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Abstract  

Nonlinear couplings between photons and electrons in new materials give rise to a wealth of 

interesting nonlinear phenomena [1]. This includes frequency mixing, optical rectification or 

nonlinear current generation, which are of particular interest for generating radiation in 

spectral regions that are difficult to access, such as the terahertz gap. Owing to its specific 

linear dispersion and high electron mobility at room temperature, graphene is particularly 

attractive for realizing strong nonlinear effects [2]. However, since graphene is a 

centrosymmetric material, second-order nonlinearities a priori cancel, which imposes to rely 

on less attractive third-order nonlinearities [3]. It was nevertheless recently demonstrated that 
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dc-second-order nonlinear currents [4] as well as ultrafast ac-currents [5] can be generated in 

graphene under optical excitation. The asymmetry is introduced by the excitation at oblique 

incidence, resulting in the transfer of photon momentum to the electron system, known as the 

photon drag effect [6]. Here, we show broadband coherent terahertz emission, ranging from 

about 0.1-4 THz, in epitaxial graphene under femtosecond optical excitation, induced by a 

dynamical photon drag current. We demonstrate that, in contrast to most optical processes in 

graphene, the next-nearest-neighbor couplings [7] as well as the distinct electron-hole 

dynamics are of paramount importance in this effect. Our results indicate that dynamical 

photon drag effect can provide emission up to 60 THz opening new routes for the generation 

of ultra-broadband terahertz pulses at room temperature. 
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Current terahertz (THz) technologies suffer from the lack of compact room temperature 

THz sources, limiting the proliferation of consumer applications. As a consequence, an 

important activity in this field is dedicated to developing sources such as photoconductive 

devices [8,9], quantum cascade lasers [10] or exploring new schemes for THz generation like 

intracavity difference-frequency generation in mid-infrared quantum cascade lasers [11]. In 

parallel, important effort is dedicated to the study of new physical properties within novel 

materials [12,13]. Owing to its gapless electronic band structure, graphene is gaining 

increasing attention for new developments in the THz domain [14]. In addition, graphene 

exhibits a large nonlinear optical response arising from the linear carrier energy dispersion, 

together with the high electron velocity near the Dirac point [2]. Harmonic generation at THz 

frequencies relying on a third-order nonlinearity has been recently demonstrated in graphene 

using a femtosecond optical excitation at normal incidence [3]. Although second-order 

nonlinear effects are generally considerably stronger and therefore of importance in 

applications, these are forbidden by symmetry as graphene is a centrosymmetric material. 

Second-order nonlinearities only appear when the photoexcited medium possesses an 

anisotropy axis, which imposes a preferential direction of motion for the carriers. The photo-

excitation can itself, however, introduce an anisotropy direction, related to the in-plane 

photon momentum //q
 . Indeed, second-order nonlinear dc-currents have recently been 

demonstrated in graphene, under monochromatic photo-excitation at oblique incidence and at 

energy FE<ω  [4,15]. These dc-currents originate from photon drag or photogalvanic 

effects [2] and involve only conduction electrons. Recent experiments on graphene under 

femtosecond pulsed excitation at photon energy FE2>>ω  have shown second harmonic 

generation in the visible [16] and second-order nonlinear ac-currents associated with 

narrowband THz generation [5] at room temperature. 
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In this work, we demonstrate and theoretically describe a dynamical photon drag effect 

that permits room temperature broadband, and potentially ultra-broadband, THz emission 

from femtosecond excited graphene ( FE2>>ω ). Furthermore we show, by experimental 

investigations and theoretical modeling, that the transient current results from the intrinsic 

asymmetry between the conduction and the valence bands (i.e. different energy dispersions 

and lifetimes). Interestingly, our findings provide a direct probe of the next-nearest-neighbor 

couplings in graphene that have been difficult to access by experiments [17] and known to 

induce nontrivial effects in graphene [18]. Our results highlight their essential role in the 

dynamical photon drag effect.  

The investigated multilayer graphene sample is produced by thermal desorption of Si from 

the C-terminated face of single-crystal 4H-SiC(0001) and contains typically 35-40 layers with 

non-Bernal rotated graphene planes [19]. It has been shown that each graphene sheet 

possesses a band structure very similar to that of an individual graphene monolayer [20] and 

that the first four layers near the substrate are heavily doped, whereas the upper remaining 

layers are quasi-neutral (

€ 

EF ~8 meV). The experiment, illustrated in Fig. 1c, uses a mode-

locked Ti:Sa laser delivering 110 fs optical pulses at a repetition rate of 80 MHz with an 

optical fluence ranging up to 35 µJ/cm2. It consists of optical pump pulses that excite the 

graphene sample and optical probe pulses that coherently detect the THz radiation emitted 

from the graphene sample using conventional electro-optic detection techniques [21]. The 

central wavelength of the optical pump pulses is 800 nm corresponding to 

ω =1.55 eV >> 2EF . The graphene sample is placed at the focal plane of an aspherical 

optical lens (effective focal length of 50 mm), so that the incidence angle φ of the optical 

excitation (see Fig. 1c) can be varied by displacing the pump beam position on the surface of 

the lens. Since electro-optic detection technique is only sensitive to synchronized THz 
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radiation with femtosecond pulses, the incoherent thermal background is suppressed [22]. All 

measurements are performed at room temperature.  

The THz waveform )(ETHz t


generated by exciting the graphene sample with an angle 

φ = 37° is reported in Fig. 2a. For this measurement, the pump excitation is s-polarized (θ=0 

in Fig 1c) and the electro-optic sampling detection set-up is oriented to detect the projection 

of )(ETHz t


 along the x axis (see Fig 1c). In this configuration, we experimentally verified that, 

in agreement with theory [23], second-order nonlinear effects in the SiC substrate are 

cancelled. The observed THz waveform shows a main positive peak with a full-width-at-half 

maximum of 230 fs, followed by oscillations at longer times. As shown below, these 

oscillations are induced by the limited bandwidth of the electro-optic detection system [24]. 

The amplitude spectrum, obtained by the Fourier transform of the temporal electric field 

waveform, consists of a single broad peak centered at 1.25 THz, as shown in Fig. 2b. 

Figure 2e shows that the amplitude of )(ETHz t


 scales linearly with the excitation fluence 

and thus quadratically with the incident optical electric field, indicating a second-order 

nonlinear process. The electric field peak amplitude reaches 70 mV/cm at an optical fluence 

of 35 µJ/cm2. In order to probe the role of the in-plane photon momentum in the THz 

generation process, )(ETHz t


 is measured for different incidence angles φ under s-polarization. 

In contrast with usual second-order nonlinear processes in two-dimensional systems under s-

polarized excitation, that are insensitive to the incidence angle [1], we observe critical 

changes in the emitted electric field waveform as a function of φ. At normal incidence (φ=0) 

no THz signal is detected. For opposite incidence angles, the time-oscillations show reverse 

polarity, as shown in Fig. 2f and 2g for φ=±14°. These results are summarized in Fig 2h that 

shows the relative field amplitude is proportional to the incident angle and therefore to the in-

plane component of the photon momentum. This is a distinctive feature of the dynamical 
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photon drag effect. We show in Fig. 2i that by using a less sensitive but more broadband 

ZnTe crystal (200 µm-thick), the amplitude spectrum is shifted to higher frequencies with 

detected components up to 4 THz. This observation indicates that the spectral content of the 

measured THz radiation is limited by the experimental set-up response. 

In order to describe quantitatively the experimental findings and interpret the temporal 

waveform of the THz signal, we have calculated the time-dependent average current 

j


generated in one graphene layer excited by femtosecond optical pulses, up to the second 

order in the exciting electric field: [ ] ετω
 )2/exp().exp(ERe),(E 22

0 ttirqitr −−=  with τ the 

1/e-width of the laser pulses (τ = 110 fs). To this end, we calculated the density matrix 

evolution in the standard perturbation formalism: 

[ ] [ ] n
n

dip
nn iVHti Γ−+=∂∂ −  )1()(

0
)( ,,/ ρρρ  up to the second order (n=1,2) in the dipolar 

perturbation 0/. mpAeVdip


= . nΓ are phenomenological dampings. In the basis of the 

graphene eigenstates k

,,λξ  (where ξ  is the Dirac-valley index, λ  the band label and k


 the 

in-plane wavevector), )0(ρ  is purely diagonal and reflects the thermal electron distribution at 

room temperature before the optical pulse excitation. The THz radiation emitted in the far 

field is obtained as the time-derivative of the second-order current: [ ] tt ∂∂∝ /pTr)(E (2)
THz ρ


. 

The dominant terms in the calculation of )(ETHz t


involve only the diagonal elements of )2(ρ , 

i.e. the non-equilibrium electron and hole non-linear populations generated by the laser pulse. 

Fig. 1b schematically shows the anisotropic electron population distribution in the momentum 

space at the pulse maximum for a s-polarized exciting optical pulse. At normal incidence (Fig 

1b, upper panel), currents from electrons with opposite wavevectors cancel each other. At 

oblique incidence however (Fig. 1b, lower panel), the population distribution is displaced 

relatively to the centre of the Dirac cone and a net conduction current appears. Nonetheless, 
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the valence current has an opposite direction and compensates exactly the conduction current 

in the nearest-neighbor (NN) tight-binding approximation, and the total transient photon drag 

current j


vanishes. The inclusion of the next-nearest-neighbor (NNN) coupling in the tight-

binding model breaks the mirror symmetry between conduction and valence bands: to the 

lowest order in k, this adds a positive quadratic term to both dispersions, increasing the 

electron velocity and reducing the hole one. Consistently, the damping coefficients e
2Γ  and 

€ 

Γ2
h for electrons and holes are also different in this case. Finally, we obtain that, owing to the 

electron-hole asymmetry effects, a non-zero photon drag current arises, which is discussed 

below. The following tight binding parameters have been used: the NN (NNN) energy 

hopping t=3eV (t'=0.15eV) and an overlap between NN orbitals of s=0.1.  The best overall 

agreement with the experiments was found for 1/ e
2Γ  = 170 fs and 1/ h

2Γ = 1.025/ e
2Γ . Once 

these quantities are fixed, we convolute the calculated )(ETHz t


 with the experimental set-up 

response function, which is a high-frequency filter with a cut-off at ~ 3THz. The complete 

model becomes thus predictive and allows a quantitative analysis of the various dependencies 

of the measured THz emission: the incidence angle φ, the optical polarization θ and the THz 

polarization in the x or y directions. 

We show in Fig. 2c the calculated transient signal x//ETHz


 for φ=25° and θ=0°. It is in 

very good agreement with the measured waveform (Fig. 2a) and, importantly, its amplitude is 

consistent with the experimental value. Moreover, the dynamical photon-drag model nicely 

reproduces the experimental features in Fig. 2e to 2h: the signature of a second order effect 

with its dependence on input power and the linear variation of THzE


 with //q
 . The broadband 

nature of this dynamical photon drag effect is highlighted in Fig. 2i, which reports the 

calculated amplitude spectra of the THz electric field emitted by graphene without any 

convolution with experimental set-up response: spectral components up to 9 THz are emitted 
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in the far-field region. More, Figure 2j shows the calculated amplitude spectra for an ultra-

short optical excitation of 15 fs duration, providing ultra-broadband coherent emission up to 

60 THz. 

The model can be further tested probing the dependencies with the polarizations of the 

incoming optical and outgoing THz radiations as reported in Fig. 3b and 3d. When θ is varied, 

the anisotropic population distributions ),()2( tk


ρ  rotate correspondingly in the k-plane, 

strongly changing the amplitude and direction of the photon-drag current, and therefore of the 

emitted field )(ETHz t


. Dynamical photon drag in graphene has a strong signature for two 

symmetric polarizations relative to p or s directions (e.g. θ=45° and θ=135°): the temporal 

profiles are identical for THz electric fields along the x direction (Fig. 3a) and opposite for y 

direction (Fig. 3c). We experimentally confirm this behavior in Figs 3a and 3c that report the 

measured THz signals along the x and the y directions respectively at the specific polarization 

angles of θ=45° and θ=135°. Such an agreement also appears when we compare the Fourier 

transform )(ETHz THzν


 of the detected THz signal, as shown in the Figs. 2b and 2d and Figs. 3e 

and 3f. Note that under p-polarized optical excitation, second-order nonlinear effect in SiC 

substrate contributes to the THz emission for only 30% of its amplitude and at low frequency 

(<2 THz). We stress that in Figs. 3e and 3f the peak frequency of the THz signal emitted 

along the y direction is higher for p than for s excitation configuration. Strikingly, the analysis 

of this frequency shift in the framework of our model permits to extract useful information of 

the carrier’s relaxation processes.  Indeed, the computed signal exhibits such a frequency shift 

only if the hole scattering time is taken smaller than the electron one. For the moderate optical 

fluence used in this study (< 40 µJ/cm2), the involved relaxation rates e
2Γ  and Γ2

h  are mainly 

related to carrier-phonon scattering, which efficiently randomizes the direction of carrier 

wavevector [25,26] making the current vanish.  



 9 

Our experimental and theoretical study pinpoints the essential physical aspects underlying 

the dynamical photon-drag effect in graphene excited by femtosecond optical pulses with a 

photon energy much higher than the Fermi level energy. Moreover, it offers a unique probe of 

physical properties of graphene such as the next-nearest-neighbor coupling and the distinct 

dynamics of non-thermal electron and hole population that are otherwise difficult to evaluate. 

The consideration of the next-nearest-neighbor coupling in the theoretical predictions is in 

contrast to most optical processes in graphene for which this coupling provides only small 

corrections to the modeling. Here, this coupling, as well as the asymmetry between the 

electrons and holes dynamics is intrinsically related to the observed phenomena. Moreover, 

the new insights provided by our study in the dynamics of the non-equilibrium electron and 

hole populations during the first hundred of femtoseconds after interband excitation is 

particularly fascinating since optical gain and population inversion in graphene is possible 

only in this time window [27]. Furthermore, our work has important implications for THz 

technology since these results demonstrate that dynamical photon drag effect in multilayer 

graphene provides an original scheme for coherent pulsed THz emission at room temperature. 

Our results pave the way to exploit dynamical photon drag effects in many other materials 

such as graphene-like materials or carbon-based materials. 
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Figure Captions: 

 

Figure 1 | Dynamical photon drag current induced by non-equilibrium carrier 

population and experimental schematic. a, Transient non-thermal electron and hole 

distributions in the interband regime for an oblique illumination; the electron and hole 

population distributions are not symmetric with the respect to the center of the Dirac cone. b, 

Non-equilibrium electron population distribution generated by p-polarized femtosecond 

optical pulses at normal incidence (upper panel) and at oblique incidence (lower panel). The 

photon momentum was artificially enhanced by a factor 100 in this simulation to make clear 

the displacement relative to the center of the Dirac cone. The white arrows represent the 

integrated momentum of the two population distribution lobes. Whereas at normal incidence, 

the two contributions to the current compensate perfectly, this is not the case at oblique 

incidence, where a net current is generated. This current changes in direction and amplitude 

with the direction of the exciting optical electric field, as the latter determines the position of 

the population distribution lobes around the Dirac cone. c, A femtosecond optical pump pulse 

illuminates the multilayer graphene and creates non-equilibrium electron and hole 

populations. A transient photon drag current is then generated in the plane of the graphene 

sheets, which emits a THz pulse. The THz pulse is transmitted through the SiC substrate, 

collected by an off-axis parabolic mirror and detected in the time-domain using electro-optic 

sampling in a 1 mm-thick ZnTe crystal. 

 



 13 

                                                                                                                                                   
Figure 2 | Measured and calculated THz electric field emitted by multilayer graphene. a, 

Experimental electric field waveform emitted by the multilayer graphene illuminated by s-

polarized femtosecond optical pulses at 800 nm central wavelength under an incidence angle 

φ=37° and its associated spectrum (b). c, Calculated electric field waveform emitted by the 

multilayer graphene excited in similar conditions as in (a) and its associated spectrum (d). e, 

THz electric field amplitude as a function of the optical fluence incident on the multilayer 

graphene. The red squares are the experimental data and the error bars show the standard 

deviation associated to noise fluctuations. The dashed line underlines the linear dependence. 

f-g, Time resolved electric field profiles measured for two opposite angles of incidence 

(φ=±14°) under s-polarized optical excitation. h, The peak-to-peak amplitude of emitted THz 

electric field normalized by (1-r), with r the amplitude Fresnel coefficient of graphene, as a 

function of the incidence angle of the femtosecond optical pulses φ. The squares are the 

experimental data, the error bars show the standard deviation associated to noise fluctuations 

and the black solid line is the best-fit sinus curve. i, Amplitude spectra of the THz electric 

field emitted by graphene excited by 110 fs optical pulses measured with a 1mm-thick ZnTe 

crystal (green dashed curve), with a 200 µm-thick ZnTe crystal (green solid curve) and 

calculated without any convolution with the experimental set-up response (red curve). j, 

Calculated amplitude spectrum of the THz signal emitted by graphene excited by 15 fs optical 

pulses. 

 

Figure 3 | Evolution of the THz electric field with the orientation of the linear 

polarization of the optical pulses. Measured (a) and calculated (b) electric field waveforms 

emitted by the multilayer graphene excited by linearly polarized optical pulses and detected in 

the x direction for two different orientations of the optical polarization θ=45° (solid line) 

and θ=135° (dashed line). (c,d) Electric field waveforms emitted by multilayer graphene 
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excited by linearly polarized optical pulses and detected in the y direction for two different 

orientations of the optical polarization θ=45° (solid line) and θ=135° (dashed line). Spectra of 

the experimental (e) and calculated (f) transient electric field emitted by multilayer graphene 

illuminated by s-polarized (green) and p-polarized (red) femtosecond optical pulses and 

detected in the x direction.  

 

 
 
 


