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Abstract. We present a detailed study of the large-scale collective prop-
erties of self-propelled particles (SPPs) moving in two-dimensional het-
erogeneous space. The impact of spatial heterogeneities on the ordered,
collectively moving phase is investigated. We show that for strong
enough spatial heterogeneity, the well-documented high-density, high-
ordered propagating bands that emerge in homogeneous space disap-
pear. Moreover, the ordered phase does not exhibit long-range order,
as occurs in homogeneous systems, but rather quasi-long range order:
i.e. the SPP system becomes disordered in the thermodynamical limit.
For finite size systems, we find that there is an optimal noise value that
maximizes order. Interestingly, the system becomes disordered in two
limits, for high noise values as well as for vanishing noise. This remark-
able finding strongly suggests the existence of two critical points, in-
stead of only one, associated to the collective motion transition. Density
fluctuations are consistent with these observations, being higher and
anomalously strong at the optimal noise, and decreasing and crossing
over to normal for high and low noise values. Collective properties are
investigated in static as well as dynamic heterogeneous environments,
and by changing the symmetry of the velocity alignment mechanism of
the SPPs.

1 Introduction

We understand by an active particle, a particle that is able to convert energy into
work to self-propel in a dissipative medium. There are several strategies to achieve self-
propulsion. (i) Particles may possess an energy depot and be equipped with a motor 1,
a scenario representative of many biological systems such as moving bacteria [2,3],

a e-mail: oleksandr.chepizhko@gmail.com
b e-mail: peruani@unice.fr
1 Motility assays represent a particular case, where motors are not attached to the moving

particles, while the energy depot could be considered as extended over the space [1]
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insects [4,5], and animals [6,7]. (ii) Particles may be able to rectify an external driving
in order to achieve self-propulsion in a given direction, a situation commonly observed
in non-living, artificial active particles such as vibration-induced self-propelled rods
and discs [8,9,10], light-induced thermophoretic active particles [11,12,13,14], chem-
ically driven particles [15,16,17,18,19,20], and rollers driven by the Quicke rotation
effect [21]. Independently of the strategy exploited by the particles to self-propel, these
systems are intrinsically out of (thermodynamic) equilibrium 2 and even in absence of
particle-particle interactions exhibit a non-trivial behavior. For instance, fluctuations
in the self-propelling mechanism can lead to complex transients in the mean-square
displacement of the particles [22] as well as anomalous velocity distributions [23].

Interestingly, most, if not all, active particle systems found in nature take place, at
all scales, in the heterogeneous media: from bacterial motion in natural habitats [24],
such as the gastrointestinal tract and the soil, among other complex environments, to
the migration of herd of mammals across forests and steppes [7]. Despite this evident
fact, active matter research has focused almost exclusively, at the experimental and
theoretical level, on homogeneous active systems [25,26,27,23,28]. Non-equilibrium,
large-scale properties of active systems such as long-range order in two-dimensions
as Vicsek et al. [29] reported in their pioneering paper, the emergence of high-order,
high-density traveling bands [30,31], and the presence of giant number fluctuations
in ordered phases [26,32,33] are all non-equilibrium features either predicted or dis-
covered in perfectly homogeneous systems. Here we show that most of these non-
equilibrium features are strongly affected by the presence of spatial heterogeneities.
Moreover, we show that these properties vanish in strongly heterogeneous media.
More specifically, we extend previous results [34] on the large-scale collective prop-
erties of interacting self-propelled particles (SPPs) moving at constant speed in an
heterogeneous space. We model the spatial heterogeneity as a random distribution
of undesirable areas or “obstacles” that the SPPs avoid. The degree of heterogeneity
is controlled by the average density ρo of obstacles. We provide numerical evidence
that indicates that at low densities of heterogeneities ρo, the SPPs exhibit, below
a critical noise intensity ηc1, long-range order (LRO). For noise intensities η close
to ηc1, the SPPs self-organize, as in homogeneous space, into high-density traveling
structures called “bands”. We find that as ρo is increased, bands become less pro-
nounced to the point that for large enough values of ρo they are no longer observed.
Our results indicate that in strongly heterogeneous media, i.e. large values of ρo, the
large-scale properties of the system are remarkably different from what we know of
the Vicsek model [29] in two-dimensional homogeneous media. For instance, orien-
tational order for η < ηc1 is no longer LRO, but rather quasi-long range (QLRO),
with the system exhibiting the maximum degree of order at an intermediate noise
value ηM , such that 0 < ηM < ηc1. Moreover, we provide solid evidence that the
system becomes disordered as η → 0. The numerical data suggests the existence of
a second critical point ηc2, with 0 < ηc2 < ηc1 below which the system is genuinely
disordered. The disordered phase at low η values is characterized by the presence of
large, dense moving clusters. We show that the particle number statistics is consis-
tent with these observations: giant number fluctuations (GNF) are high 3 near ηM
and decrease as η approaches ηc2, with GNF becoming weaker as ρo is increased to
the point that fluctuations become normal. Finally, we investigate and compare static
and dynamical heterogeneous media, as well as SPPs with ferromagnetic and nematic
velocity alignment. We show that in all cases there exists an optimal noise intensity

2 This is due to the energy consumption involved by the self-propelling mechanism and
the energy dissipated to the medium

3 The associated GNF exponent adopts its maximum value near ηM .
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Fig. 1. Interaction of a self-propelled particle (blue) with an obstacle (green). Angles are
given with respect to horizontal axis that is directed from left to right. The moving direction
given by the angle θ(t) evolves in time from an initial direction at ti to a final direction at
tf final. The temporal evolution of the particle position, with respect to the obstacles, is
given by the angle α(t). The initial value of α at ti and its final value at tf are marked with
dashed lines. Notice, that after a collision, θ(tf ) ≈ α(tf ), the difference ∆ = θ(tf ) − α(tf )
is such that ∆ << 1 for either large values of γo or large values of Ro. In the figure, γo = 1
and Ro = 1.

.

that maximizes the ordering in the systems. The reported results might be of a great
importance for the design and control of active particles systems.

The paper is organized as follows. In Section 2 we introduce a general and simple
model for SPPs in heterogeneous media. The collective motion phase, the associated
kinetic phase transition and ordering properties of the model are studied in Sec. 3.
Anomalous density fluctuations are addressed in Sec. 4. In section 5, we investigate
the collective properties of SPPs in a dynamical heterogeneous environment, and
discuss the effect of the velocity alignment symmetry. We summarize our results in
Sec. 6.

2 Formulation of the model

We consider a system of N self-propelled particles, moving with a constant speed v0
on a two-dimensional heterogeneous space of linear size L with periodic boundary
conditions. We express the equations of motion of the i-th particle as:

ẋi = voV(θi) (1)

θ̇i = g(xi)





γb
nb(xi)

∑

|xi−xj |<Rb

sin [q(θj − θi)]



+ h(xi, θi) + ηξi(t) , (2)

where the dot denotes temporal derivative, xi corresponds to the position of the ith
particle, and θi is an angle associated to its moving direction. Equation (1) indi-
cates simply that the particle moves at speed v0 in direction V(θi) = (cos θi, sin θi).
Equation (2) conveys the dynamics of the moving direction of the particle, which is
parametrized by the angle θi. The first term on the right-hand side corresponds to a
velocity-velocity alignment mechanism acting between neighboring particles as in the
Vicsek model [29], the second term models the interaction of the i-th particle with
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Fig. 2. Simulation snapshots of different phases for ρo = 2.55 × 10−3 for a system size
Nb = 19600 (L = 140). The SPP are represented as black arrows, while the obstacles as green
dots. The bottom panels correspond to macroscopic phases, while the top panels to zoom
up regions, where the interaction between the SPPs and the obstacles can be appreciated.
From left to right: (a) clustered phase, η = 0.01 and r = 0.58, (b) homogeneous ordered
phase, η = 0.3 and r = 0.97, and (c) ordered band phase, η = 0.6 and r = 0.73.

the spatial heterogeneities, and the third term is an additive noise, where 〈ξi(t)〉 = 0,
〈ξi(t)ξj(t

′)〉 = δijδ(t − t′), and η denotes the noise strength. The velocity-velocity
alignment is characterized by three parameters: its symmetry, given by q and that
we fix for most of this analysis to be ferromagnetic with q = 1, the interaction radius
Rb, and the alignment strength γb, where the symbol nb(xi) represents the number of
SPPs at a distance less than or equal to Rb from xi, i.e. the number of neighbors of the
i-th particle. The function g(xi) controls the relative weight between alignment (to
the other particles) and heterogeneity/obstacle avoidance. We tested two possibilities,
both leading to the same macroscopic behavior: g(xi) = 1 and g(xi) = 1−Θ(no(xi)),
where Θ(x) is Heaviside step function. The latter implies that in the proximity of an
obstacle, the SP particle focuses on avoiding it, without aligning to the neighbors.
Results shown here correspond to this definition. Finally, the interaction with the
spatial heterogeneities, which we refer to as “obstacles” or undesirable areas, is given
by the function h(xi, θi), defined as:

h(xi, θi) =
γo

no(xi)

∑

|xi−yk|<Ro

sin(αk,i − θi) , (3)

if no(xi) > 0, otherwise h(xi) = 0. The term no(xi) represents the number obstacles
at a distance less than or equal to Ro. The angle αk,i is simply the angle of the polar
representation of the vector xi−yk = Γk,i (cosαk,i, sinαk,i), where yk is the position
of the kth-obstacle and Γk,i is the norm of the vector. The position yk of obstacles,
with k ∈ [1, No], is random and homogeneously distributed in space. The interaction
between a SPP and an obstacle is depicted in figure 1: as the particle approaches the
obstacle, its trajectory is deflected. While here we focus mainly on “obstacles” whose
position is fixed in time, we will also address briefly, at the end of the paper, the case
of moving obstacle, i.e. free to diffuse around the space.

It is worth analyzing few simple limits of the model given by equations (1) and (2).
For γb = γo = 0, the equations define a system of non-interacting persistent random
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Fig. 3. Average values of order parameter r for 10 different initial configuration of obstacles
for three values of the noise strength η and ρo = 0.0325. System size Nb = 10000. Notice that
the average value of the order parameter does not depend on the particular configuration of
the randomly placed (static) obstacles. The error bars correspond to the standard deviation
of the time series of r obtained for each obstacle configuration and set of parameters.

walkers characterized by a diffusion coefficient Dx = v2o/η
2. With γo = 0 and γb > 0

(or equivalently γo > 0 and No = 0), the model reduces to a continuous-time ver-
sion [35] of the Vicsek model [29]. For γo > 0, γb = 0, and No > 0, the equations
describe a system of non-interacting active particles moving at constant speed on
an heterogeneous space, where several interesting non-equilibrium features can be
observed [36]. At low obstacle density, particles move diffusively with a diffusion co-
efficient that is, interestingly, a non-monotonic function of the obstacle density. It
reaches a minimum at a given, non-trivial, non-zero obstacle density. On the other
hand, at high obstacle density and for large enough interaction strength γb, sponta-
neous trapping of particles can occur. In this scenario, particles move sub-diffusively
across the space, spending arbitrary long time in the spontaneously formed traps [36].
Here, we focus on the general scenario where γo > 0, γb > 0, and No > 0. We reduce
the parameter space by fixing the following parameters: Rb = Ro = 1, γb = γo = 1,
ρb = Nb/L

2 = 1, v0 = 1 and a discretization time step to ∆t = 0.1. Notice that our
main control parameters are the noise intensity η and the number of obstacles No or
equivalently, the obstacles density ρo = No/L

2.

3 The order-disorder transition

The system exhibits three distinct macroscopic phases, for any given obstacle density
ρo > 0, as we move from high to low noise amplitude η. At high noise values, particles
are homogeneously distributed in space as a disordered gas of non-interacting parti-
cles. Below a critical noise value ηc1, the system undergoes a kinetic phase transition
from the disordered gas to a (locally) ordered phase. For finite size systems, there
is a symmetry breaking and the ordered phase implies the existence of a net flux of
particles in a given direction, or equivalently the existence of a preferred direction
of motion. For values close to onset of collective motion, i.e. close to ηc1, and for
rather low values of ρo particles self-organize into high-density, high-order traveling
structures called “bands”, as illustrated in Fig. 2(c). As η is decreased further, getting
deeper in the ordered phase, bands disappear and we observe an ordered phase where
particles are roughly homogeneously distributed in space, though anomalously large
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Fig. 4. (a) Order parameter r vs. noise strength η for various values of the obstacle density
ρo. (b) Order parameter r vs. obstacle density ρo for various values of noise strength η.
System size: Nb = 19600 (L = 140). Notice in (a) that curves for ρo > 0 exhibit a (local)
maximum. This implies the existence of optimal noise value that maximizes collective motion.

density fluctuations are present, Fig. 2(b). If η is decreased even further, coming close
to the noiseless limit, counterintuitively the degree of order drops dramatically and
particles are organized into densely packed moving clusters, see Fig. 2(a), that are
only weakly correlated due to the constant deflections they experience when running
into obstacles.

In order to quantify the degree of order in the system, we use the following order
parameter:

r = 〈r(t)〉t =

〈
∣

∣

∣

∣

∣

1

Nb

Nb
∑

i=1

eiθi(t)

∣

∣

∣

∣

∣

〉

t

, (4)

where 〈. . . 〉t denotes the average over time 4. The definition of r is simply, in complex
notation, the norm of the average velocity of the particles. Values of r larger than
zero indicate that there is a net flux of particles in a given direction, while r =
0 corresponds to a disordered system. It is important to stress that the average
value of r does not depend on the particular configuration of (static) obstacles, as
long as the obstacles have been placed randomly in the space. For instance, if we
compare simulations performed with different obstacle configurations, we obtain the
same average value of r, as shown in Fig. 3, where the error bars represent the
measured standard deviation in the corresponding time series of the order parameter
r. In summary, the value of r, Eq. 4, depends only on the noise amplitude η and
obstacle density ρo.

Fig. 4 shows the dependency of the order parameter r with respect to the noise
intensity η for various obstacle densities ρo, panel (a), and with respect to the obstacle
density for various noise intensities, panel (b). The curve that corresponds to ρo = 0 in
Fig. 4(a), black curve, exhibits the behavior that we expect in an homogeneous space,
i.e. as expected in the classical formulation of the Vicsek model [27]. This reference
curve indicates that in an homogeneous system, the maximum order is reached in
the noiseless limit. Notice that for an homogeneous system, as the noise intensity
is increased, the order parameter r monotonically decreases until the critical noise
strength ηc1, above which the system is fully disordered and r = 0. Fig. 4(a) shows
that the presence of even a small amount of obstacles leads to a qualitatively different
picture, with the order parameter r exhibiting a different behavior with η. All curves
with ρo > 0 reach a maximum at a non-zero value of η, and all decrease as the noiseless

4 Since our initial condition is typically a random distribution of particles over space with
random moving direction, this average is performed after removing the transient.
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Fig. 5. Evidence of a first-order phase transition at low obstacle densities. (a) Binder cumu-
lant G and susceptibility χ as function of the noise intensity η. Notice that around η ∼ 0.8,
G reaches negative values and χ peaks. (b) Histogram n(r) of the order parameter obtained
from time series of r. (c) Time series of the order parameter r. Notice the flip-flops in the
time series. System size Nb = 19600 (L = 140).

limit is approached. This means that for each value of ρo, there is an optimal value
of η that maximizes collective motion. We refer to this η value as ηM . On the other
hand, we observe that if we fix the noise intensity η and vary the obstacle density
ρo, as displayed in Fig. 4(b), the order parameter r monotonically decreases as ρo is
increased. Notice that curves corresponding to different noises exhibit a quite distinct
behavior, for instance compare the curve for η = 0.3, close to the optimal noise ηM
for most ρo values, with the other curves.

In the following we divide our quantitative analysis into two statical data sets
that correspond to low obstacle density and high obstacle density, respectively. We
show that at quite small obstacle densities, the numerical data is consistent with a
discontinuous (kinetic) phase transition. The numerical data indicates that as the
obstacle density increases, the traveling bands become weaker until they disappear.
We show that once we reach such obstacle densities (i.e. for ρo ≥ 0.1), the order
is no longer long-range (LRO) in the ordered phase, but rather quasi-long range
(QLRO). Our results unambiguously indicate that at such high obstacle densities, as
we approach the noiseless limit, i.e. when particles self-organize into densely packed
moving clusters as shown in Fig. 2(a), the system is fully disordered, which suggests
the existence of a second critical point.

3.1 Low obstacle density

To characterize the phase transition to orientational order at low obstacle densities, we
introduce two additional quantities, the susceptibility χ and the Binder cumulant [37]
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Fig. 6. Finite size analysis at low and high obstacle densities. (a) Scaling of r as func-
tion of the system size Nb for low obstacle densities, here ρo = 2.55 × 10−3, for vari-
ous values of η (color coded). The solid lines correspond to exponential fittings: r(Nb) =
r∞ +C∗ exp(−Nb/N∗), with r∞, C∗, and N∗ fitting constants. Notice that for Nb → ∞, the
order parameter reaches a constant value r(Nb → ∞) → r∞, i.e. long-range order (LRO).
(b) Scaling of r as function of the system size Nb for high obstacle densities, here ρ = 0.102,
for various values of η (color coded). The solid curves correspond to power-law fittings:
r(Nb) = AN−µ

b , where A and µ are fitting constants. We define, see text, quasi-long-range
order (QLRO) when µ < 1/16. On the other hand, µ = 1/2 implies that the system is fully
disordered. (c) Exponent µ as function of the noise intensity η for ρ = 0.102. The diagram
allows us to define two critical points, indicated by the vertical lines: the vertical line to the
left corresponds to ηc2, while the other one to ηc1. In between ηc2 < η < ηc1 the order is
QLRO. The value 1/16 is indicated by an horizontal red line.

G, whose definitions are given by:

χ = 〈r2〉t − 〈r〉2t , (5)

G = 1−
〈r4〉t
3〈r2〉2t

, . (6)

We use χ to determine precisely the position of the critical point ηc1 and G to estimate
whether the probability distribution of the order parameter r is unimodal and Gaus-
sian. Notice that the definition of G is directly related to the excess kurtosis. Fig 5(a)
shows both quantities as function of the strength η for one of the smallest obstacle
densities tested, ρo = 2.54× 10−3. The peak of χ and the sudden change of behavior
of G at η = 0.8 indicates that the critical point is located at ηc1 = 0.8. The drop of G
to negative values suggests that the probability distribution of r is bimodal [38], as
confirmed in Fig. 5(b). This finding is the result of abrupt transitions in the value of
r along time, often called “flip-flops”, from low values (disordered gas phase) to high
values (ordered phase) and vice versa, Fig. 5(c). In summary, the statical data close
to the critical point ηc1 is consistent with a discontinuous (kinetic) phase transition:
negative values of G, a bimodal distribution, and flip-flops as η → ηc1.

Our next step is to determine whether at low obstacle densities the observed order
for η < ηc1 remains present in the thermodynamical limit. This involves a finite size
scaling. The goal is to obtain the scaling of the order parameter r with the system
size. If the system exhibits long-range order (LRO), by increasing the system size,
while keeping constant the particle density ρb and obstacle density ρo, we expect r
to saturate to a non-zero value. As measure of the system size we use Nb

5. Fig. 6(a)
shows that at low obstacles densities, here ρo = 2.55 × 10−3, r effectively saturates

5 As measure of system size, instead of Nb, we can use either No or L. Since ρb and ρo are
constant, knowing either L, Nb, or No, we can determine the other two.
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Fig. 7. Bands. (a) The particle density profile ρL(x) of the bands along the (band) moving
direction. The horizontal line indicates the density profile corresponding to an homogeneous
distribution of particles whose value we denote by ρh. (b) Maximum ρLmax of the density
profile ρ(x)L vs. the density of obstacles. The panel shows the quantity ρLmax/ρH−1, which
drops to zero for large densities, which indicates the absence of bands in the system.

with Nb to a non-zero value for a large range of η < ηc1 values 6. Thus, the numerical
data at very low densities, up to the system size we could reach, is consistent with
LRO. This implies that in the thermodynamical limit we expect the system to remain
ordered, i.e. as Nb → ∞, r → r∞(η) > 0, where r∞(η) is the asymptotic value of r
in an infinite system, which is a function of η, ρb, and ρo.

At low obstacle densities, as mentioned above, we observe close to the critical
point ηc1 a behavior consistent with a first-order (discontinuous) phase transition.
This seems to be related [30] with the emergence of high-order traveling bands 7,
as shown in Fig. 2(c). Bands are narrow structures that expand through the whole
system, elongated in the direction perpendicular to their direction of motion. Several
density profiles, corresponding to various ρo values, are displayed in Fig. 7(a). To
construct these profiles, one needs to project the particle positions onto the moving
direction of the band and make a histogram. Bands exhibit a sharp front and a smooth
tail. They move across a background gas of disordered (or weakly ordered) particles
and accumulate particles in the front as they advance forward, while loosing particles
in the rear. The presence of obstacles strongly affects bands. As ρo is increased,
profiles get smoother as illustrated in Fig. 7(a). This can be more quantitatively
seen in Fig. 7(b) that shows how the bands vanish for large value of ρo. In short,
as the number of obstacles is increased, bands become weaker, with a profile that
relaxes towards the background gas. At some point, bands and the background gas
are undistinguishable and bands vanish. This is evident for ρo > 0.1, where bands are
no longer observed.

3.2 High obstacle density

At high enough obstacle densities, where bands are no longer observed, the system
behavior is remarkably different. The finite size study reveals that the system is
unable to reach LRO at such high ρo values. We find that the order parameter r

decays with the system size Nb as a power-law: r ∝ N
−µ(η)
b , where the exponent

6 Unfortunately, we can not be sure that this behavior remains for η < 0.05. Smaller noises
are hard to explore numerically.

7 For instance, when flip-flops are observed, high values of r coincide with the emergence
of bands. Along the simulation, bands appear and disappear constantly, as flip-flips do.
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(a) and (b) represent power-law fitting curves. (c) The dependency of the scaling exponent
β (see text for more details) on the noise strength η at fixed ρo = 0.102. For ρo = 0.102,
ηc1 ≈ 0.45 ± 0.05 and ηc2 ≈ 0.15 ± 0.05, indicated by two dashed vertical lines in the
figure. In the range ηc2 < η < ηc1, the system exhibits Quasi-Long-Ranged Order (QLRO).
(d) Dependency of the scaling exponent β on the density of obstacles at fixed noise strength
η = 0.3. The region where the system exhibits ordered phases is indicated by a vertical
dashed line, where order is first LRO and then QLRO. System size Nb = 40000 (L = 200).

µ(η) is a function of η, as shown in Fig. 6(b) for ρo = 0.102. For noises close to
the optimal value ηM , we obtain exponent values such that 0 < µ < 1/16. Here, by
analogy with Kosterlitz-Thouless transition [39] we say that when 0 < µ < 1/16 there
is quasi-long range order (QLRO), while for µ > 1/16 we assume that the system is
disordered. Fig. 6(c) shows that the behavior of µ(η) is such that we can define two
disordered phases, one at high noise values and the other one at low noises, and the
ordered phase with QLRO at intermediate noises. This implies the existence of two
critical points, which obey µ(ηci) = 1/16, with i = 1, 2 such that ηc2 < ηc1, see
Fig. 6(c). The system exhibits QLRO when ηc2 < η < ηc1, while being disordered
for η < ηc2 and η > ηc1. Notice that for both disordered phases, µ reaches 1/2, in
particular we observe that µ → 1/2 in two limits: η → 0 and η → ∞. A scaling

r ∝ N
−1/2
b corresponds to a fully disordered system with a random distribution of

moving directions. Interestingly, the densely packed moving cluster phase at low η
values, as the one observed in Fig. 2(a), corresponds, at high obstacle densities (i.e.
for ρo ≥ 1), to a fully disordered phase. The presence of only QLRO, or rather the
absence of LRO, implies that in the thermodynamical limit we expect r → 0 for all
η > 0 values, i.e. we expect an infinite system to be disordered. Nevertheless, between
ηc2 < η < ηc1, we expect the SPPs display large correlations in their moving direction
also in the thermodynamical limit.
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4 Anomalous density fluctuations and clustering statistics

A way to characterize the distribution of SPPs over the space is through the study
of density fluctuations. Particularly useful information is provided by the so-called
number fluctuations. The idea is to divide the space over which particles move in
cells of linear size l and count the number of particles in each cell. Let us call n(xi, l)
the number of particles in the cell of linear size l whose center is at position xi. We
are interested in computing the average of this quantity 〈n(xi, l)〉i and its standard
deviation σ. It can be shown [26] that 〈n(xi, l)〉i = ρbl

2 = 〈n〉l and that

σ(l) =

√

〈(n(xi, l)− 〈n〉l))
2
〉i = 〈n〉βl , (7)

where the average 〈. . .〉i is performed over the cells the space has been divided into.
An exponent β = 1/2 is expected for a random distribution or particles, while β >
1/2 corresponds to giant number fluctuations (GNF). It has been predicted that in
spatially homogeneous systems, the SPPs in the ordered phase – far away from the
band regime – exhibit GNF [28]. This prediction has been observed in simulations of
SPP particles, where a value of β ∼ 0.8 was found [38,40]. Here, we are interested
in knowing the impact of an heterogeneous environment on the number fluctuations.
Figure 8 shows how number fluctuations are affected by changing the noise intensity
η for a fixed density of obstacles ρo ≈ 0.102 (see Fig. 8(a),(c)) and by varying the
obstacle density ρo while keeping the noise fixed, here η = 0.3 (see Fig. 8(b),(d)).
The top panels of Fig. 8 correspond to the scaling of σ(l) with the average number
〈n〉l of particles per cell. In the figure, dashed blue lines correspond to a slope 1/2,
while red solid lines to a slope 1. Undoubtedly, GNF are also present in heterogeneous
space. Nevertheless, there are important differences with what we know from SPP in
homogeneous space. For instance, for a fixed (high enough) obstacle density ρo, GNF
are suppressed, or at least decrease, as η → ηc2, i.e. β adopts smaller values as η
approaches ηc2, Fig. 8(c). We recall that in homogeneous space GNF are expected to
be characterized by the same anomalous exponent as η → 0. We also point out that
in both homogeneous and heterogeneous space, number fluctuations become normal
for η > ηc1, i.e. in high-noise disordered phase. This means that at high obstacle
densities (i.e. for ρo ≥ 0.1), GNF are stronger – meaning that β adopts its largest
value – at some point in between ηc2 < ηM < ηc1, and this seems to occur close to
ηM . On the other hand, if we fix the noise intensity η, we observe that GNF decay
(i.e., β goes down) as the density of obstacles ρo is increased, reflecting the global
tendency of the system to go to disorder when ρo → ∞. We find that for ρo → 0,
β → 0.8 as expected in an homogeneous media, while as ρo is increased, the exponent
β exhibits two regimes with ρo, approaching linearly for high obstacle densities 1/2,
where fluctuations can be considered normal and the system disordered, see Fig. 8(d).

Another alternative to study how particles are distributed in space is to look
at the cluster size distribution. As before, we are interested in understanding how
the presence of obstacles affects the non-equilibrium clustering statistics of the SPPs
with respect to what we know from homogeneous media [41,42,43]. By “cluster”
we understand a group of connected particles, such that the distance between two
connected particles is smaller or equal to the interaction radius. The size or mass of
a cluster, which we denote here with the letter “m”, is the number of particles the
cluster contains. Our quantity of interest is the (weighted) cluster size distribution
(CSD) P (m). Its definition is given by:

P (m) = lim
t→∞

P (m, t) = lim
t→∞

mnm(t)

N
, (8)

where nm(t) refers to the number of clusters of mass m that are present in the
system at time t. The limit is to indicate that we look at the steady state CSD and
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Fig. 9. Clustering statistics. (a) The cluster size distribution (CSD) P (m) for the fixed
density of obstacles ρo = 3.25 × 10−2 for different noises η. The critical noise values are
ηc2 ≈ 0.05 and ηc1 ≈ 0.75. The CSD for η = 0.9 corresponds to a disordered phase, while
the other two CSDs to ordered phases. The dashed and dotted-dashed curves provide the
scaling ∝ m−1.18 and ∝ m−0.5 used as reference. (b) P (m) for fixed noise value η = 0.6 and
two different values of the obstacle density ρo. With ρo = 2.5 × 10−3 the system is in an
ordered phase and bands are observed, while with ρo = 0.4 the system is fully disordered
and bands are not observed. The dashed line corresponds to the scaling ∝ m−1.18. System
size Nb = 19600 (L = 140).

neglect transitory behaviors. Fig. 9(a) shows how the CSD is changed by varying the
noise η for fixed ρo = 3.25× 10−2. As a reference, the CSD corresponding to a fully
disordered phase, i.e. η = 0.9, is shown. We find that in between ηc1 and ηM the CSD
distribution is roughly power-law, P (m) ∝ m−ω, with an exponent ω ∼ 1.18 that falls
in the range [0.8, 4/3] as expected [43]. As we move to lower noise values, e.g. η = 0.3,
there is a strong depletion of isolated particles and small clusters and particles tend to
form larger clusters, way larger than those observed close to ηc1 or in the disordered
phase (notice the log scale in the figure). Fig. 9(b) displays the CSD at fixed noise
η = 0.6 and two different values of ρo. For ρo = 2.5× 10−3 we observe bands and the
CSD is again a power-law with exponent ω ∼ 1.18, similar to what was reported for
the Vicsek model [29] in the band regime where ω ∼ 1.3 [43]. The figure evidences
that by increasing the density of obstacles ρo, at fixed noise, the functional form
of CSD is dramatically affected. In particular, it shows that at very large obstacle
density the CSD becomes exponential as expected for the disordered phase, with a
well defined average cluster size 8 and not surprisingly the system exhibits normal
number fluctuations.

5 Discussion: static vs dynamic heterogeneities and the symmetry

of the interactions

There is no reason to believe that static and dynamic heterogeneous environments
lead to similar large-scale collective effects. In particular, the conclusions drawn from
the finite size analysis performed with static obstacles, i.e. with a sort of “quenched”
noise, may not apply to dynamical heterogeneities. One may argue that dynamical
heterogeneities may be mapped to an effective noise in a SPP system with homoge-
neous space. In this scenario, the dynamical heterogeneities should not affect qualita-
tively the large-scale properties of the system but only have an impact on the critical
point. A rigorous analysis would require a finite size study of SPPs in dynamical het-
erogeneous environments, which is a very time-demanding numerical task out of the

8 Power-law CSDs may be such that their first moment diverges, while exponential CSDs
always have a well defined first moment.
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Fig. 10. SPP in a dynamical environment, where obstacle diffuse with a diffusion coefficient
Do. (a) Order parameter r vs. η for various obstacles densities ρo and constant diffusion
coefficient Do. (b) r vs. η for constant density of obstacles ρo and various diffusion coefficients
Do. Notice that there exists an optimal noise value even in a dynamical environment. System
size Nb = 10000 (L = 100).

scope of the current paper. Less ambitious but not less informative, we can analyze
the impact of a dynamical heterogeneous medium on the collective properties of SPPs
in a fixed system size. Let us assume that the obstacles now diffusive over the space
with a diffusion constant Do. The position of the k-th obstacle obeys:

ẏk =
√

2Doξk(t) (9)

where 〈ξk(t)〉 = 0 and 〈ξk(t)ξf (t
′)〉 = δ(t− t′)δk,f . Fig. 10 shows the order parameter

r as function of the (angular) noise η, for various values of ρo and fixed obstacle
diffusion coefficient Do = 0.7, panel (a), and fixed obstacle density ρo = 0.102 and
various obstacle diffusion coefficient Do, panel (b). We find that even for a dynam-
ical heterogeneous environment, there is an optimal noise that maximizes collective
motion. As the obstacle density is increased, the level of ordering, i.e. r, decreases
for all angular noises, Fig. 10(a). On the other hand, we learn that the faster the
obstacles diffuse, the weaker is the effect of the obstacles, Fig. 10(b). Moreover, the
numerical data suggests that in the limit of Do → ∞ the system behaves again as
an homogeneous system with its critical point shifted to smaller noise values 9. This
suggests that in this limit effectively the problem can be mapped to an homogeneous
system with an effective (angular) noise intensity.

Finally, we may wonder whether the observed optimal value is due to the par-
ticular symmetry of the velocity alignment between the SPPs that has been used,
i.e. due to q = 1 in Eq. 2. To address this question, we perform simulations with
SPPs interacting via a nematic velocity alignment, i.e. q = 2 in Eq. 2, that move in
an heterogeneous medium with static obstacles. Since the alignment is nematic, we

replace the order parameter by: S2 =
〈∣

∣

∣

1
Nb

∑Nb

i=1 e
i 2 θi(t)

∣

∣

∣

〉

t
, where 〈. . .〉t represents

a temporal average after a short transient. For a totally disordered system, S2 = 0,
while S2 > 0 implies that the system exhibits, for the tested system size, (global)
nematic order. Fig. 11 shows that optimal noise ηM exists also for SPPs interacting
via nematic alignment in an heterogeneous environment, as discussed above for fer-
romagnetic velocity alignment. In this case, the optimal noise ηM maximizes nematic
ordering, i.e. it favors the emergence of a preferred direction of motion, where 50%
of the SPPs move roughly parallel to it and the other 50% antiparallel to it. Details
about SPPs with nematic velocity alignment in homogeneous media can be found
in [35,44,45].

9 Compare Fig. 10(b) and Fig. 4(a), curve for ρo = 0 to see the shift in the critical point.
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Fig. 11. SPPs with nematic alignment in a (static) heterogeneous medium. Nematic order
parameter S2 vs. noise intensity η for different obstacle densities ρo. Notice that also SPPs
with nematic alignment exhibit an optimal noise that maximizes order in the system. System
size Nb = 10000 (L = 100).

6 Conclusions

We have learned that even small levels of heterogeneity lead to qualitative changes
in the large-scale properties of SPP systems interacting via a velocity alignment
mechanism. Some of the new statistical features that emerge due to the presence
of heterogeneities – as for instance the existence of an optimal noise that maximizes
order [34] – are present in both statical and dynamical heterogeneous media, as well
as by changing the symmetry of the velocity alignment mechanism of the SPPs. Other
findings, as the absence of long-range order for high levels of heterogeneity (i.e. for
ρo ≥ 0.1) apply exclusively to static obstacles. In general, we can conclude that in
heterogeneous environments the physics of SPP systems is different from what we
know from homogeneous ones, with the presence of obstacles making more difficult
for the SPPs to spread information about their moving direction across the system.
From the two information spreading mechanisms [48,49] – the one involving direct
particle-particle interaction and responsible of order inside individual clusters, and
the other one involving cluster-cluster information exchange, often through particle
exchange among clusters – obstacles affect the second one 10. In particular, due to the
obstacle presence, clusters get quickly uncorrelated as result of independent collisions
with the obstacles. At high obstacle densities or low noise amplitudes, particle ex-
change among clusters becomes insufficient to maintain the moving clusters correlated
and the level of (global) order decreases.

The spatial arrangement of particles is also strongly affected by the presence
of obstacles. The high-order traveling bands – reported to emerge in the classical,
homogeneous, Vicsek model [30,31] – become less pronounced and even disappear
as the level of heterogeneities, i.e. obstacles, is increased. At the point where bands

10 Information spreading in the context of active particles (without alignment) was studied
with self-propelled disks that exchange their internal state upon collision [50]. As for align-
ing active particles, there are also two information mechanisms, with particle-particle infor-
mation exchange being way faster than cluster-cluster information exchange. Interestingly,
fluctuations play a major role even in the absence of cluster-cluster information exchange in
two dimensions where the physics of the problem is always non-trivial [51].
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are no longer observed, the ordering properties change from long-range to quasi-long
range, which suggests that in the limit of an infinite system (keeping constant both,
obstacle and particle density) and for static obstacles, the SPPs cannot maintain
a coherent migratory route along the (infinite) heterogeneous space: i.e. the system
becomes disordered. On the other hand, our finite size analysis revealed that at high
obstacle densities (i.e. ρo ≥ 0.1), the system exhibits two critical points, one at low and
another one at high noise value. Finally, the study of density fluctuations indicated
that the giant-number-fluctuation exponent β moves towards 1/2, which corresponds
to normal density fluctuations, as we approach the noiseless limit, as well as for large
enough obstacle densities.

Finally, it is worth mentioning that few experiments with active particle in het-
erogeneous media have been already performed, so far, with active particles without
alignment: self-propelled janus particles moving on patterned surfaces [46] and speckle
light fields [47,52]. Interestingly, patterned regular environments have been initially
used to rectify the motion of active swimmers such as bacteria in diluted suspensions
(i.e. in a non-interacting context) [53,54,55]. In these systems, volume exclusion ef-
fects and the size of the moving active particles play a central role. Such observations
have triggered a good deal of theoretical work. For instance, in simulations with self-
propelled disks (SPD) it has been shown that SPDs can get locally jammed by the
obstacles [56] 11, while in simulations with SP rods it has been found that V-shaped
obstacles can be used to trap particles [57]. On the other hand, it has been shown
in simulations with circularly moving active particles that a regular configuration of
obstacles can be used to filter the active particles [58,59], while narrow channels can
direct particle motion [60]. It remains to be seen how the large-scale collective prop-
erties reported here are affected by introducing a velocity alignment mechanism in
the above mentioned more realistic models.
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