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Quasipatterns in a parametrically forced horizontal fluid

film

Médéric Argentina, Gérard Iooss∗

LJAD, UMR 6621 CNRS UNS, Université de Nice - Sophia Antipolis,
06108 Nice Cedex 02, France

Abstract

We shake harmonically a thin horizontal viscous fluid layer (frequency forcing
Ω, only one harmonic), to reproduce the Faraday experiment and using the
system derived in31 invariant under horizontal rotations. When the physical
parameters are suitably chosen, there is a critical value of the amplitude
of the forcing such that instability occurs with at the same time the mode
oscillating at frequency Ω/2, and the mode with frequency Ω. Moreover, at
criticality the corresponding wave lengths kc and k′c are such that if we define
the family of 2q equally spaced (horizontal) wave vectors kj on the circle of
radius kc, then kj + kl = k′n, with |kj| = |kl| = kc, |k′n| = k′c.

It results under the above conditions that 0 is an eigenvalue of the lin-
earized operator in a space of time-periodic functions (frequency Ω/2) having
a spatially quasiperiodic pattern if q ≥ 4. Restricting our study to solutions
invariant under rotations of angle 2π/q, gives a kernel of dimension 4.

In the spirit of26 we derive formally amplitude equations for perturba-
tions possessing this symmetry. Then we give simple necessary conditions on
coefficients, for obtaining the bifurcation of (formally) stable time-periodic
(frequency Ω/2) quasipatterns. In particular, we obtain a solution such that
a time shift by half the period, is equivalent to a rotation of angle π/q of the
pattern.

We finally explain why this derivation is formal, no center manifold re-
duction being available, because of the occurence of small divisors (see12),
and the fact that the 0 Floquet exponent is not isolated in the spectrum of
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the linearized operator.

Keywords: Quasipattern, Viscous flows, Faraday instability, Normal
forms, Bifurcations

1. Introduction

As curator of experiments of the Royal Society, R. Hooke proposed new
experiments on a weekly basis. Among these numerous demonstrations, he
observed the appearance of a pattern when a rectangular piece of glass recov-
ered with flavor was excited on its edge with a violin bow1. This experiment
has been largely explored by Chladni in the field of acoustics2 and later revis-
ited by Faraday3. This latter observed that the response of a vertically forced
thin layer of fluid may result in the appearance of waves at the surface with
half the frequency forcing. This non trivial result has been criticized at that
time by4,5 who observed a fluid response with a frequency equal to the forcing
one. Later on, Rayleigh6 unified these two different observations by propos-
ing a Mathieu equation for describing the instability. The linear analysis of
inviscid liquids computed by Benjamin &Ursell7 yielded the sought Mathieu
equation for the eigenmodes of vibration. The analysis of the corresponding
eigenvalues predicted within a satisfactory agreement the instability thresh-
old in comparison with their experiments, but misses the effects of viscosity.
In order to explore the inclusion of viscous stresses, numerical simulations of
a thin and viscous layer of fluid vertically forced has been performed8 and
confronted to various experiments with success9,10. For the linear stability
analysis, an approximation for viscous liquids has been derived in the form
of a damped Mathieu equation11 which recovers the numerical approach of8.
All the previous cited works aimed at predicting the wavelength instabil-
ity at threshold. Although experiments demonstrate a clear appearance of
a well defined characteristic length, the associated patterns at the surface
may appear with very different shapes12, as a combination of the marginally
stable wave vectors. Indeed, this variety is expressed in experiments : from
stripes in very viscous systems13, squares14,15,16,13 and hexagons17,18,19. In
direct numerical simulations of the viscous fluid layer, these structures have
been reproduced20. Quasi crystalline structure has been observed when a
small container is forced with two frequencies with a twelvefold symmetry
in the Fourier Space21. Later on, these quasipatterns have been obtained
experimentally with just one forcing frequency on large systems22. In order

2



to predict the pattern selection, analytical approaches has been developed in
the approximation of the amplitude equations. These models take the form:

∂tAn = µAn − g0A
3
n −

2q∑
m=1,m 6=n

g (θmn) |Am|2An, (1)

where µ measures the distance to the instability threshold, An is the ampli-
tude of an eigen-mode with a wavevector kn. The 2q ≥ 8 vectors kn point
towards the circle of radius kc and are equally separated by an angle π/q.
When q is not a multiple of 3, (see section 4 below), the nonlinearities are
cubic because of the symmetry An → −An, and are defined through a self-
interaction parameter g0 and g(θmn) that couples the amplitudes Am to An.
This function has been computed for inviscid fluid23,24,25, and exhibits sin-
gularities. A criterion of selection of the pattern is given in26, relying on an
energy argument. Moreover, in26, on their model PDE, Rucklidge and Silber
study the resonant interactions between critical modes and weakly damped
modes, giving another criterion of selection for bifurcating quasipatterns.

The small viscosity limit for an infinite layer of fluid has been addressed
in27,28,29. The large viscosity limit has been solved linearly in11, and the
weakly nonlinear analysis performed in30. A mechanism for observing quasi-
patterns have been proposed in13 for the two frequency forcing, that is similar
to the scenario proposed in26: due to quadratic nonlinearities, a coupling be-
tween two sub-harmonic modes produces an harmonic mode that resonates
if the harmonic response is marginal, as the sub-harmonic.

In this work, we analyze the scenario for obtaining quasi-crystalline struc-
tures, in the approximation of a thin viscous fluid layer. For this limit,31

proposes a set of averaged equations based on the lubricated flows of Stokes,
that takes into account, as a perturbation, the effect of inertial effects. Since
this model is able to reproduce the experimental phase diagrams32, it should
possess all the necessary nonlinearities to predict the existence of quasipat-
terns. We present below a new possible mechanism for the natural selection
of a quasipattern.

Starting in section 2 from the fluid dynamics equations of31, we study
the stability, under harmonic vertical forcing oscillations, of the basic uni-
form state (zero horizontal velocity, flat free surface). Nondimensionalized
parameters are the amplitude of the forcing Γ, the Reynolds number R, and
the ratio B between the Bond number (where surface tension occurs) and
the square of the Froude number (where gravity occurs). We consider cases
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where criticallity is obtained with two critical wave numbers kc and k′c, lead-
ing to two critical circles (due to rotational invariance) in the Fourier plane,
and we study situations near critical values (Γc,Bc,Rc) for which the ratio
kc/k

′
c corresponds to quadratic interactions of the form

kj + kl = k′n,with |kj| = |kl| = kc, |k′n| = k′c

and the angle (kj,kl) is a multiple of π/q (the value of the ratio determines
q). The set of wave vectors kj, j = 1, ...2q, equally spaced on the circle of
radius kc, generates a 2q− fold quasipattern, as soon as q ≥ 4. In section 2
we introduce the function spaces required for understanding mathematically
quasipatterns, and we study the Floquet exponents of the linearized system,
leading to criticallity and allowing at section 3 and in Appendix to define
the critical values (Γc,Bc,Rc). At section 4 we give, for all cases with q
odd (the case q even is reported in Appendix), amplitude equations for all
solutions invariant under rotations of angle 2π/q (twice the angle between
the basic wave vectors kj). In particular, we show, for q odd, the existence
of a quasipattern solution such that a time shift by one period of the forcing,
is equivalent to a rotation of the pattern by an angle of π/q. In addition,
we give large families of quasipattern solutions (all invariant under 2π/q
rotations) and we give necessary conditions for their stability (with respect
to perturbations built on the same quasilattice). We compute explicitely the
main coefficients of the amplitude equations in two cases with q = 5 or 7,
checking in such cases that the above necessary conditions are fullfilled.

The existence results given here are not mathematically justified, because
of a small divisor problem, not yet solved. This is also the case for our formal
stability studies provided for of all bifurcating quasipatterns that we give
below.

2. Basic system and main assumptions

2.1. Physical system

We consider a thin horizontal fluid layer which is vertically harmonically
shaked (frequency forcing Ω, only one harmonic). We use the system derived
in31, where the unknown is the vector (η,v) function of (x, t), v being the
(2 components) average over the vertical of the horizontal component of the
velocity of particles, η being the elevation of the free surface and x being
the horizontal 2-components coordinate. Notice that the scaling chosen for
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obtaining (2) from the system in31 uses a horizontal length scale L/
√
Bo, and

velocity scale ΩL/
√
Bo, where Bo = ρΩ2L2/γh is the Bond number (ρ is the

density, Ω is the frequency forcing, L is a characteristic horizontal length, h
the thickness of the fluid layer at rest supposed to be very small with respect
to L, and γ is the surface tension). Our system reads as

∂tη +∇ · v = 0(
η∂t +

9

7
v · ∇

)
v

η
+

1

7

v

η
(∇ · v) +

5

2R
v

η2
+

5B
6
η(f(t)−∇2)∇η = 0 (2)

where the Reynolds number R, defined by R = (Ωh2)/ν, and B = (ρL2g)/γ
are parameters, where ν is the kinematic viscosity (B is the ratio between
the Bond number, and the square of the Froude number, where gravity g
occurs). The function f(t) is of the form

f(t) = 1 + Γ cos t (3)

and corresponds to a parametric forcing of frequency 1 (the scale of time is
chosen for having this frequency), the parameter Γ measures the amplitude
of the forcing.

2.2. Abstract formulation

We see on system (2), that (η,v) = (const,0) is a family of equilibria
(trivial solutions). In fact, this family corresponds to a change in the defi-
nition of the basic depth h. This is why we choose to restrict η to having a
spatial average equal to 1. Let us define the 3-components vector U = (ξ,v),
function of (x, t) where η = 1 + ξ, and then assume that ξ has a zero spatial
average. Then (2) may be written as

dU

dt
= LΓ,B,R(t)U + BΓ,B,R(t)(U,U) + CR(U,U, U) +O(||U ||4), (4)

where all coefficients are 2π - periodic in t. The linear operator LΓ,B,R(t)
depending smoothly on parameters (Γ,B,R) is defined by

LΓ,B,R(t)U =

(
−∇ · v

− 5
2Rv − 5B

6
(f(t)−∆)∇ξ

)
, (5)
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the operator BΓ,B,R(t) is quadratic and CR is a cubic operator, defined by

BΓ,B,R(t)(U,U) =

(
0

−8
7
v∇ · v − 9

7
v · ∇v + 5

Rξv −
5B
6
ξ(f(t)−∇2)∇ξ

)
,

CR(U,U, U) =

(
0

8
7
ξv∇ · v + 9

7
ξv · ∇v + 9

7
v(v · ∇ξ)− 15

2Rξ
2v

)
.

All operators act in a Hilbert space H which corresponds to quasipatterns
(see next section). Moreover the system (4) is O(2) equivariant. This means
that there is a symmetry S, and a one parameter family of linear operators
Rφ acting in H, representing the rotation of angle φ in the x - plane R2, such
that

S2 = I,SRφ = R−φS, (6)

RφRψ = Rφ+ψ, R0 = I = R2π,∀φ, ψ ∈ R (7)

and such that operators LΓ,B,R(t), BΓ,B,R(t), CR commute with S and Rφ for
any φ ∈ R. Operators S and Rφ are defined as follows. First the symmetry
S is defined by

SU(x, t) = (ξ(sx, t), sv(sx, t)),withsx = (x1,−x2).

Let us now introduce operators R′φ acting in R3, defined by

R′φ(ξ,v) = (ξ, Rφv),

where Rφ is the usual rotation of angle φ in R2, then the operator Rφ is
defined by

(RφU)(x, t) = R′φU(R−φx, t) = (ξ(R−φx, t), Rφv(R−φx, t)) (8)

and we have the group property (7).

2.3. Main assumptions on the linearized system

Let us consider the linear system

dU

dt
= LΓ,B,R(t)U (9)

and look for solutions under the form

U(t,x) = Ûk(t)eik·x+σt (10)
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where x and k ∈ R2 and σ ∈ C (Floquet exponent). As we are in the

parametric forcing case, we may look for eigenmodes Ûk(t) which are 4π/p
- periodic in t (for example p = 1 corresponds to frequency 1/2, p = 2 to
frequency 1, etc..). From the rotational invariance, we have

RφÛk(t)eik·x+σt = R′φÛk(t)eik·R−φx+σt = R′φÛk(t)eiRφk·x+σt.

It results that if there is one eigenvector corresponding to the wave vector k
and Floquet exponent σ, then

R′φÛk(t) = ÛRφk(t), φ ∈ R

is also an eigenvector for the wave vector Rφk, and the full circle of radius
|k| gives a set of eigenvectors for the same Floquet exponent σ.

We show in Appendix A that for any fixed |k| and p the Floquet exponents
σ are such that

Reσ < a0p(|k|,B,R,Γ),

with
a0p(|k|,B,R,Γ) < 0ifR < 5((1 + |k|2)− Γ)/Γ.

It results that neutral modes corresponding to Reσ = 0 may be obtained
only if Γ = Γp(|k|,B,R) with

Γp(|k|,B,R) ≥ 1 + |k|2

1 +R/5
.

Moreover, a perturbation analysis (see Appendix A) shows that for |k| close
to 0,

Reσ = −BR
3
|k|2 +O(|k|4) < 0.

This implies that the critical value Γc of Γ, defined by

min
|k|

Γp(|k|,B,R) = Γc(p,B,R)

is reached for |k| = kc 6= 0 where kc depends on (p,B,R).
We numerically see that for a given p the minimum of Γp is reached in

only one point kc. Typical pictures are shown in Figure 1.
We now make the following fundamental hypothesis:
Hypothesis 1. In the (B,R) - space of parameters, there is a set of

values given by q(B,R) = 0 for which the minimal values for all Γp(B,R, |k|),
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p = 1, 2, .... is obtained at the same time for p = 1 (frequency 1/2) with
|k| = kc and for p = 2 (frequency 1) with |k′| = k′c. All other Γc(p,B,R),
p = 3, 4, ....are larger.

It results from Hypothesis 1 that we have solutions (10) of (9) (unique
up to a factor), where σ = 0, of the form

ξ0 = Ûkc(t)e
ik·x,

ξ1 = Ûk′c(t)e
ik′·x, k = (kc, 0), k′ = (k′c, 0),

Ûkc(t+ 2π) = −Ûkc(t) 4π − periodic in t, while Ûk′c(t+ 2π) = Ûk′c(t).

Notice that we have in this case

{ d
dt
− LΓc,B,R(t)}ξj = 0, j = 0, 1.

This means that the set {Rφξj, j = 0, 1 for all φ ∈ R}, is included in the

kernel of d
dt
− LΓc,B,R(t) acting in the space of 4π- time periodic U bounded

for x ∈ R2.
We define µ = Γ−Γc where Γc is the minimum obtained in Hypothesis 1

(see Figure 1 on the right).

|k|0
c

c

k

µ=Γ−Γ

frequency 1/2

frequency 1

frequency p/2

p≠(1,2)

k'0

c

c

µ=Γ−Γ
frequency 1

frequency 1/2

frequency p/2  

p≠(1,2)

k'0
c

c

ck

µ=Γ−Γ frequency 1

frequency 1/2

frequency p/2  

p≠(1,2)

|k| |k|

(a) (b) (c)

Figure 1: Neutral stability curves for various values of (B,R). Hypothesis 1 corresponds
to (c).

Remark 1. Hypothesis 1 is satisfied for suitable values of (B,R) in system
(2) as it is numerically shown (see Appendix B).
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(a) (b) (c)

k
1

k
2

k
3

k
4

k
5

k
6

k
7

k
8

Figure 2: Example quasilattice with q = 4, after33. (a) The 8 wavevectors with |k| = 1
that form the basis of the quasilattice. (b,c) The truncated quasilattices Σ9 and Σ27. The
small dots mark the positions of combinations of up to 9 or 27 of the 8 basis vectors on
the unit circle. Note how the density of points increases with Nk (defined in section 2.5).

2.4. Quasipatterns

Let q ≥ 4 be an integer and define wavevectors

kj = kc

(
cos

(
π
j − 1

q

)
, sin

(
π
j − 1

q

))
, j = 1, 2, . . . , 2q (11)

(see figure 2a). We define the quasilattice Σ ⊂ R2 to be the set of points
spanned by integer combinations km of the form

km =

2q∑
j=1

mjkj, where m = (m1,m2, . . . ,m2q) ∈ N2q. (12)

the quasilattice Σ is symmetric with respect to the origin and it is known
that Σ is dense in R2.

Remark 2. Notice that kj and −kj = kj+q belong to the basic set of wave
vectors. This implies that if k ∈ Σ, then −k ∈ Σ.

2.5. Function spaces

We characterise the functions of interest by their Fourier coefficients on
the quasilattice Σ generated by the Q = 2q unit vectors kj:

u(x) =
∑
k∈Σ

uke
ik·x,
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where for the moment we assume that u has only one scalar component.
Recall that for each k ∈ Σ, there exists a vector m ∈ N2q such that k =
km =

∑2q
j=1mjkj and we can choose m such that |m| =

∑2q
j=1mj = Nk as

defined by
Nk = min{|m|; k = km ∈ Σ}.

Notice that, since k and −k ∈ Σ,

u(x) =
∑
k∈Σ

uke
−ik·x =

∑
k∈Σ

u−ke
ik·x,

and u(x) is real valued if uk = u−k,k ∈ Σ. We have the following properties,
proved in12:

Lemma 3. The space of functions

Hs =

{
u =

∑
k∈Σ

uke
ik·x : ||u||2s =

∑
k∈Σ

(1 +Nk
2)s|uk|2 <∞

}
, (13)

is a Hilbert space with the scalar product

〈w, v〉s =
∑
k∈Σ

(1 +Nk
2)swkvk. (14)

Moreover Hs is a Banach algebra for s > q/2. In particular there exists
cs > 0 such that

||uv||s ≤ cs||u||s||v||s. (15)

For ` ≥ 0 and s > `+ q/2, Hs is continuously embedded into C`.

Remark 4. In our problem, U is vector valued with 3 components. The
adaptation of the above Hilbert space is OK for each component, just replacing
in the definition of the scalar product wkvk by (Wk, Vk) where (·, ·) is the
Hermitian scalar product in the vector space C3 of components of U, not
forgetting that Uk = (ξk,vk) is such that ξ0 = 0 (see section 2.2). Below, we
denote this subspace by H. We do not specify s in what follows for the choice
of space H (s may differ for the ξ(t) component and for the v(t) components,
and is different for the time periodic U(t) in the domain of the linear operator
LΓ,B,R(t) or in its range.
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2.6. Basic assumption for a quadratic resonance

In addition to Hypothesis 1, we assume one of the two following Hypoth-
esis.

Hypothesis 2a. There are two integers q and n such that

k′c = 2kc cos
nπ

q
. (16)

Let us define the following vectors in the plane (see Figure 3)

kj = kc

(
cos

(j − 1)π

q
, sin

(j − 1)π

q

)
, j = 1, ...2q,

k′j = k′c

(
cos

(j − 1)π

q
, sin

(j − 1)π

q

)
, j = 1, ...2q,

then (16) means that we have

kj + kj+2n = k′j+n, j = 1, ..2q. (17)

Hypothesis 2b. There are two integers q and n such that

k′c = 2kc cos
(2n− 1)π

2q
. (18)

This corresponds to

kj + kj+2n−1 = k′j+n−1/2, j = 1, ..2q, (19)

with (see Figure 3)
k′j+n−1/2 = Rπ/2qk

′
j+n−1.

Remark 5. Hypothesis 1 imposes that the critical forcing Γc(B,R) obtained
for 4π- periodic and for 2π - periodic functions are equal (µ = 0). Hypothesis
2a or 2b imposes in addition a restriction for the ratio k′c/kc which gives q
and n. We show in Appendix B that fixing k′c/kc, i.e. n/q or (2n − 1)/2q,
fixes the parameters R and B.

Notice that without (17) or (19) there is no quadratic term in amplitude
equations, except in very special cases (where q is a multiple of 3) (see below).
The search for quasipatterns works well with only one circle of radius kc, and
the bifurcation is in general (without quadratic resonances) of pitchfork type
(of order

√
|µ|), but with an arbitrary choice for q (see12 for example). The

interest of our higher codimension case is that q (i.e. the quasipattern) is
determined by the choice of parameters.
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π/5

1k

2k

3
k

k'1

k'2

k'3

1k 3
k+ = k'2 2cos(π/5)= k'c kc/

0
6k

1k

2k

3
k

k'1+1/2

k'2+1/2

k'3+1/2

1k 2
k+ = k'

1+1/2
2cos(π/10)= k'

c
kc/

0
6k

π/5

k'6+1/210k

q=5      Hypothesis 2a q=5    Hypothesis 2b

10k

Figure 3: Examples of assumptions on basic wave vectors for q = 5

2.7. Kernel and quasi-Fredholm alternative in the R2π/qrotationally invariant
subspace

Let us consider the kernel of d/dt − LΓc,Bc,Rc in the space of 4π - time
periodic functions taking values in H2π/q = {U ∈ H; R2π/qU = U}. Notice
that 2π/q is twice the angle between kj and kj+1. Choosing such a subspace
of H seems somewhat arbitrary. Indeed we might choose to look for all
possible solutions in H, or restrict to solutions invariant under Rπ/q or under
any other subgroup of rotations. The purpose here is to give an example of
study, not totally trivial, leading to a not too large-dimensional kernel.

From now on, we denote by L0 the linear operator LΓc,Bc,Rc when hypoth-
esis 1 and 2a or 2b are satisfied.

Because of the rotationnal invariance of (4) which propagates on the lin-
earized system, we can build solutions of the linear system which are invariant
under rotations of angle 2π/q :

ζ0(t) =

q∑
j=1

Ûk2j−1
(t)eik2j−1·x =

q∑
j=1

R(j−1)2π/qξ0, k2j−1 = R(j−1)2π/qk1,

(20)
and

ζ1(t) =

q∑
j=1

Ûk′2j−1
(t)eik

′
2j−1·x =

q∑
j=1

R(j−1)2π/qξ1, k′2j−1 = R(2j−2)π/qk
′
1,

(21)
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for Hypothesis 2a, or

ζ1(t) =

q∑
j=1

Ûk′
2j−1/2

(t)eik
′
2j−1/2

·x =

q∑
j=1

R(j−1)2π/q+π/2qξ1, (22)

k′2j−1/2 = R(j−1)2π/qk
′
1+1/2,

for Hypothesis 2b. We have clearly ζ0, ζ1 ∈ H2π/q and the following proper-
ties hold: (

d

dt
− L0(t)

)
ζj = 0, j = 0, 1,

ζ0(t+ 2π) = −ζ0(t), ζ1(t+ 2π) = ζ1(t),

Rπ/qζ0 = ζ0, Rπ/qζ1 = ζ1 when q is odd, (23)

ζ0, ζ1, Rπ/qζ0 and Rπ/qζ1 are real when q is even,

Sζ0 = ζ0, SRπ/qζ0 = Rπ/qζ0,

Sζ1 = ζ1, SRπ/qζ1 = Rπ/qζ1, for Hypothesis 2a,

Sζ1 = Rπ/qζ1, SRπ/qζ1 = ζ1, for Hypothesis 2b.

The kernel of d
dt
− L0(t) is now 4-dimensional, since it contains ζ0, ζ1 and

Rπ/qζ0, and Rπ/qζ1, and there is no other independent vector in the kernel.
Let us now solve linear systems of the form(

d

dt
− L0(t)

)
U = F (24)

where F ∈ H2π/q and we look for solutions U is this space. Equation (24)
may be formally solved if F satisfies 4 compatibility conditions

〈F, ζ∗0〉 = 〈F, ζ∗1〉 = 〈F,Rπ/qζ
∗
0〉 = 〈F,Rπ/qζ

∗
1〉 = 0, (25)

where we defined the scalar product

〈U, V 〉 =
1

4π

∫ 4π

0

(U(t), V (t))H0dt

and (U(t), V (t))H0 is the scalar product (take s = 0 in the definition (14)
above) in the space H0. We also use the fact that in H2π/q the operator Rπ/q

is such that
R∗π/q = R−π/q = Rπ/q.

13



In (25) ζ∗0, Rπ/qζ
∗
0 and ζ∗1, Rπ/qζ

∗
1 are solutions, invariant under R2π/q,

of the adjoint problem(
d

dt
+ L∗0(t)

)
ζ∗j(t) = 0, j = 0, 1,

with

ζ∗0(t) =
∑

1≤j≤q

Û∗k2j−1
(t)eik2j−1·x,

ζ∗1(t) =
∑

1≤j≤q

Û∗k′2j−1
(t)eik

′
2j−1·x for Hypothesis 2a,

ζ∗1(t) =
∑

1≤j≤q

Û∗k′
2j−1/2

(t)eik
′
2j−1/2

·x, for Hypothesis 2b,

and we have the symmetry properties:

ζ∗0(t+ 2π) = −ζ∗0(t), ζ∗1(t+ 2π) = ζ∗1(t).

Rπ/qζ
∗
0 = ζ0

∗
, Rπ/qζ

∗
1 = ζ1

∗
when q is odd,

ζ∗0, ζ
∗
1, Rπ/qζ

∗
0 and Rπ/qζ

∗
1 are real when q is even,

Sζ∗0 = ζ∗0, SRπ/qζ
∗
0 = Rπ/qζ

∗
0,

Sζ∗1 = ζ∗1, SRπ/qζ
∗
1 = Rπ/qζ

∗
1, for Hypothesis 2a,

Sζ∗1 = Rπ/qζ
∗
1, SRπ/qζ

∗
1 = ζ∗1, for Hypothesis 2b.

We assume in addition that we choose the normalization of ζ∗j(t), j = 0, 1
such that

〈ζ0, ζ
∗
0〉 = 1, 〈ζ0, ζ

∗
1〉 = 0, (26)

〈ζ1, ζ
∗
0〉 = 0, 〈ζ1, ζ

∗
1〉 = 1.

Due to the definition of the scalar product in H, we observe that we have

〈ζ0,Rπ/qζ
∗
0〉 = 0, 〈ζ0,Rπ/qζ

∗
1〉 = 0,

〈ζ1,Rπ/qζ
∗
0〉 = 0, 〈ζ1,Rπ/qζ

∗
1〉 = 0.

Remark 6. The compatibility conditions (25) are not sufficient a priori for
solving (24). This is not a true Fredholm alternative, because of a small
divisor problem in the formal pseudo-inverse of d

dt
− L0 in the subspace

14



complement of its kernel in L2(S1,H2π/q). In fact the range of d
dt
− L0 in

L2(S1,H2π/q) is not closed. For obtaining a solution for (24), we need in
addition to check that the r.h.s. belongs to the range of d

dt
−L0. In the sequel,

this is always satisfied once (25) is satisfied, since we deal with F having a
finite Fourier expansion.

3. Computation of the kernel

3.1. Kernel of d
dt
− LΓ,B,R(t)

Let us compute the form of the 4π - time periodic solutions U of

dU

dt
− LΓ,B,R(t)U = σU, (27)

where σ is a Floquet exponent (for the period 4π), and where we look for
U(t) in H (quasi-periodic pattern). Equation (27) leads to the system

dξ

dt
+∇ · v = σξ, (28)

dv

dt
+

5

2R
v +

5B
6

(f(t)−∆)∇ξ = σv.

This gives

(
d

dt
− σ +

5

4R
)2ξ − 25

16R2
ξ − 5B

6
(f(t)−∆)∆ξ = 0.

The Fourier decomposition in eik·x where k ∈ Σ, leads to

(
d

dt
− σ +

5

4R
)2ξ̂k −

25

16R2
ξ̂k +

5Bk2

6
(f(t) + k2)ξ̂k = 0,

where k2 = |k|2, and ξ̂k is 4π - periodic in t. Since we are looking for the
0 Floquet exponent (corresponds to the kernel of d

dt
− LΓ,B,R(t)), we make

σ = 0 and the second order differential equation to solve is now (denoting

u = ξ̂k)

ü+
5

2R
u̇+

5Bk2

6
[1 + Γ cos t+ k2]u = 0. (29)

Notice that taking the curl of the second equation in (28) leads to (for σ = 0)

(
d

dt
+

5

2R
)curlv = 0,

15



which, because of time periodicity, gives

curlv = 0.

The eigenvector U takes now the following form, for k 6= 0

U = (u,
ik

k2
u̇)eik·x (30)

where u is a 4π - periodic solution of (29). We notice the dependancy in k
of the v component.

For k = 0, we impose ξ0 = 0 by construction, then

dv0

dt
+

5

2R
v0 = 0

which does not lead to a 4π - periodic solution v0.

3.2. Kernel of the adjoint operator d
dt

+ L∗Γ,B,R(t)

Using the scalar product (14) we check easily that the adjoint operator
L∗Γ,B,R is defined by

L∗Γ,B,RU =

(
5B
6

(f(t)−∆)∇ · v
− 5

2Rv +∇ξ

)
and U in the kernel of d

dt
+ L∗Γ,B,R satisfies

dξ

dt
+

5B
6

(f(t)−∆)∇ · v = 0,

dv

dt
− 5

2R
v +∇ξ = 0.

Here again curlv = 0, and a coefficient (ξ̂k, v̂) of eik·x in the Fourier decom-
position of U should verify (we use ∇(∇ · v) = ∆v)

(
5

2R
v − v̇, ikv) = (ξ̂k, v̂), (31)

d2v

dt2
− 5

2R
dv

dt
+

5Bk2

6
[1 + Γ cos t+ k2]v = 0,

where v is 4π - periodic in t. Notice that v needs to be scaled for the verifi-
cation of normalization condition (26).
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4. Formal derivation and study of the amplitudes equations

Let us proceed as if we could apply the center manifold reduction (this
is not true indeed!) for each of the cases we consider. In fact when we
compute the Taylor expansion of a center manifold here, we are faced with a
small divisor problem for large orders in the expansion. We decide below to
ignore this fact, but this has the consequence that we cannot derive reduced
equations (amplitude equations given below) on a center manifold up to any
orders.

Let us denote the parameter set by (µ, β, γ) = (Γ − Γc,B − Bc,R−Rc)
and define the 2π - t−periodic linear operators Lj, j = 1, 2, 3 by

LΓ,B,R = L0 + µL1 + βL2 + γL3 +O{(|µ|+ |β|+ γ|)2}

L1(t)U =

(
0

−5Bc
6
∇ξ cos t

)
, L3U =

(
0

5
2R2

c
v

)
,

L2(t)U =

(
0

−5
6
(1 + Γc cos t−∆)∇ξ

)
,

and let us define B0(t) = BΓc,Bc,Rc(t).
A ”center manifold reduction” means that for (µ, β, γ) close to 0, the

”small” solutions in H2π/q that we might observe as t→∞ should satisfy

U(t) = A0(t)ζ0(t) + A1(t)ζ1(t) +B0(t)Rπ/qζ0(t) +B1(t)Rπ/qζ1(t) +

+Ψ(A0(t), A1(t), B0(t), B1(t), µ, β, γ, t) (32)

where
〈Ψ, ζ∗0〉 = 〈Ψ, ζ∗1〉 = 〈Ψ,Rπ/qζ

∗
0〉 = 〈Ψ,Rπ/qζ

∗
1〉 = 0, (33)

and Ψ(A0, A1, B0, B1, µ, β, γ, t) is 4π - periodic in t.
Thanks to the symmetry properties (23), in the case when q is odd, we

have
B0 = A0, B1 = A1, (34)

while, when q is even A0, B0, A1, B1 are real valued. Now, the time shift of
2π changes ζ0 and ζ∗0 into their opposites, so that this leads to

Ψ(A0, A1, B0, B1, µ, β, γ, t+ 2π) = Ψ(−A0, A1,−B0, B1, µ, β, γ, t),
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and by construction of the center manifold and of the properties (33) for
obtaining amplitude on a center manifold, we may check that it is such that

(
dA0

dt
,
dA1

dt
,
dB0

dt
,
dB1

dt
) = (f0, f1, g0, g1)(A0, A1, B0, B1, µ, β, γ, t)

with 2π - periodic in t functions f0, f1, g0, g1 (instead of 4π - periodic), f0

and g0 being odd in (A0, B0), while f1 and g1 are even in (A0, B0).

4.1. Amplitude equations for q odd

We put in Appendices Appendix C and Appendix D the amplitude equa-
tions for q even, and the study of their solutions.

When q is odd in Hypothesis 2a or 2b, we need to satisfy the following
symmetry properties (see (23)):

Ψ(A0, A1, A0, A1, µ, β, γ, t+ 2π) = Ψ(−A0, A1,−A0, A1, µ, β, γ, t),

Rπ/qΨ(A0, A1, A0, A1, µ, β, γ, t) = Ψ(A0, A1, A0, A1, µ, β, γ, t),

and the system of amplitude equations satisfied by (A0, A1, A0, A1) needs to
commute with the actions

(A0, A1, A0, A1, t) → (−A0, A1,−A0, A1, t), (35)

(A0, A1, A0, A1, t) → (A0, A1, A0, A1, t),

representing respectively the time shift t → t + 2π and the rotation Rπ/q,
and, because of the non trivial action of S in case of Hypothesis 2b:

(A0, A1, A0, A1, t)→ (A0, A1, A0, A1, t).

It is easy to show that the commutation property with Rπ/q implies that the
coefficients of the amplitude equations are real, and the time shift t→ t+ 2π
invariance leads to oddness in (A0, A0) for the Taylor expansion terms of
the r.h.s. of dA0/dt, while it leads to evenness in (A0, A0) for the Taylor
expansion terms of the r.h.s. of dA1/dt.

Moreover we need to keep in mind that the component dA0/dt results
from a scalar product with ζ∗0(t), i.e. with Fourier components of the form
eik2j−1·x with 1 ≤ j ≤ q, while the component dA1/dt results from a scalar
product with ζ∗1(t), i.e. with Fourier components of the form eik

′
2j−1·x with

1 ≤ j ≤ q for Hypothesis 2a, or of the form eik
′
2j−1/2

·x with 1 ≤ j ≤ q for
Hypothesis 2b.
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We have for Hypothesis 2a

kj + kj+2n = k′j+n,

and quadratic resonances occur when k1 = k′1±n + k1±2n+q for dA0

dt
, and

k′1 = k1−n + k1+n for dA1

dt
. The form of the system of amplitude equations

then depends on the parity of n. We obtain at cubic order for Hypothesis 2a
with q odd

i) for n odd

dA0

dt
= µ0A0 + a0A0A1 + b0A

2
0A0 + c0A0A1A1 (36)

dA1

dt
= µ1A1 + a1A0

2
+ b1A0A0A1 + c1A

2
1A1,

where the linear coefficients may be expressed as

µ0 = α0µ+ β0β + γ0γ

µ1 = α1µ+ β1β + γ1γ,

with αj, βj, γj, j = 0, 1 real. Coefficients µj, aj, bj, cj j = 0, 1, are real ,
µ0, µ1 being close to 0.

Remark 7. Higher order terms in (36) are of the form

A0P (|A0|2, |A1|2, A1A
2
0, A1A2

0) + A0A1Q(|A1|2, A1A2
0)

A1P
′(|A0|2, |A1|2, A1A

2
0, A1A2

0) + A0
2
Q′(|A0|2, A1A2

0)

where P, P ′, Q and Q′ are polynomials in their arguments. However, at some
step we obtain very large coefficients of monomials due to the occurence of
eik·x with k very close to kj or k′j in the Fourier expansion of dU/dt in H.
This is due to the fact that the center manifold reduction does not apply here.
So, we stop the writing of the normal form at cubic order to avoid this small
divisor problem, considering that higher order terms completing this system
should satisfy the symmetry invariances (35), having 2π - periodic in time
coefficients.

ii) For n even we obtain in the same way

dA0

dt
= µ0A0 + a0A0A1 + b0A

2
0A0 + c0A0A1A1 (37)

dA1

dt
= µ1A1 + a1A

2
0 + b1A0A0A1 + c1A

2
1A1,
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all coefficients µ0, µ1, aj, bj, cj being real, µ0, µ1 being close to 0.
Now for Hypothesis 2b, we have

kj + kj+2n−1 = k′j+n−1/2

and quadratic resonances occur when k1 = k′n+1/2+k2n+q and k1 = k′1−n+1/2+

k2−2n+q for dA0

dt
, and when k′1+1/2 = k2−n + k2+n−1 for dA1

dt
, which leads to

(using the action of S)

dA0

dt
= µ0A0 + a0A0(A1 + A1) + b0A

2
0A0 + c0A0A1A1 (38)

dA1

dt
= µ1A1 + a1A0A0 + b1A0A0A1 + c1A

2
1A1,

where µj, aj, bj, cj j = 0, 1, are real , µ0, µ1 being close to 0.

4.2. Equilibrium solutions and their stability in the case q odd
4.2.1. Monomodal solutions of (36), (37) and (38)

The first non trivial equilibrium solution is given by

A0 = 0,

µ1 + c1|A1|2 = 0.

This is a one parameter family of quasipattern solutions (built with the wave
vectors k′j or k′j+1/2).The study of the linearized system from (36) or from

(37) leads to the eigenvalues

0,−2µ1, µ0 ± a0|A1|+ c0|A2
1|,

so that a necessary condition for the existence and stability of such solutions
is

µ1 > 0, c1 < 0, µ0 < |a0|
√

µ1

−c1

.

At this order, these solutions form a circle due to the undeterminacy on the
phase of A1. It is clear that A0 = 0 is still solution at any order, since this
corresponds to a quasipattern built with only the lattice spanned by the inte-
ger combinations of wave vectors k′j or k′j+1/2, with no chance to find any kj
in these combinations. Higher order terms in the amplitude equation would
generically provide a 2π - periodic perturbation of the previous solutions,
selecting the phase of A1. Our interpretation is that this means that after
a certain order, higher order terms (which are not in normal form) in the
amplitude equation are used to kill the degeneracy given by the solution for
the normal form.
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4.2.2. Bimodal solutions for q odd and Hypothesis 2a

To fix ideas, let us consider the case with n odd (see (36)) and define
polar coordinates

A0 = r0e
iθ0 , A1 = r1e

iθ1

and
Θ = 2θ0 + θ1

so that the system (36) becomes

dr0

dt
= (µ0 + a0r1 cos Θ + b0r

2
0 + c0r

2
1)r0,

dθ0

dt
= −a0r1 sin Θ,

dr1

dt
= (µ1 + b1r

2
0 + c1r

2
1)r1 + a1r

2
0 cos Θ,

dθ1

dt
= −a1

r2
0

r1

sin Θ,

with
dΘ

dt
= −

(
a1
r2

0

r1

+ 2a0r1

)
sin Θ.

Remark 8. For n even, we need to set Θ = 2θ0 − θ1 and change a1 into
−a1.

Equilibria of type 1. A family of equilibria occurs for Θ = 0 or π. Namely
sinΘ = 0 and cos Θ = ±1. We need to solve

µ0 ± a0r1 + b0r
2
0 + c0r

2
1 = 0,

(µ1 + b1r
2
0 + c1r

2
1)r1 ± a1r

2
0 = 0.

This leads to the existence condition:

µ0µ1a0a1 > 0

and

r2
0 =

µ0µ1

a0a1

+O
(
(|µ0|+ |µ1|)3

)
, (39)

r1 = ∓µ0

a0

∓
(
c0µ

2
0

a3
0

+
b0µ0µ1

a2
0a1

)
+O

(
(|µ0|+ |µ1|)3

)
.
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The stability of such one-parameter families of solutions (the two possible
shifts on θ0 and θ1 are linked by 2θ0 + θ1 being fixed) is given at main order
by the eigenvalues of the matrix 2b0r

2
0 ±a0r0 + 2c0r0r1 0

±2a1r0 + 2b1r0r1 ∓a1
r20
r1

+ 2c1r
2
1 0

0 0 2µ0 + µ1

 .

It we notice that ∓a1
r20
r1

= µ1 + O ((|µ0|+ |µ1|)2), and 2a0a1r
2
0 = 2µ0µ1 +

O ((|µ0|+ |µ1|)3), it is then clear that a necessary condition (at main order)
for the stability of these families of solutions is

µ1 < −2µ0 < 0, (40)

while we need to satisfy
a0a1 < 0. (41)

Physical interpretation of these solutions:. We observe that in the above
families, if we choose θ0 = 0 or π and θ1 = 0 or π, the action of the rotation
Rπ/q is the identity, so that we obtain a one parameter family of solutions
invariant under Rπ/q.

If we choose θ0 = π/2 or 3π/2 and θ1 = 0 or π, the actions of the rotation
Rπ/q and of the time shift by 2π (period of the forcing) are the same since
A0 → −A0 = A0, while A1 is unchanged (real). This means that after the
period 2π the solution looks like rotated by an angle of π/q. This type of
solution should be more visible if |µ0| is small and |µ1| quite large, in such a
way that the mode A0 dominates the mode A1.

Other solutions with 2θ0 + θ1 = 0 or π and θ0 6= 0, π/2, π, 3π/2 are such
that Rπ/q acts non trivially, and differently than the time shift by 2π which
exchanges two different solutions (adds π to θ0).

Remark 9. The solutions above satisfy 2θ0 + θ1 = 0 or π (modulo 2π).
This means that at this order there is a circle of solutions. However the
undeterminacy should be eliminated by higher order terms. Indeed, keeping
in mind the symmetry (35) of the amplitude system at higher orders, all
monomials occur with real coefficients and when A0, A1 are written in polar
coordinates, it remains powers of r0 and r1 with factors cos(mθ0 + pθ1) in
radial equations, and sin(mθ0 + pθ1) in angular equations, with m even.
Since 2θ0 + θ1 = 0 or π (modulo 2π), there are isolated equilibrium solution
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given by the angular equations: θ1 = 0 or π which cancel all terms of the
form sin(mθ0 + pθ1). Finally we recover the only possible values for θ0 :
0, π/2, π, 3π/2, which eliminates the undeterminacy on the phase. It should
be noticed that the necessary conditions for the stability (40) are valid for
all these solutions. However, since it remains one Floquet exponent close to
0 which is not determined at this step, we cannot concude for this (formal)
stability.

Equilibria of type 2. Another type of equilibria occur when

a1r
2
0 + 2a0r

2
1 = 0,

µ0 + a0r1 cos Θ + b0r
2
0 + c0r

2
1 = 0,

(µ1 + b1r
2
0 + c1r

2
1)r1 + a1r

2
0 cos Θ = 0.

This system leads to solutions under the first condition

a0a1 < 0.

Then

r2
1 = −a1

α
(µ1 + 2µ0),

r2
0 =

2a0

α
(µ1 + 2µ0),

r1 cos Θ =
−1

a0α
[(2a0b0 − a1c0)µ1 + (a1c1 − 2a0b1)µ0],

with
α = a1(2c0 + c1)− 2a0(2b0 + b1).

We need in addition to check that | cos Θ| ≤ 1, which leads to the condition

[(2a0b0 − a1c0)µ1 + (a1c1 − 2a0b1)µ0]2 + αa2
0a1(µ1 + 2µ0) ≤ 0,

which corresponds to the interior region of a parabola P (tangent to the
line µ1 + 2µ0 = 0 at the origin) in the (µ0, µ1) plane. It should be noticed
that these equilibria correspond to periodic solutions of system (36), with
2θ0(t) + θ1(t) fixed. Hence, they correspond to a family of solutions of (2)
which are time quasi-periodic, in addition to be quasiperiodic in space.
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Remark 10. Equilibria of type 2 are distinct from those of type 1 for (µ0, µ1)
not belonging to the parabola P

[(2a0b0 − a1c0)µ1 + (a1c1 − 2a0b1)µ0]2 + αa2
0a1(µ1 + 2µ0) = 0,

for which cos Θ = ±1 and are steady equilibria of system (36).

We might give as above necessary conditions for the stability of this family
of quasiperiodic solutions, in studying the real part of the 3 eigenvalues of
the linearized system in (r0, r1,Θ). Since this corresponds to a stability study
of a circle of quasiperiodic solutions which is a complicate thing, we do not
make the analysis here.

4.2.3. Bimodal solutions for q odd and Hypothesis 2b

Writting again in polar coordinates, we obtain from (38)

dr0

dt
= µ0r0 + 2a0r0r1 cos θ1 + b0r

3
0 + c0r0r

2
1,

dθ0

dt
= 0,

dr1

dt
= µ1r1 + a1r

2
0 cos θ1 + b1r

2
0r1 + c1r

3
1,

dθ1

dt
= −a1

r2
0

r1

sin θ1,

which leads to

θ0 undetermined, θ1 = 0 or π,

µ0 ± 2a0r1 + b0r
2
0 + c0r

2
1 = 0,

±a1r
2
0 + r1(µ1 + b1r

2
0 + c1r

2
1) = 0.

The solutions exist provided that

µ0µ1a0a1 > 0,

and
r2

0 =
µ0µ1

2a0a1

+ h.o.t, r1 = ∓ µ0

2a0

+ h.o.t.

As before, a necessary condition for the stability of any solution in this one
parameter family, is that

µ1 < 0 < µ0, a0a1 < 0.
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We have the same discussion as for Hypothesis 2a about solutions with
θ0 = 0, π/2, π or 3π/2 which are either invariant under the rotation Rπ/q

or transformed by this rotation into the time shifted (by 2π) solution.

Appendix A. Estimates on critical values

Let us consider a solution of the form (10) for the system (9), then we
obtain

Ûk(t) = (ξk(t),vk(t)), with ξ0 = 0, and ξk,vk 4π/p - periodic,

ξ̇k + σξk + ik · vk = 0, (A.1)

v̇k + σvk +
5

2R
vk +

5B
6
ik(f(t) + |k|2)ξk = 0.

First we notice the solution for k = 0 : since ξ0 = 0 in our subspace H, we
have

v̇0 + σv0 +
5

2R
v0 = 0

which leads to damped modes with

Reσ = − 5

2R
.

Now for k 6= 0 we have solutions with

ik · vk = 0, ξk = 0,

(
d

dt
+ σ +

5

2R
)(ik× vk) = 0

leading again to damped modes with Reσ = − 5
2R .

Finally it remains to study the modes such that

ik× vk = 0, ik · vk 6= 0.

This leads to

(
d

dt
+ σ +

5

2R
)(
d

dt
+ σ)ξk +

5B
6
k2(f(t) + k2)ξk = 0 (A.2)

where we define k2 = |k|2, and where we look for 4π/p - periodic solutions
ξk.
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Let us multiply (A.2) by ξk and integrate over the period (0, 4π). Combin-
ing real and imaginary parts, integrating by parts once, and writing σ = a+ib,
we obtain

−
∫ 4π

0

|ξ̇k|2dt+(b2+a(a+
5

2R
))

∫ 4π

0

|ξk|2dt+
∫ 4π

0

5B
6
k2(1+Γ cos t+k2)|ξk|2dt = 0.

Multiply now (A.2) by ξ̇k, and consider the real part, then using the
identity

Im

∫ 4π

0

ξkξ̇kdt = −b
∫ 4π

0

|ξk|2dt

we obtain

(2a+
5

2R
)

(∫ 4π

0

|ξ̇k|2dt− b2

∫ 4π

0

|ξk|2
)

+
5B
12

Γ

∫ 4π

0

k2 sin t|ξk|2dt = 0. (A.3)

Hence it results that

(2a+
5

2R
)

[
a(a+

5

2R
) +

5B
6
k2(1 + k2)

] ∫ 4π

0

|ξk|2dt (A.4)

= −5B
6

Γk2

∫ 4π

0

(
(2a+

5

2R
) cos t+

1

2
sin t

)
|ξk|2dt.

From the estimate

(2a+
5

2R
)

[
a(a+

5

2R
) +

5B
6
k2(1 + k2 − Γ)

]
≤ 5B

12
Γk2

we easily deduce that for Γ < 1+k2 andR < 5(1+k2−Γ)
Γ

then a < a0(|k|,B,R,Γ) <
0. In all other cases a < a0(|k|,B,R,Γ) with a0 > 0 (this does not mean that
σ has a positive real part).

Notice that if we integrate over (0, 4π/p) instead of (0, 4π), it appears

5B
12

Γk2|ξk(0)|2(cos 4π/p− 1)

on the left hand side of (A.3). Then using the estimate

|ξk(0)|2 ≤ (1 + p/4π)

∫ 4π/p

0

|ξk|2dt+

∫ 4πp

0

|ξ̇k|2dt
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we might improve the lower estimates for Γc(p) and Rc(p) as p→∞.
From (A.4) it results that for |k| very large Reσ = a < 0 (damped

mode). Moreover from (A.2) we may proceed with a perturbation analysis
for |k| close to 0. This leads to consider

ξk = 1 + k2ξ1 +O(k4), σk = k2σ1 +O(k4)

(
d

dt
+

5

2R
)
d

dt
ξ1 +

5

2R
σ1 +

5B
6

(1 + Γ cos t) = 0

with ξ1 4π - periodic. This gives indeed

σ1 = −BR
3

< 0.

Appendix B. Strategy for computing critical parameter values

Equation (29) is of Mathieu type

ü+ νu̇+ ω2[1 + γ cos t]u = 0 (B.1)

with

ν =
5

2R
, ω2 =

5Bk2

6
(1 + k2), γ =

Γ

1 + k2
.

Using a shooting method, we numerically compute the critical values of
γ(ν, ω2) for which (B.1) presents a periodic solution. This leads to γ0(ν, ω2)
and γ1(ν, ω2) respectively for 4π- periodic and 2π - periodic solutions. Now
we need to find the minimum of Γ with respect to k2 :

Γ =
(
1 + k2

)
γ

(
5

2R
,
5Bk2

6
(1 + k2)

)
.

This leads for γ0 and for γ1, to the conditions

γj + ω2(2 +
1

k2
)
∂γj
∂ω2

= 0, j = 0,

which lead to

k2
c = g0(B,R), (B.2)

k′2c = g1(B,R).
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Now the fact that Γc is the same for 4π - periodic and for 2π - periodic
solutions, gives the identity(

1 + k2
c

)
γ0

(
5

2R
,
5B
6
k2
c (1 + k2

c )

)
=
(
1 + k′2c

)
γ1

(
5

2R
,
5B
6
k′2c (1 + k′2c )

)
which, by using (B.2) leads to a relation of the form

h(B,R) = 0. (B.3)

The relation (16) then gives

cos2 nπ

q
=

g1(B,R)

4g0(B,R)
, (B.4)

while relation (18) gives

cos2 (2n− 1)π

2q
=

g1(B,R)

4g0(B,R)
.

Hence, for a ratio n/q or (2n−1)/2q fixed, we find a second relation between
R and B.

In order to compute numerical values for the coefficients of the normal
forms, we first solve numerically (29) with a Runge-Kutta method, precise
at fourth order. The time step of integration is 10−3. Using a shooting
method, we obtain, for a given set of parameters (R,B), the values of (Γ, k)
such that 4π and 2π periodic functions become solutions of (29). Since we are
interested for the minimal values of the forcing term Γ, we numerically locate
kc and k′c that render minimal Γc(0,R,B) and Γc(1,R,B). Using a Newton
algorithm, we numerically compute a set (Rc,Bc) for a given (n, q), for which
the two minima Γc(0,R,B) and Γc(1,R,B) becomes equal. This method is
equivalent to find the roots of the equations (B.3,B.4). In Figure B.4 we
present the marginal curves for which n = 1, q = 5, i.e. cos(π/5) = k′c/2kc
and n = 1, q = 7, i.e. cos(π/7) = k′c/2kc.

Appendix C. Amplitude equations for q even

When q is even in Hypothesis 2a or 2b, we need to satisfy the following
symmetry properties (see (23)):

Ψ(A0, A1, B0, B1, µ, β, γ, t+ 2π) = Ψ(−A0, A1,−B0, B1, µ, β, γ, t),

Rπ/qΨ(A0, A1, B0, B1, µ, β, γ, t) = Ψ(B0, B1, A0, A1, µ, β, γ, t),
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Figure B.4: Neutral stability curves. top: the parameter values are (Bc,Rc) = (1.27, 4.07),
for which n = 1, and q = 5, k′c/kc = 2 cosπ/5. Bottom: (Bc,Rc) = (5.10, 6.47), for which
n = 1 and q = 7, k′c/kc = 2 cosπ/7.

29



and the system of amplitude equations satisfied by (A0, A1, A0, A1) needs to
commute with the actions

(A0, A1, B0, B1, t) → (−A0, A1,−B0, B1, t), (C.1)

(A0, A1, B0, B1, t) → (B0, B1, A0, A1, t),

representing respectively the time shift t → t + 2π and the rotation Rπ/q,
and, because of the non trivial action of S in case of Hypothesis 2b:

(A0, A1, B0, B1, t)→ (A0, B1, B0, A1, t).

All eigenvectors being real, it results that the coefficients of the amplitude
equations are real, and the time shift t → t + 2π invariance leads to the
component which corresponds to dA0/dt odd in A0, B0, and the component
dA1/dt even in A0, B0.

Moreover, as above, we need to keep in mind that in the normal form the
component dA0/dt results from a scalar product with ζ∗0(t), i.e. with Fourier
components of the form eik2j−1·x with 1 ≤ j ≤ q, while the component dA1/dt
results from a scalar product with ζ∗1(t), i.e. with Fourier components of the

form eik
′
2j−1·x with 1 ≤ j ≤ q for Hypothesis 2a, or of the form eik

′
2j−1/2

·x with
1 ≤ j ≤ q for Hypothesis 2b. By construction we have

i) for q even and Hypothesis 2a

kj + kj+2n = k′j+n,

and quadratic resonances occur when k1 = k′1±n + k1±2n+q for dA0

dt
, and

k′1 = k1−n+k1+n for dA1

dt
. The form of the system of amplitude equations then

depends again on the parity of n. We obtain at cubic order for Hypothesis
2a with q even:

For n odd

dA0

dt
= µ0A0 + a0A0B1 + b0A

3
0 + c0A0B

2
0 + d0A0A

2
1 + e0A0B

2
1 ,

dB0

dt
= µ0B0 + a0B0A1 + b0B

3
0 + c0B0A

2
0 + d0B0B

2
1 + e0B0A

2
1, (C.2)

dA1

dt
= µ1A1 + a1B

2
0 + b1A

3
1 + c1A1B

2
1 + d1A1A

2
0 + e1A1B

2
0 ,

dB1

dt
= µ1B1 + a1A

2
0 + b1B

3
1 + c1B1A

2
1 + d1B1B

2
0 + e1B1A

2
0;
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For n even

dA0

dt
= µ0A0 + a0A0A1 + b0A

3
0 + c0A0B

2
0 + d0A0A

2
1 + e0A0B

2
1 ,

dB0

dt
= µ0B0 + a0B0B1 + b0B

3
0 + c0B0A

2
0 + d0B0B

2
1 + e0B0A

2
1, (C.3)

dA1

dt
= µ1A1 + a1A

2
0 + b1A

3
1 + c1A1B

2
1 + d1A1A

2
0 + e1A1B

2
0 ,

dB1

dt
= µ1B1 + a1B

2
0 + a1A

2
0 + b1B

3
1 + c1B1A

2
1 + d1B1B

2
0 + e1B1A

2
0.

ii) For q even and Hypothesis 2b

kj + kj+2n−1 = k′j+n−1/2

and quadratic resonances occur when k1 = k′n+1/2+k2n+q and k1 = k′1−n+1/2+

k2−2n+q for dA0

dt
, and when k′1+1/2 = k2−n + k2+n−1 for dA1

dt
, which leads to

(using the equivariance under S)

dA0

dt
= µ0A0 + a0A0(A1 +B1) + b0A

3
0 + c0A0B

2
0 + d0A0(A2

1 +B2
1),

dB0

dt
= µ0B0 + a0B0(A1 +B1) + b0B

3
0 + c0B0A

2
0 + d0B0(A2

1 +B2
1),(C.4)

dA1

dt
= µ1A1 + a1A0B0 + b1A

3
1 + c1A1B

2
1 + d1A1(A2

0 +B2
0),

dB1

dt
= µ1B1 + a1A0B0 + b1B

3
1 + c1B1A

2
1 + d1B1(A2

0 +B2
0).

Appendix D. Equilibrium solutions and their stability in the case
q even

Appendix D.1. Monomodal solutions of (C.2), (C.3) and (C.4)

Non trivial monomodal solutions are given by

A0 = B0 = 0,

A1(µ1 + b1A
2
1 + c1B

2
1) = 0,

B1(µ1 + b1B
2
1 + c1A

2
1) = 0,

which corresponds to solutions built on the lattice spanned only with wave
vectors k′j or k′j+1/2.
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i) For A1 = 0, the solutions are invariant under R2π/q and exchanged by
Rπ/q into the solutions with B1 = 0. Necessary conditions for the stability of

these solutions are (for the two solutions A1 = 0, B1 = ±
√
µ1/− b1)

µ1 > 0, b1 < 0, µ0 − d0µ1/b1 < 0, µ0 − e0µ1/b1 + a0B1 < 0.

ii) For A1B1 6= 0, and if b1 6= c1 we have

A2
1 = B2

1 = − µ1

b1 + c1

which gives 4 solutions. For A1 = B1 (two cases) they are invariant under
Rπ/q , while for A1 = −B1 (two cases) they are exchanged by Rπ/q. Necessary
conditions for the stability of these solutions are

µ1 > 0,

b1 + |c1| < 0,

µ0 −
(d0 + e0)

b1 + c1

µ1 + max{a0B1, a0A1} < 0,

Appendix D.2. Bimodal equilibrium solutions for q even

i) For n odd, B0 = A1 = 0, A0 6= 0 we have from (C.2)

µ0 + a0B1 + b0A
2
0 + e0B

2
1 = 0,

µ1B1 + a1A
2
0 + b1B

3
1 + e1B1A

2
0 = 0,

hence we obtain two solutions (depending on the sign of A0) with

B1 = −µ0

a0

+ h.o.t., A2
0 =

µ0µ1

a0a1

+ h.o.t.

The time shift by 2π exchanges the two solutions. A necessary stability
condition for these solutions is that the 4 eigenvalues of the linearized system
(representing the principal part of Floquet exponents for the full system) have
a negative real part, which gives (at main order)

µ0 < 0, µ1 > 0, a0a1 < 0, a2
0µ1 + c1µ

2
0 < 0,

a0b0

a1

µ1 + b1µ0 < 0.

ii) Still for n odd, A0 = B1 = 0, B0 6= 0 represents the solutions deduced
from the previous ones by the rotation Rπ/q. The stability conditions are the
same as above.
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iii) Still for n odd, B0 = 0, A0A1 6= 0. Equilibria should satisfy the system

µ0 + a0B1 + b0A
2
0 + d0A

2
1 + e0B

2
1 = 0,

µ1 + b1A
2 + c1B

2
1 + d1A

2
0 = 0

µ1B1 + a1A
2
0 + b1B

3
1 + c1B1A

2
1 + e1B1A

2
0 = 0,

which leads to 4 solutions given by

B1 =
1

a0b1

(d0µ1 − b1µ0) + h.o.t.

A2
1 = −µ1

b1

+ h.o.t.

A2
0 =

(c1 − b1)

a0a1b2
1

µ1(d0µ1 − b1µ0) + h.o.t.

The time shift of 2π exchanges two solutions with opposite A0, all these
solutions being 4π - time periodic and invariant under R2π/q. The action of
Rπ/q leads to the other family of solutions with A0 = 0, B0B1 6= 0.

The study of the 4 eigenvalues of the linearized system (C.2) around these
solutions, leads (for the principal parts) to the characteristic polynomial

(λ−µ0−a0A1)

(
λ3 +

(c1 − b1)

b1

µ1λ
2 +

2(c1 − b1)

b1

µ1[(1− d0

b1

)µ1 + µ0]λ+ 4a0a1µ1A
2
0

)
= 0.

Using the Routh-Hurwitz criterium, we obtain the following necessary sta-
bility conditions (combined with existence conditions)

µ1

b1

< 0, c1 − b1 < 0, d0µ1 − b1µ0 < 0, µ0 + a0A1 < 0,

a0a1µ1 > 0, 2(d0µ1 − b1µ0) + (b1 − c1)[(1− d0

b1

)µ1 + µ0] > 0.

As above, this gives the negativity of the real part of Floquet exponents for
the full system, but the stability is not proved because of the small divisor
problem mentioned above, giving not isolated eigenvalues.

iv) Still for n odd, A0B0 6= 0. Equilibria are solution of

µ0 + a0B1 + b0A
2
0 + c0B

2
0 + d0A

2
1 + e0B

2
1 = 0

µ0 + a0A1 + b0B
2
0 + c0A

2
0 + d0B

2
1 + e0A

2
1 = 0

µ1A1 + a1B
2
0 + b1A

3
1 + c1A1B

2
1 + d1A1A

2
0 + e1A1B

2
0 = 0

µ1B1 + a1A
2
0 + b1B

3
1 + c1B1A

2
1 + d1B1B

2
0 + e1B1A

2
0 = 0.
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Combining the equations above we obtain

0 = (B1 − A1)[a0 + (e0 − d0)(A1 +B1)] + (b0 − c0)(A2
0 −B2

0),

0 = (B1 − A1)[µ1 + b1(A2
1 + A1B1 +B2

1)− c1A1B1 + d1B
2
0 + e1A

2
0] +

+(A2
0 −B2

0)[a1 − d1A1 − e1A1],

which generically (if a0a1 6= 0) leads uniquely to (for solutions close to 0)

A1 = B1, A
2
0 = B2

0 .

Now, we just need to solve

µ0 + a0A1 + (b0 + c0)A2
0 + (d0 + e0)A2

1 = 0,

µ1A1 + a1A
2
0 + (b1 + c1)A3

1 + (d1 + e1)A1A
2
0 = 0,

which leads to

B2
0 = A2

0 =
µ0µ1

a0a1

+ h.o.t., (D.1)

A1 = B1 = −µ0

a0

+ h.o.t..

These are four solutions invariant or exchanged by Rπ/q.
The study of the 4 eigenvalues of the linearized system (C.2) around these

solutions, leads (for the principal parts) to the characteristic polynomial

λ4 − 2µ1λ
3 + (µ2

1 − 4µ0µ1)λ2 + 4µ0µ
2
1λ+ 4µ2

0µ
2
1 = 0.

Using the Routh-Hurwitz criterium, we obtain the following necessary sta-
bility conditions (combined with existence conditions)

µ1 < 0, µ0 > 0, a0a1 < 0.

As above, this gives the negativity of the real part of Floquet exponents for
the full system, but the stability is not proved because of the small divisor
problem mentioned above, giving not isolated eigenvalues.

v) For q even and n even, the set of equilibria is easily obtained in changing
A1 in B1 in the previous study made for n odd.

vi) For q even and Hypothesis 2b (see system (C.4)), B0 = A1 = 0,
A0 6= 0, equilibria need to solve

µ0 + a0B1 + b0A
2
0 + d0B

2
1 = 0

µ1 + b1B
2
1 + d1A

2
0 = 0,
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which gives

B1 =
1

a0d1

(b0µ1 − d1µ0) + h.o.t.

A2
0 = −µ1

d1

+ h.o.t.

These two solutions may exist only if at main order, µ1d1 < 0. The charac-
teristic polynomial giving the principal part of eigenvalues for the stability
study is as follows:

(λ+(b0−c0)A2
0)(λ3+

2b0µ1

d1

λ2+
2µ1

d1

(b0µ1−d1µ0)λ+
2(b1 − c1)µ1

a2
0d

3
1

(b0µ1−d1µ0)3 = 0,

which, by using the Routh - Hurwitz criterium combined with the existence
condition, leads to necessary conditions (at main order) for the stability of
these solutions:

µ1d1 < 0, b0 < 0, b1 − c1 > 0, b0 − c0 > 0, b0µ1 − d1µ0 < 0.

via) For q even, Hypothesis 2b, B0 = B1 = 0, A0 6= 0, equilibria are
deduced from the previous one by using the symmetry S.

vii) For q even, Hypothesis 2b, B0 = 0, A0A1B1 6= 0, equilibria need to
solve

µ0 + a0(A1 +B1) + b0A
2
0 + d0(A2

1 +B2
1) = 0

µ1 + b1A
2
1 + c1B

2
1 + d1A

2
0 = 0

µ1 + b1B
2
1 + c1A

2
1 + d1A

2
0 = 0.

It is clear that if b1 6= c1, this leads to two different cases: either A1 = B1,
or A1 = −B1.

viia) For q even, Hypothesis 2b, A1 = B1, B0 = 0. This gives

µ0 + 2a0A1 + b0A
2
0 + 2d0A

2
1 = 0

µ1 + (b1 + c1)A2
1 + d1A

2
0 = 0;

hence

A1 = B1 =
d1µ0 − b0µ1

(b1 + c1)b0 − 2a0d1

+ h.o.t.

A2
0 =

2a0µ1 − (b1 + c1)µ0

(b1 + c1)b0 − 2a0d1

+ h.o.t.
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These two solutions are invariant under symmetry S, and exchanged into one
another by the 2π time shift. The characteristic polynomial is here given at
main order by

[(c0 − b0)A2
0 − λ][−λ3 + 2b0A

2
0λ

2 + 4a0d1A
2
0A1λ+ 8a0d1(c1 − b1)A2

0A
3
1] = 0.

This leads to necessary conditions for existence and stability of these solutions
(at main order):

2a0µ1 − (b1 + c1)µ0

(b1 + c1)b0 − 2a0d1

> 0, b0 < 0, c0−b0 < 0, b1−c1 < 0, a0d1
d1µ0 − b0µ1

(b1 + c1)b0 − 2a0d1

< 0.

viib) For q even, Hypothesis 2b, A1 = −B1, B0 = 0. This gives

µ0 + b0A
2
0 + 2d0A

2
1 = 0

µ1 + (b1 + c1)A2
1 + d1A

2
0 = 0,

hence

A2
0 =

2d0µ1 − (b1 + c1)µ0

(b1 + c1)b0 − 2d0d1

,

A2
1 =

d1µ0 − b0µ1

(b1 + c1)b0 − 2d0d1

.

This corresponds to four solutions transformed into each other by using com-
binations of the 2π time shift and the symmetry S. The characteristic poly-
nomial is here given at main order by

[(c0 − b0)A2
0 − λ](2b0A

2
0 − λ)(2b1A

2
1 − λ)2 = 0,

which leads to the following necessary existence and stability conditions

2d0µ1 − (b1 + c1)µ0

(b1 + c1)b0 − 2d0d1

> 0,
d1µ0 − b0µ1

(b1 + c1)b0 − 2d0d1

> 0, c0−b0 < 0, b0 < 0, b1 < 0.

viii) For q even, Hypothesis 2b, A0 = 0, B0 6= 0. Equilibria are deduced
from the ones in cases vi), via), viia), viib) by using rotation Rπ/q.

ix) For q even, Hypothesis 2b, A0B0 6= 0. Equilibria should satisfy

µ0 + a0(A1 +B1) + b0A
2
0 + c0B

2
0 + d0(A2

1 +B2
1) = 0

µ0 + a0(A1 +B1) + b0B
2
0 + c0A

2
0 + d0(A2

1 +B2
1) = 0

µ1A1 + a1A0B0 + b1A
3
1 + c1A1B

2
1 + d1A1(A2

0 +B2
0) = 0

µ1B1 + a1A0B0 + b1B
3
1 + c1B1A

2
1 + d1B1(A2

0 +B2
0) = 0,
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and it is easy to see that if b0 − c0 6= 0, then

A0 = ±B0,

0 = (A1 −B1)[µ1 − (b1 + c1)A1B1 + 2d1A
2
0 + b1(A1 +B1)2],

ixa) For A1 = B1, A0 = ±B0, this gives

µ0 + 2a0A1 + (b0 + c0)A2
0 + 2d0A

2
1 = 0,

µ1A1 ± a1A
2
0 + (b1 + c1)A3

1 + 2d1A1A
2
0 = 0,

hence

A1 = B1 = − µ0

2a0

+ h.o.t.

A2
0 = B2

0 = ± µ0µ1

2a0a1

+ h.o.t.

This corresponds to two solutions (only one sign + or − is possible in A2
0)

invariant under symmetry S, either invariant under the rotation Rπ/q (A0 =
B0 case), or exchanged into one another by Rπ/q (A0 = −B0). The 2π time
shift transforms one solution into the other in all cases. The characteristic
polynomial is here given at main order by

[2(b0 − c0)A2
0 − λ](µ1 − λ)[λ2 − µ1λ∓ 4a0a1A

2
0] = 0,

leading at main order to the necessary stability conditions

µ1 < 0, b0 − c0 < 0

a0a1 < 0 for A0 = B0, a0a1 > 0 for A0 = −B0.

ixb) For A1 −B1 6= 0, A0 = ±B0, equilibria should satisfy

µ0 + a0(A1 +B1) + (b0 + c0)A2
0 − 2d0A1B1 + d0(A1 +B1)2 = 0,

µ1 − (b1 + c1)A1B1 + 2d1A
2
0 + b1(A1 +B1)2 = 0,

±a1A
2
0 + (c1 − b1)(A1 +B1)A1B1 = 0,

hence

A1 +B1 =
2d0µ1 − (b1 + c1)µ0

a0(b1 + c1)
+ h.o.t.,

A1B1 =
µ1

b1 + c1

+ h.o.t.,

A2
0 = B2

0 = ±µ1(b1 − c1)(2d0µ1 − (b1 + c1)µ0)

a0a1(b1 + c1)2
+ h.o.t.
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This corresponds to eight solutions (4 with A0 = B0, 4 with A0 = −B0), the
existence condition being at main order

µ1(b1 + c1) < 0.

In each family, the four solutions are deduced from one of them in playing
with Rπ/q, S, and the 2π time shift. The characteristic polynomial is here
given at main order by

[2(b0 − c0)A2
0 − λ][−λ3 − 4µ1λ

2 − 4µ2
1

b1 − c1

b1 + c1

λ± 8a0a1µ1A
2
0] = 0,

leading at main order, to the necessary stability conditions

µ1 > 0, b0 − c0 < 0, b1 + c1 < 0, b1 − c1 < 0,

a0a1 < 0 for A0 = B0, a0a1 > 0 for A0 = −B0,

2µ2
1(b2

1 − c2
1) > |a0a1|(b1 + c1)2A2

0.

Appendix E. Computation of coefficients

Let us compute quadratic coefficients a0, a1 in (36), (37), (38), (C.2),
(C.3), (C.4).

We start with (32), where Ψ satisfies (33) and we make µ = β = γ = 0.
Then the Taylor expansion of Ψ takes the form

Ψ(A0, B0, A1, B1) =
∑

p+q+r+s≥2

Ap0B
q
0A

r
1B

s
1Ψpqrs

and then write dU/dt in two different ways: i) by using the time derivative
of (32) with (36) for example with Bj = Aj, ii) by using (4) with (32). We
identify powers of A0, B0, A1, B1 at successive orders and obtain for system
(36):

a0ζ0 +

(
d

dt
− L0(t)

)
Ψ0101 = 2B0(t)(ζ0, ζ1),

a1ζ1 +

(
d

dt
− L0(t)

)
Ψ0200 = B0(t)(ζ0, ζ0),

where we define
B0(t) = BΓc,Bc,Rc(t).
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Because of the 2π - periodicity of B0(t), ζ1(t), ζ∗1(t) and the fact that changing
t into t+ 2π changes the sign of ζ0 and ζ∗0, we observe immediately that half
of the compatibility conditions are satisfied:

〈B0(t)(ζ0, ζ1), ζ∗1〉 = 〈B0(t)(ζ0, ζ1), ζ∗1〉 = 0,

〈B0(t)(ζ0, ζ0), ζ∗0〉 = 0, 〈B0(t)(ζ0, ζ0), ζ∗0〉 = 0.

The resonance conditions (17) and (19) lead to

〈B0(t)(ζ0, ζ1), ζ∗0〉 = 0, 〈B0(t)(ζ0, ζ0), ζ∗1〉 = 0,

and it remains the two last compatibility conditions leading to (here for q
odd, Hypothesis 2a and n odd)

a0 = 2〈B0(t)(ζ0, ζ1), ζ∗0〉, a1 = 〈B0(t)(ζ0, ζ0), ζ∗1〉 in (36).

In the same way we find for q odd

a0 = 2〈B0(t)(ζ0, ζ1), ζ∗0〉, a1 = 〈B0(t)(ζ0, ζ0), ζ∗1〉 in (37),

a0 = 2〈B0(t)(ζ0, (ζ1 + ζ1)), ζ∗0〉, a1 = 2〈B0(t)(ζ0, ζ0), ζ∗1〉 in (38).

Now for q even, we find in the same way (see Appendix C)

a0 = 2〈B0(t)(ζ0,Rπ/qζ1), ζ∗0〉, a1 = 〈B0(t)(Rπ/qζ0,Rπ/qζ0), ζ∗1〉 in (C.2),

a0 = 2〈B0(t)(ζ0, ζ1), ζ∗0〉, a1 = 〈B0(t)(ζ0, ζ0), ζ∗1〉 in (C.3),

a0 = 2〈B0(t)(ζ0, (ζ1 + Rπ/qζ1)), ζ∗0〉, a1 = 2〈B0(t)(ζ0,Rπ/qζ0), ζ∗1〉 in (C.4).

An important remark for the computation of coefficients is that we can
simplify things by noticing that we have sums of q identical terms. In fact
we have by construction

〈ζj, ζ∗j〉 = 1, j = 0, 1

and since there are q identical term in the scalar product with the ζj, this
implies

1

4π

∫ 4π

0

Ûk1(t) · Û∗k1
(t)dt = 1/q,

1

2π

∫ 2π

0

Ûk′1
(t) · Û∗k′1(t)dt = 1/q.
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Defining

ξ∗0 = qÛ∗k1
(t)eik1·x, ξ∗1 = qÛ∗k′1(t)e

ik′1·x, (E.1)

ξ′1 = Rπ/2qξ1, ξ
′∗
1 = Rπ/2qξ

∗
1 for Hyp 2b,

we then obtain
〈ξj, ξ∗i 〉 = δij, i, j = 0, 1.

We are then able to rewrite coefficients a0, a1 in (36), (37), (C.2) and (C.3):

a0 = 2〈B0(t)(R(2n+q)π/qξ0,Rnπ/qξ1), ξ∗0〉
+ 2〈B0(t)(R(q−2n)π/qξ0,R−nπ/qξ1), ξ∗0〉, (E.2)

a1 = 2〈B0(t)(R−nπ/qξ0,Rnπ/qξ0), ξ∗1〉,

and in (38) and (C.4):

a0 = 2〈B0(t)(R(2n+q−1)π/q ξ0,R(n−1)π/qξ
′
1), ξ∗0〉

+ 2〈B0(t)(R(q+1−2n)π/qξ0,R−nπ/qξ
′
1), ξ∗0〉, (E.3)

a1 = 2〈B0(t)(R(1−n)π/qξ0,Rnπ/qξ0), ξ′∗1 〉.

Remark 11. If equations kj+kl+ks = 0 or k′j+k′l+k′s = 0 have solutions,
which is the case for q = 3k, k ≥ 2, then there are new quadratic coefficients
in such cases.

For a given set (n, q), the values of the coefficients a0 and a1 can be found
numerically. As described in Appendix B, we compute the critical values
of the physical parameters (Rc,Bc) such that the hypothesis 1 and 2a are
verified. The kernel of the linearized operator d

dt
− LΓc,Rc,Bc of section 3.1

are computed numerically via a shooting method. The change t → −t that
transforms the previous operator into the adjoint one, permits to compute
the the kernel of d

dt
+ L∗Γc,Rc,Bc of section 3.2 without supplementary effort.

In Fig. E.5, we present an example of a numerical kernel of eq. (29).
The numerical values of the coefficients a0,1 defined by (E.3) are then

directly obtained through a Gauss-Kronrod quadrature formula. For n =
1, q = 5, we get a0 = −0.194 and a1 = 0.125, whereas for n = 1, q = 7, we
get a0 = −0.217 and a1 = 0.081. In both cases a0a1 < 0 which allows to
satisfy necessary stability conditions of bimodal solutions found at section
4.2.2, for suitable values of the parameter combinations µ0, µ1.
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Figure E.5: component u of ξk (see (30)), and v (not normalized) of ξ∗k (see (31)) in the
kernels of the linearized operator (solid curve) and its adjoint (dashed curve). (left) 4π
periodic solutions. (right) 2π periodic solution. These solutions have been computed in
the critical case n = 1, q = 5, i.e. (Bc,Rc) = (1.27, 4.07).
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