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Orientation propre des cactus
Résumé : Une orientation d’un graphe est propre si deux sommets adjacents ont des degrés
entrants différents. Nous montrons que tous les cactus admettent une orientation propre de degré
entrant maximum au plus 7. Nous prouvons également que cette borne est serrée.

Mots-clés : orientation propre, coloration de graphes, graphe cactus, graphe sans griffe
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1 Introduction
For basic notions and notations on Graph Theory and Computational Complexity, the reader is
referred to [3, 5]. All graphs in this work are considered to be simple.

An orientation D of a graph G = (V,E) is a digraph obtained from G by replacing each
edge by exactly one of the two possible arcs with the same endvertices. For each v ∈ V (G),
the indegree of v in D, denoted by d−D(v), is the number of arcs with root v in D. We use the
notation d−(v) when the orientation D is clear from the context. An orientation D of G is proper
if d−(u) 6= d−(v), for all uv ∈ E(G). An orientation with maximum indegree at most k is called a
k-orientation. The proper-orientation number of a graph G, denoted by −→χ (G), is the minimum
integer k such that G admits a proper k-orientation.

This graph parameter was introduced by Ahadi and Dehghan [1]. They observed that this
parameter is well-defined for any graph G since one can always obtain a proper ∆(G)-orientation.
Note that every proper orientation of a graph G induces a proper vertex coloring of G. Hence,
we have the following sequence of inequalities:

ω(G)− 1 ≤ χ(G)− 1 ≤ −→χ (G) ≤ ∆(G).

These inequalities are best possible since, for a complete graph Kn:

ω(Kn)− 1 = χ(Kn)− 1 = −→χ (Kn) = ∆(Kn) = n− 1.

In [1], the authors characterize the proper-orientation number of regular bipartite graphs,
study other particular subclasses of regular graphs and prove the NP-hardness of the problem
even when restricted to planar graphs.

Recently, it has been shown that the problem remains NP-hard for subclasses of planar
graphs that are also bipartite and of bounded degree [2]. In the same paper, it is proved that
the proper-orientation number of a tree is at most 4.

Theorem 1 ([2]). Every tree has proper-orientation number at most 4.

A natural question is to ask how this theorem can be generalized.

Problem 2. Which graph classes containing the trees have bounded proper-orientation number
?

In [2], several generalizations are suggested: on the one hand, the authors ask whether the
proper-orientation number of planar graphs is bounded; on the other hand, they asked whether
the proper-orientation number can be bounded by a function of the treewidth. We pose a similar,
but simpler, question.

Problem 3. Is there a constant c such that −→χ (G) ≤ c, for every outerplanar graph G?

Already this question seems highly non-trivial. One of the reasons is that, contrary to many
other parameters like the chromatic number, the proper-orientation number is not monotonic.
Recall that a graph parameter γ is monotonic if γ(H) ≤ γ(G) for every (induced) subgraph H of
G. For example, the tree T ∗, depicted in Figure 1, satisfies −→χ (T ∗) = 2, while −→χ (T ∗ \ {x}) = 3
as T ∗ \ {x} is exactly the tree T3 mentioned in [2]. Its non-monotonicity makes it difficult to
handle the proper orientation number.

In this paper, we consider a standard graph class containing the trees, namely the cacti. A
graph G is a cactus if every 2-connected component of G is either an edge or a cycle. Clearly,
every cactus is an outerplanar graph. We prove that the proper orientation of such graphs is
bounded by 7.

RR n° 8833



4 Araujo, Havet, Linhares Sales, & Silva

Figure 1: Tree T ∗ and a proper 2-orientation of it.

Theorem 4. If G is a cactus, then −→χ (G) ≤ 7.

Furthermore, we show in Proposition 17 that this upper bound 7 is attained.

We conclude this section by introducing some definitions and previous results that we need
in different sections of this work.

Let S ⊆ V (G) be a subset of vertices of G and F ⊆ E(G) be a subset of its edges. We denote
by G[S] the subgraph of G induced by S, by G\F the graph obtained from G by removing the
edges in F from its edge set E(G), and by G− S the graph G[V (G) \ S].

For any two adjacent vertices u and v of G, the edge (u, v) is denoted by uv. Given an
orientation D of G, we denote the orientation of uv towards v by (u, v).

Let T be a tree. A leaf of T is a vertex with degree 1. A twig of T is a vertex which is not
a leaf and whose neighbors are all leaves except possibly one. A bough of T is a vertex which
is neither a leaf nor a twig and whose neighbors are all leaves or twigs except possibly one. A
branch of T is a vertex which is neither a leaf nor a twig nor a bough and whose neighbors are
all leaves or twigs or boughs except possibly one.

The definitions above are the same as the ones used in [2] and we borrow from them. Let
G be a graph. The block tree associated to G is the tree T (G) with vertex set the set of blocks
of G such that two vertices are adjacent in T (G) if and only if the blocks intersect. A block of
order i is said to be an i-block. A leaf block (resp. twig block, bough block, branch block) is a
block which is a leaf (resp. twig, bough, branch) in T (G). By the definitions in the previous
paragraph, observe that if B is of one of these types of blocks, then B may have a neighbor in
T (G) that is an exception in its neighborhood. If such a neighbor B′ exists and u ∈ B separates
B from B′, then we call u the root of B. Otherwise, we pick any vertex of B to be the root of B.
If B is a twig block with root r, then the twig subgraph of G with root r is the union of B and all
leaf blocks with root in V (B) \ {r}. If B is a bough block with root r, then the bough subgraph
of G with root r is the union of B and all twig subgraphs with root in V (B) \ {r}. Observe that
twig and bough subgraphs are connected.

Let B be a block in G. For any vertex v ∈ B we denote by GB〈v〉 the connected component
of G \ E(B) containing v. If the block B is clear from the context, we often drop the subscript
B.

2 Proper 7-orientation of cacti

In this section, we prove Theorem 4 by considering a minimum counter-example. Such a counter-
example is a cactus G that admits no proper 7-orientation, and such that every cactus H with

Inria



Proper orientation of cacti 5

fewer vertices than G has a proper 7-orientation. Observe that such a counter-example G is
clearly a connected graph.

The idea of the proof is to analyse the structure of the leaf, twig and bough subgraphs of
G and observe that there is always one such subgraph in G with root r such that any proper
7-orientation of G〈r〉 (which exists by the minimality of G) can be extended in a proper 7-
orientation of G, which is a contradiction.

If B is a block of G with vertex set {v1, . . . , vp} appearing in this order on the cycle (or edge),
then we write B as 〈v1, . . . , vp〉.

Lemma 5. Let P = (v1, · · · , vn) be a path on n vertices, n 6= 2. Then, there exists a proper
2-orientation of P such that v1 and vn have indegree 0.

Proof. If n is odd, it suffices to orient the arcs of P from vertices with odd indices towards
vertices with even indices. This yields an alternating indegree sequence of 0’s and 2’s that starts
and ends with 0. If n is even, orient (v1, . . . , vn−1) as above and vn−1vn towards vn−1 in order
to obtain the desired orientation.

Now we show that, in G, every vertex of small degree has a neighbor of higher degree.

Proposition 6. Let u be a vertex of G. If d(u) ≤ 7, then there exists v ∈ N(u) such that
d(v) > d(u).

Proof. Suppose for a contradiction that d(u) ≤ 7 and all vertices in N(u) have degree at most
d(u). Let D be a proper 7-orientation of G−u. For each v ∈ NG(u), since dG−u(v) = dG(v)−1 ≤
dG(u) − 1, we know that d−D(v) < dG(u). Therefore, because dG(u) ≤ 7, one can extend D by
orienting every edge incident to u in G towards u to obtain a proper 7-orientation of G, a
contradiction.

Proposition 7. Every leaf block of G is either a 2-block or a 3-block.

Proof. Observe that, for any leaf block with at least four vertices, there must be at least one
vertex of degree 2 whose neighbors also have degree 2, contradicting Proposition 6.

Proposition 7 implies that a leaf block is either a 1-path (i.e. a path of length 1) or a triangle
(i.e. a cycle of length 3). In Figure 2, we present every possible proper orientation of a leaf block.

1
(a)
A1

0
(b)
A2

21
(c) T1

20
(d) T2

10
(e) T3

Figure 2: Leaf blocks and their possible proper orientations.

Proposition 8. Every vertex of G is contained in at most one leaf 2-block.

Proof. By contradiction, suppose that it is not the case and let 〈u, v〉, 〈u,w〉 be two leaf 2-blocks
containing u. Let D be a proper 7-orientation of G − w. If d−D(u) 6= 1, orienting uw towards w
extends D into a proper 7-orientation of G, a contradiction. Hence d−D(u) = 1. Since D is proper,
the edge uv ∈ E(G) must be the only one oriented towards u in D. Therefore all neighbors of u
distinct from v and w have indegree greater than 1 in D. Reverting the orientation of uv in D
and orienting uw towards w, we obtain a 7-orientation of G, which is proper because the indegree
of u is 0, hence different from the indegree of all of its neighbors. This is a contradiction.

RR n° 8833



6 Araujo, Havet, Linhares Sales, & Silva

Proposition 9. Every twig block is a 2-block or a 3-block.

Proof. Let B be a twig block of order q at least 4, say B = 〈u1, · · · , uq〉 with u1 the root of B.

Claim 9.1. d(ui) 6= 3, for every i ∈ {2, · · · , q}.

Subproof. By contradiction, suppose that there exists a vertex ui ∈ {u2, · · · , uq} of degree 3 in
G. Note that ui is contained in the block B and in a leaf 2-block, say 〈ui, v〉.

First suppose that i /∈ {2, q} and let G′ = G− {ui, v}. By the minimality of G, there exists
a proper 7-orientation D of G′. If {d−D(ui−1), d−D(ui+1)} 6= {2, 3}, then one could extend D to a
proper 7-orientation of G by orienting uiui−1 and uiui+1 towards ui and choosing the orientation
of uiv according to the indegrees of ui−1 and ui+1 in D, a contradiction. Hence, without loss of
generality, consider that d−D(ui−1) = 2 and d−D(ui+1) = 3.

Let us extend D by orienting all the arcs incident to ui away from this vertex. The resulting
orientation D′ is not yet proper but we shall prove how to change it into a proper 7-orientation
of G. Problems could only appear in edges incident to ui−1 or ui+1 which had indegree 3 and 4
respectively in D. Observe that these two vertices have degree more than 2 and thus belong to
some other blocks which must be leaf blocks since u1 is the root of B. One can reorient the leaf
blocks containing ui+1 using the orientations of Figure 2 so that the indegree of ui+1 becomes
3 again. Similarly, if d(ui−1) = 4, one can reorient the leaf blocks containing ui−1 so that the
indegree of ui−1 is in {3, 4} \ {d−D(ui−2)}, and if d(ui−1) = 3 (that is ui−1 is in a unique leaf
2-block), one can reorient the leaf block containing ui−1 so that the indegree of ui−1 becomes 2
again. The resulting orientation is then a proper 7-orientation of G, a contradiction.

Suppose now that i ∈ {2, q}. Without loss of generality, we may assume that i = 2. Let G′
be the connected component of G − u3 containing u2. Let D′ be a proper 7-orientation of G′.
Clearly, d−D′(u2) ≤ 2. By the previous paragraphs and because q ≥ 4, we know that dG(u3) 6= 3.
If dG(u3) > 3, we can obtain a proper orientation of G by orienting edges u2u3 and u3u4 towards
u3 and orienting the leaf blocks containing u3 in such a way that d−(u3) ∈ {3, 4} \ d−D(u4); this
is a contradiction. Consequently, d(u3) = 2, and we can suppose that 2 ∈ {d−D(u2), d−D(u4)}, as
otherwise we get a contradiction by adding (u2, u3) and (u4, u3).

First, suppose that d−D(u2) 6= 2, in which case one can verify that we can suppose that
d−D(u2) = 0. If d(u4) > 3, we reorient the leaf blocks and u3u4 so that u4 has indegree in
{3, 4}\{d−D(u5)}, then we let u3 have indegree 1 or 2, depending on the orientation of u3u4. This
gives us a contradiction, and, because d−D(u4) = 2, we get that d(u4) = 3 and, by the previous
paragraphs, that q = 4. Let v′ ∈ N(u4) \ B. We get a contradiction by reversing (v′, u4) and
adding (u2, u3) and (u3, u4).

Finally, suppose that d−D(u2) = 2. Then we can also suppose that d−D(u4) = 1 as otherwise
we can reverse (v, u2), orient u2u3 towards u2, and orient u3u4 towards u3 to obtain a proper
7-orientation of G. By similar arguments, if d(u4) > 3, then we can change its color to some
c ∈ {3, 4} \ {d−D(u5)}; hence d(u4) ∈ {2, 3} and we analyse the cases below:

• d(u4) = 3: let v′ ∈ N(u4) \ B. Because d−(u4) = 1, we know that (v′, u4), (u4, u1) ∈ D.
Reverse (v, u2) and (v′, u4), and add (u3, u2) and (u4, u3) to obtain a contradiction;

• d(u4) = 2: if q = 4, because d−D(u2) = 2 we know that d−D(u1) 6= 2. Reverse (v, u2) and add
(u3, u2) and (u3, u4) to obtain a contradiction. Otherwise, by similar arguments we can
suppose that d−D(u5) = 2. Suppose that d(u5) > 3 and reorient the leaf blocks containing
u5 and u4u5 so that u5 has indegree in {3, 4}\{d−D(u6)}. After this, u4 has indegree either 0
or 1, in which case we reverse (v, u2), add (u3, u2) and either (u4, u3) or (u3, u4), depending
on u4. Finally, we can suppose that d(u5) = 3 and q = 5. Let v′ ∈ N(u5) \ B. Reverse
(v, u2) and (v′, u5), and add (u3, u2), (u4, u5) and (u3, u4) to get a contradiction.

Inria



Proper orientation of cacti 7

♦

Now we return to the proof of the lemma. By the minimality of G, there is a proper 7-
orientation D of G〈u1〉.

We shall extend D into a proper 7-orientation of G, which gives us the desired contradiction.
We first add (u1, u2), (u1, uq). We then distinguish some cases according to d−D(u1).

Assume first d−D(u1) /∈ {2, 4}. Add (u3, u2), (uq−1, uq) and orient the path (u3, . . . , uq−1)
according to Lemma 5. So far the vertices u2, . . . , uq have indegree 0, 1, or 2 in B. For
each i ∈ {2, · · · , q}, if ui is contained in some leaf block, then by Claim 9.1 d(ui) ≥ 4.
Thus, by Proposition 8, ui is in at least one leaf 3-block. If ui has indegree 0 in B, then
we orient all the leaf blocks containing ui with A1 or T1, so that ui still has indegree 0. If
ui has indegree 1 (resp. 2) in B, we orient one leaf 3-block according to T3 and all other
blocks according to A1 and T1, so that its indegree is 3 (resp. 4). It is now a simple matter
to check that the obtained orientation is a proper 7-orientation of G.

Assume now d−D(u1) ∈ {2, 4}. If q = 4, add (u2, u3) and (u4, u3), and one can verify that
we can get a contradiction again by orienting the leaf blocks containing vertices in B in
the same way as above. So, suppose that q ≥ 6. Add (u2, u3), (u4, u3), (uq, uq−1), and
(uq−2, uq−1). Furthermore, if q = 7 then add (u4, u5), and if q > 7 apply Lemma 5 to
orient the path (u4, . . . , uq−2). We then orient the leaf blocks containing vertices in B in
the same way as above to get a contradiction.
Therefore, we can consider q = 5. Add the arcs (u1, u2), (u1, u5), (u3, u4), and (u5, u4) to
D.
If d(u2) > 2, then u2 is in a leaf 3-block. Add (u3, u2), and orient one leaf 3-block containing
u2 with T2 and the other leaf blocks with A1 or T1 so that u2 has indegree 3. For j ∈
{3, 4, 5}, if uj is contained in some leaf block, orient its leaf blocks so that the indegree of
uj increases by 2 (using one T3 and possibly some A1 and T1). It is simple matter to check
that it gives a proper 7-orientation of G. By symmetry, we get the result if d(u5) = 2.
Finally, consider d(u2) = d(u5) = 2, and since B is not a leaf block, we can suppose,
without loss of generality, that d(u3) > 2. In this case, add (u2, u3), (u3, u4) and (u5, u4),
orient the leaf block(s) containing u3 so that its indegree is 3 and, if d(u4) > 2, orient the
leaf block(s) containing u4 so that its indegree is 4.

Proposition 10. Let B be a twig block with root u1.

(a) If B = 〈u1, u2〉, then either d(u2) = 2 or u2 belongs exactly to B and to a leaf 3-block.

(b) If B = 〈u1, u2, u3〉, then, for each j ∈ {2, 3}, uj belongs exactly to B and either a leaf 2-block
or a leaf 3-block.

Proof. (a) Assume that d(u2) > 2. Let D be a proper 7-orientation of G〈u1〉. We can suppose
that d(u2) = 3, as otherwise we extend D to a proper 7-orientation of G by orienting u1u2
towards u2 and orienting the leaf blocks with root u2 in such a way that its indegree belongs
to {3, 4} \ {d−D(u1)}. Consequently, by Proposition 7 and Proposition 8, we obtain that u2 is
contained exactly in B and in a leaf 3-block.

(b) Suppose first that one vertex of {u2, u3}, say u3, is in no leaf block.
Suppose d(u2) > 3 and let D be a proper 7-orientation of G〈u1〉. One can orient the edges

u1u2 and u1u3 from u1 to its neighbors and then orient the leaf block(s) containing u2 and the
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8 Araujo, Havet, Linhares Sales, & Silva

edge u2u3 in such a way that the indegree of the pair (u2, u3) is (3, 2), in case d−D(u1) /∈ {2, 3},
or (4, 1), otherwise. This results in a proper 7-orientation of G, a contradiction.

If d(u2) = 3, then let D be a proper 7-orientation of G − v, where v is the neighbor of u1
not in B. Since u2 and u3 are symmetric in G − v, we can suppose that d−D(u2) 6= 1, in which
case we can extend D into a proper 7-orientation of G by orienting u2v towards v. This is a
contradiction.

Suppose now that d(u2) > 2, and d(u3) > 2. If d(u2) ≥ 5, let G′ be the component of
G − u2 containing u1. Let D be a proper 7-orientation of G′. One could then extend D to a
proper 7-orientation of G by orienting the edges u1u2 and u2u3 towards u2 and orienting the
leaf blocks containing u2 in such a way that its indegree belongs to {3, 4, 5} \ {d−D(u1), d−D(u3)}.
By symmetry, we get a contradiction in the same way if d(u3) ≥ 5. Therefore d(u2) ≤ 4 and
d(u3) ≤ 4. Then, the proposition follows by Proposition 7 and by Proposition 8.

The 2-path, the kite, the bull, the elk, and themoose are the rooted graphs depicted in Figure 3
where the root is the white vertex.

(a)
2-
path

(b) kite (c) bull (d) elk (e) moose

Figure 3: The five possible twig subgraphs.

Propositions 8, 9, and 10 imply directly the following.

Corollary 11. Every twig subgraph in G is either a 2-path, or a kite, or a bull, or an elk, or a
moose.

In the following we will very often use this corollary without referring explicitly to it.
All the possible (partial) proper orientations of the twig subgraphs are depicted in Figures 4

to 8. In these figures, the notation i − j means that the corresponding vertex can have any
indegree in this range, depending on the orientation given to the non-oriented edges.

2

0
(a)
P1

0

1
(b)
P2

Figure 4: Proper orientations of the 2-path.

Proposition 12. Let B be a bough block with root u. Every vertex v in V (B) \ {u} with degree
at least 3 is the root of a twig subgraph or a leaf block that is neither a kite nor a moose.

Inria



Proper orientation of cacti 9

0-2

(a) K1

3

0 1
(b) K2

Figure 5: Proper orientations of the kite.

2 3

(a) B1

0-1 2-3

(b) B2

0-1 2

(c) B3

Figure 6: Proper orientations of the bull.

3 2

(a) E1

3-4 2

(b) E2

3-4 0-1

(c) E3

3 2

(d) E4

0-2 2-3

(e) E5

3 2

(f) E6

0-1 2

(g) E7

3 0-1

(h) E8

Figure 7: Proper orientations of the elk.

0-2 3

(a) M1

0-2 3-4

(b) M2

3 4

(c) M3

Figure 8: Proper orientations of the moose.
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10 Araujo, Havet, Linhares Sales, & Silva

Proof. Let v be a vertex in V (B) \ {u} with degree at least 3. It must be the root of at least one
twig subgraph or leaf block. Suppose the contrary that v is only root of kites and moose. Let D
be a proper 7-orientation of G〈v〉. Observe that d−D(v) ≤ 2. Thus, one could extend D to G by
orienting the kites and moose rooted at v according to K2 or M3.

Proposition 13. Let B = 〈u1, · · · , uq〉 be a bough block with root u1. For all i ∈ {2, · · · , q},
d(ui) ≤ 4.

Proof. Let i ∈ {2, · · · , q}. Let G′ be the connected component containing u1 in G− ui. By the
minimality of G, G′ admits a proper 7-orientation D. Set F = {d−D(ui−1), d−D(ui+1)}. Add the
arcs (ui−1, ui) and (ui+1, ui).

If d(ui) ≥ 7, then one can properly orient the twig subgraphs and leaf blocks with root ui in
such a way that ui has indegree in {5, 6, 7} \ F . Observe that all other vertices of those graphs
have indegree at most 4, so we obtain a proper 7-orientation of G, a contradiction.

If d(ui) = 6, by Proposition 12, it is contained in at most one moose. Therefore, one can
orient the twig and leaf subgraphs containing ui so that ui has indegree in {4, 5, 6} \ F , taking
care to useM1 for the possible moose. Observe that every other possible twig can avoid a 4 from
appearing in N(ui). Hence, we have a proper 7-orientation of G, a contradiction.

Thus, we can suppose that d(ui) ≤ 5, for all i ∈ {2, · · · , q}.

Assume now for a contradiction that there is some i ∈ {2, · · · , q} such that d(ui) = 5.
If q = 2, then |F | = 1 and one can extend D to a proper 7-orientation of G by orienting

the twig and leaf blocks containing ui so that the indegree of ui belongs to {4, 5} \ F . This is a
contradiction so q ≥ 3.

Observe that if {4, 5} 6= F , then one can extend D to G by orienting the twig and leaf blocks
containing ui in such a way that its indegree belong to {4, 5} \ F . Consequently, we can assume
that F = {4, 5}. But d(uj) ≥ d−D(uj) + 1. So one vertex in {ui−1, ui+1} is u1. Free to relabel
the vertices in the other sense around B, we may assume that i = 2. Hence d−D(u1) = 5 and
d−D(u3) = 4. So d(u3) = 5. Applying the same reasoning to u3, we obtain that q = 3.

Claim 13.1. There is a proper 7-orientation D′ of G′ such that d−D′(u3) ∈ {2, 3}.

Subproof. The idea is to start form D and to reorient the edges of the leaf blocks and twig
subgraphs with root u3. Observe that in D all the edges incident to u3 are directed towards u3.
In particular (u1, u3) is an arc of D.

By Propositions 7, 9 and 10, u3 is the root of:

1. two subgraphs, H1 and H2, with H1 being a triangle, a bull, an elk or a moose, and H2

being a 1-path, a 2-path, or a kite; or

2. three subgraphs, H1, H2 and H3, each of them being a 1-path, a 2-path, or a kite.

If Case 1 occurs, then we are in one of the following subcases.

1.1. H1 is a moose. Orient it using M3 and H2 using A2, P2 or K1 (with the in degree of its
neighbor 0). This yields the desired proper orientation D′ with d−D′(u3) = 2.

1.2. H1 is an elk or a bull. If H2 is a 1-path or 2-path, then orient H1 with E7 or B3 and H2

with A1 or P1 to obtain the desired orientation D′ with d−D′(u3) = 3. If not, then H2 is a
kite. Orient H1 with E3 or B2 (with the neighbor of u3 having in degree different from 2)
and H2 with K2 to obtain the desired orientation D′ with d−D′(u3) = 2.

1.3 H1 is a triangle. Orient H1 with T2 and H2 with A2, P2 or K1 to obtain the desired
orientation D′ with d−D′(u3) = 3.
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If Case 2 occurs, without loss of generality, we are in one of the following subcases.

2.1 H1 and H2 are kites. Orient H1 and H2 using K2 and H3 using A2, P2 or K1, to obtain
the desired orientation D′ with d−D′(u3) = 2.

2.2 H1 is a kite or a 1-path or a 2-path, and H2 and H3 are 1-path or a 2-path. Orient H1

using K1 or A2 or P2, H2 using A2 or P2, and H3 using A1 or P1, to obtain the desired
orientation D′ with d−D′(u3) = 3.

♦

Now apply the above reasoning with the orientation D′ given by Claim 13.1: we have F 6=
{4, 5} because d−D′(u3) ∈ {2, 3}. Therefore, we obtain a proper 7-orientation ofG, a contradiction.

Proposition 6 imply the following.

Proposition 14. Let u be a vertex in G.

(a) if u is the root of a kite or a bull, then d(u) ≥ 4;

(b) if u is the root of an elk or a moose, then d(u) ≥ 5.

Proposition 15. Every bough block is a 3-block.

Proof. Let B = 〈u1, · · · , uq〉 be a block with root u1.
Assume first that q = 2. Let D be a proper 7-orientation of G〈u1〉. By Proposition 13,

we know that d(u2) ≤ 4. If d(u2) = 4, we can orient the remaining edges in such a way that
u2 has indegree in {3, 4} \ {d−D(u1)} taking care that all kites are oriented using K1. This is
possible because u2 is the root of at most two kites thanks to Proposition 12. This yields a
proper 7-orientation of G, a contradiction.

Henceforth, since B is a bough block, u2 is the root of a twig subgraph H1. In particular,
d(u2) = 3, and by Proposition 14, H1 is a 2-path, say (u2, x, x

′). Vertex u2 must also be the root
of another subgraph H2 that is either a 2-path (u2, y, y

′) or a 1-path (u, y). Add the arc (u1, u2).
If d−D(u1) 6= 3, one can orient H1 ad H2 using P2 and A2 so that u2 get indegree 3. This yields
a proper 7-orientation of G, a contradiction. Assume d−D(u1) = 3. If H2 is a 2-path, then orient
H1 and H2 using P1 so that u2 get indegree 1. If H2 is a 1-path, then orient H1 using P2 and
H2 using A1 so that u2 get indegree 2. In both cases, it results in a proper 7-orientation of G, a
contradiction.

Now, suppose that q ≥ 4. Note that Propositions 6 and 13 imply d(u3) ≤ 3, and that
Proposition 14 implies that u3 is not root of a kite. So, either d(u3) = 2 or u3 is the root of a
1-path or a 2-path.

Suppose first that d(u2) = 4. Let D be a proper orientation of G〈u2〉−u2. Because d(u3) ≤ 3,
we get that d−D(u3) ≤ 2. Add the arcs (u1, u2) and (u3, u2). By Proposition 12, u2 is neither
the root of a moose nor of two kites. Therefore, one can orient the twig subgraphs and leaf
blocks with root u2 so that its indegree belongs to {3, 4} \ {d−D(u1)}. This results in a proper
7-orientation of G, a contradiction.

Similarly, we get a contradiction if d(uq−1) = 4, so we can assume that: (?) d(ui) ≤ 3, for all
i ∈ {2, · · · , q}.

Now by Proposition 14-(a), if d(ui) = 3 for some i ∈ {2, . . . , q}, it is the root of a 1-path or a
2-path. Consequently, by (?), for all i ∈ {3, . . . , q− 1}, it has no neighbor of degree more than 3.
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Thus, by Proposition 6, we get d(ui) = 2, for every i ∈ {3, · · · , q − 1}, and q ≤ 5, for otherwise
u4 has degree 2 and no neighbor of degree more than 2.

Since B is a bough block and not a twig block, one of its vertices distinct from the root
u1 must be the root of a twig subgraph. Necessarily, it must be u2 or uq as all other vertices
have degree 2. By symmetry, we may assume that it is u2. Furthermore, since d(u2) = 3, by
Proposition 14-(a), u2 is necessarily the root of a 2-path, say (u2, x, x

′).
Let D be a proper 7-orientation of G〈u1〉. Orient the edges u1u2, u1uq and u2u3 towards u2,

uq and u3, respectively. We now describe how to extend this orientation in a proper 7-orientation
of G, yielding the contradiction. We distinguish two cases depending on whether q = 4 or q = 5.

• q = 4. Assume first d(u4) = 2. If d−D(u1) 6= 2, add (u3, u4), (x, u2) and (x, x′); otherwise,
add their reverses. So suppose that d(u4) = 3. Then u4 is the root of either a 1-path (u4, y)
or a 2-path (u4, y, y

′) by Proposition 14. If d−D(u1) 6= 3, then D can be extended to G by
reversing u2u3 and orienting the remaining edges so that the indegrees of u2 and u4 will
be 3. If d−D(u1) = 3. Add (u4, y). If u4 is the root of a 1-path, add (u3, u4), (x, u2) and
(x, x′). Otherwise,u4 is the root of a 2-path : add (u4, u3), (u2, x), (x′, x), and (y′, y).

• q = 5. By Proposition 6, we have d(u5) = 3. So u5 is the root of either a 1-path (u5, y)
or a 2-path (u5, y, y

′) by Proposition 14. If d−D(u1) 6= 3, reverse u2u3 and orient properly
the remaining edges in a way that the indegrees of u2 and u5 is 3. If d−D(u1) = 3, first add
(u2, x), (x′, x) and (u4, u3) to D. If u5 is the root of a 1-path, then add (u5, y) and (u4, u5);
otherwise, u5 is the root of a 2-path : add (y, u5), (u5, u4) and (y, y′).

A reindeer is the graph depicted in Figure 9, where the root is the white vertex. It also
depicts all possible orientations of the reindeer.

1 3

(a) R1

1 2

(b) R2

1 0

(c) R3

Figure 9: The reindeer and its possible orientations. The dashed edge may or may not exist.

Proposition 16. Every bough subgraph is a reindeer.

Proof. Let H be a bough subgraph rooted at u1. It contains a bough block B. By Proposition 15,
B is a 3-block, say B = 〈u1, u2, u3〉. By Proposition 13, d(u2) ≤ 4 and d(u3) ≤ 4.

Let G′ be the connected component of G−u2 containing u1. Let D be a proper 7-orientation
of G′.

Assume d(u2) = 4. By Proposition 14, u is the root of no moose nor elk, and by Proposition
12, it is the root of at most one kite. If {d−D(u1), d−D(u3)} 6= {3, 4}, then adding (u1, u2) and
(u3, u2) and using appropriate orientations of the twig subgraphs and leaf blocks with root
u2, one can get an orientation of D such that d−(u2) ∈ {3, 4} \ {d−D(u1), d−D(u3)}. This is a
proper 7-orientation of D, a contradiction. Consequently, {d−D(u1), d−D(u3)} = {3, 4}, and so
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d−D(u3) = dG(u3) − 1 = 3. Let x be a neighbor of u3 not in B and let H be the twig subgraph
or leaf block with root u3 containing x. By Proposition 12, one can choose x so that H is not
in a kite. Add (u2, u3) and use A1, T2, P1, or B2 to reverse (x, u3). If u2 is not the root of
two 2-paths, we can orient the twig subgraphs and leaf blocks with root u2 so that its indegree
becomes 2 by using orientations A, T2, P2, K or B2. If u2 is the root of two 2-paths, we can
orient these 2-paths using P2 so that u2 gets indegree 1. In both cases, we obtain a proper
7-orientation of D, a contradiction.

Similarly, we get a contradiction if d(u3) = 4.Therefore d(u2) ≤ 3 and d(u3) ≤ 3. Since B is
a bough block, u2 or u3 must be the root of a twig subgraph. Without loss of generality, we may
assume that u2 is. By Proposition 14, u2 must be the root of a 2-path, say (u2, x, x

′).
Assume d(u3) = 2. If d−(u1) /∈ {1, 2}, add (u2, x), (u2, u3), (x′, x), and if (u3, u1) ∈ D, reverse

it and add (u2, u1); otherwise, add (u1, u2). And if d−(u1) ∈ {1, 2}, add (u1, u2), (u3, u2), (x, u2)
and (x, x′). In both cases, it results in a proper 7-orientation of D, a contradiction.

Hence d(u3) = 3, which by Proposition 12 implies that u3 is the root of either a 2-path or a
1-path. Therefore H is a reindeer.

We can finally prove the main result of this paper.

Proof of Theorem 4. If G has no branch blocks, then there exists a vertex u such that G is the
union of bough subgraphs, twig subgraphs and leaf blocks with root u. In this case, one may
obtain a proper 4-orientation of G by orienting all bough subgraphs, twig subgraphs and leaf
blocks so that the indegree of u is 0.

Thus, G contains a branch block B. It must contain a vertex u which is the root of a bough
subgraph R. By Proposition 16, R is a reindeer, and by Proposition 6, we have d(u) ≥ 4. Denote
by Q the subgraph rooted at u containing exactly all the bough, twig and leaf blocks rooted at
u.

Let H be the component of G− u that contains B− u; then u has at most 2 neighbors in H.
By minimality of G, H has a proper 7-orientation D. Let F be the set of indegrees of neighbors
of u in H. Orient the edges of H incident to u towards u.

If d(u) ≥ 7, we can orient G〈u〉 in such a way that u has indegree in {5, 6, 7} \ F and no
vertex in Q has indegree more than 4. This gives a proper 7-orientation of G, a contradiction.

Assume d(u) = 6. Let α be an integer in {4, 5, 6} \ F . We can orient Q in such a way that
u has indegree α and no vertex of Q− u has indegree α. This is possible because no vertex has
indegree 5 in the orientations depicted in Figures 2, 4–8 and 9 and u is in at most two moose,
so if α = 4, we can orient the moose first using M1 or M2. This gives a proper 7-orientation of
G, a contradiction.

Assume d(u) = 4. If u has two neighbors inH, then Q = R. Let α be an integer in {2, 3, 4}\F .
If α = 2, then orient R with R1; if α = 3, then orient R with R2; if α = 4, then orient R with R3.
In each case, this yields a proper 7-orientation of G, a contradiction. If u has a unique neighbor
in H, then Q is the union of R and either a 1-path, or a 2-path, or a kite. Orient that subgraph
using A2, P2 or K1. Now, since |F | = 1, we can orient R using R2 or R3 so that the indegree of
u in {3, 4} \ F . This yields a proper 7-orientation of G, a contradiction.

Finally assume d(u) = 5. If F 6= {4, 5}, we can orient the edges of Q so that the indegree of
u is some α ∈ {4, 5}\F , and no vertex of Q−u has indegree α. If α = 4, this is possible because
u is in at most one moose, and we can start orienting the moose with M2. This yields a proper
7-orientation of G, a contradiction. If F = {4, 5}, then Q is the union of R and either a 1-path
or a 2-path or a kite. In the first two cases, orient the 1-path or 2-path by using A1 or P1, and
R with R2, so that vertex u has indegree 3. In the latter case, orient the kite with K2 and R
with R1, so that vertex u has indegree 2. In both cases, we obtain a proper 7-orientation of G,
a contradiction.

RR n° 8833



14 Araujo, Havet, Linhares Sales, & Silva

3 A tight example
In this section, we prove that the bound of Theorem 4 cannot be improved.

Proposition 17. There exists a cactus G such that −→χ (G) = 7.

Proof.

Claim 17.1. Let G be a graph.

(i) If v is the root of three triangles, then, any proper orientation D of G satisfies d−D(v) /∈
{1, 2}.

(ii) If v is the root of five moose, then, any proper orientation D of G satisfies d−D(v) /∈ {3, 4}.

Subproof. (i) By contradiction, suppose that there is a proper orientation D of G such that
d−D(v) ∈ {1, 2}. Since v is the root of three triangles, one of these must be oriented as in T1.
Consequently, D is not proper.

(ii) By contradiction, suppose that there is a proper orientation D of G such that d−D(v) ∈
{3, 4}. Since v is the root of five moose, one of these must be oriented as in M3. Consequently,
D is not proper. ♦

Intuitively, v being the root of three triangles forbids the indegree of v to be 1 and 2 in any
proper orientation of the input graph, and v being the root of five moose forbids the indegree of
v to be 3 or 4.

Let H be the graph which is the union of sixteen complete graphs of order 3 :

• K with vertex set {v1, v2, v3};

• Kj
i with vertex set (vi, y

j
i , z

j
i ) for i ∈ {1, 2, 3} and j ∈ {1, . . . , 5}.

Let G be the graph obtained from H by adding three triangles and five moose with root v at
every vertex v ∈ V (H).

Let us prove that −→χ (G) ≥ 7. Suppose for a contradiction, that G has a proper 6-orientation
D. By Claim 17.1, all vertices of H have indegree in {0, 5, 6}. Since K is complete and D is
proper, a vertex of K, say v1, has indegree 5. For the same reason each complete graph in
K ∪{Kj

1 | 1 ≤ j ≤ 5} has a vertex of indegree 0 which must dominate v1. Hence v1 has indegree
6, a contradiction.

4 Further Research

4.1 Proper-orientation number of outerplanar graphs
We believe that Problem 3 must be answered in the affirmative: outerplanar graphs have proper-
orientation number bounded by a constant c. If such a c exists, then c ≥ 7, since cacti (and in
particular, the one described in Section 3) are outerplanar. A first step would be to established
the result for 2-connected outerplanar graphs. We actually believe that in this case this constant
should be smaller than 7 and that it should not be much greater than 3. One can easily attain
3 as a lower bound using the following lemma.

Lemma 18 ([2]). Let k be a positive integer, and let G be a graph containing a clique K of size
k + 1. In any proper k-orientation of G, all edges between V (K) and V (G) \ V (K) are oriented
from V (K) to V (G) \ V (K).
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Proposition 19. There exists a 2-connected outerplanar graph G such that −→χ (G) = 3.

Proof. Let G be the graph on six vertices defined by V (G) = {v1, v2, v3, v4, v5, v6} and E(G) =
{v1v2, v2v3, v1v3, v4v5, v5v6, v4v6, v1v4, v2v5}. Suppose by way of contradiction that G has a
proper 2-orientation D. Observe that the sets {v1, v2, v3} and {v4, v5, v6} are cliques in G.
Thus Lemma 18 implies that the edges v1v4 and v2v5 must be oriented in both ways, a contra-
diction.

4.2 −→χ -bounded families of graphs
Gyárfás [7] introduced the concept of χ-bounded graph classes. A class of graph G is said to be
χ-bounded if there is a function f such that χ(G) ≤ f(ω(G)) for every G ∈ G. Similarly, one can
define −→χ -bounded graph classes. A class of graph G is said to be −→χ -bounded if there is a function
f such that −→χ (G) ≤ f(ω(G)) for every G ∈ G. Because χ ≤ −→χ , a −→χ -bounded graph class is also
χ-bounded. Conversely, one might wonder which χ-bounded graph classes are also −→χ -bounded.

The χ-boundedness of graph classes defined by forbidden induced subgraphs have been par-
ticularly investigated. For a fixed graph F , let us denote by Forb(F ) the class of graphs that do
not contain F as an induced subgraph. Erdős [4] showed that there are graphs with arbitrarily
high girth and chromatic number. This implies that if F contains a cycle, then Forb(F ) is not
χ-bounded. Conversely, Gyárfás [6] and Sumner [9] independently made the following beautiful
and difficult conjecture

Conjecture 20 ([6] and [9]). For every tree T , the class Forb(T ) is χ-bounded.

It is natural to ask whether this conjecture generalizes to proper orientations.

Problem 21. Is the class Forb(T ) −→χ -bounded for all tree T ?

Gyárfás [7] establishes Conjecture 20 for stars by showing that a graph in Forb(K1,n) has
maximum degree R(n, ω(G)), where R(p, q) denotes the Ramsey number (p, q). In particular,
this shows that Forb(K1,n) is also −→χ -bounded.

In particular, if G is a planar claw-free graph (recall that the claw is the graph K1,3), Gyárfás
result gives us that −→χ (G) ≤ ∆(G) ≤ R(3, 4) = 9. This is also a partial answer to whether planar
graphs have bounded proper orientation number. However, this bound is not tight, as we show
next. In [8], Plummer showed that any claw-free 3-connected planar graph has maximum degree
at most 6. His result can be extended to any claw-free planar graph.

Theorem 22. If G is a claw-free planar graph, then ∆(G) ≤ 6.

Proof. The proof is by induction on the number of vertices of G. If G is disconnected, then, by
the induction hypothesis, each connected component of G has maximum degree at most 6 and
so ∆(G) ≤ 6.

Assume that G has a cut-vertex u. As G is claw-free, G− u has exactly two components Ci,
i = 1, 2, and the neighborhood of u in each Ci is a clique Ni. Observe that Ni ∪ {u} is a clique,
which has size at most 4 because G is planar, so |Ni| ≤ 3. Hence d(u) = |N1| + |N2| ≤ 6. Now
by the induction hypothesis applied to G[V (C1)∪{u}] and G[V (C2)∪{u}], we obtain that every
vertex distinct from u has degree at most 6. Therefore ∆(G) ≤ 6. Henceforth we may assume
that G is 2-connected.

Assume that G has a 2-cut {u, v} (that is G−{u, v} is disconnected). The graph G′ = G− v
is connected with cut-vertex u. As above, G′ − u has exactly two components, C1 and C2,
and Ni = N(u) ∩ Ci is a clique, for i = 1, 2 of size at most 3. We claim that d(u) ≤ 6. If
uv /∈ E(G), then d(u) = |N1| + |N2|, so d(u) ≤ 6. If uv ∈ E(G), then d(u) = |N1| + |N2| + 1.
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But |N1| + |N2| ≤ 5 for otherwise there exist u1 ∈ N1 and u2 ∈ N2 non-adjacent to v (because
G has no clique of size 5), so G[{u, v, u1, u2}] is a claw, a contradiction. Therefore d(u) ≤ 6.
Similarly, one proves d(v) ≤ 6. Now by the induction hypothesis applied to G[V (C)∪ {u, v}] for
each connected component of G− {u, v}, we obtain that every vertex distinct from u and v has
degree at most 6; hence ∆(G) ≤ 6.

Henceforth, we may assume that G is 3-connected and the result follows by Plummer [8].

Figure 10: A planar claw-free graph G∗ with maximum degree 6 and proper orientation number
6.

Theorem 22 is tight as shown by the graph G depicted in Figure 10 which is claw-free, planar
and has maximum degree 6. Moreover, Theorem 22 implies that every planar claw-free graph
has proper-orientation number at most 6. This is tight as shown by the following proposition.

Proposition 23. The graph G∗, depicted in Figure 10, has proper orientation number equal to
6.

Proof. The graph G∗ is made of 5 blocks isomorphic to K4. One one them (in the center of the
figure), denoted by C intersects the four others. For every vertex v of C, let B(v) be the block
intersecting C in v. Assume for a contradiction that G has a proper 5-orientation D. There
are two vertices v1 and v2 in C, such that d−D(vi) ∈ {0, 1, 2, 3}. Now the set of in-degrees of
the other vertices of B(vi) is exactly {0, 1, 2, 3} \ {d−D(vi)}. Thus inside B(v) there are exactly
6− (0 + 1 + 2 + 3− d−D(vi)) = d−D(vi) arcs towards v. Hence vi dominates all other vertices of C.
This is a contradiction, because the edge v1v2 cannot be oriented both ways.
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