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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-UNICE

https://core.ac.uk/display/52776591?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01143516


FLOWS AND STOCHASTIC TAYLOR SERIES

IN ITÔ CALCULUS

KURUSCH EBRAHIMI–FARDa, SIMON J.A. MALHAMb,

FRÉDÉRIC PATRASc AND ANKE WIESEb

Abstract. For stochastic systems driven by continuous semimartingales an
explicit formula for the logarithm of the Itô flow map is given. A similar
formula is also obtained for solutions of linear matrix-valued SDEs driven
by arbitrary semimartingales. The computation relies on the lift to quasi-
shuffle algebras of formulas involving products of Itô integrals of semimartin-
gales. Whereas the Chen–Strichartz formula computing the logarithm of the
Stratonovich flow map is classically expanded as a formal sum indexed by
permutations, the analogous formula in Itô calculus is naturally indexed by
surjections. This reflects the change of algebraic background involved in the
transition between the two integration theories.

1. Introduction

The setting of our work is classical stochastic calculus, as exposed, e.g., in the
classical textbooks [20, 26]. Its aim is to obtain an explicit formula for the logarithm
of the Itô flow map associated to a stochastic differential system, generalizing the
classical work of Ben Arous [2] on Stratonovich flows and stochastic Taylor series.

In this introduction, we briefly state the main result of this work. A description
of the historical background and details on the underlying definitions and objects
of study are postponed to the next section.

Let {X1, X2, . . . , XN} be scalar continuous semimartingales. We assume, with-
out loss of generality, that X i

0 = 0 and that their quadratic covariation, or square
bracket operation, is such that [X i, Xj] ≡ 0 for i 6= j. We consider the general

stochastic differential system (in what follows the notation
∫ t

0 · · · dX
i
s refers to Itô

integrals)

(1) Yt = Y0 +

N
∑

i=1

∫ t

0

Vi(Ys) dX
i
s,

where Vi : R
d → R

d are smooth vector fields. In the following, we will identify Vi

with the partial differential operator Vi∂y :=
∑d

j=1 V
j
i ∂yj

. For i = N + 1, . . . , 2N ,

let X i denote the quadratic variation of X i−N , that is X i = [X i−N , X i−N ], and
define the second order differential operator Vi by

(2) Vi :=
1

2

d
∑

j, k=1

V
j
i V

k
i ∂yjyk

.

By analogy to the Stratonovich stochastic system driven by Wiener processes in
[1], we define the stochastic partial differential operator S as

S =

2N
∑

i=1

ViX
i.

Since the differential operators Vi are time-homogeneous, we also have dSt :=
∑2N

i=1 Vi dX
i
t . For n ≥ 1, let

∫

Sn denote the n-times repeated integral of S and set
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∫

S0 = Id, so that

∫

Sn =

∫

· · ·

∫

dSt1 · · · dStn =

2N
∑

j1,j2,...,jn=1

Vj1 ◦ · · · ◦ Vjn

∫

· · ·

∫

dXj1
t1
. . .dXjn

tn
.

The Itô-Taylor series expansion for the flowmap ϕt : Y0 → Yt corresponding to the
stochastic system is given by

ϕt =
∑

n≥0

∫

Sn ◦ Id.

We set S :=
∑

n≥0

∫

Sn = Id +
∫

SdS, which describes the action of the flowmap
on smooth functions. The central aim of this work is to calculate log S in the Itô
framework.

The computation of the logarithm of this action may be considered as the sto-
chastic analog of a well-known problem in the theory of classical differential equa-
tions (motivated, e.g., by numerical considerations, and referred often to as the
continuous Baker–Campbell–Hausdorff problem). And it turns out that, provided
one uses Stratonovich integrals, the solution for stochastic differential equations is
essentially the same as in the classical case. We refer the reader to the next section
for more details.

Displaying the first few terms of log S in the Itô framework may give an idea of
the complexity of its expression. We adopt the notation I[i,j] = [X i, Xj], and for

a repeated Itô integral Ij1,..., jn :=
∫

· · ·
∫

dXj1 · · · dXjn . Then the first three terms
are as follows

log S =
∑

i

ViIi +
∑

i,j

ViVj

(

1

2
Iij −

1

2

(

Iji + I[i,j]
)

)

+
∑

i,j,k

ViVjVk

(

1

3
Iijk −

1

6

(

Ijik + Ikij + I[i,j]k + Ij[i,k]
)

−
1

6

(

Iikj + Ijki + Ii[j,k]
)

+
1

3

(

Ikji + I[j,k]i + Ik[i,j]
)

)

+ · · · .

To write the general expression for this expansion, let us introduce some notation.
For f a surjection from the set [n] := {1, . . . , n} to the set [k] (written f ∈ Sjn,k),
we set

d(f) := |{i < n, f(i) ≥ f(i+ 1)}|.

The set of surjections f from [n] to [k] such that ∀i ≤ k, |f−1{i}| ≤ 2 is written

Sj
(2)
n,k For a sequence J = (j1, . . . , jn) of elements of [2N ] and A = A1

∐

· · ·
∐

Ak =

[n] an ordered partition of the set [n] into disjoint subsets, we write IJA for the

iterated integral
∫

· · ·
∫

dXA1

J · · ·dXAk

J , where, for Ai = {a1, . . . , al}, X
Ai

J stands

for the iterated quadratic covariation [Xja1 , . . . , Xjal ] := [Xja1 , [Xja2 , . . . , Xjal ]].
For f as above, we set A(f) := f−1(1)

∐

· · ·
∐

f−1(k) and

Sf :=

2N
∑

i1,...,in=1

Vi1 · · ·VinI
{i1,...,in}
A(f) .

Our main result reads

Theorem 1.1. We have:

log(S) =
∑

n>0

∑

n≥k≥1

∑

f∈Sj
(2)
n,k

(−1)d(f)

n
·

(

n− 1

d(f)

)−1

Sf .

This statement follows from Theorem 6.2. The restriction of the indexing set to

Sj
(2)
n,k follows from the fact that, for continuous semimartingales, iterated brackets

such as [[Xi, Xj ], Xk] vanish. When allowing semimartingales with jumps (the
article will develop the combinatorial theory of iterated integrals of semimartingales
in this more general setting), this restriction disappears.
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For example, with f the surjection from [3] to [2], defined by

f(1) = 2, f(2) = 1, f(3) = 2,

we obtain d(f) = 1, and

(−1)d(f)

n
·

(

n− 1

d(f)

)−1

=
(−1)

3
·

(

2

1

)−1

= −
1

6

and Sf =
∑

i,j,k

ViVjVkIj[ik], as expected from the low order direct computation given

previously.
The rest of the paper develops the formalism necessary to prove the above the-

orem. Several of the tools that enter our approach are of general interest, and
allow to handle the algebraic structures of iterated Itô integrals. We also show how
the same ideas can be applied to the study of linear stochastic matrix differential
equations driven by arbitrary semimartingales (Theorem 7.3).

Acknowledgements: The first author is supported by a Ramón y Cajal re-
search grant from the Spanish government. The third author acknowledges support
from the grant ANR-12-BS01-0017, Combinatoire Algébrique, Résurgence, Moules
et Applications.

2. The Strichartz formula

Let us recall first the historical as well as technical background of Theorem 1.1.
Its knowledge will help to enlighten our forthcoming constructions, and make clear
to what extend Itô calculus differs from the Riemann or Stratonovich calculus.

From the seminal 1957 work by K.T. Chen on the algebraic structures underlying
products of iterated integrals [6] followed the existence of an exponential solution
of the classical nonautonomous initial value problem

Ẏ (t) = F (t, Y (t)), Y (0) = Y0,

where F (t) : Rd → R
d is a vector field depending continuously on time.

Over the decades following Chen’s work, the explicit formula for this exponential
solution was obtained independently by several authors. Mielnik and Plebanski [23]
as well as Strichartz [29] calculated the function Ω(t) such that Y (t) = exp(Ω(t))Y0.
Using the fact that Stratonovich integrals obey Chen’s rules of calculus for iterated
integrals, Ben Arous showed soon after the work of Strichartz, that the application
domain of this formula extends to stochastic realm [2, 1].

The explicit expression of the series Ω(t) is rather intricate. Its most classical
formulation involves permutations and iterated integrals of iterated Lie brackets

Ω(t) =
∑

n>0

∑

σ∈Sn

(−1)d(σ)

n2
(

n−1
d(σ)

)

∫

∆n
[0,t]

[· · · [F (sσ(1)), F (sσ(2))], · · · ], F (sσ(n))]ds1 · · · dsn,

where the bracket of vector fields follows from their interpretation as differential
operators, and the integration domain is the n-dimensional simplex

∆n
[0,t] := {(s1, . . . , sn), 0 ≤ s1 ≤ · · · ≤ sn ≤ t}.

In the formula for Ω(t), Sn denotes the set of permutations of the set [n] :=
{1, . . . , n}. The quantity d(σ) (already introduced in the more general case of
surjections) is called the number of descents of the permutation σ ∈ Sn, that is
the number of positions in the permutation (σ(1), . . . , σ(n)), where σ(i) > σ(i+1),
for i = 1, . . . , n − 1. The formula is known in the literature as Strichartz, Chen–
Strichartz or continuous Baker–Campbell–Hausdorff formula.

It can also be stated by replacing iterated Lie brackets by standard operator
products. The formula is then essentially the same except for the scalar coeffi-

cient, which becomes (−1)d(σ)n−1
(

n−1
d(σ)

)−1
-the same kind of scalar coefficient as

those appearing in Theorem 1.1. We refer to [29] for details on the analytic back-
ground, and to [27, 17] for the underlying combinatorics of free Lie algebras and
Lie idempotents.
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The derivation of the formula for Ω(t) relies on a precise understanding of the
calculus of iterated integrals, which in turn is based on integration by parts. For

two scalar valued indefinite integrals F (t) :=
∫ t

0
f(s)ds and G(t) :=

∫ t

0
g(s)ds, recall

that

F (t) ·G(t) =

∫ t

0

f(s)G(s)ds+

∫ t

0

F (s)g(s)ds.

For general iterated integrals

Fn(t) :=

∫

∆n
[0,t]

f1(s1)f2(s2) · · · fn(sn)ds1 · · · dsn,

the above product generalizes to Chen’s shuffle product formula

Fn(t) · Fm(t) =
∑

σ∈Shn,m

∫

∆n+m

[0,t]

fσ−1(1)(s1) · · · fσ−1(n+m)(sn+m)ds1 · · · dsn+m,(3)

where Shn,m is the set of (n,m)-shuffles, i.e., permutations σ on the set [n + m],
such that σ(1) < · · · < σ(n) and σ(n+ 1) < · · · < σ(n+m).

The above product is conveniently abstracted into an algebraically defined shuffle
product on words. Let Y := {y1, y2, . . .} be an alphabet, and Y ∗ the correspond-
ing free monoid of words ω = yi1 · · · yin . The vector space K〈Y 〉, which is freely
generated by Y ∗, is a commutative algebra for the shuffle product:

(4) v1 · · · vp ∐∐ vp+1 · · · vp+q :=
∑

σ∈Shp,q

vσ−1
1

· · · vσ−1
p+q

with vj ∈ Y , j ∈ {1, . . . , p + q}. We define the empty word 1 as unit: 1 ∐∐ v =
v ∐∐1 = v for v ∈ Y ∗. This product is homogenous with respect to the length of
words and can be defined recursively. Indeed, one can show that:

v1 · · · vp ∐∐ vp+1 · · · vp+q =v1
(

v2 · · · vp ∐∐ vp+1 · · · vp+q

)

(5)

+ vp+1

(

v1 · · · vp ∐∐ vp+2 · · · vp+q

)

.

The shuffle product was axiomatized in the 50’s in the seminal works of Eilenberg–
MacLane and Schützenberger [9, 28], and has proven to be essential in many fields
of pure and applied mathematics. In [7, 8] Chen studied fundamental groups and
loop spaces. In control theory, Chen’s abstract shuffle product plays a central
role in Fliess’ work [14], which combines iterated integrals and formal power series
in noncommutative variables into an algebraic approach to nonlinear functional
expansions. Reutenauer’s monograph on free Lie algebras [27] imbeds Chen’s work
into an abstract Hopf algebra theoretic setting. More recently, Chen’s formalism
came to prominence in Lyons’ seminal theory of rough paths [22].

When dealing with iterated Itô integrals of semimartingales, this machinery of
shuffle products does not apply any more. One has instead to use the quasi-shuffle
product [5]. Its definition will be recalled further below. We simply mention for the
time being that, although it was discovered and investigated much more recently,
it appears to be as important as the shuffle product, both from a theoretical as
well as applied point of view. Indeed, it encodes the algebraic structure of discrete
sums, as the shuffle product encodes the one of integration maps, and appears
in various domains, e.g., multiple zeta values, Rota–Baxter algebras, and Ecalle’s
mould calculus. The latter is related to the computation of normal forms in the
theory of dynamical systems. We refer to [11, 12, 15, 19] for further historical and
technical details on quasi-shuffle algebras.

3. Semimartingales

Recall that a process X is a semimartingale, if X has a decomposition Xt =
X0 +Mt + At for t ≥ 0, where M0 = A0 = 0, and where M is a local martingale
and A is an adapted process that is right-continuous with left limits and has finite
variation on each finite interval [0, t].
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It is well-known that the space of semimartingales with multiplication forms
an associative algebra. The quadratic covariation or square bracket process [X,Y ]
between two semimartingales X and Y , is defined via their product as follows

X · Y = X0Y0 +

∫

X− dY +

∫

Y− dX + [X,Y ].(6)

The quadratic covariation of a process X with itself is known as its quadratic
variation. Let X , Y and Z be semimartingales, the quadratic covariation satisfies:

(1) [X, 0] = 0;
(2) [X,Y ] = [Y,X ];
(3) [X, [Y, Z]] = [[X,Y ], Z].

Hence, the square bracket process defines a commutative and associative product
on the space of semimartingales. We refer to the monographs by Protter [26] and
Jacod & Shiryaev [20] for details.

For notational convenience, we will write from now on iterated integrals of semi-
martingales as follows:

∫

XY :=

∫

X− dY, and

∫

X1 · · ·Xn :=

∫

(

∫

X1 · · ·Xn−1)− dXn.

Iterated brackets are denoted by:

(7) X ⋆ Y := [X,Y ], and X1 ⋆ · · · ⋆ Xn := [· · · [X1, X2], · · · , Xn].

From now on we will assume that all processes are normalized so that X0 = 0.
Terms such as X0Y0, can therefore be ignored in products of stochastic integrals,
e.g., as in equation (6).

Let us briefly illustrate the combinatorial nature of iterated Itô integrals, before
turning to the general, and more abstract picture. Recall first that, for arbitrary
semimartingales A,B,C,D and X :=

∫

A− dB, Y :=
∫

C− dD, we have

(8) X · Y =

∫

(XC)− dD +

∫

(AY )− dB +

∫

(AC)− d[B,D],

so that, for example, for B :=
∫

dB, Y :=
∫

C− dD

B · Y =

∫

(CB)− dD +

∫

Y− dB +

∫

C− d[B,D]

=

∫

CDB +

∫

(

∫

C− dB +

∫

B− dC + [B,C])− dD +

∫

C− d[B,D]

=

∫

BCD +

∫

CBD +

∫

CDB +

∫

[B,C]D +

∫

C[B,D].

Whereas the first three terms of the expansion, i.e.,
∫

BCD +
∫

CBD +
∫

CDB,
are those that would also appear in the shuffle product expansion, the last two
terms arise from the bracket operation. These extra terms are typical outcomes of
what distinguishes quasi-shuffle and shuffle computations. The algebra underlying
the quasi-shuffle calculus has been explored in [15, 24]. In a nutshell, the bracket
terms that appear in the above product require the replacement of permutations in
the calculation of the Chen–Strichartz formula by the larger class of surjections.

4. Quasi-shuffle algebra

We recall now the definition and basic properties of quasi-shuffle algebras. In
spite of the fact that such algebras encode naturally Itô integral calculus, they
appeared only in a few papers in the context of stochastic integration, see e.g. the
works by Gaines, and Liu and Li [16, 21] and [5]. As the name indicates, quasi-
shuffle algebras are obtained as a deformation of classical shuffle algebras. It is
generally agreed that the idea can be traced back to the work of P. Cartier on free
commutative Rota–Baxter algebras [3]. However, it was formalized only recently by
M. Hoffman [19]. The link between Hoffman’s ideas and commutative Rota–Baxter
algebras was explored in [11].
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Abstractly, a quasi-shuffle algebra is defined as a commutative algebra B with
product •, which is equipped with two extra bilinear products denoted ↑ and ↓
(known as “half-shuffles”), such that for x, y, z ∈ B one has

x ↑ y = y ↓ x,(9)

(x • y) ↑ z = x • (y ↑ z)(10)

(x ↑ y) ↑ z = x ↑ (y ↑ z + y ↓ z + y • z).(11)

One writes usually

x y := x ↑ y + x ↓ y + x • y,

and calls the quasi-shuffle product. In particular the last axiom then reads
(x ↑ y) ↑ z = x ↑ (y z). Note that when the product • on B is the null product,
then one recovers the usual axioms for shuffle algebras [9, 28].

Let us mention that the “deformation” induced by the • product can be under-
stood in terms of – weight-one – commutative Rota–Baxter algebras. The term
y ↑ z + y ↓ z + y • z can then be interpreted as the so-called double Rota–Baxter
product. We refrain however from developing these ideas here, since they are only
indirectly relevant to our present purposes. The interested reader is referred to the
survey paper [12] for an overview of the links between the theories of Rota–Baxter
algebras, integral calculus and (quasi-)shuffle algebras.

The standard example of a quasi-shuffle algebra, studied in detail in [19], is
provided by the tensor algebra T (A) :=

⊕

n∈N
A⊗n over a commutative algebra

(A, ∗). The three products ↑, ↓, • are defined inductively by: a • b := a ∗ b,
a ↑ b := ba, a ↓ b := ab, and

a1 · · · an ↑ b1 · · · bm := (a1 · · · an−1 b1 · · · bm)an,

a1 · · · an ↓ b1 · · · bm := (a1 · · · an b1 · · · bm−1)bm,

a1 · · ·an • b1 · · · bm := (a1 · · · an−1 b1 · · · bm−1)(an ∗ bm),

where we used the common word notation a1 · · ·an for a1 ⊗ · · · ⊗ an ∈ A⊗n.
For example, the product of two words of length two gives explicitly

a1a2 b1b2 = (a1 b1b2)a2 + (a1a2 b1)b2 + (a1 b1)(a2 ∗ b2)

= b1b2a1a2 + a1b1b2a2 + b1a1b2a2 + a1a2b1b2 + b1a1a2b2 + a1b1a2b2

+ b1(a1 ∗ b2)a2 + (a1 ∗ b1)b2a2 + a1(a2 ∗ b1)b2 + (a1 ∗ b1)a2b2

+ a1b1(a2 ∗ b2) + b1a1(a2 ∗ b2) + (a1 ∗ b1)(a2 ∗ b2).

Recall from Section 2 that the recursive description of shuffle product is comple-
mented by its definition in terms of permutations. Similarly, the above recursive
definition of the quasi-shuffle product has an explicit presentation in terms of sur-
jections. Concretely, let f be a surjective map from [n] = {1, . . . , n} to [p]. We
set:

f(a1 · · · an) := (
∏

j∈f−1(1)

∗
aj)⊗ · · · ⊗ (

∏

j∈f−1(p)

∗
aj) ∈ A⊗p,

so that for f from, say, [4] to [2] given by f(1) = 1, f(2) = 2, f(3) = 1, f(4) = 2,
we find f(a1 · · ·a4) = (a1 ∗ a3)⊗ (a2 ∗ a4).

Then, we obtain:

(12) a1 · · · an b1 · · · bm :=
∑

f

f(a1 · · · anb1 · · · bm),

where f runs over all surjections from the set [n+m] to the set [k], for max(n,m) ≤
k ≤ m+ n, and such that f(1) < · · · < f(n), f(n+ 1) < · · · < f(n+m).

Let us write now T for the tensor algebra over the algebra S of semimartingales,
equipped with the ⋆ product defined in (7), so that from now on X1 · · ·Xn denotes a
tensor product of semimartingales in S⊗n ⊂ T , and

∫

X1 · · ·Xn the corresponding
iterated stochastic integral. We finally obtain the analog for iterated integrals of
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semimartingales of the usual Chen formulas of iterated integrals. Recall that the
latter hold for either Stratonovich or indefinite Riemann integrals.

Proposition 4.1. The product of two iterated stochastic integrals is given by:
∫

X1 · · ·Xn ·

∫

Y1 · · ·Ym =

∫

(X1 · · ·Xn Y1 · · ·Ym)

=
∑

f

∫

f(X1 · · ·XnY1 · · ·Ym),

where, as above, f runs over all surjections from the set [n+m] to the set [k], for
max(n,m) ≤ k ≤ m+n, and such that f(1) < · · · < f(n), f(n+1) < · · · < f(n+m).

For example, the product of two iterated stochastic integrals gives
∫

X1X2 ·

∫

X3 =

∫

(

X1X2X3+X1X3X2+X3X1X2+(X1⋆X3)X2+X1(X2⋆X3)
)

.

The proposition follows from the observation that the inductive rules for the
quasi-shuffle product in the tensor algebra give the pattern obeyed by products
of iterated integrals of semimartingales. Namely, setting for X :=

∫

A−dB and
Y :=

∫

C−dD, we have

X ↑ Y :=

∫

(

A(

∫

C−dD)
)

−
dB,

X ↓ Y :=

∫

(

(

∫

A−dB)C
)

−
dD,

X • Y :=

∫

(AC)−d[B,D].

5. Surjections

This section presents a concise and mostly self-contained account on the modern
algebraic theory of surjections, originating independently from F. Hivert’s Ph.D.-
thesis [18] and from the work by Chapoton on the permutohedron [4]. We refer to
the works [15, 24] for more details on the subject.

Let us write Sjn,p for the set of surjective maps from the set [n] := {1, . . . , n} to
the set [p], Sjn,p for its linear span, Sjn for the union of the Sjn,p, p ≤ n, and

Sjn :=
⊕

1≤p≤n

Sjn,p.

The linear span of all surjections is denoted

Sj :=
⊕

n,p

Sjn,p,

and will be called from now on the set of surjective functions.
Let us mention for completeness sake that surjective functions in this sense are

often referred to as word quasisymmetric functions in the literature on algebraic
combinatoric. This is because they can be encoded by formal sums of words over
an ordered alphabet. The set Sj is then written WQSym (this is the notation
used in the articles we quoted for further details on the underying theory). This
interpretation, which we will not use in this work, permits to deduce automatically
certain properties for Sj from general properties of words. See the references [24, 15]
for more details.

The vector space Sj is naturally equipped with a Hopf algebra structure, through
its action on quasi-shuffle algebras [24]. However, we will make use here only of
the algebra structure. As we just saw, quasi-shuffle algebras are closely related
to stochastic integration, and this is the reason why Sj will prove to provide an
appropriate algebraic framework for what is going to be presented in the next
sections.
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Let us consider a word w over the integers (a sequence of integers) whose set
of letters is I = {i1, . . . , in} (e.g. w = 35731, I = {1, 3, 5, 7}). Let us write f

for the unique increasing bijection that sends I = {i1, . . . , in} to {1, . . . , n} (e.g.
f(1) = 1, f(3) = 2, f(5) = 3, f(7) = 4). The packing map pack is the induced map
on words (for example pack(35731) := f(3)f(5)f(7)f(3)f(1) = 23421).

Definition 5.1. The product in Sj of f ∈ Sjn,k with g ∈ Sjm,l is defined by f ⋄g :=
∑

h h, where h runs over the elements in Sjn+m,i+j, max(l, k) ≤ i+ j ≤ l+ k such
that

pack(h(1) · · ·h(n)) = f(1) · · · f(n), pack(h(n+ 1) · · ·h(n+m)) = g(1) · · · g(m).

This product is associative and unital (the unit can be understood as the unique
surjection from the emptyset ∅ =: [0] to itself), but it is not commutative.

Proposition 5.2. The linear span of all surjection, Sj, equipped with the ⋄ product,
is an associative, unital, non-commutative algebra.

Associativity follows by noticing that the product f ⋄ g ⋄ j of three surjections,
where j ∈ Sjp,q is obtained as the sum of all surjections h with pack(h(1) · · ·h(n)) =
f(1) · · · f(n), pack(h(n+1) · · ·h(n+m)) = g(1) · · · g(m), pack(h(n+m+1) · · ·h(n+
m+ p)) = j(1) · · · j(p).

6. Descents and a Itô-type BCH formula

It turns out that, similar to the classical theory of iterated integrals, the most
interesting computations that will take place later in this article on iterated sto-
chastic integrals do not involve the full algebra Sj, but only a small subalgebra,
known as the descent algebra or algebra of noncommutative symmetric functions
Sym. For more details the reader is refereed to the standard references [17, 27].

As an algebra, Sym is the free graded associative unital algebra over generators
1n, indexed by non-negative integers. We denote the product ∗ and set 1n,m :=
1n ∗ 1m. In general, for a sequence n := n1, . . . , nk of integers, we write 1n :=
1n1 ∗ · · · ∗ 1nk

. As a vector space, Sym is simply the linear span of the 1n.
A surjection f in Sjn is said to have a descent in position i < n if and only if

f(i) ≥ f(i+ 1). The set of all descents of f is written Desc(f) and

Desc(f) := {i < n, f(i) ≥ f(i+ 1)}.

The number d(f) that appears in Theorem 1.1 is the number of descents of f .
We also set, for I ⊂ [n− 1],

DescnI := {f ∈ Sjn, Desc(f) = I},

Dn
I :=

∑

f∈DescI

f ∈ Sj,

and

Descn⊆I := {f ∈ Sjn, Desc(f) ⊆ I},

Dn
⊆I :=

∑

f∈Desc⊆I

f ∈ Sj.

When the value of n is obvious from the context, we will abbreviate Dn
I by DI ,

and similarly for other symbols. Notice that Desc⊆I =
∑

J⊆I DescJ , so that, by

Möbius inversion in the poset of subsets of the set [n− 1],

(13) DescI =
∑

J⊆I

(−1)|I|−|J|Desc⊆I .

The subsets DescI form a decomposition of Sjn into a family of disjoint subsets,
from which it follows that DI and (by a triangularity argument) D⊆I form two
linearly independent families in Sjn.
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Lemma 6.1. The map ι from Sym to Sj defined by:

ι(1n) := D⊆{n1,n1+n2,...,n1+···+nk−1}

is an injective algebra map from Sym into Sj.

Proof. Injectivity follows immediately from the linear independency of theD⊆I . Let
us show that ι is an algebra map. For arbitrary n = n1, . . . , nk, m = m1, . . . ,ml,
we have

ι(1n ∗ 1m) = D⊆{n1,n1+n2,...,n1+···+nk,n1+···+nk+m1,...,n1+···+nk+m1+···+ml−1}.

On the other hand, ι(1n) ⋄ ι(1m) is, by definition of the ⋄ product in Sj, the sum of
all surjections f ∈ Sjn1+···+nk+m1+···+ml

such that pack(f(1) · · · f(n1 + · · · + nk))
lies in

Desc⊆{n1,n1+n2,...,n1+···+nk−1}

and pack(f(n1 + · · ·+ nk + 1) · · · f(n1 + · · ·+ nk +m1 + · · ·+ml)) lies in

Desc⊆{m1,m1+m2,...,m1+···+ml−1}.

Since there is no constraint on the relative values of f(n1 + · · · + nk) and f(n1 +
· · ·+ nk + 1), the statement of the lemma follows.

The following theorem is the equivalent, in the quasi-shuffle framework, of the
classical continuous Baker–Campbell–Hausdorff theorem, which computes, among
others, the logarithm of the solution of a – matrix-valued – linear differential equa-
tion. Theorem 6.2 will appear to play the same role for matrix stochastic linear
differential equations. It was first stated in [24], but the proof given in that article
is indirect and relies on structure arguments from the theory of noncommutative
symmetric functions. Stating those results, which are scattered in the literature
on algebraic combinatorics, would go beyond the scope of this work. We propose
therefore a simple and self-contained proof, which is reminiscent of the solution to
the classical Baker–Campbell–Hausdorff problem stated in [27].

Let us set I :=
∑∞

n=0 ι(1n) =:
∑∞

n=0 pn, where we write pn for the identity map
of the set [n] viewed as an element of Sjn.

Theorem 6.2. We have, in Sj,

log(I) =

∞
∑

n=1

∑

I⊆[n−1]

(−1)|I|

|I|+ 1
·Dn

⊆I

=

∞
∑

n=1

∑

I⊆[n−1]

(−1)|I|

n
·

(

n− 1

|I|

)−1

Dn
I .

Proof. The first part of the statement follows from the computation of the logarithm
of

∑∞
n=0 1n in Sym, and from the previous Lemma. Indeed

log
(

∞
∑

n=0

1n
)

=

∞
∑

i=1

(−1)n−1

n

(

∞
∑

i=1

1i
)n

=
∑

n=i1,...,ik

(−1)k−1

k
· 1n.

Let us now expand the second term of the identity in the theorem in terms of
the Dn

I . This yields the coefficient of Dn
I , I = {i1, . . . , ik} given by:

∑

I⊆J⊂[n−1]

(−1)|J|

|J |+ 1
=

n−k−1
∑

j=0

(−1)j+k

j + k + 1

(

n− k − 1

j

)

= (−1)k
n−k−1
∑

j=0

1
∫

0

(−1)j
(

n− k − 1

j

)

xk+jdx

= (−1)k
1

∫

0

(1 − x)n−k−1xkdx = (−1)k
1

n

(

n− 1

k

)−1

,

from which the theorem follows.
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In view of Proposition 4.1, Theorem 1.1 also follows.

The elements
∑

I⊆[n−1]
(−1)|I|

n
·
(

n−1
|S|

)−1
Dn

I are analogs in Sj of the celebrated

Solomon idempotents, see [24] for further details.

7. Noncommutative stochastic calculus

In the previous sections of the article, we investigated quasi-shuffle-type proper-
ties of iterated integrals of semimartingales. We also showed the strong relationship
between them and properties of surjections. Now Proposition 4.1 is restated and
generalized:

Proposition 7.1. The product of k iterated stochastic integrals of semimartingales
is given by:

(

∫

X1
1 · · ·X

1
n1

)

· · · · ·
(

∫

Xk
1 · · ·Xk

nk

)

=
∑

f∈Desc⊆{n1,...,n1+···+nk−1}

∫

f
(

X1
1 · · ·X

1
n1

· · ·Xk
1 · · ·Xk

nk

)

.

More generally, for f1 ∈ Sjn1
, . . . , fk ∈ Sjnk

:

f1

(

∫

X1
1 · · ·X

1
n1

)

· . . . · fk
(

∫

Xk
1 · · ·Xk

nk

)

= (f1 ⋄ · · · ⋄ fk)
(

∫

X1
1 · · ·X

1
n1

· · ·Xk
1 · · ·Xk

nk

)

.

In the last formula, from which the first follows, it is implicitly assumed that the
action of Sjk on

∫

X1 · · ·Xk is extended linearly to the linear span of Sjk, that is,
the action of a linear combination of surjections fi is the linear combination of the
actions of the fi.

We let the reader check that the k = 2 case of the last formula follows from

the definition of the f
(

∫

X1
1 · · ·X

1
n

)

and from Proposition 4.1. The general case

follows by induction.
For example, the expansion of the triple product (

∫

X) · (
∫

Y1Y2) · (
∫

Z1Z2)
includes terms such as:

∫

XY1(Y2 ⋆ Z1)Z2,

∫

(X ⋆ Y1)(Y2 ⋆ Z1)Z2 and

∫

Z1(X ⋆ Y1 ⋆ Z2)Y2.

The purpose of the present section is to extend this picture to the operator
setting, that is, to iterated stochastic integrals of, say, n× n square matrices M =
M(X i,j)1≤i,j≤n whose entries M i,j = X i,j are semimartingales. Note that we write
the indices of the entries as exponents for notational convenience in forthcoming
computations. The set of such matrices is denoted M.

For matrices M1, . . . ,Mk ∈ M, we set:
∫

M1 · · ·Mk :=
(

∑

i1,...,ik

∫

M
i,i1
1 M

i1,i2
2 · · ·M ik,j

k

)i,j

1≤i,j≤n
,

and for f ∈ Sjk,l,

f
(

∫

M1 · · ·Mk

)

:=

(

∑

i1,...,ik

∫

f
(

M
i,i1
1 M

i1,i2
2 · · ·M ik,j

k

)

)i,j

1≤i,j≤n

.

Last, if F =
∑

i λifi is a linear combination of surjections in Sjk, then we set:

F
(

∫

M1 · · ·Mk

)

:=
∑

i

λifi

(

∫

M1 · · ·Mk

)

.

The product rule of Proposition 7.1 applies (entry-wise), and we obtain, for
M1, . . . ,Mk, N1, . . . , Nm ∈ M:
∫

M1 · · ·Mk ·

∫

N1 · · ·Nm
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=
(

∑

f∈Desc⊆{k}

∑

i1,...,ik+m

∫

f
(

M
i,i1
1 · · ·M

ik,ik+1

k N
ik+1,ik+2

1 · · ·N ik+m,ij
m

)

)i,j

1≤i,j≤n

=
∑

f∈Desc⊆{k}

f
(

∫

M1 · · ·MkN1 · · ·Nm

)

.

For example, let k = 2,m = 1, and consider 2 × 2 matrices, this gives for the
first entry of the product:
(

∫

M1M2 ·

∫

N1

)1,1

=
∑

i,j≤2

∫

(

M
1,i
1 M

i,j
2 N

j,1
1 +M

1,i
1 N

j,1
1 M

i,j
2 +N

j,1
1 M

1,i
1 M

i,j
2

+M
1,i
1 (M i,j

2 ⋆ N
j,1
1 ) + (M1,i

1 ⋆ N
j,1
1 )M i,j

2

)

.

For higher products we obtain similarly:

Proposition 7.2. For M1
1 , . . . ,M

1
n1
,Mk

1 , . . . ,M
k
nk

∈ M, we have:

(

∫

M1
1 · · ·M1

n1

)

· · · · ·
(

∫

Mk
1 · · ·Mk

nk

)

=
∑

f∈Desc⊆{n1,...,n1+···+nk−1}

f
(

∫

M1
1 · · ·M

1
n1

· · ·Mk
1 · · ·Mk

nk

)

and more generally, for f1 ∈ Sjn1
, . . . , fk ∈ Sjnk

we obtain:

f1

(

∫

M1
1 · · ·M

1
n1

)

· . . . · fk
(

∫

Mk
1 · · ·Mk

nk

)

= (f1 ⋄ · · · ⋄ fk)
(

∫

M1
1 · · ·M1

n1
· · ·Mk

1 · · ·Mk
nk

)

.

The proposition follows from the linear case (Proposition 7.1) by expanding
entry-wise the products of matrices.

We are now in the position to calculate the logarithm of the Itô-Taylor series.

Theorem 7.3. For an arbitrary matrix M ∈ M and X =
∑∞

n=0

∫

Mn the (formal)
solution of the stochastic differential equation dX = X−dM , X0 := Id, we have:

log(X) =

∞
∑

n=1

∑

I⊆[n−1]

(−1)|I|

n
·

(

n− 1

|I|

)−1

Dn
I

∫

Mn.

This formula may provide the basis for interesting numerical properties. For
instance, truncating the expansion of log(X) at order k, that is, looking at

k
∑

n=1

∑

I⊆[n−1]

(−1)|I|

n
·

(

n− 1

|S|

)−1

Dn
I

∫

Mn,

and applying the exponential map, can be expected (in view of similar phenomena in
the deterministic case) to provide a better approximation to X , than the truncation

of the original expansion
∑k

i=0

∫

Mn.
The first few terms of the expansion of log(X) read:

log(X) =

∫

M +

(

1

2
(12)−

1

2
((21) + (11))

)
∫

M2

+
(1

3
(123)−

1

6

(

(213) + (312) + (112) + (212)
)

−
1

6

(

(132) + (231) + (122) + (121))

+
1

3
((321) + (211) + (111) + (221)

)

)

∫

M3 + · · · .

We remind the reader that we represent a surjection f ∈ Sjk by the sequence of its
values (f(1) · · · f(k)).
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For example, for 2 × 2 matrices, the (1, 2)-entry of the term (11)
∫

M2 is given
by

∑

i≤2

∫

M1,i ⋆ M i,2; the one of (231)
∫

M3 reads
∑

i,j≤2

∫

M j,2M1,iM i,j; the

one of (221)
∫

M3 reads
∑

i,j≤2

∫

M j,2(M1,i ⋆ M i,j).
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