Epidermal thickness. C. Eosinophil, mast 

cell, MHC II+ and CD4+ T cell numbers in dermis. D. Airway hyperreactivity to increasing 

methacholine concentrations. Resistance was evaluated by invasive plethysmography. E. 
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Lung inflammatory response: total number of cells, macrophages, neutrophils, lymphocytes 

and eosinophils in BAL fluid. Data are expressed as mean ± SEM (n=6-10 animals per 

group). One out of 2 independent experiments is shown for each panel. Statistically different 

from PBS-treated mice * P < 0.05 and ** p< 0.01; $ statistically different from vehicle-treated 

mice (P < 0.05).  

 

Figure 3. CX3CR1 expression regulates both Th1- and Th2- induced skin inflammation.  

A. CSFE-labeled CX3CR1+/+ WT15 Thy1.1+/+ CD4+ T cells were injected i.v. into 

CX3CR1gfp/gfp or CX3CR1+/gfp mice one  day before epicutaneous sensitization with LACK. 

Donor cells were analyzed by flow cytometry 5 days later in inguinal LN after gating onto 

CD4+ Thy1.1+ cells. Data show one representative flow cytometry profile of CFSE staining 

with numbers indicating frequencies of dividing donor cells ± SEM (n=6).  B. CSFE-labeled 

CX3CR1+/gfp Thy1.1+/- and CX3CR1gfp/gfp Thy1.1+/+ WT15 CD4+ T cells were co-injected i.v. 

into WT Thy1.1-/- Thy1.2+/+ mice one day before LACK or PBS epicutaneous sensitization. 

Donor cells were analyzed by flow cytometry 4 days later in inguinal LN after gating CD4+ 

Thy1.1+ cells. Data show a representative flow cytometry profile of CFSE staining with 

numbers indicating dividing CX3CR1+/+ and CX3CR1gfp/gfp donor cells (n=5 mice in each 

group). Wild-type mice were injected at day -1 with LACK-specific CX3CR1gfp/gfp or 

CX3CR1+/gfp Th1 or Th2 cells, sensitized for one single week with LACK or PBS at day 0 and 

further analyzed at day 7. C. Epidermal thickness. D. Eosinophil and mast cell numbers in 

dermis at the site of sensitization.  Data are expressed as mean ± SEM (n=6-10 animals per 

group). One out of 2 independent experiments is shown for each panel. * P < 0.05. 

   

Figure 4. CX3CR1 provides a selective advantage to effector CD4+ T cells. Equal numbers 

of LACK-specific CX3CR1gfp/gfp (black histograms or symbols) and CX3CR1+/gfp (white 
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histograms or symbols) Th2 or Th1 cells were co-injected into WT mice at day 0. Recipients 

were sensitized with LACK or PBS at day 1 and day 4 and analyzed at day 3 (A,C,D) or day 7 

(B,D). A. Donor cells were analyzed in skin by flow cytometry. Data show representative 

flow cytometry profiles (upper panels). Data show mean frequencies  SEM of donor Th1 

(bottom left panel) or Th2 (bottom right panel) cells among the CD4+ T cell population. One 

representative experiment out of two is shown. (n=6 mice per group). B. Donor cells were 

analyzed in skin by flow cytometry (upper panels). Data show donor cell frequency of Th1 

(bottom left panel) or Th2 (bottom right panel) in individual mice with bars indicating the 

mean from three experiments (n=16 mice per group). * P < 0.05. C. 18 h before sacrifice, 

recipient mice were injected with BrdU, and donor cells were analyzed by flow cytometry 

after staining with anti-BrdU, anti-Thy1.1, -Thy1.2, -CD4, and -CD45 antibodies. Data show 

cell frequency of donor Th1 or Th2 cells in individual mice with bars indicating the mean in 

LACK-sensitized (n=4 mice) and PBS-sensitized mice (n=2-3 mice). (One representative 

experiment out of two). D. Donor cells were analyzed in draining LN and skin by flow 

cytometry for GFP expression at days 3 (white bars) and 7 (grey bars). Data show 

representative flow cytometry profiles after aggregating files from individual mice (upper 

panels) (n=6 mice per group). One experiment out of three is shown. Histograms show mean 

frequencies  SEM of GFP+ cells among Th1 (left panels) or Th2 (right panels) donor cells 

(n=12 mice per group at day 3 and n=18 mice at day 7).  

 

Figure 5. CX3CR1 is required for T cell retention in chronically inflamed skin.  

A. Equal numbers of LACK-specific CX3CR1gfp/gfp (black histograms) and CX3CR1+/gfp 

(white histograms) Th2 or Th1 cells were co-injected into WT recipient mice at day 0. 

Recipients were sensitized with LACK at day 1 and day 4 and analyzed at day 3 and day 7. 

Donor cells were analyzed by flow cytometry 3 days later in inguinal draining LN after 
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staining with antibodies against CD45, CD4, Thy1.1, Thy1.2, and annexin-V and 7-AAD. 

Data show mean frequencies of annexin-V+ cells among donor cells ± SEM. B. CX3CR1+/gfp 

(white histograms) and CX3CR1gfp/gfp (black histograms) Th2 cells were infected with a Bcl2 

or an empty retroviral vector. Equal numbers of transduced cells were co-injected into 

recipients that were further sensitized with one round of LACK sensitization. Data show the 

mean of donor cell frequency in skin (left panel) and inguinal draining LN (right panel) of 

individual mice in one representative experiment out of two (n=5 mice per group). C. AD was 

induced in WT mice as described in the legend of Fig.1 and equal numbers of LACK-specific 

CX3CR1gfp/gfp (green population) and CX3CR1+/gfp (pink population) Th1 (upper panels) or 

Th2 (lower panels) cells were co-injected at day 41. Donor cells were analyzed in skin, 

draining LN and spleen by flow cytometry. Data show representative flow cytometry profiles. 

Numbers indicate frequencies  SEM of donor Th1 (upper panels) or Th2 (bottom panels) 

cells among the CD4+ T cell population. One representative experiment out of two is shown 

(n=12 mice per group). 18 h before sacrifice, recipient mice were injected with BrdU and 

donor cells were analyzed by flow cytometry after staining with anti-BrdU, -Thy1.1, -Thy1.2, 

-CD4 or -CD45 antibodies. Data show representative cytometry profiles and numbers indicate 

the mean (n=12 mice) (One representative experiment out of two). D. Equal numbers of 

LACK-specific CX3CR1gfp/gfp (black histograms) and CX3CR1+/gfp (white histograms) effector 

cells were co-injected into WT recipient mice at day 0. Recipients were sensitized with LACK 

at day 1 and day 4. At day 4, some recipient mice topically received LACK together with 

CX3-AT. Three days later, the frequencies of donor cells were analyzed in skin and draining 

LN by flow cytometry. Data show mean of donor cell frequency of individual mice in one 

representative experiment out of two (n=5 mice per group). * P < 0.05). E-G. AD was 

induced as described in the legend of Fig.1. During the last round of sensitization, some mice 

also received CX3-AT (50 µg/mouse) through the patch together with LACK as indicated on 
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the figure. E. May Grünwald Giemsa staining of skin sections (original magnification X10). 

F. Epidermal thickness. G. Mast cell and eosinophil numbers. Data for panels E-G show 

mean of cell numbers in one representative experiment out of two (n=6 mice per group).  * P 

< 0.05. H-J CX3CR1gfp/gfp mice were injected with polyclonal naïve WT or CX3CR1gfp/gfp 

(KO) CD4+ T cells 24h prior to AD induction. During the last round of sensitization, mice 

also received CX3-AT (50 µg/mouse) through the patch together with LACK as indicated on 

the figure. H. Epidermal thickness. I-J. Mast cell and eosinophil numbers. Data for panels H-J 

show mean of cell numbers in one representative experiment (n=5 mice per group). * P < 

0.05; n.s. Not significant.  

 

Figure 6: CX3CR1 is expressed by skin-infiltrating CD4+ T cells in AD patients.  

A. CX3CR1 expression by circulating CD4+ T cells. PBMC were from patients with AD or 

from healthy donors were analyzed by flow cytometry for CX3CR1 expression. Data show 

frequency of CX3CR1+ cells among CD4+ T cells in individual donor. n.s. Not significant. B. 

Cells from skin biopsies were characterized by surface and intracellular staining by flow 

cytometry. Left panel show a representative FACS profile. Numbers indicate the mean  SEM 

of the frequency of CX3CR1+ among CD4+ T cells from n=6 patients. Right panels show 

frequencies of cytokine-secreting CX3CR1+ and CX3CR1- CD4+ T cells for each patient.  

 


