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Approximation of IMSE-optimal designs
via quadrature rule and spectral decomposition∗

Bertrand Gauthier†‡ Luc Pronzato§‡

May 12, 2015

Abstract

We address the problem of computing IMSE (Integrated Mean-Squared Error) optimal de-
signs for random fields interpolation with known mean and covariance. We both consider the
IMSE and truncated-IMSE (approximation of the IMSE by spectral truncation). We assume
that the MSE is integrated through a discrete measure and restrict the design space to the
support of the considered measure. The IMSE and truncated-IMSE of such designs can be eas-
ily evaluated at the cost of some simple preliminary computations, making global optimization
affordable. Numerical experiments are carried out and illustrate the interest of the considered
approach for the approximation of IMSE optimal designs.

Keywords: random field models, optimal design of experiments, IMSE, quadrature approximation,
simulated annealing, spectral approximation.

1 Introduction

This work addresses the problem of designing IMSE (Integrated Mean-Squared Error) optimal
experiments in the context of Gaussian random field models with known covariance, see, e.g., Sacks
et al. (1989), Rasmussen and Williams (2006). For the sake of simplicity, we assume that the mean
structure of the random field is known (we consider centered random fields).

The determination of IMSE-optimal designs for kernel-based models is known as a numerically
expensive problem, see, e.g., Fang et al. (2010, Chapter 2) or Santner et al. (2003, Chapter 6).
Indeed, in its standard form (see equation (2.3)), any evaluation of the IMSE criterion is compu-
tationally demanding and, moreover, the search for IMSE optimal designs is often complicated by
the presence of local minima.

Here, we assume that the IMSE is computed for a discrete measure (in particular, it may
correspond to a quadrature approximation), and we restrict the design space to a finite subset of
points inside the exploration domain (for the sake of simplicity, we consider the set of all quadrature
†bgauthie@i3s.unice.fr (corresponding author)
§pronzato@i3s.unice.fr
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points, and we refer to such designs as quadrature-designs). We also consider the truncated-IMSE
criterion, which consists in an approximation of the IMSE criterion obtained by spectral truncation.
In this framework, we illustrate how preliminary calculations (made once for all, before the design
optimization) allow for significantly reducing the computational cost of any evaluation of the IMSE
or truncated-IMSE criterion.

Since the IMSE and truncated-IMSE can be easily evaluated for any quadrature-design, it is
possible to use optimization strategies that require large number of evaluations of the considered
criterion. We then describe and experiment a combinatorial optimization algorithm which combined
local improvement (via discrete gradient descents) and global exploration (via a simulated annealing
based strategy).

The numerical experiments in particular point out the interest of considering the truncated
criterion with truncation level of the order of the design size (just slightly larger). Indeed, for such
truncation level, the truncated criterion appears as relatively easy to optimize while ensuring a good
efficiency, in terms of IMSE, of the resulting designs. Spectral truncation may also appear, to a
lesser extent, as a way to compensate the error induced by the quadrature approximation of the
IMSE.

2 General framework and notations

2.1 Random fields and related Hilbert structures

Let X be a general set. We consider a real random field (Zx)x∈X indexed by X ; in what follows
Z will refer to the random field (Zx)x∈X . We assume that Z is centered, second-order, and defined
on a probability space (Ω,F ,P). For the sake of simplicity, we also assume that Z is Gaussian.
We denote by L2 (Ω,P) the Hilbert space of second-order real random variables (r.v.) on (Ω,F ,P),
where we identify random variables that are equal P-almost surely. The inner product between two
r.v. U and V of L2 (Ω,P) is denoted by E (UV ).

Let K : X ×X → R be the covariance kernel of Z, i.e., for all x and y ∈X ,

E (ZxZy) = K(x, y) .

For t ∈X , we denote by Kt the function x 7→ K(t, x), x ∈X .
Let H be the Gaussian Hilbert space associated with Z, i.e., the closed linear subspace of

L2 (Ω,P) spanned by the r.v. Zx, x ∈X , endowed with the Hilbert structure induced by L2 (Ω,P).
We assume that H is separable. Notice that we do not suppose that Z is stationary.

2.2 Conditioning

Let HC be a closed linear subspace of H; we denote by PHC
the orthogonal projection of H onto

HC . For x ∈X , the r.v. PHC
[Zx] is the conditional mean of Zx relatively to HC . If HC is spanned

by the r.v. ζj , j ∈ J , with J a general index set, the notation PHC
[Zx] = E (Zx|ζj , j ∈ J) is often

used. We shall pay particular attention to subspaces of the evaluation-type, i.e.

Hev = span {Zx1 , . . . , Zxn} , (2.1)

for some n ∈ N∗ (the set of positive integers) and x1, . . . , xn ∈ X . Such a set {x1, . . . , xn} of
locations where the values of the random field Z are observed forms a n-point design.
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2.3 The IMSE criterion

Suppose that X is a measurable space and consider a σ-finite measure µ on X . We denote by
L2 (X , µ) the Hilbert space of square integrable real-valued functions on X with respect to µ. We
assume that, for all x ∈X , Kx ∈ L2 (X , µ) and that

τ =

∫
X
K(x, x) dµ(x) < +∞. (2.2)

Then, for a given subspace HC of H, the IMSE criterion (or µ-IMSE to explicitly refer to the
measure µ) is the positive real

IMSE(HC) =

∫
X

E
[
(Zx − PHC

[Zx])2
]
dµ(x) =

∫
X
K(x, x)− E

[
(PHC

[Zx])2
]
dµ(x).

From (2.2), we have IMSE(HC) = τ − CI(HC), with

CI(HC) =

∫
X

E
[
(PHC

[Zx])2
]
dµ(x).

Note that minimizing the IMSE amounts to maximizing CI(HC) since τ does not depend on HC .
For a fixed n ∈ N∗, a n-point IMSE-optimal design is a set {x1, . . . , xn} ∈ X n that minimizes the
IMSE criterion on X n.

2.4 Integral form of the IMSE

Consider a n-point design {x1, . . . , xn} ∈X n and its associated subspace Hev defined by equation
(2.1). Denote by z the (column) random vector z = (Zx1 , . . . , Zxn)T and let K be the covariance
matrix of z. We assume that Z and {x1, . . . , xn} are such that K is invertible. The expression of
the IMSE criterion associated with {x1, . . . , xn} is then given by IMSE(Hev) = τ −CI(Hev), where

CI(Hev) =

∫
X

kT (x)K−1k(x) dµ(x), (2.3)

with, for x ∈ X , k(x) = (Kx1(x), . . . ,Kxn(x))T . Under this form, each evaluation of the criterion
requires the computation of an integral and therefore turns out to be computationally demanding.

3 Discrete measures and quadrature-designs

3.1 IMSE for quadrature-designs

We now consider the situation where the measure µ is discrete, µ =
∑Nq

j=1 ωjδsj with ωj > 0,
sj ∈X , Nq ∈ N∗ and δs the Dirac measure centered at s, so that

∫
X
f(s) dµ(s) =

Nq∑
j=1

ωjf(sj), (3.1)

for all µ-integrable real-valued function f on X . The point sj for j ∈ {1, . . . , Nq} will be called the j-
th quadrature point and we shall respectively refer to the sets {sj |1 6 j 6 Nq} and {ωj |1 6 j 6 Nq}
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as the sets of quadrature points and quadrature weights. Notice that this framework corresponds
to the typical situation where a pointwise quadrature rule is used to compute the integrated MSE
in (2.3).

Definition 3.1. We call quadrature-design a design which is only composed of quadrature points.
For n ∈ N∗ (with n 6 Nq), the index set of a n-point quadrature-design {si1 , · · · , sin} is the subset
D = {i1, · · · , in} of {1, · · · , Nq}.

We introduce the two Nq × Nq matrices W = diag
(
ω1, . . . , ωNq

)
and Q, with Q having i, j

term Qi,j = K(si, sj), 1 6 i, j 6 Nq. Thus, W is the matrix of quadrature weights and Q is the
covariance matrix of quadrature points.

Let n ∈ N∗, with n 6 Nq (in practice, n << Nq) and let D = {i1, . . . , in} ⊂ {1, . . . , Nq} be
the index set of a n-point quadrature-design (see Definition 3.1). We denote by K = QD,D the
covariance matrix for the design {si1 , . . . , sin}. Similarly, we denote by Q·,D (respectively QD,·) the
Nq × n (resp. n×Nq) matrix formed by columns (resp. rows) i1, . . . , in of Q. From (2.3) and (3.1),
we have

CI(Hev) = trace
(
WQ·,DK−1QD,·

)
. (3.2)

In order to reduce the computational cost of the evaluation of the IMSE (from the perspective
of multiple evaluations of the criterion), we introduce the Nq ×Nq matrix Σ = QWQ (this matrix
is computed once for all the design optimization process). Then, we have

CI(Hev) = trace
(
K−1ΣD,D

)
. (3.3)

The computation of the IMSE (for a quadrature-design) is then reduce to the inversion of the matrix
K and next, to the computation of the trace of the product of two n×n matrices (see Remark 3.1).
Notice that the matrix Σ is associated with the kernel Σ(·, ·) given by, for x and y ∈X ,

Σ(x, y) =

∫
X
K(x, t)K(y, t)dµ(t).

The knowledge of the two kernels K(·, ·) and Σ(·, ·) thus theoretically allows for the computation
of the IMSE for any design, through (3.3).

Remark 3.1. Let A be a l×m matrix and let B be a m× l matrix, with l and m ∈ N∗. In order to
compute trace(AB), it is of course not useful to compute the off-diagonal elements of the product
AB. Instead, one shall compute sum

(
A ∗BT

)
, where ∗ stands for the Hadamard matrix product

(element by element) and sum(·) means that we sum all the elements of the matrix considered. �

3.2 Spectral approximation of the IMSE for quadrature-designs

We consider the spectral decomposition of the matrix QW in the Hilbert space RNq endowed with
the inner product (·|·)W, with, for x and y ∈ RNq ,

(x|y)W = (x|y)W = xTWy.

Denote by λ1 > λ2 > · · · > λNq > 0 the eigenvalues of the matrix QW and by v1, . . . ,vNq their
associated eigenvectors, i.e. QW = PΛP−1 with Λ = diag(λ1, . . . , λNq) and P = (v1| · · · |vNq).
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Then,
{
v1, . . . ,vNq

}
forms an orthonormal basis of RNq endowed with the inner product (·|·)W, so

that
PTWP = IdNq , (3.4)

with IdNq the Nq-dimensional identity matrix (see Remark 3.2 for more details). We then introduce
the matrix X = PΛ.

Proposition 3.1. Consider a n-point quadrature-design with index set D = {i1, . . . , in} and asso-
ciated covariance matrix K = QD,D. Then, we have

CI(Hev) = trace
(
(XD,·)

TK−1XD,·
)
, (3.5)

where XD,· denotes the matrix formed by the n rows of X having indices in D.

Proof. From equation (3.2) and the spectral decomposition QW = PΛP−1, we have

CI(Hev) = trace
(
Q·,DK−1(PΛP−1)D,·

)
= trace

(
Q·,DK−1XD,·P

−1)
= trace

(
P−1Q·,DK−1XD,·

)
= trace

(
(P−1Q)·,DK−1XD,·

)
.

Then, combining the decomposition of QW and expression (3.4), we obtain

P−1Q = P−1QWW−1 = ΛP−1W−1 = ΛPT = XT .

Since (XT )·,D = (XD,·)
T , this completes the proof.

Using (3.5), we can approximate the IMSE criterion by spectral truncation. For a truncation
subset Itrc ⊂ {1, . . . , Nq}, we denote by XD,Itrc the n×Ntrc matrix with entries Xj,k, where j ∈ D
and k ∈ Itrc. We then define the spectral-truncated IMSE criterion by

IMSEtrc(Hev) = τtrc − CItrc(Hev), (3.6)

with τtrc =
∑

k∈Itrc λk and CItrc(Hev) = trace
(
(XD,Itrc)

TK−1XD,Itrc

)
. The following chain of

inequalities holds:
CItrc(Hev) 6 CI(Hev) 6 CItrc(Hev) +

∑
k 6∈Itrc

λk,

so that the term
∑

k 6∈Itrc λk gives an upper bound on the error induced by truncation. The spectral
ratio

Rtrc =
τtrc
τ

=

∑
k∈Itrc λk∑Nq

k=1 λk
(3.7)

can be used as an indicator of the accuracy of the approximation by truncation.
Notice that we have chosen to use τtrc in expression (3.6) since we interpret the truncated-IMSE

as the value of the IMSE when only the eigenvalues with index in Itrc are considered. We may
use τ (or any other constant) as well since this quantity does not depend on Hev. One usually
choose Itrc = {1, . . . , ntrc}, i.e., only the ntrc largest eigenvalues of QW are taken into account, and
ntrc 6 Nq is then called the truncation level.
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Remark 3.2. The matrix QW defines a symmetric and positive operator on RNq endowed with
(·|·)W, since (QWx|y)W = (x|QWy)W = xTWQWy for all x and y ∈ RNq . For numeri-
cal reasons, it is preferable to compute the spectral decomposition of W

1
2 QW

1
2 for the classical

Euclidean structure of RNq rather than the decomposition of QW for (·|·)W. Notice that if v
is an eigenvector of the matrix QW associated with the eigenvalue λ, i.e., QWv = λv, then
W

1
2 QW

1
2 W

1
2 v = λW

1
2 v. Therefore, the two matrices W

1
2 QW

1
2 and QW have the same eigen-

values and, if ṽ an eigenvector of W
1
2 QW

1
2 (orthonormal for the Euclidean structure of RNq) for

the eigenvalue λ, then v = W− 1
2 ṽ is an (orthonormal) eigenvector of RNq endowed with (·|·)W for

the same λ. �

As mentioned in Section 3.1 for expression (3.3), from a design optimization perspective (so,
requiring multiple evaluations of the criterion) and for a fixed truncation set Itrc, it is of interest to
compute once for all the Nq ×Nq matrix Mtrc = X.,Itrc(X.,Itrc)

T . We then have

CItrc(Hev) = trace
(
K−1(Mtrc)D,D

)
. (3.8)

4 Grid-restricted optimization

In view of the above, in order to approximate IMSE-optimal designs, we propose to optimize the
IMSE or truncated-IMSE on the subset of the quadrature points. The number of different n-
points quadrature-designs (composed of n distinct points) is

(
n
Nq

)
. So, for relatively small values of(

n
Nq

)
, it is possible to evaluated the IMSE (or truncated-IMSE) of all the quadrature-designs. This

exhaustive approach shall however quickly trun to be unusable for large values of
(
n
Nq

)
, despite the

relative efficiency of the evaluation of the IMSE or truncated-IMSE criteria through (3.3) or (3.8).
However, the ability of quickly computing the score of any quadrature-design allows for employing
optimization strategies that require a large number of evaluations of the cost function.

Note that the restriction to quadrature-designs is not penalizing when the quadrature grid
used to compute the IMSE is dense enough. In addition, numerical experimentations on a series
of examples indicate that n-point quadrature-designs are generally quasi-optimal (and sometimes
optimal) among all n-point designs on X .

In what follows, we describe a stochastic global optimization strategy based on the Enhanced
Stochastic Evolutionary (ESE) algorithm combined with a local descent optimization method. The
ESE algorithm was proposed by Jin et al. (2005) (see also Fang et al. (2010, Chapter 4) for additional
considerations and a general description) and is a variant of the well-known Simulated Annealing
(SA) algorithm described by Kirkpatrick et al. (1983).

Design Perturbations. We consider designs perturbations that change a given quadrature-design
in another quadrature-design. At each step of the algorithm, we shall consider Npert distinct per-
turbations of the current design and then apply the acceptance/rejection rule to one of the Npert

candidate designs (see below, acceptance and stopping rules).
Obviously, various perturbation strategies can be used and it is impossible to give an overall

description of all possible choices for this particular task. However, we think that a reasonable
strategy should respect the following conditions:

- the construction of a perturbed design must be computationally fast (since a large number of
perturbed designs will be generated during the optimization process);
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- perturbations have to meet the expectations of the so-called improving process, i.e., they
should enable convergence to local optima;

- perturbations should also meet the expectations of the exploration process, i.e., they should
allow the algorithm to explore the whole search space {sj |1 6 j 6 Nq}n.

In the present work, we have chosen for simplicity to consider perturbation strategies that only
modify one point of the current design at a time. Perturbations are applied successively, but in
random order, to all the points of the design. We call perturbation cycle the operation of perturbing
one time (in a random order) each point of the design.

Assume that the index set of the current quadrature-design is D = {i1, . . . , in} and that we
choose to perturb the design point with index ik, that is, the point sik ∈X , with k ∈ {1, . . . , n}. In
order to construct Npert perturbed designs, we simply propose Npert mutually different substitutes
for sik , taken among quadrature points. To account for the improving and exploration processes, we
fix two positive integers Nprox and Nrand (the perturbation parameters) such that Nprox +Nrand =
Npert (with “prox” standing for proximity and “rand” for random). Then,

(i) we select Nprox quadrature points in the “neighborhood” of sik , with indices Iprox such that
Iprox ⊂ {1, . . . , Nq}\D;

(ii) we randomly pick Nrand quadrature points, with indices in {1, . . . , Nq}\(D ∪ Iprox), with
respect to a given probability.

The choice of the method used to complete (i) and (ii) is rather crucial and should be done in
accordance with the specifications of the problem considered.

Concerning (i) (selection of Nprox neighbors), first notice that the notion of “neighborhood”
obviously requires the definition of a metric on the input space X . In our numerical experiments
(Section 5) we use the metric induced by the covariance kernel K(·, ·), that is, for x and y ∈ X ,
dist(x, y)2 = K(x, x) +K(y, y)− 2K(x, y). In particular, this distance can be easily deduced from
the matrix Q and is always defined, whatever the problem considered.

Concerning (ii), in the experiments carried out in Section 5, we simply use uniform probability
weights in order to randomly select the Nrand substitutes to sik .

The information required to generate perturbed designs can be stored within two matrices Mprox

and Mrand, computed before the optimization and defined as follows:

- the i, j entry of Mprox is the index of the i-th nearest quadrature point to sj ;

- Mrand is a Nq×Nq stochastic matrix whose j-th row consists of the weights used to randomly
perturbed the j-th grid point.

Acceptance and stopping rules. At each perturbation step, we select the best (in terms of
the criterion considered) of the Npert perturbed designs. If this design yields an improvement, it is
always accepted as the new current design. Otherwise (that is, if the best perturbed design does not
yields an improvement), we select the best design among the Nrand randomly perturbed designs,
and this design is accepted as the new curent design with some probability (as for any simulated
annealing like algorithm). This way, for Nrand = 0, the algorithm acts like a deterministic local
descent and conversely, for Nprox = 0, the search is fully stochastic.
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During the optimization, the best encountered design is updated and kept in memory and is
finally returned at the end of the process.

The stopping rule for the optimization depends on the number of perturbation cycles and is
chosen by the user. However, if a local descent is possible at the end of the process, it will always be
accomplished (even if this exceeds the maximum number of authorized perturbation cycles). The
local descent stops after one full perturbation cycle without improvement.

The probability of acceptance for a best random perturbation without improvement depends on
a quantity called temperature, which is fixed following the same rules as the ESE algorithm (the
temperature is updated during the optimization after a fixed number of perturbation cycles).

5 Numerical experiments

All computations have been performed with the free software R, see (R Core Team, 2013), on a 2012
MacBook Air endowed with 1.8 GHz Intel Core i5 processor with 4 Go RAM. With such material,
we manage to handle quadrature with up to Nq = 10 000 points.

5.1 A two-dimensional example

Let X be the unit square [0, 1]2, we consider the integration measure µ having the density (with
respect to the Lebesgue measure on X )

f(x) = (1− r) 3
2

[
1 + cos

(
4πmin(

r

0.5
, 1)
)]

+ 0.2,

with r = ‖x − c‖, c = (1/2, 1/2) and where ‖ · ‖ is the Euclidean norm. We shall use quadrature
rules based on Nq points sk ∈X , k ∈ {1, . . . , Nq}, with weights ωk given by

ωk =
1

Nq
f(sk), (5.1)

see equation (3.1). An overview (contour plot) of the function f on [0, 1]2 is presented in Fig-
ure 1. For x = (x1, x2) and y = (y1, y2) ∈ R2 we consider the covariance kernel K(x, y) =
Kθ1(x1, y1)Kθ2(x2, y2), with θ1 > 0, θ2 > 0 and, for i ∈ {1, 2},

Kθi(xi, yi) =
(

1 +

√
3

θi
|xi − yi|

)
exp

(
−
√

3

θi
|xi − yi|

)
(5.2)

(Matérn 3/2 kernel). In what follows, we set θ1 = θ2 = 0.12. We mainly focus on the problem of
computing a 33-point IMSE optimal for this problem.

5.1.1 Square grid

We use a ng × ng square grid on [0, 1]2 for approximating the integrated MSE, with ng = 37.
The Nq = n2g quadrature points sk, 1 6 k 6 n2g = 1369, are given by s(j−1)ng+i = (ci, cj) with
cj = (j − 1)/ng + 1/(2ng), with 1 6 i, j 6 ng (midpoint rectangular quadrature rule).

Using the eigen routine of R, the full eigen-decomposition of the matrix W
1
2 QW

1
2 (see Re-

mark 3.2) takes approximately 7 seconds and the computational time grows as N3
q . The evaluation
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of the IMSE or truncated-IMSE for a 33-point quadrature-design (using expressions (3.3) or (3.8))
requires 0.154 milliseconds (median duration over 10 000 evaluations).

Figure 1 shows the best, in terms of IMSE, 33-point quadrature-design D∗(Gsq 37×37) we have
found on the square grid Gsq 37×37), with an IMSE of 0.2350413

0.0000

0.0005

0.0010

0.0015

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Grid points
Design points

Figure 1: IMSE optimal 33-point quadrature-design D∗(Gsq 37×37) for the Matèrn 3/2 kernel (θ1 =
θ2 = 0.12), and distribution (contour plot) of the weights ωk of the quadrature points sk, 1 6 k 6 Nq

(square grid Gsq 37×37).

We have applied the algorithm described in Section 4 with Nprox = 8 and Nrand = 120. The
length `in of the inner loop was set to `in = 30 and the length `out of the outer loop to `out = 4. The
integer `in stands for the number of perturbation cycles before the temperature is updated and `out
is the number of temperature updates. An optimization run then requires Neval = 1 +Npertn`in`out
cost-function evaluations (with this parameters setting, Neval = 506 881), with the possibility of
some (few) additional evaluations if a final local descent is necessary. Random initial quadrature-
designs have been used. In such settings, an optimization run takes approximately 90 seconds.

Interestingly, we have obtained roughly better results when optimizing the truncated-IMSE with
truncation level of the order of the design size (but not to small), instead of the IMSE. For this
33-point design problem, the truncation level ntrc = 35 has proven to be relatively effective. This
phenomenon should however deserve further studies (see also Remark 5.1 and Section 6).

Remark 5.1 (One-point designs). For t ∈ X , we denote by Ht the linear space spanned by Zt.
Figure 2 shows the graph of the functions t 7→ CI(Ht) and t 7→ CItrc(Ht), with ntrc = 3. We observe
that the criterion CI has many local maxima. This is not case for CItrc , and the truncated criterion
may therefore be more easy to optimize.

The 1-point optimal IMSE and truncated-IMSE (with ntrc = 3) designs are not exactly the same.
However, if we denote by t∗ and t∗trc the 1-point IMSE and IMSEtrc optimal designs respectively,
we obtain IMSE(Ht∗)/IMSE(Ht∗trc

) ≈ 0.999976. �

5.1.2 Low discrepancy grid

We now use a quasi-Monte Carlo method (see, e.g., Niederreiter (1992)) in order to compute the
integrated MSE. We generate a (Halton) uniform low-discrepancy sequence with Nq = 2 500 points
in [0, 1]2 (using the R function runif.halton) and the associated weights are given by equation
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t 7→ CI(Ht) t 7→ CItrc(Ht) for ntrc = 3

Figure 2: Graph of t 7→ CI(Ht) and t 7→ CItrc(Ht), with ntrc = 3 on the square grid Gsq 37×37.

(5.1). Such quadratures provide a relatively low accuracy regarding the number of points that are
used; however, they have the important advantage of being extremely easy to implement, whatever
the density of the integration measure µ considered. We denote by Glow 2500 this quadrature.

We optimize the IMSE and truncated-IMSE (with ntrc = 35) on the grid Glow 2500. We use
Nprox = 12, Nrand = 120, `in = 40 and `out = 4. An optimization run then take approximatively
140 seconds. The quadrature-designs D∗(Glow 2500) and D∗trc(Glow 2500) optimal for the IMSE and
truncated IMSE are given in Figure 3, these two designs differ by two points.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Grid points
IMSE optimal design
IMSEtrc optimal design

Figure 3: 33-point IMSE and truncated IMSE optimal quadrature-designs for the Matérn 3/2
kernel (θ1 = θ2 = 0.12) for the quasi-Monte Carlo quadrature Glow 2500 (the two designs differ by
two points).

Finally, for comparaison purpose, we consider a square grid Gsq 74×74 of 74× 74 = 5 476 points
and compute the IMSE score, for this grid, of the three designs D∗(Gsq 37×37), D∗(Glow 2500) and
D∗trc(Glow 2500). Notice that these designs are not quadrature-designs for Gsq 74×74, so that the
IMSE scores are computed with the integral form (2.3) of the IMSE. Interestingly, we note that
D∗trc(Glow 2500) performs better, although the differences are slight, see Table 1.

10



D∗(Gsq 37×37) D∗(Glow 2500) D∗trc(Glow 2500)

Gsq 74×74 IMSE 0.2355560 0.2354285 0.2354256

Table 1: IMSE score, for the square grid Gsq 74×74, of the three designs D∗(Gsq 37×37), D∗(Glow 2500)
and D∗trc(Glow 2500).

5.2 Local descents in dimension 5

Consider the 5-dimensional Matèrn covariance kernel on [0, 1]5, K(x, y) =
∏5
i=1Kθi(xi, yi), where

x = (x1, . . . , x5) and y = (y1, . . . , y5) are in [0, 1]5 and where the kernels Kθi(·, ·) are given by
expression (5.2). We set θ = (θ1, θ2, θ3, θ4, θ5) = (0.22, 0.52, 0.52, 0.52, 0.22). The measure µ has
density fµ(x) = fτ (x1)fτ (x2) with respect to the Lebesgue measure on [0, 1]5, where fτ stands for
the density of a truncated normal distribution on [0, 1] with mean 0.5 and standard deviation 0.15.
The measure µ is therefore the tensor product of two truncated normal distributions (for the first
two variables) and three uniform distributions on [0, 1].

We approximate µ using a quadrature based on a µ-distributed low-discrepancy sequence with
Nq = 5 000 points. Since the quadrature points sk are distributed according µ, the quadrature
weights are simply given by ωk = 1/Nq, 1 6 k 6 Nq.

We focus on the construction of a 50-point quadrature-design. As previously, we consider both
the IMSE and truncated-IMSE criteria. After various testing, the truncation level ntrc = 54 appears
as relatively efficient for this problem.

We consider 100 random low-discrepancy quadrature-designs (their respective indices consist
of 50 consecutive integers in {1, . . . , Nq}). We then run local descents starting from these low-
discrepancy designs, and using the IMSE criterion or the truncated-IMSE criterion. We set Nprox =
2d+ 2d = 42 (with d the dimension of X ), and each descent then takes approximatively 4 seconds.
Our results are listed in Figure 4. As mentioned in Section 5.1, we obtain slightly better results
when optimizing the truncated criterion instead of the classic IMSE.

0.433 0.44 0.447 0.454

0.389 0.394

Initial designs
(50-pt random low-discrepancy designs)

descent using IMSE

descent using IMSEtrc

Figure 4: IMSE score (boxplot) for the 100 initial low-discrepancy quadrature-designs and for the
designs obtained after a local descent using the IMSE criterion (bottom-left) or the truncated-IMSE
criterion with ntrc = 54 (top-left).

The best quadrature-design we have obtained has an IMSE of 0.3891981. An overview of this
design is given in Figure 5. We can clearly distinguish the influences of the integration measure µ
and of the covariance parameters θ.
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Figure 5: Pairs plot of the best 50-point quadrature-design obtained by local descent and of the
1 000 first points of the µ-distributed low discrepancy grid (Nq = 5 000); Matèrn 3/2 covariance
kernel with parameters θ = (0.22, 0.52, 0.52, 0.52, 0.22).
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6 Concluding remarks

We have considered the IMSE and truncated-IMSE (approximation of the IMSE by spectral trun-
cation) design criteria in the context of optimal linear prediction of second order random fields with
known mean and covariance. We have also assume that a (pointwise) quadrature rule is used to
approximate the integrated MSE. In this framework, and if the design space restricted to subsets of
quadrature points, we have illustrate how these two criteria can be easily and quickly evaluated at
the cost of some simple preliminary calculations. There are no particular restrictions on the kernel
K(·, ·) and the measure µ used to define the IMSE. The approach is thus quite general. From the
numerical point of view, the truncated criterion can be used whenever the spectral decomposition
of the matrix QW can be computed, see Remark 3.2.

The preliminary calculations are made only once for a given design problem, and fine quadrature
grids with many points (depending obviously of the computational power at disposal) can therefore
be considered. Since each evaluation of the IMSE or truncated-IMSE is then computationally cheap,
a global optimization (e.g., based on simulated-annealing) is affordable. When used in combination
with low-discrepancy grids, this approach offers an easy to implement and relatively efficient way
to approximate IMSE optimal designs on general input spaces, possibly with high dimension and
complex shape.

The current version of the method applies to zero-mean processes (or, equivalently, to processes
with known mean), and the inclusion of an unknown parametric trend is under investigation. More-
over, since the optimization is restricted to quadrature-designs, the choice of a suitable quadrature
may be critical. A quantification of the errors induced by the use of a quadrature approximation
and by the restriction to quadrature-designs would be of interest.

Our numerical experiments seems to indicate that considering the truncated-IMSE with trun-
cation level of the order of the design size has many advantages. Indeed, the truncated criterion
then appears as more easy to optimize than the IMSE while leading to designs that closed to the
optimum. In addition, spectral truncation seems to reduce the impact of the quadrature approxi-
mation. These phenomena shall however deserve further studie and need to be put in relation with
some of the results presented in Spöck and Pilz (2010).
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