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Regular modes in a mixed-dynamical based optical fiber

C. Michel,1 M. Allgaier1,2 and V. Doya1
1Laboratoire de Physique de la Matière Condensée, CNRS UMR 7336,

Université Nice-Sophia Antipolis, 06100 Nice, France
2Integrated Quantum Optics, Applied Physics, University of Paderborn, 33098 Paderborn, Germany

A multimode optical fiber with a truncated transverse cross section acts as a powerful versatile
support to investigate the wave features of complex ray dynamics. In this paper, we concentrate on
the case of a geometry inducing mixed dynamics. We highlight that regular modes associated to
stable periodic orbits present an enhanced spatial intensity localization. We report the statistics of
the Inverse Participation Ratio whose features are analogous to those of Anderson localized modes.
Our study is supported both by numerical and experimental results on the spatial localization and
spectral regularity of the regular modes.

PACS numbers: 05.45.Mt, 42.81.Wg

I. INTRODUCTION

Mixed-dynamical based systems are more and more
used in applications, especially in optics [1]. These
systems, whose geometry induces complex ray dynamics,
bring a new kind of solutions for practical purposes
through their singular wave properties [2]. The common
attribute of mixed systems is the coexistence of both
chaotic and regular dynamics leading to a large wealth
for the corresponding wave behavior (wave chaos).
This duality manifests itself on the spatial properties
of the modes by exhibiting on the one hand a generic
statistically uniform distribution, that is ergodicity [3],
and on the other hand specific patterns along regular
trajectories [4]. Dielectric microcavities stand as the
typical example of the exploitation of wave chaos as an
improvement of existing devices. Indeed, microcavity
lasers with mixed geometry allow low threshold and
highly directional outputs [5, 6] and are a very useful
solution for integrated optics. Recently, microcavity-
based gyroscopes in which a deformed cavity enhances
the rotation sensitivity [7] have been investigated.
The ergodic/regular twofold feature gives also rise to
much more subtle phenomena. As an illustration, a
diffractive free regime of light propagation has been
observed in a segmented optical waveguide presenting
a mixed ray dynamics [8]. In this case, the absence
of diffraction results from the superposition of modes
constructing on a stable periodic trajectory. Moreover,
dynamical tunneling, namely a passage between the
chaotic and regular regions by coupling one to another
[9–12], is one of the main manifestation of this duality.
This effect has been used in deformed microdisks in
which light is coupled to a bus waveguide through the
tunneling effect acting as a resonant dynamical filter [13].

A highly multimode optical fiber whose transverse
cross-section presents a truncated-circle shape allows to
explore different regimes of the dynamics by changing
the size of the truncation (e.g. changing d in Fig. 1(a)).
Over the past few years we studied experimentally

manifestations of ergodicity as well as deviations from
this universal behavior due to scar modes in passive
and active fully chaotic optical fibers [14–17]. The
ergodicity features of modes in a chaotic fiber have
already been proposed as an optimized solution for
applications in telecommunications (e.g. in double-clad
fiber amplifiers [18–20]). We keep on exploiting the
potential of complex-dynamical based multimode optical
fibers, but now for mode division multiplexing (MDM)
[21]. In this context we show that a mixed optical fiber
presents singular wave features allowing the control of
individual modes in a highly multimode system.
In this paper, we report an exhaustive study on the
properties of the modes of a mixed-dynamics based
multimode optical fiber, and in particular modes that
are associated to the regular part of the dynamics.
These regular modes present strong spatial and spectral
signatures through a localization of the field along
stable trajectories and a regularly distributed spectrum
respectively. This localization is triggered by the
stability of the dynamics and is studied by means of
the Inverse Participation Ratio and its statistics. We
show that, unlike ergodic modes whose statistics follow
a universal behavior, the regular modes induce some
deviations that are analogous to those resulting from
localized modes in disordered systems [22]. We present
a characteristic structuring of the IPR with respect to
modes families that makes them easily traceable. We
use an analysis based on Gaussian beams in cavity in
order to analytically describe the structuring of the IPR
for the regular modes.

In a context of a growing exploitation of multimode
fibers – in telecommunications devices as well as in
imaging processes – both description and control of
individual modes are of great importance. This study
reports on a detailed analysis of highly distinguishable
modes with singular spatial and spectral properties.
We develop an experiment that, based on these modes
features, allow us to isolate them among thousands of
modes. These results exalt the ability of the regular
modes to be used as individual communication channels.
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FIG. 1. Presentation of the experimental system. (a) scheme
of the fiber with γ < 1, (b) picture of the cross section of the
optical fiber for γ = 0.95 taken with a standard microscope
in the transmission mode

Protected from other modes by the stability of the
dynamics, they may offer a solution to prevent mode
coupling in MDM.

In section II, we present our experimental system and
its main geometrical and modal characteristics specifi-
cally its localization features. In section III, we develop
the analysis of the spatial properties of the regular modes
of the fiber using the analogy with the Gaussian modes of
an optical resonator. In section IV we propose a charac-
terization of the spatial localization of the modes through
tools commonly used to measure deviations from a uni-
form distribution (i.e. the Inverse Participation Ratio)
and we point out a way to distinguish specific family of
regular modes. A spectral analysis of the regular modes
of the optical fiber based on an experimental selective
excitation and on numerical results is reported in section
V. Then, in section VI, we conclude and suggest some
potential applications in an open discussion.

II. THE OPTICAL FIBER AS A VERSATILE

OPTICAL COUNTERPART OF A DYNAMICAL

SYSTEM

Our experimental system is a non-standard silica mul-
timode optical fiber, whose cross section is a truncated
disk. The length of the fiber is 10cm, the diameter of its
core is 2a = 125µm. The truncated diameter is denoted
d = γ a, with γ ∈ ]0 ; 2]. The core is surrounded by a
silicon cladding of diameter 250µm [Fig. 1(b)]. The op-
tical indexes are nco = 1.458 and ncl = 1.41 for the core
and the cladding respectively at the vacuum wavelength
λ0 = 632nm. As the wavelength is small compared to
the characteristic size a of our system, one can consider
a semiclassical approach. The longitudinal evolution of
a ray along the fiber (a three-dimensional system) is for-
mally equivalent to the time evolution of a trajectory in
the transverse cross-section of the fiber. It is thus analo-
gous to a two-dimensional (2D) bounded cavity which is
a well-known paradigm of a Hamiltonian dynamical sys-

tem (2D billiard) [2]. In the following, we will consider
the propagation modes of the fiber as the modes of a 2D
cavity and thus refer to the transverse cross section of the
optical fiber as a “cavity”. It is worth mentioning that an
optical fiber is a very low lossy system, and as we restrict
our study to less than the first third of the total number
of modes, the approximation of a closed system is valid.

The versatility of our system relies on its ability to ex-
plore different types of dynamics from regular to chaotic
by varying the factor γ. The qualification of the dynam-
ics is commonly studied through a stroboscopic phase-
space representation, well-known as the Poincaré Surface
of Section (PSS). It consists in plotting at each impact
of the ray on the boundary the curvilinear abscissa s
measured through the angle θ = s/a and the sine of the
incidence angle, α [Fig. 2(a)]. As shown in Fig. 2(c-e)
and as pointed out by Ree et al. [23], the PSS presents
the characteristic behaviors related to different types of
dynamics while varying γ. For 0 < γ < 1, the dynamics
is mixed and the PSS presents a complex combination of
stochastic and regular regions. The optical fiber used in
the experiment has a truncated diameter corresponding
to γ = 0.95. In the PSS reported in Figure 2(c) for this
value, regular islands coexist with diffuse points associ-
ated to the so-called chaotic sea [23, 24]. Each regular
island corresponds to quasi-periodic trajectories in the
vicinity of a stable periodic orbit (PO) at the center of
the island. A large fraction of PSS is occupied by the
main central resonance that corresponds to the 2 bounce
PO (2-PO). As d reaches the value of the radius a (γ = 1,
half-circle), the PSS testifies of the regular nature of the
dynamics [Fig. 2(d)]. In this case, the angle of reflection
|α| is conserved for any given initial condition. Note that
the PSS of a circular billiard (γ = 2) has the same aspect
due to angle conservation. When d becomes greater than
a (1 < γ < 2), regular islands no longer exist, and all the
POs become unstable. Then, the PSS is densely covered
by diffuse points and the dynamics is fully chaotic [Fig.
2(e)]. It is worth mentioning that the latter geometry has
also been extensively investigated in optical fibers over
the past few years [14–17, 25]. In particular, the authors
experimentally demonstrated that some specific scarred
modes of a chaotic optical fiber – spatially localized along
the least unstable periodic orbits – can be selectively en-
hanced through an optical amplification process [17, 25].
Moreover, as the pump absorption is clearly improved
by the use of a chaotic double-clad fiber amplifier, the
device has been proposed as an optimization of existing
amplifiers [18, 26].

Here, we devote our study to the mixed dynamics, us-
ing a D-shaped optical fiber with γ = 0.95. The length
of the fiber is greater than the “Heisenberg length”[14]
zh=8.3cm for which the modes are resolved ensuring the
validity of a modal description of light propagation. The
number of modes of the fiber is given by the usual for-
mula [27] and is evaluated to approximatively N = 6000
at λ0. The 2000 first modes are calculated numerically
using a finite element method. In the paraxial approx-
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FIG. 2. (a) Curvilinear abscissa s = aθ and angle of reflection α used for the calculation of the PSS and Husimi representations.
(b) Three examples of stable periodic orbits of the mixed billiard (γ = 0.95) : in pink the 2-PO, in blue the 5-PO and in green
the 6-PO.(c)-(e) Poincaré Surface of Section representation for three different values of γ. (c) γ = 0.95, mixed dynamics with
a coexistence of regular and chaotic trajectories ; the pink star points out the 2-bounce stable periodic orbit, the blue squares
correspond to the central point of the stability islands of the 6-bounce stable periodic orbit and the green triangles to the
5-bounce stable periodic orbit, (d) γ = 1, regular dynamics for which one sees the conservation of the angle of reflection,
whatever the initial condition is, (e) γ = 2/3, chaotic dynamics, no stability regions, all the periodic orbits are unstable.

imation, the Hemholtz equation is equivalent to the 2D
Schrödinger equation [14]. One thus has access to the
spatial distribution of the modes (eigenvectors), as well
as their corresponding frequencies (eigenenergies). As
shown on four examples in Figure 3, the modes exhibit
some signatures of the underlying classical mixed dynam-
ics [28]. The spatial distribution of intensity (near-field,
NF) of the mode in Fig. 3(a) is located on the 2-PO
represented in pink in Fig. 2(b). Figure 3(b) shows the
far-field (FF) of the same mode. The FF is the square
modulus of the spatial Fourier transform of the field dis-
tribution. It indicates the direction ~κ and modulus κ of
the transverse wave vectors. For Fig. 3(b), two maxima
of intensity are localized along the direction of the 2-PO
at at an equal distance κ of the center of the Fourier
space. This directivity in the FF evidences the signature
of the underlying 2-PO (see Fig. 2). Strong correspon-
dances between some particular modes and their associ-
ated classical trajectories in the semiclassical regime are
established through the Husimi representation, which is
commonly used as a wave equivalent to the classical PSS
[29]. In the case of 2D cavities with Dirichlet boundary
conditions, the Husimi function is evaluated through the
normal derivative of the eigenfunction on the boundaries
of the cavity [23, 30–32]. The Husimi function is calcu-
lated for the modes of the optical fiber and is represented
in the 2D space (θ, sinα). Here, sinα represents the pro-
jection of the transverse wave vector ~κ along the tangen-
tial direction to the boundary, normalized by the modu-
lus κ = |~κ| of the mode. Figure 3(c) displays the Husimi
representation of the mode shown in Fig. 3(a) with the
PSS of the 2-PO superimposed. The localized pattern
of the intensity in the Husimi representation means that
the mode is strongly confined along the x-direction. This

confinement as well as the very good agreement between
both this representation and the PSS confirms that this
mode builds on constructive interferences along the 2-
PO. In the same way, Figures 3(d,e,f) and (g,h,i) show
the NF, FF and Husimi representations of modes built
in the vicinity of the 5-bounce [Fig. 2(b), blue line] and
6-bounce [Fig. 2(b), green line] stable periodic orbits re-
spectively. As before, the agreement between the Husimi
and PSS representation reflects the fact that the ray dy-
namics is the skeleton of the modal behavior. Figures
3(j,k,l) present the NF, FF and Husimi representations
of a chaotic mode of the fiber. The FF is isotropically
distributed and the Husimi representation is no longer
confined in small areas delimited by the corresponding
stability islands of the PSS, but spreads over the chaotic
regions.

As conjectured by Percival [28], the duality between
chaotic and regular dynamics is also encountered in the
spectral features. A simple way to quantify the degree
of regularity of a 2D-cavity is given by the study of the
statistics of energy level spacing

s∆,n = NW (En+1)−NW (En) (1)

where En is the energy of mode n and NW (En) the num-
ber of modes of energy lower or equal to En given by the
Weyl formula [33]

NW (En) =
S
2π
En − P

4π

√

2En (2)

with S and P respectively the surface and perimeter of
the cross section of the fiber, and the energies being given
by En = κ2n/2. As described in [34, 35], the probability
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FIG. 3. Examples of modes of the mixed fiber with γ = 0.95
: Near-field, Far-field and Husimi representation of (a,b,c) a
regular mode of the 2-PO. Super-imposed in red is the PSS
associated to the 2-PO ; (d,e,f) a mode built on the 5-PO. In
red, the PSS of the 5-PO ; (g,h,i) a mode built on the 6-PO.
In red the PSS of the 6-PO ; (j,k,l) a chaotic mode.

distribution P (s∆) in a mixed system is given by

P (s∆) =
d2

ds2∆

[

exp (−Ws∆) erfc

(√
π

2
(1−W ) s∆

)]

(3)
where 0 < W < 1 is the density of regular states. A for-
mal evaluation ofW is deduced directly from the PSS, by
measuring the area of the regular region, weighted by the
lengths of the associated trajectories. Figure 4 shows the
statistics of a chaotic (γ = 3/2) and a mixed (γ = 0.95)
cavity, respectively for symmetric [Fig. 4(a),(c)] and an-
tisymmetric [Fig. 4(b),(d)] modes. The gray scale his-
tograms represent the energy level spacing distribution
calculated for a sample of 900 modes for each symme-
try, with an avoidance of the first hundred modes. The
red line is a fit of the histograms by the function P (s∆)
(eq. (3) giving an estimation of the parameter W . For
the chaotic case, W = 0 indicates that the relative size
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FIG. 4. Probability distribution of the energy level spacing for
the symmetric and anti-symmetric modes of (a,b) a chaotic
cavity (γ = 3/2) and (c,d) a mixed cavity (γ = 0.95).

of the regular region is reduced to zero. This result is
consistent with the typical PSS of a chaotic system [Fig.
2(e)]. Indeed, the inherent nature of a chaotic dynamics
is to avoid any stable structure. On the contrary, for the
mixed system, W ≃ 0.5 corresponds to a PSS half-filled
with the regular region. Note that this is qualitatively
coherent with the PSS presented in Fig. 2(c). The case
W = 1 would correspond to the regular systems γ = 1
(half-circle) and γ = 2 (circle).

III. REGULAR MODES AS MODES OF A

PLANO-CONCAVE RESONATOR

As evidenced in details by H. E. Turecci in dielectric
microcavities [24], the modes localized on stable POs can
be described in terms of Gaussian optical theory. Us-
ing the standard description of optical resonators, we de-
velop that correspondence for the 2-PO regular modes as
the analogous of the fundamental longitudinal modes of
a plano-concave optical resonator with dielectric bound-
aries where x acts as the longitudinal axis of propagation
and y as the transverse direction. Both the stability of
the cavity and the spatial field distribution of the modes
of the fiber are thus analyzed.
First, the ray transfer matrix formalism enables to

study the stability of the cavity by investigating the
paraxial ray evolution in the vicinity of the 2-PO. Let
(y, α) be the couple of quantities describing the posi-
tion of a ray in the resonator, with y the position of
the ray on the boundary (including the straight part).
In the paraxial approximation, the output quantities are
deduced from the input quantities using the relation:

(

yout
αout

)

=Mt

(

yin
αin

)

(4)

where Mt is the ray transfer matrix. The stability of
the resonator is given by the value of the trace of Mt

associated to a periodic sequence of a given ray. When
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rays are periodically refocused, the sequence is stable and
the geometric characteristics of the resonator obey:

0 <

(

1− d

R1

)(

1− d

R2

)

< 1 (5)

where d represents the resonator length and R1, R2 are
the radii of curvature of the resonator boundaries. This
stability condition is analogous to the stability analysis
of dynamical systems based on the evolution of a small
deviation in the vicinity of a PO [36]. The transfer matrix
is then formally equivalent to the so-called monodromy
matrix.
In our case, R1 = a and R2 = ∞ because of the flat

reflective boundary. From the relation (5), one sees that
the stability of the resonator depends on the value of d
and thus of γ. Case γ = 1 is associated to the hemi-
spheric stable resonator. For 1 < γ < 2, the resonator is
unstable. For γ < 1, the condition (5) is fulfilled so that
the resonator is stable. Note that the case γ = 2 corre-
sponds to R1 = R2 = a and is associated to the concen-
tric stable resonator. The mixed fiber with γ = 0.95 can
thus be considered as a stable optical resonator whereas
the chaotic fiber (γ = 3/2) corresponds to an unstable
resonator [23, 34, 37].
In the following, we consider the case of the stable res-

onator with γ = 0.95, corresponding to the cross section
of our actual optical fiber. We use the Gaussian wave for-
malism in the (x, y)-plane in order to study the spatial
distribution of the modes built on the 2-PO. The spatial
expansion of a beam traveling in the x-direction in the
slowly varying envelope approximation reads:

ψ(x, y) = u(x, y) exp (−jκx) (6)

with the phase varying mainly linearly in the x-direction
and ψ(x, y) being a solution of the transverse Helmholtz
scalar equation ∆ψ + κ2ψ = 0. By using expression (6)
for ψ(x, y), one gets the following Fresnel (or parabolic)
form for the wave equation in the paraxial approxima-
tion:

∂2u

∂x2
+
∂2u

∂y2
− 2jκ

∂u

∂x
= 0 (7)

Under the assumption of u(x, y) varying slowly enough
with x so that |∂2u/∂2x| ≪ |2κ∂u/∂x| and taking into
account the curvature of the wave front imposed by the
geometry of the cavity, the solution u(x, y) of (7) is given
by [38]:

u(x, y) =
w0

w(x)
Hm

(√
2

y

w(x)

)

(8)

exp

{

jφt − y2
(

1

w2(x)
+ j

κ

2R(x)

)}

where w(x) is the beam radius, w0 is the minimum beam
diameter – the so-called waist diameter – for which the

phase front is plane, R(x) the radius of curvature of the
wavefront and Hm is the Hermite polynomial of order
m and φt a global phase described right below. The so-
lution u(x, y) is consistent with the theory of Gaussian
beams along the y-direction [38]. The Gaussian beam
profile is characterized by the beam radius w(x). An ini-
tial Gaussian beam of width w0 at x = 0 experiences a

transverse expansion given by w2(x) = w2
0

(

1 + (x/xr)
2
)

,

where the Rayleigh length xr measures the spatial coher-
ence of the beam along the axis of propagation x. In our
specific case, the relevant wavelength is the transverse
wavelength λ⊥ = 2π/κ. Then, the Rayleigh length xr
and the beam waist w0 are related through xr = κw2

0/2.
The beam propagating along the 2-PO also undergoes a
phase shift which is twofold. First, the reflection on the
dielectric core/cladding interface – governed by Fresnel
reflections laws – implies a phase shift φκr which depends
on κ. Second, the Gouy phase φg [38, 39] appears when
the beam focuses. It results in a complex total phase
shift φt that reads :

φt = φκr + φg (9)

= 2 arctan
√

(n2
co − n2

cl
) k20/κ

2 − 1

+ (m+ 1) arctan

√

γ

1− γ

where k0 = 2π/λ0 is the modulus of the vacuum wavevec-
tor. Stationary modes occur when the accumulated phase
shift along a round-trip in the resonator is a multiple of
2π. From (8) and (9), this condition of constructive in-
terferences leads to:

κm,p 2d = 2πp+ 2φκr + 2(m+ 1) arctan

√

γ

1− γ
(10)

Each mode of the resonator is then defined by the value
of its transverse wave vector κm,p which depends on two
integers, m and p running from 0 to maximum values
satisfying κm,p < k0

√

(n2
co − n2

cl
) [14]. In the optical res-

onator analogy, p defines the number of nodes along the
axial direction x, that is the order of the longitudinal
mode along the 2-PO, whereas m is the transverse mode
number associated to the so-called high-order modes.
The fundamental Gaussian mode, namely the fundamen-
tal mode for the transverse oscillations, corresponds to
m = 0 and p = 0. A few examples of the modes of the
fiber/resonator with their corresponding values of (m, p)
are given in Figure 5.

IV. REGULAR MODES AS LOCALIZED

MODES INDUCED BY THE MIXED DYNAMICS

The ergodic modes of a fully chaotic system stand for
the generic behavior. They are characterized by Gaus-
sian statistics of the spatial field distribution. Never-
theless, some modes, exhibiting an “extra density (that)
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FIG. 5. Spatial distribution of intensity for modes of the
mixed fiber (γ = 0.95) associated to different values of (m, p).
(a)-(d) p = 4 and m = 0, 1, 4, 7, (e)-(h) p = 12 and m =
0, 1, 4, 7.

surrounds the region of the periodic orbit” [40] are con-
structed along unstable periodic orbits. They are usually
called “scar modes”. Regular modes of a mixed system
also result from constructive interferences with the main
crucial difference that they take place along a stable pe-
riodic orbit. This intrinsic distinction in the nature of
the underlying periodic orbit implies, among other fea-
tures, a stronger spatial localization of the field [see for
example Fig. 5(a) and (e)]. This localization implies a
substantial deviation in the statistics compared to the ho-
mogeneous field distribution. The Inverse Participation
Ratio (IPR) and its statistics, which are commonly used
tools in the characterization of the spatial signatures of
chaotic or disordered systems, highlight this localization
feature. The IPR, that is the second order moment I2 of
the intensity, is also defined as :

I2 =
1

S

∫∫

S
I2(x, y)dS

(

1

S

∫∫

S
I(x, y)dS

)2
(11)

where I(x, y) = |u(x, y)|2 is the field intensity, and S the
surface of the transverse cross section of the fiber. The
distribution of the IPR [Fig. 6] for the modes of the
chaotic and mixed fibers exhibit some specific features.
For the chaotic fiber (γ = 3/2), P (I2) presents a peaked
distribution around the value I2 = 3 [42, 43] as expected
by the universal properties of ergodicity of the generic
modes of a chaotic system [14]. Even if scar modes
present some enhancement of intensity, this is marginal
enough not to appear in the distribution of the IPR [Fig.
6(a)]. The Random Matrix Theory (RMT) predicts that
there should be no fluctuations around 3, but as the sys-
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FIG. 6. Probability distribution of the Inverse Participation
Ratio. (a) Chaotic cavity (γ = 3/2). The probability distri-
bution is centered around the value IPR=3. (b) Mixed cavity
(γ = 0.95) presenting some larger values of the IPR. The con-
tinuous line is a fit based on a nonlinear sigma model [41].
Inset : same as (b) in logarithmic scale.

tem is bounded, fluctuations appear [41]. On the con-
trary, the distribution of IPR calculated for the modes
of the mixed fiber shows an asymmetric profile with val-
ues higher than twice the actual mean value 〈I2〉 ≃ 4.5.
This points out that a large number of modes contributes
to this deviation by presenting highly localized intensi-
ties. In disordered systems, this behavior is currently
associated to the presence of so-called “localized modes”
[22]: some theoretical studies based on the supersym-
metry method [44] predict the asymmetry of the IPR
distribution in the (Anderson) localization regime. The
distribution of the IPR is then expected to follow :

P (I2) = C

√

g

I2
exp

(

−π
6
gI2

)

(12)

for I2 ≫ 〈I2〉 where 〈I2〉 is the mean-value of the IPR, C
is a normalization constant. In disordered systems, g is
the conductivity that depends on the system size, 〈I2〉,
and the mean-free-path [41]. The high values of I2 in
Fig. 6(b) present a very good agreement with eq. (12)
with g = 0.94 and C = 0.88. This is confirmed by the
inset of Fig. 6(b) which shows P (I2) in logarithmic scale.
Thus, we get the same signature of spatial localization,
as the one encountered for localized modes of disordered
systems. Here, localization is the result of the stable
dynamics.
To investigate the origin of this deviation in the tail of

the IPR distribution, we report in Figures 7 and 8 the
value of the IPR of each individual mode as a function
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FIG. 7. Inverse Participation Ratio (IPR) as a function of the
transverse wave number κ a for the chaotic case (γ = 3/2) ;
As expected, the IPR concentrates in the vicinity of IPR=3
except for the modes built on neutral orbits (upper inset, A).
Inset B shows a generic ergodic mode.

of κ a for the chaotic [Fig. 7] and mixed [Fig. 8] fibers.
As expected for the chaotic case, the IPR tends to an
asymptotic value of 3 for most of the modes. As exem-
plified by the ergodic mode presented in the inset B of
Fig. 7, the wavefunction is statistically uniformly dis-
tributed over the fiber’s cross section, thus resulting in
Gaussian spatial statistics and an expected value of 3 for
the IPR. The modes presenting larger values of the IPR
[Fig. 7] are some specific spatially localized modes that
concentrate on a region of the PSS surrounding continu-
ous families of marginally unstable PO. These “bouncing
ball” modes do not follow the standard Gaussian statis-
tics and take place along the full diameter of the fiber
[see inset A in Fig. 7].
Figure 8 presents the IPR as a function of κ a for the

modes of the mixed fiber. The main observation one
can make at the first glance is a striking structuration of
the values of the IPR for individual modes. More thor-
oughly, we have identified families of modes following a
monotonous behavior. The upper red circles all corre-
spond to the family of regular modes along the 2-PO.
The high values of the IPR confirm a strong spatial lo-
calization of intensity of these modes, also labelled as the
fundamental Gaussian modes u0,p. The dots in shades of
colors from red to green correspond to the IPR calculated
for the higher order modes um,p with m varying from
m = 1 to m = 9. The regularity of the IPR as a function
of κ a is also observed for higher values of m whose max-
imum value mmax is given by κmmax,0 = k0

√

(n2
co − n2

cl
).

Nevertheless, they are not pointed out in the figure for
the sake of clarity. The crosses in shades of blue corre-
spond, as pointed out by the inset images labelled from A
to E, to Whispering Gallery Modes (WGM) built upon
quasi-periodic marginally stable orbits. The WGMs are

localized on the boundaries of the cavity, so their IPR is
expectedly higher than 3. The light blue crosses corre-
spond to WGMs with a single crown (A), as the medium
blue and dark blue crosses correspond respectively to
WGMs with double (B) and triple (D) crowns. When
the curves intersect, the corresponding WGMs are de-
generated as shown for the modes C and E. The purple
crosses correspond to the modes localized in the vicin-
ity of the 6-bounce PO and follow a well-distinguished
behavior as well. It is worth noting that for low values
of κ a, the WGMs and the modes built upon the 6-PO
are undistinguishable, which is visible for κ a < 50 as the
medium blue and purple crosses are following the same
evolution. All these modes contribute to the deviation of
the IPR observed in Fig. 6(b). The parameter g = 0.94,
evaluated by a fit of eq. (12) implies a “mean-free-path”
l ≃ 50µm. This value is consistent with the order of
magnitude of the distance between successive bounces of
trajectories underlying the modes responsible for the de-
viation.
The modes corresponding to the lower IPRs – marked in
black, right above IPR=3 (red dashed line) – correspond
to chaotic modes that present an ergodic behavior. The
density of points around IPR=3 is much less important
than above, which confirms that ergodic modes are a mi-
nority in a mixed system characterized by the parameter
γ = 0.95. This behavior of strong deviation from the
standard value IPR=3 is commonly encountered is sys-
tems presenting a strong enough disorder to promote the
existence of (Anderson-) localized modes. Here the or-
der, by means of the regular modes, is responsible for the
deviation of the IPR.
By use of a heuristic model, we derive an analytic ex-

pression for the value of IPR for the 2-PO regular modes
with respect to κ. We assume that the modes are spa-
tially localized on a surface Sloc. Thus, the intensity of
each mode equals I0 on Sloc, and 0 elsewhere. Then, with
I0 = S/Sloc and using equation (11), one gets:

I2 =
S
Sloc

(13)

Using the analogy of these modes with the fundamental
gaussian modes u0,p of the stable resonator (see section
III), we derive an analytic expression for Sloc:

Sloc = 2

∫ d

0

w(x)dx

= 2w0xr





d

xr

√

1 +

(

d

xr

)2

+ arcsinh

(

d

xr

)





= w0Leff (14)

where Leff is an effective length associated to the regular
modes. Finally, using the relation between xr and κ one
gets:

I2 =
S√κ

Leff

√
2xr

(15)
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FIG. 8. Inverse Participation Ratio (IPR) as a function of the transverse wave number κ a for the mixed case (γ = 0.95) ;
Families of modes are distinguishable as shown by the different markers: red circles [◦] correspond to 2-PO regular modes,
from red to green dots [from • to •] correspond to higher order regular modes denoted from m = 1 to m = 9, purple crosses
[×] correspond to modes built on the 6-PO, light, medium and dark blue crosses [+,+ and +] correspond to whispering gallery
modes (insets A to E).

In our system, we evaluated xr for the 2-PO regu-
lar/fundamental Gaussian modes, and checked that it
does not depend on κ. So, the IPR varies proportion-
nally with

√
κ. We obtain a perfect agreement between

expression (15) and the values of IPR for the 2-PO reg-
ular modes um=0,p [large red circles and red continuous
line in Fig. 9].
Moreover, for large values of κ, the IPR appears to struc-
ture itself by presenting a regular evolution for each fam-
ily of modes um,p with different m. The dots in shades
of colors from red to green are the IPRs of high order
modes for m ranging from 0 to 9 as shown in Fig. 8.
The IPR for the modes of a given m value are following
a monotonous curve which is perfectly adjusted by the
empirical expression:

I
um,p

2 (κ) = cmκ
ξm (16)

where cm is different for each m. The exponent ξm has a

linear dependance with m which is ξm = −0.017m+1/2.
For m = 0, one recognizes the

√
κ dependance predicted

by eq. (15). In Figure 9, we mark the evolution of the
IPR with m for three fixed p values (full blue circles).
The IPR follows a decreasing curve as m increases and
this behavior is encountered for all p values (even if we
marked only three values in the figure for sake of clarity).
Thus, we can assume that it exists a relation between the
comportment of the IPR and the p and m integers that
characterize the whole family of regular modes. Both this
behavior and the previous empirical ansatz point out the
tight relationship of the IPR for the family of the regular
modes with the gaussian modes and will be the subject
of further investigations.
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FIG. 9. IPR as a function of κ a for the regular modes and
for high values of κ. The dots and circles correspond to the
points presented in Fig. 8 and the continuous lines correspond
to the expression (16). The full circles point out the IPR for
a fixed value of p while m varies from 0 to 9. Three values of
p are marked.

V. EXPERIMENTAL OBSERVATION AND

MANIPULATION OF THE REGULAR MODES

OF THE MIXED FIBER

In order to study experimentally the light propaga-
tion into a mixed fiber, we manufactured a multimode
optical fiber whose transverse shape is a truncated disk
with γ = 0.95. The experimental setup is showed in
Figure 10. The illumination is made with a 2mW HeNe
cw laser (λ0 = 633nm). The polarization is controlled
through a polarizer and a λ/2 wave-plate. The trans-
verse wavenumber of the initial beam with respect to the
optical axis is controlled via the relation κ = k0 sinΘ
with Θ the angle of the beam with respect to the opti-
cal axes. It fixes the average transverse wavenumber of
the range of excited modes and thus to select the modes.
An other way to control the modes’ excitation is per-
formed through the utilization of a Spatial Light Modu-
lator (SLM, Amplitude only). A spatial modulation can
be imposed through the SLM in order to shape the spatial
distribution of the field intensity and then select a family
of excited modes. At the output of the fiber, the inten-
sity is collected by a microscope objective and imaged on
a CCD Camera. The NF is then directly collected. A
supplementary lens is needed in order to collect the FF.

A. Rough selection of 2-PO regular modes by a

focused beam

At first, we did not use the SLM, and we only control
the illumination by the position and the angle of a fo-
cused beam in front of the input end of the fiber. Figures
11(a) and (g) show two typical illuminations. A gaussian

HeNe

M

M

M

P

SLM P L

Fiber
CCD

FIG. 10. Experimental setup. P: polarizer; M: mirror; λ/2:
half-wavelength waveplate; ×10, ×20, ×40: microscope ob-
jectives; SLM: Spatial Light Modulator; L: lens needed to
collect the FF; CCD: CCD camera.

beam on the fiber input is obtained at the focal point
of a microscope objective, and a tilt is given in order to
select the range of transverse wave vectors propagating
into the fiber. Figure 11(b) presents the NF measured at
the fiber’s output for the first illumination [Fig. 11(a)].
The spatial distribution of the NF is characteristic of a
superposition of regular modes of the 2-PO. One can ob-
serve both a concentration of intensity near the straight
boundary and a confinement of intensity close to the 2-
PO which are a signature of the 2-PO regular modes.
Indeed, all the regular modes along the 2-PO present
such an enhancement of intensity in the vicinity of the
x-axis. Moreover, one can note the circular arc-like pat-
tern also present on Figures 5(a) and (e). Figure 11(c)
exposes the FF intensity pattern of the outgoing waves.
The anisotropic configuration along the κx-axis confirms
that the field builds up on the 2-PO. The κx broadening
testifies that numerous gaussian-like modes of the type
u0,p(x, y) have been excited. We note also that unlike
the FF of an individual 2-PO regular mode, the figure is
asymetric along κy. This is due to a slight displacement
of the initial beam along the y-axis.
Figures 11(d) and (e) show the NF and FF resulting from
numerical simulations. Using a standard beam propaga-
tion method algorithm [45], we simulate the propagation
of an initial gaussian beam along the optical fiber. The
parameters here are given in order to reproduce the ex-
perimental initial condition. As one can see, the resulting
patterns reproduce in the NF as well as in the FF the ex-
perimental observations and validate our description of
the experiments. Moreover, it permits to get more infor-
mations on the modes that contribute to the observed
field. Figure 11(f) presents the numerical spatial fre-

quency spectrum |C̃(κ)| calculated through the standard
method [46]. More precisely, |C(κ)| is the modulus of the

Fourier transform of the correlation function C̃(z) defined
as the overlap between the outgoing field and the ini-
tial condition. First, the observed Fabry-Perot-like spec-
trum confirms that the analogy between the 2-PO regu-
lar modes of the mixed fiber and the gaussian modes of a
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Experiments Numerics

FIG. 11. Initial illumination beams, NF and FF observed at the output of the fiber, corresponding numerical simulations
and numerical calculated spectra, for an illumination favorable to the excitation of a family of (a-f) regular modes and (g-l)
superposition of modes with no 2-PO regular modes.

stable optical cavity is relevant. Each peak corresponds
to a value of κ associated to a 2-PO regular modes and
can be labelled by different p values. We measure a free
spectral range δ ≈ 3.3 which is consistent with the theo-
retical free spectral range for the modes along the 2-PO,
δ = (∆κ) a = πa/d = π/γ where ∆κ = κm,p+1 − κm,p

as defined in equation (10). In figure 12, we perform a
zoom on the spectrum between two adjacent peaks as-
sociated to p = 21 and p + 1 = 22. Secondary peaks
appear systematically close to each primary peaks asso-
ciated to 2-PO regular modes. They correspond to high-
order transverse modes that have a good overlap with
the initial beam focused along the symmetry axis of the
fiber in the vicinity of the truncation.

We indicate a peak associated to the 2-PO regular
mode u0,21 in Figure 12. At a distance ∆ of this peak, we
point a peak with lower amplitude which correspond to a
transverse mode with the same p but with m = 2, u2,21.
As the value of κ2,p > κ0,p, this peak is actually closer to
the peak corresponding to the 2-PO mode u0,p+1=22 than
u0,21. We measure the interval ∆ between the values of
κ a for u0,21 and u2,21. Following eq. (10), we expect to
get

∆ =
2

γ
arctan

√

γ

1− γ
+ δφr = 2.84 (17)

where δφr is the difference between the phase shift φ
κ0,p

r

and φ
κ2,p

r which is negligible. The measured value ∆ =
2.84 confirmed the identification of the peaks.

0

m=0

p=21

m=4

p=20

m=2

p=21

m=0

p=22

FIG. 12. Zoom of the spectrum of Fig. 11(f) between two
peaks p = 21 and p = 22. In inset, the intensity of the modes
corresponding to u4,20 and u2,21.

The peak with lower amplitude on the left of the u2,21
peak corresponds to m = 4 but for p − 1 = 20. In the
same way, we measure ∆′ = κ4,20 a−κ0,20 a = 5.69 which
is in agreement with the expected theoretical value ∆′ =
4/γ arctan

√

γ/ (1− γ)+δφ′r = 5.68, with δφ′r = φ
κ4,20

r −
φ
κ0,20

r .
These secondary peaks correspond to transverse modes

with even m. The maximum of intensity of modes with
evenm > 2 is not along the x-axis, therefore their weights
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in the spectrum is very low. However, the modes with
odd m present a zero of intensity along the symmetry
axis and consequently have a poor overlap with the given
illumination (see figure 5(b,f,d and h)).
Figure 11(h) presents the NF collected for the second

illumination [Fig. 11(g)] that is for a beam focused far
from the location of the 2-PO regular modes. Here, the
pattern is completely different and the spatial distribu-
tion of intensity is statistically uniform, made of grains
of light of random amplitude and size. This speckle-like
pattern results from the superposition of a great number
of modes including ergodic modes [see Fig. 3(j)]. The FF
[Fig. 11(i)] confirms this assumption, by presenting an
isotropic distribution of wavevectors whose moduli are ra-
dially confined around an average wavenumber κ̄. The as-
sociated numerical simulations [figures 11(j) and (k)] re-
produce the experimental results. The numerical spatial
frequency spectrum [Figure 11(l)] does not present any
predominant structuration: all the modes in the range
of κ corresponding to the illumination are excited. The
three regularly-spaced peaks one can see around κ a = 90
are a reminiscence of a regular modes along a periodic or-
bit that have been excited. The presence of zero-intensity
area visible on Figure 11(j) underlines the fact that no
2-PO regular modes are excited (as those modes present
a maximum of intensity in this location).
From the transverse wavenumber spectra, we aim to

extract some informations on the underlying geometri-
cal signature of the excited modes. A relevant way to
characterize the presence or not of any regularity in the
underlying ray dynamics is to calculate the Fourier trans-
form of |C̃(κ)|:

L(ℓ) =
∫ κmax

0

dκ |C̃(κ)| exp (−jκℓ) (18)

This length spectrum L(ℓ) will display peaks at the cor-
responding orbit length. Thus, the geometrical length
of the periodic orbits can be directly extracted from the
measure of the spectrum |C̃(κ)| which is calculated inde-
pendently from the knowledge of the underlying periodic
orbits [47].
Figure 13(a) presents the length spectrum calculated

from Fig. 11(f). The first peak corresponds to the length
of the 2-PO (pointed out by the red arrow), that is
ℓ/a = 2 γ = 1.9 (the factor 2 appearing for the round
trip) and the other peaks being the harmonics. It is thus
obvious that the only contribution to the spatial distribu-
tion of the field is due to a superposition of regular modes
along the 2-PO. Figure 13(b) shows the length spectrum
associated to the spectrum of Fig. 11(l) with the same
scale as the latter. As shown in the inset, some peaks still
appear as residual resonances not predominant in the dy-
namics. We point a peak corresponding to the 5-PO. The
three regularly-spaced peaks on the spectrum [Fig. 11(l)]
are associated to the 5-PO regular modes [see Fig. 3(d)].
We also report the position of the 2-PO length and note
that no peak appears. The 2-PO doesn’t contribute to
the modes excited out of the symmetry axis of the fiber.

0 10 20 30
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0

0.02

0.04

0

0.5

1

FIG. 13. Length spectra corresponding to spectra presented
in (a) Fig. 11(f): one can see the regularly distributed peaks
corresponding for the first to the length of the 2-PO and for
the others to the harmonics ; and in (b) Fig. 11(l): one can see
that no specific length exists (see inset) even if a zoom shows
some peaks distributed in a disordered way. The arrows point
the 2-PO and 5-PO respectively.

B. Fine selection of 2-PO regular modes by a

modulated beam

As shown right above, a beam focused close to the
truncation leads to the excitation of 2-PO regular modes
due to a maximized overlap with the location of the gaus-
sian transverse mode waists. The width of the spectrum
(the number of excited modes) then depends on the size
of the illumination beam. To control the excitation of 2-
PO regular modes, we use a SLM to obtain a fine tuning
of the illumination. We add a spatial modulation along
the x-axis to select a direction of the transverse wave
vector that matches those of the 2-PO regular modes.
Moreover, we stretch the beam’s transverse profile along
the x-direction to optimize the overlap with the desired
modes. Indeed, the propagating field ψ(x, y, z) is the re-
sult of a superposition of the individual modes φn(x, y)
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FIG. 14. (a,b) Experimental FF measured for two different
spatial modulations of the illumination beam. (c) Angular
integrated FFs. Blue line corresponds to case (a) and red line
to case (b).

written as :

ψ(x, y, z) =
∑

n

cnφn(x, y) exp (−jβnz) (19)

where βn =
√

k20 − κ2n is the constant of propagation
of mode φn and cn =

∫∫

dS φn(x, y)ψ∗(x, y, z = 0), is
the weight of each individual mode in the superposi-
tion. Figures 14(a, b) show examples of the FF for two
slightly different modulations – fixed via the SLM – as-
sociated to transverse wavenumbers κ of successive reg-
ular modes u0,p and u0,p+1. To get rough informations
on the transverse wavenumbers characterizing the prop-
agated field, we calculate the angular integration of the
far-field |ψ̃(κ, ϕ, z)|2 [Fig. 14(c)]:

Iκ(κ, z) =
1

2π

∫ 2π

0

dϕ |ψ̃(κ, ϕ, z)|2 (20)

It is equivalent to a low-resolution spatial frequency
spectrum due to smoothing induced by the Fourier trans-
form of the individual modes and the interferences be-
tween the modes. The blue line (resp. red line) corre-
sponds to the FF presented in Fig. 14(a) (resp. (b)).
In Figure 14, regularly spaced circle arcs clearly ap-

pear in the κx-direction in the FFs and correspond to the
peaks observed in their angular integrations. It points
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FIG. 15. (a,b) Numerical FF calculated for two different 2-
PO regular modes with p = 12 and p = 13 respectively. (c)
Angular integrated FFs. Blue line corresponds to case (a)
and red line to case (b). The vertical dashed lines correspond
to the value of the wavenumber of the u0,p modes.

out that only 2-PO modes have been selected. The high-
est peaks around κ a = 76 correspond to the value of
κ fixed by the modulation. They are associated to two
successive 2-PO regular modes with p = 22 for the red
curve and p = 23 for the blue one. The peaks located
around κ a = 60 testify on the excitation of lower order
2-PO regular modes as well, due to their good overlap
with the initial condition. For low κ a values, we observe
some peaks that can be understood within the angular
integration of the FF of individual regular modes.

In Figure 15, we report the angular integrated far-fields
for two calculated individual 2-PO regular modes with
consecutive p values, p = 12 and p = 13. To begin with,
we observe that the curves present a peak at the expected
position of the κ that are κ0,12 a = 42.12 and κ0,13 a =
45.54. We note also the presence of peaks with reduced
amplitudes at the location of lower κ a corresponding 2-
PO regular modes. The occurence of these peaks is a
consequence of the gaussian beam nature of the 2-PO
regular modes along the stable trajectory. Those peaks
would not appear for instance in the angular integration
of the FF of the ergodic modes (as the one shown in Fig.
3(j)).

We perform numerical simulations to analyze the ex-
perimental angular far-field integration of Figure 14.



13

First an initial beam analogous to the one used in
the experiment – that is an asymmetric gaussian beam
stretched and modulated in the x-direction – is used on
the one hand as initial illumination condition in the BPM
algorithm. On the other hand, we evaluate the spa-
tial overlap of this initial condition with the calculated
modes to get the weights cn of each individual mode in
the propagating field ψ(x, y, z). Numerically, we super-
impose the angular integrated far-field resulting from the
BPM simulation with the calculated weights |cn| of each
mode. Figure 16(a) shows a behavior analogous to the
experimental angular integrated far-field [Fig. 14(c)-red
curve]. For low values of κ a, we observe some peaks
pointed by the vertical arrows also detected on the ex-
perimental figure [see Fig. 14] that correspond to values
of κ a for p = 2, 4, 6. They constitute a direct signature
of the Gaussian modes as shown in the integrated far-
field of individual modes [Fig. 15]. We also observe two
broad peaks in the integrated FF around κ a = 40 and
κ a = 50. These large peaks result from the interferences
between the excited modes preferentially being 2-PO reg-
ular modes. Indeed, by considering the value of |cn|, we
notice that modes with highest value of |cn| are the 2-PO
modes (labelled by dashed vertical lines).
Finally, we report in Fig. 16(b), the angular integrated
far-field for an initial modulated beam out of the 2-PO
direction (precisely, in the upper part of the fiber, with
a modulation having the same κ value but along the y-
direction to avoid the 2-PO). We observe the vanishment
of the first peaks associated to the characteristic signa-
ture of the 2-PO regular modes and an enlarged peak
that corresponds to a superposition of a great number of
arbitrary excited modes around the main κ value. The
reported |cn| values show that a large amount of not iden-
tifiable modes are effectively excited.

VI. CONCLUSION AND DISCUSSION

In this paper we have presented numerical and experi-
mental investigations of the modes of a highly multimode
fiber whose transverse cross section is designed to induce
complex ray dynamics. This system is versatile in the
sense that a slight change in the level of the truncation
leads to the exploration of different types of dynamics.
One thus has access, with the same experimental system,
to mixed, regular as well as chaotic dynamics. Here, we
focused our work on the study of a mixed dynamics. Af-
ter a brief review of the basics of dynamical systems as
well as the analogy between the fiber’s modes and Gaus-
sian modes of an optical resonator, we concentrated our
study on the deviation of the statistics of some family
of modes from the generic behavior. The strong spatial
localization of the regular modes finds remarkable signa-
tures in the study of the IPR. By largely exceeding the
value of the IPR predicted by the Random Matrix The-
ory, the regular modes of the mixed optical fiber present
features commonly encountered in disordered systems ex-
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FIG. 16. Angular integrated FF obtained by numerical sim-
ulations. (a) For an illumination favorable to the excitation
of regular modes. The vertical dashed lines correspond to the
value of the wavenumber of the u0,p modes ; (b) For a modu-
lation along the y-direction, so that no regular mode is being
excited. The |cn|

2 are represented by continuous dark lines in
both cases. Insets show the corresponding FF.

hibiting Anderson localized modes. Moreover, coupling
these results with the analogy with the gaussian modes
allowed us to derive an analytic expression for the IPR
as a function of the wavenumber for the regular modes.
With a suitable shaping of the initial beam, we

experimentally demonstrated that these modes can be
selectively excited, and that they are robust to mode
coupling. We analyse our results by means of the
spectra, length spectra and angular integration of the
output far-field, for any given initial illumination. This
ease of shielding the other modes opens the way to
multiple applications in optical telecommunications. For
instance, the regular modes of the mixed optical fiber
appear to be suitable for mode division multiplexing
and would increase the number of transmission channels
compared to the actual achievement available in con-
ventional devices. Moreover, these modes can benefit
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from a selective optical amplification, by optimizing
the spatial overlap with a gain medium. To do so, one
simply has to locate the active medium in the vicinity
of the truncation, where the regular modes have their
maximum of intensity [17]. In a more fundamental
point of view, a nonlinear mixed optical fiber would
promote an enhancement of the phenomenon of optical

thermalization and condensation of classical waves, as
the spatial overlap between the modes is an important
parameter [48].

The authors thank gratefully M. Udé and S. Trzesien
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turing.
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