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Abstract

Motivation: RNA molecules specifically enriched in the neuropil of neuronal cells and in particular in dendritic spines are of
great interest for neurobiology in virtue of their involvement in synaptic structure and plasticity. The systematic recognition
of such molecules is therefore a very important task. High resolution images of RNA in situ hybridization experiments
contained in the Allen Brain Atlas (ABA) represent a very rich resource to identify them and have been so far exploited for
this task through human-expert analysis. However, software tools that may automatically address the same objective are
not very well developed.

Results: In this study we describe an automatic method for exploring in situ hybridization data and discover neuropil-
enriched RNAs in the mouse hippocampus. We called it Hippo-ATESC (Automatic Texture Extraction from the Hippocampal
region using Soft Computing). Bioinformatic validation showed that the Hippo-ATESC is very efficient in the recognition of
RNAs which are manually identified by expert curators as neuropil-enriched on the same image series. Moreover, we show
that our method can also highlight genes revealed by microdissection-based methods but missed by human visual
inspection. We experimentally validated our approach by identifying a non-coding transcript enriched in mouse
synaptosomes. The code is freely available on the web at http://ibislab.ce.unipr.it/software/hippo/.
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Introduction

The communication between neuronal cells is primarily

achieved through chemical transmission at synapses, specialized

subcellular structures in which axons and dendrites of connected

neurons are closely juxtaposed. In the case of excitatory contacts,

the most intensely studied and better understood type, synapses

are formed at structures known as dendritic spines (DS), small

protrusions of the dendritic membrane that compartmentalize the

biochemical events activated by synaptic transmission [1,2]. One

of the most remarkable features of DS is that their shape and

efficiency can be individually modified as a function of activity [3].

Targeting of coding and non-coding RNAs to axons, dendrites

and to dendritic spines (collectively referred to as the neuropil)

plays a very important role in the localized control of gene

expression underlying these phenomena [4–6]. Among the

protein-coding RNAs, Ca2+-calmodulin-dependent protein kinase

alpha subunit (Camk2a) [7,8], Map2 [9], Shank [10], b-actin [11]

and Arc [12] are the best documented examples of neuropil-

enriched mRNAs. On the other hand, the dendrite enriched non-

coding transcript Bc1 has been shown to regulate synaptic

plasticity by locally repressing the translational of mGluR

receptors [13]. Therefore, the automatic detection of neuropil-

enriched transcripts has become a very important issue. This

problem has been so far addressed through two main general

strategies: the direct measurement of RNA molecules in extracts

prepared from microdissected neuropil or the use of RNA in situ

hybridization on cells and tissues. The rodent hippocampus has

been fruitfully used for microdissection-based expression studies, in

virtue of the very precise arrangement of cell bodies and neuronal

projection that characterize this structure [14,15]. In combination

with microarray-based measurements, this technique has led to the

identification of approximately 200 transcripts enriched in the

neuropil, as compared to cell bodies [14–16]. More recently, an

RNA-seq-based study has shown that the hippocampal neuropil

contains approximately 2550 coding transcripts [16]. However,
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such a study did not provide information about the relative

enrichment of transcripts between the neuropil and the cell bodies

and did not report any information about the non-coding

transcripts.

Systematic in situ hybridizations on adult mouse brain with

probes derived from virtually all protein coding genes and from

many non-coding transcripts have been performed within the

Allen Brain Atlas project (ABA) [17,18]. The analyses of ABA

images so far performed have identified many neuropil-enriched

transcripts [17], but suffer of two main limitations. On the one

hand, although the resolution limit of the ABA images is 1.07 mm,

theoretically allowing for the discrimination of sub-cellular details,

their systematic mining by automatic tools has been focused on

exploring the general gene expression patterns at low resolution

(200 mm), or on measuring expression in cell bodies [17]. On the

other hand, human expert inspection of high-resolution images

has led to the highly specific identification of 57 dendrite-enriched

RNAs, but may have significantly underestimated the number of

neuropil-enriched RNAs, as it would seem if considering the much

higher number of neuropil transcripts detected by RNA-seq [16].

In this study we describe the implementation of an automatic

pipeline aiming at detecting transcripts enriched in the hippo-

campal neuropil of adult mice, by systematically exploring the

high resolution images contained in the ABA. The method is

based on the automatic identification of the different hippocampal

sub-regions in high resolution ABA images, followed by the

extraction of analysis of many different image-texture features. On

this basis, we ranked the mouse coding and non-coding transcripts

represented within the ABA according to their similarity to well

known neuropil-enriched transcripts. The comparison of our

ranking with the results of microdissection studies confirmed the

high specificity of our method. We experimentally validated our

results by identifying a new non-coding transcript associated to the

synaptodendrosomal compartment.

Methods

The Hippo-ATESC Pipeline
The automatic pipeline is based on three main steps: i)

localization of relevant hippocampal sub-regions; ii) characteriza-

tion of the texture of these regions; iii) training of a model for

neuropil-enriched transcripts, on the basis of prototype mRNAs. A

schematic representation of the procedure is given in Fig. 1. In

order to identify the main hippocampal regions within ABA in situ

hybridization images, we adapted an automatic method that we

previously described [19]. In this method, the localization of

hippocampal main structures, i.e. the Ammon’s Horne (AH) and

the dentate gyrus (DG) is achieved by searching the parameters of

an empirically-derived deformable model (DM) [20], which

maximizes its overlap with the corresponding anatomical structure

in the brain image using a metaheuristic [21] and gives as output

the location of the hippocampal region achieving a good trade-off

between accuracy and speed [19] (Fig. 2A). Afterwards, we

Figure 1. Schematic representation of the Hippo-ATESC
pipeline.
doi:10.1371/journal.pone.0074481.g001

Figure 2. Graphical illustration of the localization and segmentation steps. (A) The deformable model of the Ammon’s horn (AH) and of the
dentate gyrus (DG) are represented by a yellow line connecting red stars and by a red line connecting yellow stars, respectively. Selection of the
regions of interest is represented by green boxes. (B) The regions described in Table 1 are indicated.
doi:10.1371/journal.pone.0074481.g002

Automatic Visual Search of ABA through Hippo-ATESC
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performed a segmentation step in order to identify 13 different

hippocampal sub-regions, corresponding to specific sub-sections of

the dentate gyrus and of the CA1 and CA3 regions of the

Ammon’s Horn (Fig. 2B). From these regions, we extracted 220

textural features from each image. From this large dataset we first

extracted a training set composed of three prototypical neuropil-

enriched genes and 17 negative examples, based on which a

genetic algorithm [22] selected a subset of 52 significant features

(Table S1). Finally, for every gene, we extracted its 52-feature

vector and compared it to a reference vector (the average of the

three prototype vectors) using the Pearson coefficient as a distance

measure [23].

Localization and Segmentation of Hippocampal AH and
DG

The method used to localize the AH and the DG of the

hippocampus within ABA sagittal sections is described in more

details in [19]. Briefly, it can be divided into two stages: (i) selection

of the corresponding slice in the reference atlas based on a two-

step affine registration process, and (ii) proper localization of the

hippocampus. The first stage recognizes the location, within the

brain, of the section displayed in the target image based on a

comparison with the images of a reference atlas, and extracts the

region of interest (ROI) where the hippocampus is most likely to be

located. The following stage performs the proper localization of

the anatomical structure under study using statistical shape

models. In particular, before localization, the ROI that has been

extracted is preprocessed to remove noise and refine the detection

of the background. Consequently, an intensity normalization

process using a training set of ROIs, followed by a contrast-limited

adaptive histogram equalization, and the saturation of the

darkest/brightest parts in the ROI were used. After that, a

binarization process using Otsùs thresholding method before

keeping the five biggest connected components was applied. After

this preliminary step, a DM inspired by Active Shape Models

(ASM) [20] was employed to precisely localize the hippocampus,

using a training set of shapes extracted from five to twelve images

for each reference slice in the atlas, and deriving a model with

eight reference points for the AH and seven points for the DG.

This ASM approach is based on an energy minimization

framework optimized using a metaheuristic called Differential

Evolution (DE) [24]. To fully specify the algorithm, we used a

crossover rate of 0.9, while the scalar F was set to 0.7. Uniform

crossover and DE/target-to-best/1 mutation were employed over

a population of 64 individuals and 200 generations. During the

registration phase, a classical gradient-based local search method

[25] was used in the first step, while Particle Swarm Optimization

(PSO) [26] was applied in the second one. Our PSO implemen-

tation was run with 24 particles, 40 iterations, c1 = c2 = 2.05, and

an inertia factor linearly decreasing with time from 1.0 to 0.1.

The control points of the DM were used to locate different areas

of the hippocampus constantly containing both cell bodies and

neuropil. They were approximately centered on the region of

maximum curvature of the CA1 region and of the CA3 region in

the stratum pyramidale of the AH, and in the medial half of the

stratum granulosum (sg) for what concerns the DG (Fig. 2A).

Afterwards, these areas were first segmented using a system based

on Otsu’s thresholding method [27], and then further subdivided

to obtain 13 different regions of interest (Fig. 2B), able to describe

most of the variability of hippocampus’ visual features. The 13

regions were then checked to automatically reject incorrect

segmentations as follows. A Random Forest (RF) [28] was trained

to distinguish between the points lying inside Stratum Pyramidale

(sp) and Stratum Granulosum (sg) and those lying outside. Twelve

random points were selected in the regions identified in Fig. 1B as

CA1 a, CA1 d, CA3 a, CA3 d, DG a, DG d, and classified using

the trained RF. Then, the percentage of points correctly classified,

along with some statistics of the images containing the regions

(area, standard deviation) were processed by another RF, to finally

evaluate the segmentation process. If the result was considered

unreliable and had to be discarded, the entire process was

repeated selecting a different section of the same series from the

ABA, and if all slices within the brain region in which the

hippocampus is clearly visible had been unsuccessfully processed,

the gene was finally discarded. Over 9510 series which were tested,

only 255 of were discarded (2.68%), including the ones dismissed

due to errors in the ABA, e.g. ruined or missing images. Genes

with multiple probes or multiple image series available in the ABA

were treated independently because different probes could reveal

different transcripts, characterized by dissimilar expression pro-

files.

Texture Extraction
Textural features of the first and second order were extracted by

each region. The size of the windows for each region, as well as the

textural features used, are reported in Table 1. The total number

of features, i.e. the size of the vector which encodes the visual

characteristics of a gene is therefore 220. These features are both

of the first order (obtained directly from the image) and of the

second order (obtained using Gray Level Co-occurrence Matrix).

The Gray Level Co-occurrence Matrix (GLCM) [29] is a well-

established method to represent textural information of an image I

by defining the distribution of co-occurrence values:

C(i,j)~
Xm

p~1

Xm

q~1

1 if I(p,q)~i and I(pzDx,qzDy)~j

0 otherwise

�

where m represents the size of the window to analyze, i and j

represent the intensity levels of image I (usually the number of

levels is reduced to avoid unfeasible sizes of the matrix: in this work

Table 1. Different features used for the ranking.

CA1a CA1b CA1c CA1d CA3a CA3b CA3c CA3d DGa DGb DGc DGd DGe

18,36 24 24 14,28 18,36 24 24 14,28 18,36 24 24 14,28 18,36

First Order Mean, Standard Deviation, Coefficient of Variation, Skewness, Kurtosis, Energy, Entropy

Second Order Contrast, Correlation, Energy, Homogeneity

The first row contains the 13 regions under consideration (Fig. 2). The second row shows the window sizes used to compute textural features in each region; for
example, ‘‘18, 360 means two different sizes (of 18618 and 36636 pixels, respectively). Each feature is the average of the result obtained in windows that cover, as much
as possible, the segmented region.
doi:10.1371/journal.pone.0074481.t001
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we set this number to 16). The offset (Dx, Dy) represents the

distance in pixel and the direction between two points. For

instance, one can be interested only in vertical or horizontal

patterns. In this work, we consider symmetric and non-directional

relations between points. Once the matrix is computed, it can be

used to extract indices that represent particular features of the

image like, for instance, its contrast or its homogeneity.

Model Training and Ranking Procedure
A small dataset composed of 20 genes was used to train the

system. The idea was to select a feature subset able both to

represent well the dendrite-enriched mRNAs and to successfully

distinguish them from negative examples. To do so, we used as

positive examples (prototypes) three genes which are well known

for the dendrite and spine enrichment of their mRNA, namely

Camk2a (ID = 12322) [7,8], Map2 (ID = 17756) [9] and Arc

(ID = 11838) [12]. Moreover, we used as negative examples 17

genes with different characteristics. In particular, we chose:

Camk2b (ID = 12323), Tubb3 (ID = 22152) and Grin1

(ID = 14810), i.e. three genes whose mRNA is specifically

expressed in neurons but is not transported in dendrites; Gapdh

(ID = 14433), Pgk1 (ID = 18655) and Pfkm (ID = 18642), i.e. three

ubiquitous metabolic enzymes whose mRNA is strongly expressed

in neurons but is not transported in dendrites; Gfap (ID = 14580)

and Slc1A2 (ID = 20511), i.e. two genes expressed glial cells,

particularly in astrocytes; Mag (ID = 17136), Mog (ID = 17441)

and Mbp (ID = 17196), i.e. three genes genes expressed in

oligodendrocytes; Gad1 (ID = 14415) and Slc6A1 (ID = 232333),

i.e. two genes expressed in GABA-ergic interneurons; Slc1A1

(ID = 20510), Slc1A3 (ID = 20512) and Slc17A7 (ID = 72961), i.e.

three genes genes expressed in glutamatergic neurons; glial cells,

particularly in astrocytes; Sox2ot (320478), a gene producing a

non-coding RNA localized in the nucleus. The images chosen for

the above genes were reviewed by an expert, who confirmed the

correspondence of the expected expression pattern with the

pattern revealed by the ABA in situ hybridizations. Features that,

in this small dataset, showed a very high correlation between each

other (.0.99) were considered as being the same, and one of them

was removed. After this, a binary genetic algorithm (with

population size 50, run for 300 generations, with crossover rate

of 0.8, mutation rate 0.06, and tournament selection of size 4) was

used. Every individual in the population encodes a feature subset

and the silhouette index [30] is used to evaluate its effectiveness.

This index is computed using the selected subset of features and

considering the positive examples in one group and the negative

examples in another.

The silhouette index is a measure of an object’s similarity to the

others of the same group and dissimilarity from the elements in the

other groups. In the following formula, ‘‘a’’ identifies the average

distance (or dissimilarity) between an element with the data in its

own group, while ‘‘b’’ is the average dissimilarity between the

element and the elements of the other group.

s(i)~

1{a(i)=b(i),

0,

b(i)=a(i{1),

8><
>:

if a(i)vb(i)

if a(i)~b(i)

if a(i)wb(i)

The rationale underlying the use of a GA to solve a search space

in which, with 220 features, there are 2^220 possible feature

subsets, can be found in the ability of such algorithms to solve NP-

complete problems [31].

Since a genetic algorithm is a stochastic metaheuristic, which

may produce different solutions each time it runs, this procedure

was repeated 15 times and the features selected in at least 50% of

the runs were chosen. This led us to select a subset of 52 features

(see Table S1), which were used to process all genes in the ABA

and compute the Pearson coefficient between their feature vector

and the prototype one, generated by averaging the features of

three prototype genes. The results using the 220 features were

0.5066, 0.4302, 0.8150, while using only the selected features were

0.8610, 0.8796, 0.9441; proving the ability of the proposed

feature-selection method to facilitate the detection of correlations

between genes. It is important to underscore that this pipeline has

general applicability and would be able to rank genes according to

their similarity to any kind of features, only by providing it a

training set including positive and negative examples.

Candidates Validation by qPCR
Total RNA was extracted from brains of adult C57BL/6J mice.

All animals were handled in accordance with good animal practice

as defined by the relevant national animal welfare bodies,

equivalent to the European Convention for the Protection of

Vertebrate Animals used for Experimental and other Scientific

Purposes (ETS 123). Mouse experimentation protocols were

approved by the Nice Sophia Antipolis University regional animal

safety committee (CIEPAL-Azur). RNA preparation from total

brain and crude synaptosomes was performed as previously

described [32]. For each sample 500 ng of RNA were retro-

transcribed with SuperscriptIII (invitrogen) according to the

manufacturer’s instruction using both random primers and

OligodT. The quantitative real-time PCR was performed on a

LightCycler 480 Real-Time PCR System (Roche), using the qPCR

Core kit for SYBR Green (Eurogentec), according to the

manufacturer’s instruction. For each reaction 6.25 ng of cDNA

were used. The amplification protocol was: 95uC for 109, followed

by 45 cycles of 95uC for 1099, 60uC for 4599 and 72uC for 1099.

The relative expression of the transcripts was quantified with the

22DCt method [33] using FMR1 as a reference. For each

synaptosomal or brain sample, DCt is the result of the subtraction

of the Ct values obtained for Fmr1 (used as a reference, since it is

present at equal levels in both synaptosomes and brain) from the

Ct values of the non-coding RNAs. This method allows to

compare the relative expression levels of a set of transcripts. In all

qPCRs a positive control, 2900097C17Rik, was always present.

The enrichment of non-coding RNA in the synaptosomal

preparation was expressed as the ratio of 22DCt between

synaptosomal and total brain RNA.

The primers used are: 8030498B09Rik = Forward ATTGGG-

TACATGCTCAGGACA, Reverse AGCCAGGGCTACACA-

GAGAA; LOC433089 = Forward ATGACCATGGCCTTTT-

CATC, Reverse GCTGTGGGGTACAGGGATAA; A830039

N20Rik = Forward CATATCACCCCCGTTGTACC, Reverse

TTTTCACTTGGCCAAAAAGC; 2700046G09Rik = Forward

CTTGTCCTCTCCTGCACCTC, Reverse AAATAACCAGC-

GGGGCTACT; LOC435897 = Forward ATTCCACGTGAT-

TGGCAACT, Reverse AAATAACCAGCGGGGCTACT;

TC1430156 = Forward TGTCACGGTCAGCTCTGTTC, Re-

verse AGGGTGGGTCTTCAATTCG; 2900097C17Rik = For-

ward GACAACGGCCATGTAGTGTG, Reverse ATCC-

TATCCCCAAGCCATTT.

Automatic Visual Search of ABA through Hippo-ATESC
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Results and Discussion

Detection of Neuropil-enriched Transcripts by the Hippo-
ATESC Pipeline

The Hippo-ATESC pipeline was trained using as positive cases

three of the best experimentally characterized neuropil-enriched

genes described in the literature (Camk2a, Arc and Map2) as well

as 17 negative genes (see the methods section for the details). We

then set out to scan parasagittal images contained in the ABA to

obtain similarity scores between the texture vectors of all

informative probes and a prototype, or reference vector, obtained

by averaging the vectors of the prototype genes. In particular, to

avoid scoring genes expressed at negligible levels in adult mouse

hippocampus, we only considered image series in which the

expression level or the expression density reported for the

hippocampal region or for the hippocampal formation was above

20, a background level determined on the basis of cell cycle genes

which are known to be silent in brain after the end of

development. For all the genes that resulted above this threshold

(n = 9159), we selected parasagittal sections corresponding to levels

from 117 to 175 of the reference atlas. In particular, we selected as

default the level 145, which we consider as ‘center’ of the

hemisphere, and moved towards the two boundaries if we were

not able to get results with the selected slice. For each section we

identified the different hippocampal regions and determined the

values for the corresponding texture parameters, obtaining vectors

of texture features. We then calculated the Pearson correlation

coefficients (r) of these vectors with the reference vector. As

expected, vectors obtained from sections corresponding to slightly

different levels were very similar, as the average Pearson for all the

sections of the prototype genes included in the range was equal to

0.8860.17. Of notice, visual inspection of all these sections

revealed that the wide range of r-values obtained with the same

probe are caused by specific qualitative problems of some sections,

which results in very low scores and would therefore produce false

negative results, if the procedure should be employed for

classification purposes. Nevertheless, genes showing a high

Pearson coefficient to the prototype vector displayed a very stable

behavior in this test (some examples are shown in Fig. 3). On this

basis, we obtained feature vectors for the default level of all ABA

probes above threshold and calculated their r values with respect

to the reference vector. Interestingly, the distribution of r values

did not show inflection points, indicating that it could be naturally

used for classification for evidence-based ranking. To evaluate if

such an approach could provide valuable new hypothesis for

experimental validation, we first analyzed the 20 top scoring

probes corresponding to protein-coding genes (Table 2). As

expected, a Gene Ontology analysis performed with the DAVID

software [34] revealed that the most significant common keyword

associated to the corresponding genes is ‘‘dendrite’’ (P = 0,004). In

particular, manual inspection revealed that this list contains some

of the best known examples of transcripts localized to dendrites

and/or associated with dendritic functions. Indeed, besides to a

Camk2a probe not included in the training set, the list contained

probes from Dendrin (Dnd) [35,36], Psd (also known as Efa6a)

[37], microtubule-associated protein 2 (Map2) [9], Git1 [38] and

Spinophilin (Ppp1r9b) [39,40]. Accordingly, visual inspection of

the corresponding ABA images confirmed a significant signal

enrichment in neuropil for many of the probes included in the list

Table 2, as it is the case for the Rnf10 gene (Fig. 4). It must be

noticed that 7 out the 20 genes are associated to mitochondrial

function (Table 2). However, this result is most likely non specific,

because it could be easily explained by the high abundance of

mitochondria in dendrites. Indeed, the mRNAs of genes mapping

Figure 3. Boxplot of the correlation values of the feature vectors obtained from 6 slices of 8 randomly selected genes, as compared
to the prototype vector. Note the very stable behavior of genes characterized by a high Pearson coefficient.
doi:10.1371/journal.pone.0074481.g003
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to the mitochondrial genome are transcribed within mitochondria,

while the mRNAs of nuclear genes encoding mitochondrial

oxidative phosphorylation proteins have been found to localize

near mitochondria [41]. Therefore, in all these cases a neuropil-

enriched pattern would be expected. To obtain a more systematic

validation, we concentrated on a group of 257 protein-coding

gene-derived probes, characterize by a r value of 0.8 or higher.

These probes (Table S2), derived from 117 nuclear genes and from

9 mitochondrial genes, corresponded to 2.7% of all the probes

providing in situ hybridization signals significantly higher than

background levels. Analysis of the functional annotations of these

genes revealed a significant enrichment for phosphoproteins

(n = 116, hypergeometric P-value (P) = 2.8E-09) and for GTP-

binding proteins (n = 15, P = 4.1E-05), as well as a slight

overrepresentation of mitochondrial proteins (n = 30 P = 1.9 E-

03). The latter result was even more pronounced if one considers

the significant enrichment for probes directly derived from the

mitochondrial genome. Besides, it must be considered that other

types of ‘‘false positive’’ results may be contained in the top-scoring

list, such as the Plp1 transcript, which is well known to be

expressed by oligodendrocytes [42].

To evaluate whether the mRNA produced by these genes could

be actually enriched in dendrites, we compared our top ranking list

with the list of 2250 coding genes that should compose the mouse

hippocampal neuropil, according to recent RNA-seq studies [16].

This comparison revealed 56 common genes, representing a

highly significant intersection (Table S2, P = 2E-07). More

importantly, we compared our list with a list of 57 transcript

manually annotated by experts as dendritically enriched in the

original ABA publication [17]. Interestingly, this analysis revealed

12 common genes (P = 2E-17), most of which were concentrated in

the top ranks of our list. In comparison, the lists of neuropil-

enriched transcripts reported in previous micro-dissection-based

studies [14,15] showed a much less significant intersection with the

same ‘ground truth, because each had in common with it only 2

genes, over a total of 170 and 154, respectively (P-value not

significant in both cases). In addition, our list had a significant

intersection with those resulting from microdissection studies,

having 6 genes in common with the list reported in [15] (P-

value = 0.009) and 9 genes in common with the list reported in

[14] (n = 154, P = 5E-05). The above numbers are in the same

order of magnitude of the intersection between the two latter

studies (6 common genes, P = 0.0082). Taken together, these

results indicate not only that the Hippo-ATESC pipeline can

efficiently score neuropil-enriched transcripts that would be

identified by human experts, but also that it can highlight

neuropil-enriched transcript which escape visual expert analysis

but can be revealed by quantitative methods.

Experimental Validation of Neuropil-enriched Non-
coding Transcripts Characterized by High Hippo-ATESC
Score

Considering the good results obtained with protein-coding

genes, we would expect that the Hippo-ATESC pipeline should be

as effective in highlighting neuropil-enriched non-coding RNAs.

Therefore, we analyzed the ranking of probes annotated in the

ABA as belonging to non-coding genes. The number of probes

providing in situ hybridization signals significantly higher than

background levels was 414. However, by mapping these probes to

a recent version of the mouse genome annotation (UCSC know

genes, version mm9), we realized that only 99 of them are not yet

associated with protein-coding genes. Only three probes were

characterized by a Pearson correlation coefficient .0.8. However,

it was very interesting to notice that one of these probes

corresponded to the 2900097C17Rik gene, which has been

previously identified as strongly enriched in dendrites by human

expert-based inspection of ABA [43]. In consideration of the high

specificity of this result and of the small number of non-coding

RNAs with very high score, we decided to better analyze the other

6 genes characterized by a Pearson correlation coefficient of at

least 0.7 (Table 3). We hypothesized that if the RNA encoded by

Figure 4. In situ hybridization pattern of the indicated protein-
coding genes, obtained from the Allen Brain Atlas. Camk2a was
included as a positive control while Ccnb1, which encodes for
transcripts expressed only in mitotic cells, was included as a negative
control to give an idea of background signal levels.
doi:10.1371/journal.pone.0074481.g004

Table 2. List of the top-scoring 20 protein-coding genes
defined by the pipeline.

Gene Name ABA
Entrez
gene ID Pearson SF MF

Ddn 71212512 13199 0.964 X

9530085C10Rik* 73906215 N/A 0.961 X

Camk2a 79360274 12322 0.960 X

0610005I03Rik* 74357749 N/A 0.957 X

Psd 69352896 73728 0.954 X

Uqcrb 293241 67530 0.954 X

Mtap2 69549641 17756 0.954 X

0610009I12Rik* 74357773 N/A 0.953 X

0610006F12Rik* 74357761 N/A 0.950 X

Git1 69672880 216963 0.948 X

Slc25a23 71280844 66972 0.946 X

Rnf10 294052 50849 0.945

Muc10 72737 17830 0.943

Rpl23 70813131 65019 0.939

7420498E04Rik* 73927706 N/A 0.938 X

Senp2 227749 75826 0.936

Bcap29 72739 12033 0.932

Mt1 67767450 17748 0.930

Ppp1r9b 68151446 217124 0.930 X

Tubb2a 69838608 22151 0.928

Gene names marked by a star correspond to genes mapping to the
mitochondrial genome. ABA indicates the Allen Brain Atlas experiment number.
In the SF and MF columns, the genes which were previously associated to
dendritic spine or synaptic function and the genes associated to mitochondrial
function are marked, respectively.
doi:10.1371/journal.pone.0074481.t002
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these genes is actually transported in the mouse hippocampal

neuropil, it should be enriched in the synaptodendrosomal

compartment, as it turns out to be the case for mRNAs encoding

proteins of synaptic relevance, for ncRNA or for microRNAs

[32,44–46]. Therefore, we tested this hypothesis by analyzing the

relative abundance of the corresponding RNA in crude synapto-

somes versus total brain, by means of qRT-PCR. As expected, the

RNA of the 2900097C17Rik gene is present at significant level in

the synaptosomal compartment, comparable to the one of Fmr1

mRNA, that is located at the synapse [47] and whose synapto-

some/total brain ratio is equal to 1 (not shown). Conversely, we

did not detect significant expression for the 8030498B09Rik,

LOC433089 and LOC435897 genes, and we detected low RNA

levels for the 2700046G09Rik gene, although in this case the

synaptosomal enrichment was comparable to the positive control

(Table 3). The A830039N20Rik and TC1430156 RNAs were

detected at levels significantly higher than background (Table 3).

However, even the TC1430156 RNA was most likely a false

positive results, because it did not show significant synaptosomal

enrichment and because it corresponds to the sequence of Rian,

an imprinted RNA accumulated in nucleus [48]. In contrast, the

A830039N20Rik gene represents a truly positive result, because its

synaptosomal enrichment was even higher than the positive

control (Table 3). Accordingly, visual inspection of the ABA

sections revealed for these gene a clear granular positivity in the

proximal neuropil of pyramidal cells, which is qualitatively

comparable to the positivity displayed by the 2900097C17Rik,

although it is quantitatively less intense (Fig. 5).

Conclusions
The Hippo-ATESC pipeline displayed a high exploratory

ability in the recognition of neuropil-encoded genes from high

resolution ABA images. This method can be seen as a data mining

tool that can give helpful information to select target genes whose

nature will be studied and confirmed using biological tests.

Therefore, the list of candidate neuropil-enriched protein-coding

genes that we have provided could represent an important

resource for the detection of new genes involved in synaptic

plasticity. Indeed, by validating some of the results we have

identified a new bona-fide ncRNA enriched in synaptosomes. It

will be very interesting to address the functional role of this

molecule, by altering its expression levels in neuronal cells.

Supporting Information

Table S1 List of the subset of features used for model training.

Notes: ‘‘Energy2’’ stands for second order feature Energy. The

number in brackets represents the size of the window on which the

feature was calculated, when more than one window size was used

for the region under consideration.

(PDF)

Table S2 List of the probes associated to protein-coding genes

characterized by a Pearson coefficient of 0.8 or more. Gene names

marked by a star correspond to those mapping to the

mitochondrial genome. ABA indicates the Allen Brain Atlas

Table 3. Relative expression in adult brain and synaptosomes of the top-scoring non-coding RNAs identified by the Hippo-ATESC
pipeline, as determined by qRT-PCR.

Gene Name ABA Entrez gene ID Pearson
Synaptosomal levels
(A.U)

Total brain
levels (A.U.) Ratio

8030498B09Rik 70227944 77547 0.873 ND ND ND

2900097C17Rik 71764607 347740 0.856 16.7260.49 17.2161.6 0.97

LOC433089 71789951 433089 0.831 ND ND ND

A830039N20Rik 69514374 268723 0.776 5.2360.07 3.8360.3 1.37

2700046G09Rik 69202980 67188 0.764 0.0660.01 0.0660.01 0.93

LOC435897 71022615 435897 0.744 ND ND ND

TC1430156 (Rian) 74580805 75745 0.708 8.4660.7 13.7160.82 0.62

In the last column is reported the ratio between synaptosomal and total brain levels. A.U. = arbitrary units.
doi:10.1371/journal.pone.0074481.t003

Figure 5. In situ hybridization pattern of the indicated non-coding RNA genes, obtained from the Allen Brain Atlas. For positive and
negative control, see Fig. 4.
doi:10.1371/journal.pone.0074481.g005
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experiment number. In the last three columns the gene is marked

if it has been identified in the respective study.

(PDF)
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