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ABSTRACT 

Transparent glass-ceramics are nanocomposite materials which offer specific characteristics of capital importance in 

photonics. This kind of two-phase materials is constituted by nanocrystals embedded in a glass matrix and the respective 

composition and volume fractions of crystalline and amorphous phase determine the properties of the glass-ceramic. 

Among these properties transparency is crucial, in particular when confined structures, such as dielectric optical 

waveguides and optical fibers, are considered, and the number of papers devoted to this topic is continuously increasing. 

Another important point is the role of the nanocrystals when activated by luminescent species, as rare earth ions, and 

their effect on the spectroscopic properties of the glass-ceramic. The presence of the crystalline environment around the 

rare earth ion allows high absorption and emission cross sections, reduction of the non-radiative relaxation thanks to the 

lower phonon cut-off energy, and tailoring of the ion-ion interaction by the control of the rare earth ion partition. This 

last point is crucial and still object of intense experimental and theoretical studies.  The composition of the glass matrix 

also impacts the properties of the rare earth ions located in nanoparticles. Moreover, some kinds of nanocrystals can play 

as effective rare earth sensitizers.  Fabrication, assessment and application of glass-ceramic photonic systems, especially 

waveguides, deserve an appropriate discussion which is the aim of this paper, focused on luminescent glass-ceramics. In 

this work, a brief historical review, consolidated results and recent advances in this important scientific and 

technological area will be presented, and some perspectives will be outlined.  

Keywords: Transparent glass ceramics; Bottom-up and top-down fabrication techniques; Confined structures; RF-

Sputtering; Sol-gel; Oxide nanocrystals; Rare-earth ions; Photoluminescence 

 



 

 
 

 

INTRODUCTION 

Glass photonics is pervasive in a huge number of human activities and drive the research in the field of enabling 

technologies. The fruitful exploitation of glass photonics is not restricted only to the area of Information and 

Communication Technology. Many other photonic devices, with a large spectrum of applications covering Health and 

Biology, Structural Engineering, and Environment Monitoring Systems, have been developed during the last years. Glass 

materials and photonic structures are the cornerstones of scientific and technological building in integrated optics. 

Photonic glasses, optical glass waveguides, planar light integrated circuits, waveguide gratings and arrays, functionalized 

waveguides, photonic crystal heterostructures, and hybrid microresonators are some examples of glass-based integrated 

optical devices that play a significant role in optical communication, sensing, biophotonics, processing, and computing. 

This cross-disciplinary approach leads to constructed luminescent structures that can perform sensing and functionalized 

structures to successfully address socioeconomic challenges, such as security, cost-effective healthcare, energy savings, 

efficient and clean industrial production, environmental protection, and fast and efficient communications. Photonics, 

with its pervasiveness, has already been identified as an enabling technology, and through advanced research in glass-

based integrated optics systems, photonics can contribute to finding new technical solutions to still unsolved problems, 

and pave the way to applications not yet imagined.  

Among the different glass-based systems, transparent glass-ceramics are nanocomposite materials which offer specific 

characteristics of capital importance in photonics. These two-phase materials are constituted by nanocrystals embedded 

in a glass matrix and the respective composition and volume fractions of crystalline and amorphous phase determine the 

properties of the glass-ceramic. Transparency is crucial property, in particular for dielectric optical waveguides and 

optical fibers. Another important point is the effect of the nanocrystals activated by rare earth ions on the spectroscopic 

properties. Fabrication, assessment and application of glass-ceramic photonic systems, deserve an appropriate discussion 

which is the aim of this paper, focused on luminescent glass-ceramics.  

A SHORT HISTORY OF GLASS-CERAMICS 

The scientific and technological activity involving the development of materials at nano-micro scale and related 

converging technologies allows progress in the conception, design, and realisation of systems and devices with 

substantially improved performance and significant scientific results. This activity is coming from far both in terms of 

time and motivation. Table I presents some milestones concerning a brief history of glass-ceramic materials. René-

Antoine Ferchault de Réaumur, the brilliant physicist and naturalist, was also in charge of the manufacture of porcelain. 

He tried to produce a porcelain which could compete with the porcelain of China, without being able to fully solve the 

problem but creating that opaque glass that bears the name of "porcelain Reaumur" (1739) [1]. We have to wait until the 

year 1952 to appreciate the invention of glass-ceramics thanks to the experiment performed by the Corning Glass Works 

scientist Stanley Donald Stookey. In the description of the experiment we read that the furnace containing the glass 

accidentally overheated. Instead a melted glass Stookey observed a white material with the shape of the original glass. 

He recognized the obtained material as a specific new material that we know as “glass-ceramic” and was initially 

described as a polycrystalline ceramic materials, formed through the controlled nucleation and crystallization of glass, 

where the amount of residual glassy phase is usually less than 50% [2]. The commercial outcome of this material was the 

immediate exploitation of its unique and amazing thermal and mechanical properties leading to the cookware pieces still 

now known as Pyroflam and Vision products. These strong and thermal shock resistant glass-ceramics have 

monopolized the research for a long time until the interest in transparent glass-ceramics has made its way thanks to both 

fundamental research and the required novel application in optics. Is only in 1968 that Schott AG produced a transparent 

glass-ceramic called Zerodur employed for a number of very large telescope mirrors and also used as sample reference to 

test the validity of innovative glass structural models [3]. The first application of transparent glass ceramics in the field 

of photonics appears in 1995 with the paper of Tick et al. concerning the exploitation of transparent glass ceramics for 

optical amplifiers operating at 1300 nm [4]. In the abstract of the paper authors say:” The properties of an oxyfluoride 

glass ceramic that possesses high transparency after ceramming are described. Approximate1y 25 vo1% of this material 

is comprised of cubic, fluoride nanocrystals and the remainder is a predominantly oxide glass. When doped with Pr
3+

, the 

fluorescence lifetime at 1300 nm is longer than in a fluorozirconate glass, suggesting that a significant fraction of the 

rare-earth dopant is preferentially partitioned into the fluoride crystal phase. This material has the added advantage of 

being compatible with ambient air processing”. It’s worthy to note that this paper contains the more significant topics 

that will be developed in the next 20 years in the field of photonic glass ceramics, i.e. (i) the fundamental role of 

oxyfluoride as parent glass; (ii) the role of the nanocrystals in reducing the concentration quenching; (iii) the role of 



 

 
 

 

nanocrystals with low cut-off energy in reducing non-radiative transitions [4]. After this work we can find in literature a 

huge amount of papers regarding rare earth activated oxyfluoride based transparent glass ceramics [5-8].  

 

Table 1. A brief history of glass-ceramics 

Milestone Date 

René-Antoine Ferchault de Réaumur produced polycrystalline materials from silica-soda–lime 1739 

Stanley Donald Stookey - Corning's scientists - discovered glass-ceramics 1952 

VISIONS and PYROFLAM Registered Corning Glass Works Trademark 1958 

ZERODUR by Schott 1968 

Transparent glass ceramics for 1300 nm amplifier applications  1995 

The relationship between structure and transparency in glass-ceramic materials 2000 

 

However, the main result in photonic glass ceramics has been obtained in waveguiding application. A rare earth-

activated glass-ceramic waveguide constitutes a potential significant system to behave as an effective optical medium for 

light propagation and luminescence enhancement [9]. Looking at this specific application the problem of the 

transparency becomes crucial and in fact n 1998 Tick published a paper with the explicit title “Are low-loss glass-

ceramic optical waveguides possible?” [10]. The answer was positive and he concluded the paper suggesting that the 

minimum transmission loss limit of the investigated effective medium glass ceramics is in the order of tens of decibels 

per kilometre (dB/km), once all of the impurities are eliminated. In the same paper some general criteria for light 

propagation are given. These criteria concern nanocrystals size, narrow particle-size distribution, inter-particle spacing, 

and clustering. In 2000 Tick, Borrelli and Reaney published another significant paper discussing the relationship 

between structure and transparency in glass-ceramic materials into a near single-mode optical waveguide fiber geometry 

[11]. In this significant paper authors investigate the transparency analysing the composition dependence of the lattice 

parameters and refractive index of the nanocrystals, their size distribution, the particle separation and the actual 

crystalline volume fraction [11]. A detailed scattering analysis was performed  using two different approaches. One is as 

a contiguous two-phase system with the scattering characterized by a correlation function. The other is a particle 

approach, where one uses an effective medium scattering model. The authors conclude that although the latter predicts 

the correct order of magnitude of the scattering, it cannot distinguish the scattering behaviour as a function of ceramming 

conditions used. This point is still of crucial interest and several efforts have been done to achieve general rules to 

correlate scattering attenuation with appropriate ceramming protocols.  From the point of view of simulation many 

techniques have been developed for analyzing scattering problems and several interesting solutions have been discussed 

[12].  Moving to fabrication, although a general behaviour is not yet determined excellent results have been obtained for 

specific compositions [13-18] and we will present some examples in this paper. 

GEO2 TRANSPARENT GLASS CERAMIC PLANAR WAVEGUIDES 

Recently effort is devoted on growth, characterization on GeO2 based system for his employment for applications on 

various modern fields such as electronics and photonics. GeO2 exhibits, in fact, many interesting properties that make 

this material suitable for applications in optical, electronic and optoelectronic devices [19, 20, 22]. It is of strategic 

importance to develop fabrication protocols allowing obtain GeO2 transparent glass ceramic planar waveguides 

exhibiting low attenuation coefficients and simultaneously embed GeO2 nanocrystals with a specific phase [22]. Among 

the various techniques can be used to fabricate these particular kinds of nanostructured systems such as sol-gel 

techniques with top-down and bottom-up approaches, and physical vapor deposition, we have demonstrate that RF- 

sputtering (RFS) is a suitable route to fabricate optical planar waveguides and photonic microcavities operating in the 

visible and NIR regions [20, 23]. In order to produce transparent glass-ceramic, a common procedure employ heat 

treatments of the systems, but lately efforts was performed for the development of alternative treatments such as laser 

annealing (LA) that presents advantages in terms of temporal and spatial annealing control in respect to the conventional 

thermal annealing [20, 24]. The CO2 laser annealing has been successfully used to reduce scattering losses in different 

kinds of amorphous optical planar waveguides [20], and for the fabrication of glass-ceramic coating and glass-ceramic 

waveguides with low attenuation coefficient [20]. Anyway it is of crucial importance a precise characterization of the 

structure of the samples to assess the effect of the LA process and tailor the irradiation protocols. Moreover, it is well 

known that important structural modification, leading to artificial results, can be induced in GeO2 based materials by 

electron irradiation [20]. For these reasons, information on the structural properties of the waveguides before and after 



 

 
 

 

the laser annealing process are obtained by various techniques and in particular from positron annihilation spectroscopy 

(PAS), specifically by the Doppler broadening spectroscopy (DBS). PAS is a well-known non-destructive spectroscopy 

technique employed to investigate materials structure [25]. Experimental details could be found in [19]. 

In Table 2 are reported the optical parameters for the samples as prepared and after CO2 laser irradiation for 2h. The 
waveguides have a thickness of about 1µm and support one mode at 1319 nm and 1542 nm. Before and after LA the 
refractive indices measured in TE and TM polarization modes are equal within the experimental uncertainty, so the 
birefringence can be considered negligible. Comparing the refractive indices in the GeO2 waveguides before and after LA 
we observe an increase of about 0.04 with the irradiation at all the wavelengths. 

 

Table 2. Optical parameters for the samples as prepared and after CO2 laser irradiation for 2h. 

Laser wavelength 

(nm) 

Refractive Index thickness 

(µm) 

Attenuation coefficient 

(dB/cm) TE TM 

632 

before 

irradiation 
1.614±0.001 1.616±0.001 1.1±0.1 1.9±0.2 

after 

irradiation 
1.652±0.001 1.653±0.001 1.1±0.1 1.1±0.2 

1319 

before 

irradiation 
1.590±0.01 1.590±0.01 1.0±0.1 1.4±0.2 

after 

irradiation 
1.631±0.01 1.634±0.01 1.0±0.1 0.7±0.2 

1542 

before 

irradiation 
1.585±0.01 1.585±0.01 1.0±0.1 0.9±0.2 

after 

irradiation 
1.623±0.01 1.624±0.01 1.0±0.1 0.5±0.2 
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Figure 1 Micro Raman measurements carried out at room temperature for GeO2 planar waveguide. 



 

 
 

 

 

 

  

a) b) 

  

c) d) 

Figure 2. AFM images of representative 1.8 x 1.8 µm2 areas of the samples in the conditions: (a) as prepared and (b) after 2h 

of CO2 laser irradiation. Z scale 10 nm. In (c) a comparison of typical height profiles in these two conditions, corresponding 

to sections 1 in panels (a) and (b), showing a decrease in roughness after irradiation is presented. (d) profiles of the 

nanometric structures found after irradiation - sections 2 and 3 in panel (b). 

 

The laser annealing allowed significant reduction of the attenuation coefficients. In fact, we observe an attenuation 

coefficient at 1542 nm of 0.5 dB/cm for the irradiated system while for the system before LA is 0.9 dB/cm. As shown in 

Table 2, the reduction of the attenuation coefficient with the CO2 laser irradiation is present at all the considered 

wavelengths. The decrease in the total attenuation coefficient for the CO2 laser irradiated systems, that take in account of 

all the contribution to the losses such as volume and surface scattering and absorption, has been attributed by Dutta et al. 

[24] to the reduction of the surface roughness 



 

 
 

 

The optical parameters measured after 1h of LA are equivalent to those reported for 2h. EDXS analysis was used to 

monitor the chemical composition of the sample, as deposited and after LA. EDXS confirm that the composition of the 

sample is not affected by the laser irradiation and the correct stoichiometry between germanium and oxygen is always 

present. 

In figure 1, the Micro Raman spectra measured at room temperature for GeO2 planar waveguides before and after LA at 

different times are reported. The Raman spectrum of the as prepared GeO2 waveguide before irradiation is typical of a 

GeO2 amorphous system. The amorphous nature of the GeO2 film is clearly pointed out by the broad peak at 440 cm-1 

[20]. After 1 h of CO2 laser irradiation, the Raman spectra indicate that in the amorphous GeO2 matrix there is the 

presence of a rutile-like GeO2 crystalline phase [20]. After 2 h of CO2 laser irradiation, the Raman spectrum shows that 

in the amorphous system there is also the presence of a trigonal GeO2 crystal phase [20].  

AFM images of representative 1.8 x 1.8 µm2 areas for the as prepared sample and for that CO2 laser irradiated for 2h are 

reported in figure 2 (a) and 2 (b) respectively. AFM analysis put in evidence a roughness of 1.05 ± 0.05 nm in the as 

prepared sample and a roughness of 0.80 ± 0.02 nm for the waveguide after 2h of CO2 laser irradiation. This result 

correlates with the reduction of the attenuation coefficient with the laser annealing and confirms surface morphology as 

an important source of losses. Moreover, on the surface of the sample, the AFM image of figure 2 (b) shows the presence 

of nanometric structures with sizes ranging from 10 to 50 nm (see also figure 2 (c)). These structures are assigned to 

GeO2 nanocrystals. It is worth noting that, although the presence of these scattering points are expected to increase the 

attenuation coefficient by increasing the scattering losses of the waveguide, the protocol here developed for the CO2 

irradiation allows reducing the attenuation coefficient by decreasing the surface scattering losses [24]. 

Table 2. Sn values characterizing each layer in the as prepared and the two irradiated samples, as obtained by fitting the 

positron depth profiles. The density value of the GeO2 film was used as a guess parameter into the frame of the fitting 

procedure. The boundary depths are measured from the surface of the sample. 

Sample 

layer I 

 = 3.15 g/cm
3
 

layer II 

 = 3.15 g/cm
3
 

layer III 

 = 3.15 g/cm
3
 

bulk 

= 2.1 g/cm
3
 

Sn depth (nm) Sn depth (nm) Sn depth (nm) Sn 

before 

irradiation 
1.006 11 ± 2 0.952 983 ± 20 -- -- 1.000 

after 1h 

irradiation 
1.003 2 ± 0.2 0.946 320 ± 25 0.966 983 1.000 

after 2h 

irradiation 
0.980 5 ± 0.1 0.950 175 ± 32 0.960 983 1.000 

 

In the as prepared film, positrons detect a first thin superficial layer of about 10 nm which is characterized by a very high 

Sn value of 1.006. This thin layer is followed by another GeO2 layer (labelled layer II) uniform up to the silica substrate 

and characterized by a Sn = 0.952. With the laser irradiation, the superficial layer reduces to a half of its initial thickness, 

and the uniform second layer observed in the as prepared film splits now into two regions, named layers II and III, 

respectively. The first region is structurally similar to the second layer of the non-irradiated sample having about the 

same Sn value ( 0.950). In the sample irradiated during 1 h the thickness of the second layer is around 300 nm; and in 

the case of the sample irradiated 2 h, this thickness decreases up to approximately 170 nm. On the other hand, the second 

region (i.e., layer III) is characterized by a higher Sn value ( 0.960) than the previous one and it extends up to the silica 

interface. The detection by DBS of a thin superficial layer that decreases its thickness with the laser irradiation treatment, 

well-correlates with the results obtained by AFM. Probably, this layer is highly defected due to their Sn values by which 

it is characterized (higher than the Sn values found in the bulk of the films). Both, the decrease in roughness and 

thickness of the defected superficial layer could be linked to the decrement of the attenuation coefficient. From the 

results reported in Table 2, it can be seen that the Sn values obtained for layer III are slightly higher than those of layer II, 

indicating a structural change of the GeO2 samples. Besides, the thickness of this modified layer is larger in the sample 

annealed for a longer irradiation time. In the case of layer II, for the laser treated films Sn values are almost equal to that 



 

 
 

 

not treated sample. Moreover we can note that: a) the bulk of the film interested by the structural change increases by 

increasing the irradiation time from 1 to 2 h; b) the change starts from the film/substrate interface moving towards the 

surface of the films. Raman spectroscopy reveals the presence of different GeO2 phases. The rutile GeO2 phase present 

after 1 h of irradiation exhibits a higher refractive index than that of the trigonal phase observed after 2 h of irradiation 

[20]. However, DBS results would allow inferring that the lack of substantial changes in the macroscopic refractive 

index measured after 1 and 2 h of irradiation, respectively, could be attributed to a balance between the contributions of 

the different phases to the modified matrixes. The behavior described in point b) could be assigned to the heating of the 

substrate by the CO2 laser inducing a progressive modification of the film from the substrate to the surface. The SiO2 

matrix, in fact, due to the lattice vibration in the region of 940 cm
-1

, presents a higher absorbance in the region of the 

CO2 laser line with respect to that of the GeO2 system [20]. For that reason the CO2 radiation is mainly absorbed by the 

SiO2 substrate that induces the change in the GeO2 film. 

Er
3+

-ACTIVATED SnO2 SOL-GEL-DERIVED GLASS-CERAMICS: AN ENERGY TRANSFER 

CASE STUDY 

During the last years several work has been performed in order to develop energy transfer based systems for 

photoluminescence application. In this scientific area we have up- and down-converters for planar waveguides for 

integrated optics [17], visible laser light sources and solar cells efficiency enhancement [18,26], specific nanostructured 

system used as sensitizers of rare earth luminescence [27]. Recently, a detailed work regarding the effect of the local 

environment on the spectroscopic properties of rare-earth-activated tin dioxide glass ceramic was presented [28, 29]. 

Tin dioxide, which is a high-refractive index semiconductor (Eg = 3.6 eV at 300K), and is stable both chemically and 

mechanically, is an excellent choice for the crystalline component of the system. As it is also transparent through the 

visible and infrared regions, it covers the emission range for active ions like erbium. Compatibility is enhanced by the 

fact that tin oxide nano-crystals can be excited by a broad range of UV wavelengths, thus with the use of broad band arc 

lamps, while Er
3+

 ions have very narrow excitation peaks.  

Studies on silica-tin bulk glass ceramics have shown that the concentration of SnO2 has a definite effect on the structure  
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Figure 3: Photoluminescence spectra of a (100-30)SiO2 - 30SnO2 waveguide, doped with 0.5 mol% Er3+ and heat-treated at 1200°C, 

upon excitations at 351 and 514.5 nm 

 

of the SiO2 glass phase [30,31]. In addition, while rare earth ion concentrations as high as 1 mol% can be doped into the 

glass ceramic, Er
3+

 ions are found mainly in the glass phase, which results in high levels of quenching effects. In order to 

investigate any possible energy transfer between erbium ions and SnO2 nanocrystals, the environment of the Er
3+

 ions 

was studied via infrared photoluminescence measurements which were recorded using 351 nm and 514.5 nm excitation 



 

 
 

 

wavelengths. These two lines correspond to the excitation of the SnO2 crystals and to the excitation of the 
4
I15/2 → 

2
H11/2  

transition of Er
3+

 ions across their bandgap, respectively.  

Figure 3 shows the photoluminescence spectra of the 
4
I13/2 → 

4
I15/2 transition of Er

3+
 ion for the samples containing 30 

mol% SnO2, doped with 0.5 mol% Er
3+

 and heat-treated at 1200°C.
 
Under excitation at 514.5 nm, one obtains an 

emission spectrum characteristic of Er
3+

 ions in an amorphous medium, with a broad band centered around 1535 nm. 

However, excitation at 351 nm results in a completely different spectrum, in which the presence of narrow bands at 

1521, 1531, 1549 and 1571 nm are assigned to the Stark transitions between 
4
I13/2 and 

4
I15/2 levels . When the erbium ion 

occupies the Sn
4+ 

sites in the cassiterite structure, the electrostatic field of the surrounding environment of ions removes 

degeneracy of the free ion J levels and makes them split into doubly degenerated stark level [28,29].  This emission 

results from energy transfer between SnO2 nanoparticles and the rare-earth ions by Forster’s mechanism. Accordingly, 

this spectrum indicates that most part of Er
3+

 ions are embedded in SnO2 nanocrystals. Consideration of these spectral 

features indicates that the Er
3+

 ions exist in two types of sites: those embedded in tin oxide nanocrystals and those within 

the amorphous silica matrix. The influence of the incorporation of erbium in the tin dioxide nanoparticles on 

luminescence were studied by the photoluminescence measurements of films with different Er
3+

 concentrations. With 

increasing erbium concentration, the near-infrared emission intensity at 1540 nm is steadily enhanced. The PL intensity 

of the 2 mol% Er-doped sample is more than three orders of magnitude greater than that of the 0.5 mol% Er-doped one. 

This behavior indicates that quenching of luminescence did not occur in the 2 mol% erbium doped systems. 

 

CONCLUSIONS 

Transparent glass ceramic photonic systems have demonstrated to be crucial for several applications and especially in 

integrated optics. The importance of these nanocomposite materials is evident when luminescence efficiency and 

attenuation losses are the more important requirements. Concerning the role of nanocrystals as rare earth sensitizers, 

SnO2 nanocrystals constitutes a textbook example. SnO2 is a wide band-gap (Eg = 3.6 eV at 300 K) n-type 

semiconductor and exhibits a maximum phonon energy of about 630 cm
−1

. The rare earth ion can be incorporated in the 

SnO2 nanocrystal and substitutes for the Sn
4+

 ions in the cassiterite-structured SnO2 nanocrystals. Among the different 

fabrication techniques we have mentioned the laser annealing used in the case of GeO2 transparent glass ceramic planar 

waveguides. The GeO2 planar waveguide after 2h of CO2 laser irradiation exhibits an increase of 0.04 in the refractive 

index, measured at 1542 nm. We demonstrate that the laser annealing significantly reduce propagation loss in GeO2 

planar waveguides that laser annealing  decreases the surface roughness. From another side Raman results have shown 

that laser treatment for 1 h and 2 h results in realization of structures at nanometric scale on the surface of the samples 

with dimension from 10 to 50 nm attributed to the presence of GeO2 nanocrystals. These behaviors evidence the role of 

the laser heat treatment on the glass inducing a progressive modification of the films.  

We can therefore conclude that the prospects of glass photonic are still very good, with continuously growing 

applications in the area of integrated optics, lasing, lightning, frequency converters and sensing. Optimization of the 

synthesis processes of glasses tailored for the specific application and of the confined structures fabrication technologies 

may guarantee that new record performances of rare earth doped glass based photonic devices will be achieved. In 

respect to the development of photonic glass ceramics the immediate problems to solve are: (i) reproducible fabrication 

protocols; (ii) modelling of transparency constraints including disorder; (iii) enhance solubility for the rare earth ions. 
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