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Abstract. Arigatoni is a structured multi-layer overlay network provid-
ing various services with variable guarantees, and promoting an intermit-
tent participation to the virtual organization where peers can appear, dis-
appear and organize themselves dynamically. Arigatoni mainly concerns
with how resources are declared and discovered in the overlay, allowing
global computers to make a secure, PKI-based, use of global aggregated
computational power, storage, information resources, etc. Arigatoni pro-
vides fully decentralized, asynchronous and scalable resource discovery,
and provides mechanisms for dealing with dynamic virtual organizations.
This paper introduces a non trivial improvement of the original resource
discovery protocol by allowing to register and to ask for multiple in-
stances. Simulations show that it is efficient and scalable.

1 Introduction

The explosive growth of the Internet gives rise to the possibility of designing
large overlay networks and virtual organizations consisting of Internet-connected
global computers, able to provide a rich functionality of services that makes
use of its aggregated computational power, storage, information resources, etc.
Arigatoni [3] is a structured multi-layer overlay network which provides resource
discovery with variable guarantees in a virtual organization where peers can
appear, disappear and organize themselves dynamically.

The virtual organization is structured in colonies, governed by global bro-
kers, GB. A GB (un)registers global computers, GCs, receives service queries
from clients GCs, contacts potential servants GCs, trusts clients and servers and
allows the clients GC and the servants GCs to communicate. Registrations and
requests are performed via a simple query language à la SQL and a simple or-
chestration language à la LINDA. Communication intra-colony is initiated via
only one GB, while communication inter-colonies is initiated through a chain of
GB-2-GB message exchanges. Once the resource offered by a global computer has
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been found in the overlay network, the real resource exchange is performed out
of the overlay itself, in a peer-to-peer fashion.

The main challenges in Arigatoni lie in the management of an overlay network
with a dynamic topology, the routing of queries and the discovery of resources
in the overlay. In particular, resource discovery is a non trivial problem for
large distributed systems featuring a discontinuous amount of resources offered
by global computers and an intermittent participation in the overlay. Thus,
Arigatoni features two protocols: the virtual intermittence protocols, VIP, and
the resource discovery protocol, RDP. The VIP protocol deals with the dynamic
topology of the overlay, by allowing individuals to login/logout to/from a colony.
This implies that the process of routing may lead to some failures, because some
individuals have logged out, or are temporarily unavailable, or because they have
been manu militari logged out by the broker because of their poor performance
or avidity (see [9]).

The total decoupling between GCs in space (GCs do not know each other),
time (GCs do not participate in the interaction at the same time), and synchro-
nization (GCs can issue service requests and do something else, or may be doing
something else when being asked for services) is a major feature of Arigatoni
overlay network. Another important property is the encapsulation of resources
in colonies. All those properties play a major role in the scalability of Arigatoni’s
RDP.

The version V1 of the RDP protocol [6] enabled to ask for one service at the
time, like, e.g. CPU or a particular file. The version V2, presented in this paper,
allows multiple instances of the same service. Adding multiple instances is a non
trivial task because the broker must keep track (when routing requests) of how
many resource instances were found in its own colony before delegating the rest
of the instances to be found in the surrounding supercolonies.

As defined above, GBs are organized in a dynamic tree structure. Each GB,
leader of its own subcolony, is a node of the overlay network, and a root of the
subtree corresponding to its colony. It is then natural to address scalability issues
that arise from that tree structure. In [6], we showed that, under reasonable as-
sumptions, the Arigatoni overlay network is scalable. The technical contributions
of this paper can be summarized as follows:

– A new version of the resource discovery protocol, called RDP V2, that allows
for multiple instances; for example, a GC may ask for 3 CPUs, or 4 chunks
of 1GB of RAM, or one compiler gcc. Multiple services requests can be also
sent to a GB; each service will be processed sequentially and independently of
others. If a request succeeds, then via the orchestration language of Arigatoni
(not described in this paper), the GC client can synchronize all resources
offered by the GC’s servants.

– A new version of the simulator taking into account the non trivial improve-
ments in the service discovery.

– Some simulation results that shows that our enhanced protocol is still scal-
able.



The rest of the paper is structured as follows: after Section 2 describing the main
machinery underneath the new service request, Section 3 introduces the pseu-
docode of the protocol. Then, Section 4 shows our simulation results and Section
5 provides related work analysis and concluding remarks. An Appendix conclude
with some auxiliary algorithms. For obvious lack of space, we refers to http://
www-sop.inria.fr/mascotte/Luigi.Liquori/ARIGATONI for an extended ver-
sion of this paper.

2 Resource Discovery Protocol RDP V2

Suppose a GC X registers to its GB and declares its availability to offer a ser-
vice S, while another GC Y issues a request for a service S′. Then, the GB
looks in its routing table and filters S′ against S. If there exists a solution
to this matching equation, then X can provide a resource to Y. For example,
S

4
= [CPU=Intel,Time<10sec] and S′

4
= [CPU=Intel,Time>5sec] match, with at-

tribute values Intel and Time between 5 and 10 seconds. When a global computer
asks for a service S, it also demands a certain number of instances of S. In RDP
V2 this is denoted by “SREQ:[(S, n)]”.

Each GB maintains a table T representing the services that are registered
in its colony. The table is updated according to the dynamic registration and
unregistration of GC in the overlay. For a given S, the table has the form T [S] =
[(Pj ,mj)]j=1...k, where (Pj)j=1...k are the address of the direct children in the
GB’s colony, and (mj)j=1...k are the instances of S available at Pj .

For a service request SREQ:[(S, n)], the steps are:

– Look for q distinct GCs capable of serving S in the local colony.
– If q<n, then search r remaining instances (n−q) in local subcolonies.
– If r<(n−q), then delegate remaining instances (n−q−r) to the leader of the

colony.

A GC receiving a service request chooses the services that it accepts/rejects to
serve. It then generates a SRESP message containing the lists of services ac-
cepted/rejected, and sends it to its GB. The response messages are then propa-
gated back in the overlay, following the reverse path.

A Service Request SREQ:[(S, n)] may arrive bottom-up to the GB directly from
its colony, or top-down from its own leader. In both cases, the leader tries to find
n distinct GC that can serve S. More precisely, the list [(Pj ,mj)]j=1...k contains
all the direct children in GB’s colony that can serve S (child Pj with mj instances
of S). The discovery protocol features two search modes, selective and exhaustive.
The selective mode is resource conservative at the price of important delays in
case of low acceptance rates. The exhaustive mode is resource eager, but is inde-
pendent of the acceptance rate. Let SREQ:[(S, n)], and T [S] = [(Pj ,mj)]j=1...k.
The selective mode consist in:

– If
∑k

i=1 mi≥n, then there are enough resources in the GB’s colony to serve
S. Let y ≤ k be the smallest index such that

∑y
i=1 mi ≥ n, and

∑y−1
i=1 mi<n.



Then, SREQ:[(S,mi)] is sent to all Pi with (i≤y−1), and SREQ:[(S, n−∑y−1
i=1 mi)] is sent to Py.

– If
∑k

i=1 mi<n, then there are not enough GCs in the GB’s colony that can
serve S. Then, SREQ:[(S,mi)] is sent to all Pi (i≤k), and SREQ:(S, n−∑k

i=i mi)] is delegated to the GB’s leader. The rationale is that we first
try to ask for as many resources in GB’s colony, and then ask GB’s leader
for the remaining resources.

The exhaustive search mode consists in sending SREQ:[(S,min(mi, n))] to all
Pi (1≤i≤k), and to delegate SREQ:[(S, n−

∑k
i=1 min(mi, n)] to the GB’s leader.

The rationale is to first ask for all resources in the GB’s colony, and then ask
the GB’s leader for the remaining resources.

A Service Response SRESP:ACC:[(S, a)], or SRESP:REJ:[(S, d)], may follow ser-
vice requests for services S. That is, “a” GCs accepted to serve S, and “d” denied.
Due to the asynchrony of Arigatoni, more replies can arrive to the colony’s leader
(i.e. a+d≥n). As for requests, there exists two modes that determine the way
those acceptances are propagated back to the leader. In the selective reply mode,
we return at most the number of instances of S that were asked by the leader
whereas in the exhaustive reply mode, we return all acceptances.

As for acceptances there exists two modes that determine the way those
acceptances are propagated back to the leader. In the selective search mode, the
whole colony was asked for n instances of S, at most. This implies that exactly
d instances of S must now be looked for to fulfill the original request. Hence,
we first try to find d instances of S in other subcolonies. We then delegate the
instances that could not be found to the leader. Finally, the remaining instances
are reported back as rejected. In the exhaustive search mode, each sub-colony
was asked for n instances of S, at most. Hence, there may be other sub-colonies
that have not replied yet, and which may reply with enough acceptations to
fulfill the request. The remaining instances must be delegated to the leader.

3 RDP pseudo-code

In this section, we detail the pseudo-code of the RDP V2. Five variables are
used for each Arigatoni’s interaction “ask-route-reply-route-back”: Path, asked,
downstream, upstream, and SendList. Each message (SREQ or SRESP) con-
tains a unique identifier id, that is initially set by the GC that sends the initial
SREQ message. Variable Path is a simple hash keyed by the identifier of the
message. The other variables are double hashes which first key is the identifier
of the message, and second key a given service S. The intuitive meaning of those
variables is listed below.

– Path{id}: Peer address: identifies the child from which the original SREQ
message came from.

– asked{id}{S}: Integer: number of instances of S asked and not replied.



Algorithm 1 Receiving SREQid:[(S, n)] from Pfrom (executed by P)
1: Path{id} ← Pfrom // To trace back the reverse route
2: if SendList{id}{S} = ∅ then

3: SendList{id}{S} ← Filter(S, Pfrom) // Filter S in P’s routing table
4: end if
5: (RoutingList, remaining)← Route(Pfrom, S, n, search mode) // Build a routing list
6: asked{id}{S} ← asked{id}{S}+ n

7: if remaining 6= 0 then // Remaining instances to find

8: if L 6= ∅ and L 6= Pfrom then // L exists and is different from Pfrom

9: Insert L : (S, remaining) in RoutingList
10: upstream{id}{S} ← upstream{id}{S}+ remaining

11: else // P’s colony is isolated
12: Send SRESPid:REJ:[(S, remaining)] to Pfrom

13: asked{id}{S} ← asked{id}{S} − remaining
14: end if
15: end if
16: for each Q : (S, m) ∈ RoutingList do

17: Send SREQid:[(S, m)] to Q // Send SREQid to every element in RoutingList
18: end for

– downstream{id}{S}: Integer: instances of S asked in colony and not replied.
– upstream{id}{S}: Integer: instances of S delegated but not replied.
– SendList{id}{S}: (Peer address,Integer): the list of direct children that are

potentially capable of serving S.

The pseudo-code of RDP V2 is showed in Algorithms [1−5]. For obvious lack
of space, we details only Algorithms 1, and 2, and 3. The Appendix presents
succintely the remaining auxiliary algorithms.

Case of service request (Alg. 1). Consider an individual P receiving a reply
message SREQid from a neighbor Pfrom, and let L be P’s leader.

– In line 1, the originator of the request is first recorded in Path, so as to allow
reply messages to follow the reverse path.

– In line 3, the Filter function (Alg. 4) determines the SendList corresponding
to service S, i.e., the list of direct children of P potentially able of serving S.

– In line 5, the Route function (Alg. 5) builds (RoutingList, remaining), i.e.,
the list of children that will be sent a particular service request, according to
the selected search mode, and the positive number of the remaining instances
for which no servant has been found. The RoutingList contains a list of
mappings of the form Q:[(S,m)] which means that neighbor Q is to be sent
a service request SREQ:[(S,m)].

– In line 8, if L exists and is not the originator of the request (to avoid routing
loops), then the entry L:(S, remaining) is appended to the RoutingList (line
9), and the upstream counter is incremented accordingly (line 10); else (line
11, L exists and it is the originator of the request), since servants can be
found for remaining instances of service S, a rejection reply is sent back to
the originator of the request (line 12), and the asked counter is decremented
accordingly (line 13).

– In line 17, a service request is sent to each neighbor Q having an entry in
the RoutingList.



Algorithm 2 Receiving SRESPid:ACC:[(S, a)] from Pfrom (executed by P)
1: case search mode is

“selective” :
2: Send SRESPid:ACC:[(S, a)] to Path{id} // Forward the SRESP
3: “exhaustive” :
4: if Pfrom = L then // Top-down request
5: upstream{id}{S} ← max(upstream{id}{S} − a; 0)

6: else // Bottom-up request
7: downstream{id}{S} ← max(downstream{id}{S} − a; 0)
8: end if
9: if asked{id}{S} ≥ a then // More instances asked than accepted

10: asked{id}{S} ← asked{id}{S} − a
11: acc return← a
12: else // More instances accepted than asked
13: acc return← asked{id}{S} − a
14: asked{id}{S} ← 0
15: end if
16: case reply mode is

“selective” :
17: Send SRESPid:ACC:(S, a) to Path{id} // Accepted “a” instances
18: “hexaustive” :
19: Send SRESPid:ACC:(S, acc return) to Path{id} // Accepted “acc return” instances
20: end case
21: end case

Case of service response (Alg. 2,3). Consider an individual P receiving a reply
message SRESPid from a neighbor Pfrom. The operation of the resource discov-
ery algorithm is detailed in pseudo-code in Algorithms 2 and 3 and explained
hereafter.

– Acceptance (Alg. 2). Let SRESPid:ACC:[(S, a)] arrive from Pfrom at P, i.e.,
“a” global computers in P’s colony accepted to serve service S.
If the selective search mode was used to route the original service request
SREQid : (S, n) (issued by Path{id}), then the whole colony was asked for
at most n instances of S. Hence, no more than n acceptances may arrive from
P’s colony. Thus, the reply message is simply forwarded back to Path{id}
(line 2).
If the exhaustive search mode was used, then each child was asked for at most
n instances of S. Hence, it is possible that a number of acceptances higher
than n arrives from L’s colony. To do this, counters asked, upstream, down-
stream, and acc return are updated accordingly (lines 5− 14).
The selective reply mode simply reply back to Path{id} with “a” accepta-
tion instances (line 17), while the exhaustive reply reply with “acc return”
instances (line 19).

– Rejections (Alg. 3). Let SRESPid : REJ:[(S, d)] arrive from Pfrom at P, i.e.,
“d” global computers in P’s colony refused to serve S. This implies that all
global computers in P’s colony have been sent a request for S.
If the sender of the message is the leader L, then no other potential servants
for the d instances of S can be found. Consequently, the rejection message is
simply forwarded back (line 2), and counters asked and upstream updated
accordingly (lines 3 and 4).



Algorithm 3 Receiving SRESPid:REJ:[(S, d)] from Pfrom (executed by P)
1: if Pfrom = L then // Return rejections
2: Send SRESPid:REJ:[(S, d)] to Path{id}
3: asked{id}{S} ← asked{id}{S} − d
4: upstream{id}{S} ← upstream{id}{S} − d

5: else // Retry at other children or delegate
6: case search mode is

“exhaustive” : // Try to delegate or reject
7: downstream{id}{S} ← max(downstream{id}{S} − d; 0)
8: if asked{id}{S} ≤ downstream{id}{S}+ upstream{id}{S} then

9: // Less instances asked than down/upstream’ed
10: Wait for more replies from other children

11: else // More instances asked than down/upstream’ed
12: remaining ← asked{id}{S} − downstream{id}{S} − upstream{id}{S}
13: if L 6= ∅ and L 6= Path{id} then
14: upstream{id}{S} ← upstream{id}{S}+ remaining
15: Send SREQid:(S, remaining) to L
16: else
17: asked{id}{S} ← asked{id}{S} − remaining
18: Send SRESPid:REJ:(S, remaining) to Path{id}
19: end if
20: end if
21: Remove Pfrom from SendList{id}{S}
22: “selective” : // Try other children, delete, or reject

23: Remove Pfrom from SendList{id}{S} // Don’t send requests to Pfrom anymore
24: (RoutingList, remaining)← Route(Pfrom, S, d, search mode)

25: if remaining 6= 0 then // Still some remaining instances to treat

26: if L 6= ∅ and L 6= Pfrom then // L exists and is different from Pfrom

27: Insert L : (S, remaining) in RoutingList
28: upstream{id}{S} ← upstream{id}{S}+ remaining

29: else // P’s colony is isolated
30: Send SRESPid:REJ:(S, remaining) to Path{id}
31: asked{id}{S} ← asked{id}{S} − remaining
32: end if
33: end if
34: for each Q : {(S, e)} ∈ RoutingList do

35: Send SREQid:[(S, e)]to Q // Send an SREQ for every element in RoutingList
36: end for
37: end case
38: end if

If L is not the sender of the rejected message, then there may be other po-
tential servants in the colony or in other surrounding colonies. The operation
of the protocol depends on the search mode that was used.
If the exhaustive search mode was used, then there are no other potential
servants in L’s colony but there may be some in other surrounding colonies.
Hence, we first determine the number of instances of S that need to be found
to fulfill the request.
If asked ≤ downstream+upstream (line 8), then there are enough potential
servants in the colony or in surrounding colonies that have not replied yet,
to fulfill the request. Consequently, we simply wait for more replies (line 10).
In contrast, if asked ≥ downstream + upstream, then we must look for
more potential servants in order to fulfill the request. There are (asked −
downstream−upstream) of them to be found (line 12). As said before, those
may only be found via a delegation to the leader L. Hence, the latter is sent
a request for the remaining instances of S, if possible, (line 15), or a rejection



is sent back to the original sender of the request (line 18). The upstream or
asked counters are updated accordingly (lines 14 and 17).
If the selective search mode is used, then there may be other potential ser-
vants in P’s colony. The process is the same as in Algorithm 1, except that we
do not consider children that have already been sent a request (line 21, 23).
For that purpose, we use the SendList that was originally created by the Fil-
ter function (during the processing of the original service request message),
and produce another RoutingList with the Route function (line 24).
Finally, we proceed as in Algorithm 1 (lines 25− 36).

4 Protocol Evaluation

The actual Arigatoni’s topology is tree-based with routing complexity of O(logN)
(N being the number of nodes). However, in each GB, an extra complexity is due
to solve the matching equation between the service request and the routing
table T containing the mapping between peers and resources (this complexity is
usually linear in the size of S).

To assess the effectiveness and the scalability of the protocol, we have con-
ducted simulations using large numbers of units and service requests. For lack
of space, we only present the results that correspond to the new features of the
protocol, namely, the possibility to specify multiple instances of a service.

We have generated a network topology of 103 GBs, using the transit-stub
model of the Georgia Tech Internetwork Topology Models package [18], on top
of which we added the Arigatoni overlay network.

We take 120 distinct services, and we define the overlap interval 1≤L≤120,
as the interval of indices inside which services match each other. That is, for all
(i, j) ∈ L2, Si and Sj match. If L=120, then all services match each other; if L=1,
then each service only matches itself. At each GB, we added a random number
of GCs chosen randomly between 0 and 100.

To simulate subscription load, we then randomly registered at each GC each
service with a probability ρ denoting the global availability of services. We then
randomly raised 50, 000 service requests per GC. Each request contained either
a certain number of instances I of a service, chosen uniformly at random.

Each service request was then handled by the new RDP V2, described in this
paper. We used a service acceptance probability of α=75%, which corresponds
to the probability that a GC receiving a request for a service S (and offering S),
accepts to serve it.

Upon completion of all the requests, we measured for each GB its load as
the number of requests (messages) it received. We then computed the average
load as the average value over the population of GB s in the system. We also
computed the maximum load as the maximum value of the load over all the GBs
in the system.

Similarly, we computed the average and maximum load fractions as the av-
erage and maximum loads divided by the number of requests. The average load
represents the average load of a GB due to the completion of all the requests.



The average load fraction represents the fraction of requests that a GB served, on
average. The maximum fraction represents the maximum fraction of the requests
that a GB served.

We computed the average service acceptance ratio as follows. For each GC,
we computed the local acceptance ratio as the number of service requests that
yielded a positive response (i.e. the system found at least one GC), over the num-
ber of service requests issued at that GC agent. A service request that contained
multiple instances of a service counts as a positive response only if the system
found as many GCs as the number of instances specified in the request.

We then computed the average acceptance ratio as the average value over
the number of GC (that issued at least one service request). We repeated the
experiments for different values of ρ, L and I. Results are illustrated in Figures 1
and 2. The algorithm V2 was implemented in C++.
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Fig. 1. Average and maximum load fraction w.r.t. (a) number of instances of a service
in service requests (b) overlap interval

Figure 1(a) shows the evolution of the average and maximum load fraction w.r.t.
the number of instances of a service in service requests. Unsurprisingly, we ob-
serve that asking more instances of a service in a service request requires much
more resource from the system. Indeed, for each instance, the system tries to
find a different GC capable of providing the service. We observe that low-level
GBs participate more, since there are more delegations. For values of I of circa 3
for ρ=0.02, and circa 6 for ρ=0.12%, the average and maximum load fractions
stabilize. For values of I higher than those values, there are not enough resources
in the system to completely fulfill the request (i.e., not enough GCs capable of
providing the requested service).

Figure 1(b) illustrates the evolution of the average and maximum load frac-
tions w.r.t. the overlap interval L. Unsurprisingly, we observe that the more
services match, the smaller the load imposed to the system. Indeed, for a given
requested service, there are more potential candidates capable of providing a
resource that satisfies it. For high enough values of L, the load stabilizes, and
the resources are found very quickly (most often at the nearest GB).
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Fig. 2. Average success rate (shown in the Y Axis in %) w.r.t. (a) service availability
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Figure 2(a) shows the average success rate w.r.t. the service availability ρ.
Unsurprisingly, the average service acceptance ratio increases exponentially with
the availability of services. This shows that Arigatoni is efficient in searching in-
dividuals for requested services. Indeed, a service availability of ρ=0.06% enables
the system to achieve an acceptance rate of 90%.

Figure 2(b) shows the evolution of the success rate w.r.t. the number I of
instances of S in a service requests. We observe that the average success rate
decreases with the increasing of I and eventually stabilizes to 0%. This is due to
the fact that the more instances we ask, the less GCs can be found to fulfill the
request.

Figure 2(c) shows the average success rate w.r.t. the overlap interval L. We
observe that the success rate increases with L, and eventually stabilizes to 100%
at for higher values of L. This is due to the fact that the more services match,
the higher the number of GCs capable of providing a resource that satisfies a
given request.

5 Related Work and Conclusions

Many technologies, algorithms, and protocols have been proposed recently on
resource discovery. Some of them focus on Grid or P2P oriented applications,
but none of those targets the full generality of Arigatoni which only deals with
generic resource discovery for building an overlay network of global computers,
structured via a virtual organization of variable topology and clear distinct roles
between leader and individuals (GCs or subcolonies).

Discussion on Closest Overlay Architectures (from [1]). The main challenges
of pervasive computing are how to build an overlay network with respect to its
topology, and how to route queries and discover resources.

There are essentially in the literature many basic types of overlays: structured
(tree, ring or grid), unstructured, hybrid overlays (a combination of the two
above), and multi-layer (or n-layer) overlays. Arigatoni falls in the latter category
that is widely used in many P2P systems.



In a nutshell, in a n-layer overlay network, the responsibility assigned to
Individuals differs (think of the different roles and responsibilities of GBs and
GCs), since there are super-peers (GBs) serving as a server for a subset of all
peers. Ordinary peers (GCs) submit queries to their super-peers and receive
results from it. Super-peers are also connected to each others as ordinary peers
(Individuals), routing messages over the overlay network, submitting, delegating,
and answering queries on behalf of their peers (in their colony) and themselves.
This structure is replicated recursively, creating a n-layer topology, where some
peers become super-peers with decreasing responsibilities.

Typical issues of n-layer overlays are the size of each colony, together with the
interests and the resources offered and demanded in each colony. Typical bottle-
necks of n-layers are reliability and service availability (related to few points of
failure) and load balancing. Classical solutions to cope with these problems are
adding redundancy at the broker-layer. Historically, the n-layer topology gener-
alizes the two-layer topology, such as the one we can find in the hierarchical DHT
of Canon [12] and Coral [11].

Discussion on Closest Technologies. The Globus toolkit [13], is an open-source
set of technology, protocols and middleware, used for building Grid systems and
applications. Possible applications range from sharing computing power to dis-
tributed databases in a heterogeneous overlay network, where security is seri-
ously taken into account. The toolkit includes stand-alone software for security,
information infrastructure, resource management, data management, communi-
cation, fault detection, and portability.

The analogies with the Arigatoni model are in the Community Scheduler
Framework component and the Web Service Grid Resource Allocation and Man-
agement of the toolkit concerning the resource discovery, and the Globus Tele-
operations Control Protocol to allow units to cooperate (analogy with our ad
hoc protocol). However, Globus does not target the full generality of Arigatoni,
thanks to its generic, resource discovery algorithm that can be also suitable for
pervasive compiting in addition to pure Grid-oriented applications.

Promoted by Sun, the JXTA [15] technology is a set of open peer-to-peer pro-
tocols that enable any device to communicate, collaborate and share resources.
After a peer discovery process, any peer can interact directly with other peers.
Hence, the overlay network of peers induced by the JXTA technology is flat.

Moreover, the main concern of the Arigatoni is the design of protocols for
generic resource discovery, and intermittent participation, while the main con-
cern of the JXTA technology is to offer some tools to implement a P2P model.

In addition, the Arigatoni focuses on the evolution/devolution of colonies
and the mechanism of resource discovery, while JXTA technology allows peers
to communicate using an already existing overlay network of peers. Arigatoni’s
aim is the dynamicity of the overlay network while JXTA’s is the freedom of
connectivity between peers. Finally, peers in the JXTA architecture come with
their proper JXTA-ID (logical JXTA peers addressing) while Arigatoni relies on
the more conventional IP addresses.



Pub/sub [10] is a communication paradigm for asynchronous dissemination of
information. Consumers subscribe to the system (typically called the Notification
Service) to specify the type of information that they are interested in. Producers
publish data to the system. The notification service disseminates the data to all
(if possible) the consumers that are interested in receiving it, according to the
data and the interests declared by the consumers.

Many pub/sub systems have been developed recently, such as XNet [8, 7],
Siena [4] or IBM Gryphon [2]. In [14], the authors propose to adapt the Siena pub-
lish/subscribe system to achieve Gnutella-like resource discovery. Their work re-
sembles ours in the sense that Arigatoni is also inspired by the pub/sub paradigm.
However, in [14], resource discovery is achieved by publishing queries to the no-
tification service. In contrast, Arigatoni implements its own resource discovery
algorithm, especially designed for generic and scalable resource lookup.

Conclusions. In this paper, we describe the V2 of the Arigatoni’s generic resource
discovery protocol. The first version RDP V1 permitted to ask for one service
at the time. The new improved protocol RDP V2 presented in this paper allows
for multiple instances, the latter point being a non-trivial improvement. Other
main achievements are the complete decoupling between the different units in
the system, and the encapsulation of resources in local colonies, which enable
Arigatoni to be potentially scalable to very large and heterogeneous populations.

The reliability of the RDP V2 itself, although desirable, is of lesser impor-
tance, given the fact that service provision is not guaranteed at all in Arigatoni
(indeed it is not a requirement). In other words, when a GC issues a service
request, it is possible that no individuals are found for some of the services
included in the request. This happens, for example, if those services have not
been declared by any GCs in the system, or if all the GCs that have declared
themselves as potential individual refuse to serve them.

However, at the cost of memory and bandwidth requirements, it is still pos-
sible (future work) to implement reliable resource discovery by using a reliable
transmission protocol (e.g. TCP), an applicative acknowledgment scheme in com-
bination with a retransmission buffer, and persistent data storage, and leader’s
replication.

The subscription mechanisms of classical tree-based pub/sub systems [7, 5,
4] can be used for the maintenance and update of consistent routing tables.
Furthermore, as for the reliability of subscription advertisement, we can adapt
the reliability mechanisms described in [8] to allow Arigatoni to be fault-tolerant
or to adapt to dynamic topology changes due to the intermittent participation
of individuals [9].

We are currently still improving Arigatoni with several new features, such as
the possibility to embed services in strong conjunctions (i.e., the services in a
strong conjunction should be provided by the same GC). We are also working on
the implementation of a real prototype and the subsequent deployment on the
PlanetLab experimental platform [16], and/or on GRID5000, the experimental
platform available at the INRIA [17].



As part of our ongoing research, we are also working on a more complete
statistical study of our system, based on more elaborate statistical models and
realistic assumptions, as well as the possibility to include some hierarchical DHT
in addition to the routing tables. The possibility to change the Arigatoni topology
from a hierarchical tree to a graph is also intriguing.

Acknowledgment. We would like to thank Luc Hohwiller for a careful reading of
the paper, and the anonymous referees for the very useful comments.

References

1. AEOLUS. Deliverable D2.1.1: Resource Discovery: State of the art survey and
Algorithmic Solutions, 2006. http://aeolus.ceid.upatras.gr.

2. G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R.E. Strom, and D.C.
Sturman. An efficient multicast protocol for content-based publish-subscribe sys-
tems. In Proc. of ICDCS, 1999.

3. D. Benza, M. Cosnard, L. Liquori, and M. Vesin. Arigatoni: A Simple Pro-
grammable Overlay Network. In Proc. of John Vincent Atanasoff International
Symposium on Modern Computing, pages 82–91. IEEE, 2006.

4. A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and Evaluation of a Wide-
Area Event Notification Service. ACM TOCS, 19(3), 2001.

5. R. Chand. Large scale diffusion of information in Publish/Subscribe systems. PhD
thesis, University of Nice-Sophia Antipolis and Institut Eurecom, 2005.

6. R. Chand, M. Cosnard, and L. Liquori. Resource Discovery in the Arigatoni Over-
lay Network. In I2CS: International Workshop on Innovative Internet Community
Systems, volume LNCS. Springer, 2006. To appear. Also available as RR INRIA
5928.

7. R. Chand and P. Felber. A scalable protocol for content-based routing in overlay
networks. In Proc. of NCA, 2003.

8. R. Chand and P. Felber. XNet: A Reliable Content-Based Publish/Subscribe Sys-
tem. In SRDS 2004, 23rd Symposium on Reliable Distributed Systems, 2004.

9. M. Cosnard, L. Liquori, and R. Chand. Virtual Organizations in Arigatoni. DCM:
International Workshop on Developpment in Computational Models. Electr. Notes
Theor. Comput. Sci., 2006. To appear.

10. P. Th. Eugster, P. Felber, R. Guerraoui, and A.M. Kermarrec. The many faces of
publish/subscribe. Computing Survey, 35(2):114–131, 2003.

11. M. J. Freedman and D. Mazières. Sloppy Hashing and Self-Organizing Clusters.
In Proc. of IPTPS, pages 45–55, 2003.

12. P. Ganesan, P. Krishna, and H. Garcia-Molina. Canon in g major: Designing DHTS
with Hierarchical Structure. In Proc. of ICDCS, 2004.

13. Globus Alliance. Globus Home Page. http://www.globus.org/.
14. D. Heimbigner. Adapting publish/subscribe middleware to achieve gnutella-like

functionality. In Proc. of SAC, pages 176–181, 2001.
15. JXTA Community. JXTA Home Page. http://www.jxta.org/.
16. Planet Lab Consortium. Planet Lab Home Page, 2006. http://www.planet-lab.

org/.
17. The Grid 5000 Consortium. Grid 5000 Home Page, 2006. http://www.grid5000.

org/.
18. E.W. Zegura, K. Calvert, and S. Bhattacharjee. How to Model an Internetwork.

In Proc. of INFOCOM, 1996.



A The Filter and Route Algorithms

Algorithm 4 Filter(S,Pfrom)
1: for each entry T [S′] = [(Pk, nk)]k=1...C in T do
2: if S′ matches S then
3: for each j ≤ C such that Pj 6= Pfrom do

4: SendList{id}{S}{Pj} ← SendList{id}{S}{Pj}+ nj// (Pj , m) becomes (Pj , m + nj)
5: end for
6: end if
7: end for
8: return SendList{id}{S}

Filter builds the SendList corresponding to service S (and interaction with
identifier id), i.e., the list of P’s children that are potentially capable of serving
S. The function parses all the services in the routing table accordingly.

Algorithm 5 Route(Pfrom,S, n, search mode)
1: remaining ← n
2: RoutingList← ∅
3: for each (Q, f) ∈ SendList{id}{S} do
4: if Q = Pfrom or Q = Path{id} then

5: continue // Go to next iteration in loop
6: end if
7: case search mode is

“exhaustive” :
8: if n ≥ f then // More instances asked than offered
9: Insert Q : (S, f) in RoutingList

10: remaining ← remaining − f
11: downstream{id}{S} ← downstream{id}{S}+ f
12: Remove (Q, f) from SendList{id}{S}
13: else // More instances offered than asked
14: Insert Q : (S, n) in RoutingList
15: remaining ← 0
16: downstream{id}{S} ← downstream{id}{S}+ n
17: f ← f − n
18: end if
19: “selective” :
20: if remaining ≥ f then // More instances asked than offered
21: Insert Q : (S, f) in RoutingList
22: remaining ← remaining − f
23: Remove (P, f) from SendList{id}{S}
24: else // More instances to offer than asked
25: Insert Q : (S, remaining) in RoutingList
26: f ← f − remaining
27: remaining ← 0
28: end if
29: if remaining = 0 then // No more instances to treat

30: break // Break loop
31: end if
32: end case
33: end for
34: return (RoutingList, remaining)

Route builds RoutingList, i.e., the list of neighbors that will be sent a particular
service, according to the selected search mode; it has the form {(Pi:(S, ni))}i=1...h

that is neighbors Pi will receive a request for ni instances of S. The function also
returns the remaining instances for which no servant has been found.


