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The holomorphy conjecture for

nondegenerate surface singularities

Wouter Castryck, Denis Ibadula and Ann Lemahieu ∗

Abstract.— The holomorphy conjecture states roughly that Igusa’s zeta function associated to a

hypersurface and a character is holomorphic on C whenever the order of the character does not divide

the order of any eigenvalue of the local monodromy of the hypersurface. In this article we prove the

holomorphy conjecture for surface singularities which are nondegenerate over C w.r.t. their Newton

polyhedron. In order to provide relevant eigenvalues of monodromy, we first show a relation between

the normalized volume (which appears in the formula of Varchenko for the zeta function of monodromy)

of faces in a simplex in arbitrary dimension. We then study some specific character sums that show

up when dealing with false poles. In contrast with the context of the trivial character, we here need to

show fakeness of certain poles in addition to the candidate poles contributed by B1-facets.

1 Introduction

Let K be a finite extension of the field of p-adic numbers Qp. Let R be the valuation
ring of K and P its maximal ideal. Suppose that the residue field R/P has cardinality
q. For z ∈ K, let ord(z) ∈ Z ∪ {∞} denote its valuation, |z| = q− ord(z) its absolute
value and ac(z) = zπ− ord(z) its angular component, where π is a fixed uniformizing
parameter for R.

Let f(x), x := (x1, . . . , xn), be a non-constant polynomial over K, and χ : R× → C×

a multiplicative character of R×, i.e. a homomorphism with finite image. We formally
put χ(0) = 0. Let Zf,0(χ,K, s), resp. Zf (χ,K, s), be the corresponding local Igusa zeta
function, resp. global Igusa zeta function, i.e. the meromorphic continuation to C of the
integral function

Z0(s) =

∫

Pn

χ (ac(f(x))) |f(x)|s|d(x)|, resp. Z(s) =

∫

Rn

χ (ac(f(x))) |f(x)|s|d(x)|,

for s ∈ C with Re(s) > 0, where |d(x)| = |dx1 ∧ . . . ∧ dxn| denotes the Haar measure
on Kn normalized such that the measure of Rn is 1.

For f a polynomial over R, the local and global Igusa zeta function can be described
in terms of solutions of congruences. For i ∈ N>0 and u ∈ R/P i, let M0,i(u) and Mi(u)
be the numbers of solutions of f(x) ≡ u mod P i in (P/P i)n resp. (R/P i)n. Let c be

∗The research was partially supported by MCI-Spain grant MTM2010-21740-C02, by the ANR
‘SUSI’ project (ANR-12-JS01-0002-01) and by the research project G093913N of the Research Foun-
dation - Flanders (FWO).
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the conductor of χ, i.e. the smallest a ∈ N>0 such that χ is trivial on 1 + P a. Then

Z0(s) =

∞∑

i=0

∑

u∈(R/P c)×

χ(u)M0,i+c(π
iu)q−n(i+c)q−is, and

Z(s) =
∞∑

i=0

∑

u∈(R/P c)×

χ(u)Mi+c(π
iu)q−n(i+c)q−is.

Igusa showed that these functions are rational functions in q−s and he gave a formula for
Zf,0(χ,K, s) and Zf (χ,K, s) in terms of an embedded resolution (Y, h) of f−1{0} overK
(see [I]). Let Ej , j ∈ T , be the (reduced) irreducible components of h−1(f−1 {0}), and
letNj , resp. νj−1, be the multiplicity of Ej in the divisor of f◦h, resp. h∗(dx1∧. . .∧dxn)
on Y . Then the poles of Zf,0(χ,K, s) and Zf (χ,K, s) are among the values

s =
−νj
Nj

+
2kπi

Nj log(q)
, k ∈ Z, j ∈ T, (1)

for which the order of χ divides Nj .
Let now f ∈ F [x], with F ⊂ C a number field, and let K be a non-archimedean

completion of F , i.e. a completion w.r.t. a finite prime. Let R be its valuation ring
and let χ : R× → C× be a character. Then the poles of Zf,0(χ,K, s) and Zf (χ,K, s)
seem to be related to various invariants in singularity theory, such as the eigenvalues of
monodromy and the roots of the Bernstein-Sato polynomial (see for example [D2]) and
such as the jumping numbers (see for example [ST]). In this article we explore another
connection conjectured by Denef, called the holomorphy conjecture. It follows from
(1) that when the order of χ divides no Nj at all, then the zeta functions Zf,0(χ,K, s)
and Zf (χ,K, s) are holomorphic on C. Now, the Nj are not intrinsically associated to
f−1 {0}; however the order (as root of unity) of any eigenvalue of the local monodromy
on f−1 {0} divides some Nj, and those eigenvalues are intrinsic invariants of f−1 {0}.
This observation inspired Denef to propose the following ([D2, Conjecture 4.4.2]):

Conjecture 1 (Holomorphy conjecture). For almost all non-archimedean comple-
tions K of F (i.e. for all except a finite number) and all characters χ, the local (resp.
global) Igusa zeta function Zf,0(χ,K, s) (resp. Zf (χ,K, s)) is holomorphic, unless the
order of χ divides the order of some eigenvalue of the local monodromy of f at some
complex point of f−1 {0}.

This conjecture has been proven by Veys in [Ve, Theorem 3.1] for plane curves, and
in [DV] Denef and Veys got a Thom-Sebastiani type result. In [RV] Rodrigues and Veys
make several progresses on the holomorphy conjecture for homogeneous polynomials.
Veys and the third author confirmed the conjecture for surfaces that are general for a
toric idealistic cluster (see [LV, Theorem 24]). In [LVP1] the holomorphy conjecture
has been introduced for ideals and was proven for ideals in dimension two.

In this article we prove the holomorphy conjecture for surface singularities that are
nondegenerate over C w.r.t. their Newton polyhedron at the origin. In Section 2 we
recall this notion, along with explicit formulas for the zeta functions in this context.
By a formula of Varchenko the normalized volume of a face gets a key role in the
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search for eigenvalues of monodromy for nondegenerate singularities. In Section 3 we
prove some properties on the normalized volume of faces in a simplex of arbitrary
dimension. These properties might be of independent interest. We can use them
in Subsection 5.1 to obtain a set of eigenvalues that is relevant for the holomorphy
conjecture. Furthermore, we prove that some candidate poles of Zf,0(χ,K, s) (resp.
Zf (χ,K, s)) are no actual poles. In [BV] some configurations of B1-facets that give rise
to false poles have been treated in the context of non-trivial characters. Actually, it
seems that almost all configurations of B1-facets give rise to fake poles (see Subsection
5.2 for the exact statement). We even find a configuration without B1-facets where we
need to show that the candidate pole is a false pole. These computations rely on the
study of some specific character sums (see Section 4). We can then complete our proof
using a nondegeneracy argument (see Lemma 2) which was used for the first time in
[LVP2].

As a preliminary remark, we note that for the purpose of proving the holomorphy
conjecture one can assume that

• f has coefficients in the ring of integers OF of F ; indeed, multiplying f by a
constant a ∈ F affects Zf,0(χ,K, s) and Zf (χ,K, s) only for the completions K
in which ord(a) 6= 0, of which there are finitely many,

• χ is a non-trivial character with conductor equal to 1; indeed, Denef proved
that for almost all non-archimedean completions K of F , if χ : R× → C× is
a multiplicative character which is non-trivial on 1 + P , then Zf,0(χ,K, s) and
Zf (χ,K, s) are constant on C (see [D2, Theorem 3.3]).

From now on we will just write Zf,0(χ, s) (resp. Zf (χ, s)) for Zf,0(χ,K, s) (resp.
Zf (χ,K, s)).

2 Nondegenerate singularities and their zeta functions

2.1 Nondegenerate singularities

Assume that f(x) ∈ OF [x] is a non-constant polynomial satisfying f(0) = 0. Write

f(x) =
∑

k∈Zn
≥0

ckx
k,

where k = (k1, . . . , kn) and xk = xk11 · . . . · xknn . The support of f is supp f = {k ∈
Zn
≥0 | ck 6= 0}. The Newton polyhedron Γ0 of f at the origin is the convex hull in Rn

≥0 of

⋃

k∈supp f

k + Rn
≥0.

A facet of the Newton polyhedron is a face of dimension n− 1. For a face τ of Γ0, one
defines the polynomial fτ (x) :=

∑
k∈Zn∩τ ckx

k.
We say that the polynomial f is nondegenerate over C w.r.t. the compact faces of

Γ0 (resp. nondegenerate over C w.r.t. the faces of Γ0), if for every compact face τ (resp.
for every face τ) of Γ0, the zero locus of fτ has no singularities in (C×)n. For a fixed
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Newton polyhedron Γ, almost all polynomials having Γ as their Newton polyhedron
are nondegenerate w.r.t. the faces of Γ (see [AVG, p.157]).

Let K be a non-archimedean completion of F with valuation ring R and maximal
ideal P , whose residue field we denote by Fq. Note that OF ⊂ R, so it makes sense to
consider f̄ , the polynomial over Fq obtained from f by reducing each of its coefficients
modulo P . We say that f̄ is nondegenerate over Fq w.r.t. the compact faces of Γ0 (resp.
nondegenerate over Fq w.r.t. the faces of Γ0) if for every compact face τ (resp. for every
face τ) of Γ0, the zero locus of f̄τ has no singularities in (F×

q )
n. If f is nondegenerate

over C w.r.t. the compact faces (resp. the faces) of its Newton polyhedron Γ0, then
recall that f̄ is nondegenerate over Fq w.r.t. the compact faces (resp. the faces) of Γ0

for almost all choices of K. Thus in order to prove the holomorphy conjecture for
polynomials that are nondegenerate over C, it suffices to restrict to completions K for
which moreover f̄ is nondegenerate over the residue field Fq.

Further on we will use the following property of nondegeneracy ([LVP2, Lemma 9]):

Lemma 2. If a complex polynomial f(x, y, z) is nondegenerate w.r.t. the compact faces
of its Newton polyhedron at the origin, then for almost all k ∈ C the polynomial
f(x, y, z − k) is nondegenerate w.r.t. the compact faces of its Newton polyhedron at
the origin. (Analogously for the variables x and y.)

2.2 Some combinatorial data associated to the Newton polyhedron

Let Γ0 be as above. For a = (a1, . . . , an) ∈ Rn
≥0 we put

N(a) := inf
x∈Γ0

a · x, ν(a) :=
n∑

i=1

ai, F (a) := {x ∈ Γ0 | a · x = N(a)}.

All F (a), a 6= 0, are faces of Γ0. To a face τ of Γ0 we associate its dual cone ∆τ = {a ∈
Rn
≥0 |F (a) = τ}. It is a rational polyhedral cone of dimension n− dim τ . In particular

if τ is a facet then ∆τ is a ray, say ∆τ = aR>0 for some non-zero a ∈ Zn
≥0, and then the

equation of the hyperplane through τ is a ·x = N(a). If we demand that a is primitive,
i.e. that gcd(a1, . . . , an) = 1, then this a is uniquely defined. For a facet τ we also use
the notation N(τ) - called the lattice distance of τ - and ν(τ), meaning respectively
N(a) and ν(a) for this associated a ∈ Zn

≥0. For a general proper face τ the dual cone
∆τ is strictly positively spanned by the dual cones of the facets containing τ .

For a set of linearly independent vectors a1, . . . , ar ∈ Zn we define the multiplicity
mult(a1, . . . , ar) as the index of the lattice Za1 + . . . + Zar in the group of the points
with integral coordinates of the subspace of Rn generated by a1, . . . , ar. Alternatively,
mult(a1, . . . , ar) is equal to the greatest common divisor of the determinants of the
(r× r)-matrices obtained by omitting columns from the matrix with rows a1, . . . , ar. If
∆τ is a simplicial cone then by mult(∆τ ) we mean the multiplicity of its set of primitive
generators. For a simplicial face τ we write mult(τ) for the multiplicity of its set of
vertices.
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2.3 The Igusa zeta function with character for nondegenerate singu-

larities

In the case where f ∈ R[x] is nondegenerate over Fq w.r.t. the compact faces (resp.
the faces) of its Newton polyhedron at the origin Γ0, Hoornaert gave a formula ([H,
Theorem 3.4]) for the local (resp. global) Igusa zeta function associated to f and χ in
terms of Γ0, which we recall. Hoornaert states the formula for R = Zp only, but her
proof generalizes word by word to our more general setting.

Recall that we assume χ : R× → C× to be non-trivial of conductor 1. Let pr :
R× → F×

q
∼= R×/(1 + P ) be the natural surjective homomorphism. As χ is trivial on

1 + P , there exists a unique homomorphism χ̄ : F×
q → C× such that χ = χ̄ ◦ π. One

formally puts χ̄(0) = 0. Note that the order of χ divides the order of χ̄. Let f be a
non-zero polynomial over R satisfying f(0) = 0 and let f̄ be nondegenerate over Fq

w.r.t. all the compact faces (resp. all the faces) of its Newton polyhedron Γ0. Let

Lτ := q−n
∑

x∈(F×
q )n

χ̄(f̄τ (x)) and S(∆τ )(s) :=
∑

a∈Zn∩∆τ

q−ν(a)−N(a)s.

Then Hoornaert proved that the local, resp. global, Igusa zeta function associated to f
and the non-trivial character χ can be computed as

Zf,0(χ, s) =
∑

τ compact
face of Γ0

LτS(∆τ )(s), resp. Zf (χ, s) =
∑

τ
face of Γ0

LτS(∆τ )(s).

In the last summation also the face τ = Γ0 is included and S(∆Γ0) = 1.
If ∆τ is simplicial, say (strictly positively) spanned by primitive linearly independent

vectors a1, . . . , ar ∈ Zn
≥0, then

S(∆τ )(s) =

∑
h q

ν(h)+N(h)s

∏
i(q

ν(ai)+N(ai)s − 1)

where the sum runs over Zn ∩ {λ1a1 + · · · + λrar | 0 ≤ λi < 1}. In particular if
mult(∆τ ) = 1 then the numerator is 1. In the non-simplicial case S(∆τ )(s) is a sum of
such expressions (obtained by subdividing ∆τ into simplicial cones).

We clearly see that the real parts of a set of candidate poles (containing all poles) of
the local and global Igusa zeta function are given by the rational numbers −ν(a)/N(a)
for a orthogonal to a facet of the Newton polyhedron at the origin. Moreover we can
restrict to the facets for which the order of χ̄ divides N(a): this follows from Lemma 7
below. A fortiori we can restrict to those for which the order of χ divides N(a). We
say that such a facet contributes a candidate pole to Zf,0(χ, s) (resp. Zf (χ, s)).

We finally remark that if f is nondegenerate over C w.r.t. the compact faces of
Γ0, then the couples (ν(a), N(a)) are part of the numerical data (νj , Nj) associated to
a very explicit (namely, toric) embedded resolution of f−1{0} over F , that was first
described by Varchenko in [Va]. Thus the fact that we can restrict to the case where
the order of χ divides N(a) also follows from Igusa’s seminal work.
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2.4 The formula of Varchenko for the zeta function of monodromy of

f in the origin

Let f : (Cn, 0) → (C, 0) be a germ of a holomorphic function. Let F be the Milnor
fibre of the Milnor fibration at the origin associated with f and write hi∗ : H

i(F ,C) →
H i(F ,C), i ≥ 0, for the monodromy transformations.

The zeta function of monodromy at the origin associated to f is

ζf,0(t) :=
∏

i≥0

(det(idi−thi∗;H
i(F ,C)))(−1)(i+1)

,

where idi is the identical transformation on H i(F ,C). One calls α an eigenvalue of
monodromy of f at the origin if α is an eigenvalue for some hi∗ : H

i(F ,C) → H i(F ,C).
Denef proved that every eigenvalue of monodromy of f is a zero or a pole of the zeta
function of monodromy at some point of {f = 0} ([D3]). Varchenko gave in [Va] a
formula for ζf,0 in terms of Γ0 if f is nondegenerate w.r.t. the compact faces of its
Newton polyhedron at the origin Γ0. He defines a function ζτ (t) for every compact face
τ of Γ0 for which there exists a subset I ⊂ {1, . . . , n} with #I = dim(τ) + 1 such that
τ ⊂ LI := {x ∈ Rn | ∀i 6∈ I : xi = 0}. We will call such faces V-faces and we will denote
the corresponding index set (resp. linear space) to a V-face τ by Iτ (resp. LIτ ). If a
V-face is a simplex, then we will call it a V-simplex.

For a face τ of dimension 0, we put Vol(τ) = 1. For every other compact face τ ,
Vol(τ) is defined as the volume of τ for the volume form ωτ . This is a volume form
on Aff(τ), the affine space spanned by τ, such that the parallelepiped spanned by a
lattice-basis of Zn ∩Aff(τ) has volume 1. The product (dim τ)!Vol(τ) is also called the
normalized volume of the face τ and will be denoted by NV(τ).

For a V-face τ , let
∑

i∈Iτ
aixi = N(τ) be the equation of Aff(τ) in LIτ , where N(τ)

and all ai (for i ∈ Iτ ) are positive integers and their greatest common divisor is equal
to 1. We put

ζτ (t) :=
(
1− tN(τ)

)NV(τ)
.

In [Va] Varchenko showed that the zeta function of monodromy of f in the origin is
equal to

ζf,0(t) =
∏

ζτ (t)
(−1)dim(τ)

,

where the product runs over all V-faces τ of Γ0.
For a fixed facet τ of Γ0, we say that a V-face σ in Γ0 contributes w.r.t. τ if

e−2πiν(τ)/N(τ) is a zero of ζσ(t).
If n = 3, the formula of Varchenko for the zeta function of monodromy in the origin

has a specific form that we describe below. We first partition every compact facet in
simplices, let us say without introducing new vertices. For such a simplex τ , we define
the factor Fτ as in [LVP2]:

Fτ := ζτ
∏

σ

ζ−1
σ

∏

p

ζp, (2)

where the first product runs over the 1-dimensional V-faces σ in τ and the second
product runs over the 0-dimensional V-faces p of τ that are intersection points of two
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1-dimensional V-faces in τ . In [LVP2, Proposition 8] it is shown that Fτ is a polynomial.
Following the formula of Varchenko, the zeta function of monodromy in the origin can
be written as

ζf,0(t) =
∏

τ

Fτ

∏

σ

ζ−1
σ

∏

p

ζp, (3)

where the first product runs over all 2-dimensional simplices τ obtained after subdivid-
ing the compact facets and the other products run over 1-dimensional V-faces σ and
0-dimensional V-faces p for which ζσ, respectively ζp, was not used in any Fτ .

3 Preliminary results on the normalized volume

When searching for eigenvalues of monodromy using the formula of Varchenko, one has
to compare normalized volumes of compact faces in a facet. This is the motivation for
this section. For two faces σ and σ′ in a simplicial facet τ , we will denote the smallest
face containing σ and σ′ by σ + σ′.

Lemma 3. Let σ and σ′ be two non-disjoint V-faces in a simplicial facet τ . Then
σ ∩ σ′ and σ + σ′ are also V-faces.

Proof. Let σ be a d1-dimensional V-simplex and σ′ a d2-dimensional V-simplex, having
k vertices in common. Suppose that the vertices of σ + σ′ have exactly s zero entries
in common. Then one has

s ≤ n−#(σ + σ′) = n− (d1 + 1 + d2 + 1− k)

where (abusing notation) #(σ + σ′) denotes the number of vertices of σ + σ′. On the
other hand, the vertices of σ ∩ σ′ have at most n− k zero entries in common, and so

n− k ≥ (n− d1 − 1) + (n− d2 − 1)− s

Combining these two inequalities, one finds that they are actually equalities and so
σ ∩ σ′ and σ + σ′ are V-simplices. �

Recall that for a V-simplex τ , the normalized volume NV(τ) is equal to its multi-
plicity mult(τ) divided by its lattice distance N(τ). Let Bj(Bj

1, . . . , B
j
n), 1 ≤ j ≤ n, be

the vertices of τ and let σ be a V-face in τ with vertices B1, . . . , Bk and Iσ = {1, . . . , k}.
Then mult(τ) is the absolute value of the determinant of the matrix




B1
1 . . . B1

k 0 . . . 0
... . . .

...
... . . .

...
Bk

1 . . . Bk
k 0 . . . 0

∗ . . . ∗ Bk+1
k+1 . . . Bk+1

n
... . . .

...
... . . .

...
∗ . . . ∗ Bn

k+1 . . . Bn
n




.
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We will denote the matrix

Mτ,σ :=




Bk+1
k+1 . . . Bk+1

n
... . . .

...
Bn

k+1 . . . Bn
n


 .

Then we have that mult(τ) =mult(σ) |det(Mτ,σ)| .

Proposition 4. Let τ be a simplicial facet of a Newton polyhedron in Rn. If σ is a
V-face in τ , then NV(σ)|NV(τ).

Proof. Let us denote the equation of the affine space through τ resp. through σ by

Aff(τ) ↔ a1x1 + . . .+ anxn = N(τ), Aff(σ) ↔
a1x1 + . . .+ akxk
gcd(a1, . . . , ak)

= N(σ),

with gcd(a1, . . . , an) = 1 and N(σ) = N(τ)/ gcd(a1, . . . , ak). Let Bj(Bj
1, . . . , B

j
n), 1 ≤

j ≤ n, be the vertices of τ and Bk+1, . . . , Bn the vertices of τ that are not contained
in σ. Then we find that

NV(τ) =
NV(σ) |det(Mτ,σ)|

gcd(a1, . . . , ak)
.

Let vj(B
k+1
j , . . . , Bn

j )
T , k+1 ≤ j ≤ n, be the jth column of the matrixMτ,σ and let M̃τ,σ

be the matrix obtained fromMτ,σ by replacing the first column by ak+1vk+1+. . .+anvn.

For every vertex Bj of τ we have that gcd(a1, . . . , ak)|ak+1B
j
k+1+ . . .+anB

j
n and hence

we find that gcd(a1, . . . , ak)|det(M̃τ,σ) = ak+1 det(Mτ,σ). Analogously, we obtain that
gcd(a1, . . . , ak)|aj det(Mτ,σ), for k+1 ≤ j ≤ n. As we supposed that gcd(a1, . . . , an) =
1, we get that gcd(a1, . . . , ak)|det(Mτ,σ), which implies that NV(σ)|NV(τ). �

Proposition 5. Let τ be a simplicial facet of a Newton polyhedron in Rn. If σ and σ′

are V-faces in τ such that σ ∩ σ′ 6= ∅, then

NV(τ)NV(σ ∩ σ′) = NV(σ)NV(σ′)M, for some M ∈ N. (4)

Moreover, if σ + σ′ = τ , then M = 1 if and only if N(σ ∩ σ′) = gcd(N(σ), N(σ′)).

Proof. As σ + σ′ is also a V-face (see Lemma 3), it follows by Proposition 4 that it is
sufficient to prove that

NV(σ + σ′)NV(σ ∩ σ′) = NV(σ)NV(σ′)M, for some M ∈ N.

Let B1, . . . , Bk, Bk+1, . . . , Br be the vertices of σ and B1, . . . , Bk, Br+1, . . . , Bs be the
vertices of σ′. Then mult(σ+σ′) is the absolute value of the determinant of the matrix




B1
1 . . . B1

k 0 . . . 0 0 . . . 0
... . . .

...
... . . .

...
... . . .

...
Bk

1 . . . Bk
k 0 . . . 0 0 . . . 0

∗ . . . ∗ Bk+1
k+1 . . . Bk+1

r 0 . . . 0
... . . .

...
... . . .

...
... . . .

...
∗ . . . ∗ Br

k+1 . . . Br
r 0 . . . 0

∗ . . . ∗ 0 . . . 0 Br+1
r+1 . . . Br+1

s
... . . .

...
... . . .

...
... . . .

...
∗ . . . ∗ 0 . . . 0 Bs

r+1 . . . Bs
s




.
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We write

Aff(σ + σ′) ↔ a1x1 + . . . + asxs = N(σ + σ′), with gcd(a1, . . . , as) = 1,

α := gcd(a1, . . . , ak), β := gcd(ak+1, . . . , ar) and γ := gcd(ar+1, . . . , as).

Then we have

Aff(σ) ↔
a1x1 + . . .+ akxk + ak+1xk+1 + . . .+ arxr

gcd(α, β)
=

N(σ + σ′)

gcd(α, β)
= N(σ),

Aff(σ′) ↔
a1x1 + . . .+ akxk + ar+1xr+1 + . . .+ asxs

gcd(α, γ)
=

N(σ + σ′)

gcd(α, γ)
= N(σ′),

Aff(σ ∩ σ′) ↔
a1x1 + . . .+ akxk

α
=

N(σ + σ′)

α
= N(σ ∩ σ′).

By using Proposition 4 we get

NV(σ + σ′)NV(σ ∩ σ′) = NV(σ)NV(σ′)
α

gcd(α, β) gcd(α, γ)
.

As gcd(α, β, γ) = 1, the quotient α/(gcd(α, β) gcd(α, γ)) is an integer.
To prove the second statement, let σ and σ′ be two V-faces in a simplicial facet τ

such that σ + σ′ = τ . Then one easily shows that N(τ) = lcm(N(σ), N(σ′)) and one
can then write

M =
α

gcd(α, β) gcd(α, γ)
=

gcd(N(σ), N(σ′))

N(σ ∩ σ′)
.

�

Corollary 6. Let σ and σ′ be two V-faces in a simplicial facet τ . If σ and σ′ contribute
w.r.t. τ and if σ ∩ σ′ does not, then M ≥ 2 in Equation (4).

4 Some character sums

In order to prove the holomorphy conjecture, we will have to show that some candidate
poles of Zf,0(χ, s) (resp. Zf (χ, s)) are false poles. These proofs rely on the computation
of some character sums. We first recall some well-known properties of character sums
over finite fields which we will need when treating B1-facets. We then study a specific
character sum (see Proposition 10) which shows up when proving fakeness of some
other candidate pole.

Lemma 7. Let a1, . . . , an, N ∈ Z and let χ be a multiplicative character of F×
q whose or-

der is not a divisor of N . Let f ∈ Fq[x1, . . . , xn] be such that each exponent (k1, . . . , kn)
appearing in f satisfies a1k1 + · · ·+ ankn = N . Then

∑

(x1,...,xn)∈(F
×
q )n

χ(f(x1, . . . , xn)) = 0.

Proof. Pick u ∈ F×
q such that χ(uN ) 6= 1. Then the left hand side equals

∑

(x1,...,xn)∈(F
×
q )n

χ(f(ua1x1, . . . , u
anxn)) = χ

(
uN

) ∑

(x1,...,xn)∈(F
×
q )n

χ(f(x1, . . . , xn))

from which the property follows. �
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Lemma 8. Let a ∈ N and let χ be a multiplicative character of F×
q whose order is not

a divisor of a, then
∑

x∈F×
q
χ(xa) = 0.

Proof. Take f(x) = xa in the foregoing lemma. �

Lemma 9. Let f be a polynomial and g be a monomial (possibly equipped with a
non-zero coefficient) over Fq in the variables x2, . . . , xn, and let χ be a non-trivial
multiplicative character of F×

q . Then

∑

(x1,...,xn)∈(F
×
q )n

χ(f(x2, . . . , xn)+x1g(x2, . . . , xn)) = −
∑

(x2,...,xn)∈(F
×
q )n−1

χ(f(x2, . . . , xn)).

Proof. One can write
∑

(x1,...,xn)∈(F
×
q )n

χ(f(x2, . . . , xn) + x1g(x2, . . . , xn))

=
∑

(x2,...,xn)∈(F
×
q )n−1

∑

x1∈F
×
q

χ(f(x2, . . . , xn) + x1g(x2, . . . , xn))

=
∑

(x2,...,xn)∈(F
×
q )n−1


∑

u∈Fq

χ(u)− χ(f(x2, . . . , xn))




= −
∑

(x2,...,xn)∈(F
×
q )n−1

χ(f(x2, . . . , xn)),

where we used Lemma 8 in the last step. �

Proposition 10. Let χ be a multiplicative character of F×
q such that its order does not

divide a ∈ N. Let α ∈ Fq and β, γ ∈ F×
q . Then

∑

x,y,z∈F×
q

χ(αxa + βxiy2 + γxiz2) = −
∑

x,y∈F×
q

χ(αxa + βxiy2) −
∑

x,z∈F×
q

χ(αxa + γxiz2),

with i ∈ N.

Proof. First notice that we can reduce to the cases i = 0 or i = 1. We can also assume
that q is odd: indeed if q is even then we can replace y2 by y and z2 by z, from which
one sees that all sums are zero, for instance by using Lemma 8 and Lemma 9. Let

ε =

{
2 if −β/γ is a square in Fq,
0 if not.

If i = 0, then for each c ∈ F×
q define

Lc := #{ (x, y, z) ∈ F×3
q |αxa + βy2 + γz2 = c }, Mc := #{x ∈ F×

q |αxa = c },

N1,c := #{ (x, y) ∈ F×2
q |αxa + βy2 = c }, N2,c := #{ (x, z) ∈ F×2

q |αxa + γz2 = c }.

We rewrite the first equation as

βy2 + γz2 = c− αxa. (5)
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For each value of x ∈ F×
q this defines a conic in the variables y and z. In the Mc cases

where c−αxa = 0 the conic carries ε(q − 1) + 1 points (y, z) ∈ F2
q. If c− αxa 6= 0 then

Equation (5) defines a smooth conic having ε points at infinity. As every projective
nonsingular curve of genus 0 over a finite field Fq has always q+1 points (see [W]), the
conic carries q + 1− ε points in F2

q. We conclude that there are

(ε(q − 1) + 1)Mc + (q + 1− ε)(q − 1−Mc)

solutions (x, y, z) ∈ F×
q × F2

q to Equation (5). Because in Lc there are Mc points of the
form (x, 0, 0), N1,c points of the form (x, y, 0) with y 6= 0, and N2,c points of the form
(x, 0, z) with z 6= 0, we conclude that

Lc = (ε(q − 1) + 1)Mc + (q + 1− ε)(q − 1−Mc)−Mc −N1,c −N2,c.

Then for some constant λ, it holds that Lc = −N1,c −N2,c + λMc. Now note that

S1 :=
∑

x,y,z∈F×
q

χ(αxa + βy2 + γz2) =
∑

c∈F×
q

Lcχ(c),

S2 :=
∑

x,y∈F×
q

χ(αxa + βy2) =
∑

c∈F×
q

N1,cχ(c), S3 :=
∑

x,z∈F×
q

χ(αxa + γz2) =
∑

c∈F×
q

N2,cχ(c),

0 = χ(α)
∑

x∈F×
q

χ(xa) =
∑

x∈F×
q

χ(αxa) =
∑

c∈F×
q

Mcχ(c).

In the last case, the first equality follows by Lemma 8. Plugging in the expression for
Lc in S1 we find

S1 = −
∑

c∈F×
q

N1,cχ(c)−
∑

c∈F×
q

N2,cχ(c) + λ
∑

c∈F×
q

Ncχ(c) = −S2 − S3

If i = 1, one instead of (5) uses the conic

βy2 + γz2 =
c− αxa

x

and proceeds analogously. �

Note that the exponents (a, 0, 0), (i, 2, 0), (i, 0, 2) are contained in the hyperplane
2k1 + (a− i)k2 + (a− i)k3 = 2a, so under the stronger assumption that the order of χ
does not divide 2a, or under the additional assumption that a− i is even, we see from
Lemma 7 that all sums in the statement of the proposition are actually zero.

5 A proof of the holomorphy conjecture for nondegener-

ate surface singularities

Let f(x) be as in Subsection 2.1 and assume that it is nondegenerate over C with
respect to the compact faces (resp. the faces) of its Newton polyhedron at the origin
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Γ0. Let K be a non-archimedean completion with valuation ring R and residue field Fq,
such that f̄ is nondegenerate over Fq with respect to the compact faces (resp. the faces)
of Γ0. Let χ : R× → C× be a non-trivial character of conductor 1. If Zf,0(χ, s) (resp.
Zf (χ, s)) is not holomorphic on C, then by the material from Subsection 2.3 it has a
pole with real part equal to −ν(τ)/N(τ) for some facet τ of Γ0 for which the order of
χ̄ divides N(τ). Here as before χ̄ denotes the unique character of F×

q associated to χ.
For some facets τ , in particular the B1-facets and the X2-facets which we introduce

here, we will mostly have to prove that −ν(τ)/N(τ) cannot be the real part of a pole
of Zf,0(χ, s) (resp. Zf (χ, s)). For the other facets, we will prove that e−2πi/N(τ) is an
eigenvalue of monodromy of f at some point of f−1{0} and we will thus obtain that the
order of χ (which we recall divides the order of χ̄) divides the order of some eigenvalue
of monodromy at some point of f−1{0}.

Let us first recall the notion of B1-facets, introduced in [LVP2]. A simplicial facet
of an n-dimensional Newton polyhedron (n ≥ 2) is a B1-simplex w.r.t. the variable
xi if it is a simplex with n − 1 vertices in the coordinate hyperplane xi = 0 and one
vertex at distance one of this hyperplane. We say that a facet τ of an n-dimensional
Newton polyhedron is non-compact for the variable xj (1 ≤ j ≤ n) if for every point
p ∈ τ the point p + (0, . . . , 0, 1, 0, . . . , 0) ∈ τ , where (0, . . . , 0, 1, 0, . . . , 0) is an n-tuple
with 1 at place j and 0 everywhere else. We define the maps πj : Rn → Rn−1 :
(x1, . . . , xn) 7→ (x1, . . . , x̂j , . . . , xn) for j = 1, . . . , n. A non-compact facet τ of an n-
dimensional Newton polyhedron (n ≥ 3) is a (non-compact) B1-facet w.r.t. the variable
xi if τ is non-compact for exactly one variable xj and if πj(τ) is a B1-simplex in Rn−1

w.r.t. xi. A B1-facet is a B1-simplex or a non-compact B1-facet w.r.t. some variable.

Definition 11. A facet of type X2 in a 3-dimensional Newton polyhedron is a facet
whose vertices (up to permutation of the coordinates) are of the form p(a, 0, 0), q(x1, 0, 2),
r(x2, 2, 0) with a− x2 and a− x1 both odd.

5.1 Determination of a set of eigenvalues

In [LVP2, Theorem 10] Van Proeyen and the third author proved that e−2πiν(τ)/N(τ) is
an eigenvalue of monodromy of f at some point of f−1 {0}, whenever τ is not a B1-
facet. We will now show that e−2πi/N(τ) is also an eigenvalue of monodromy at some
point of f−1 {0}, except for some cases which will be treated in Subsection 5.2. We
here rely on Proposition 5 to get a more conceptual proof.

We first divide the compact facets in simplices τ , without introducing new vertices.

Proposition 12. If τ is not of type B1 nor of type X2, then e−2πi/N(τ) is a zero of Fτ .

Proof. Case 1: τ does not contain a segment in a coordinate plane.

By formula (2), Fτ = ζτ =
(
1− tN(τ)

)NV(τ)
and e−2πi/N(τ) clearly is a zero of Fτ .

Case 2: τ contains exactly one 1-dimensional V-face σ.
In this case, we have

Fτ =
ζτ
ζσ

=

(
1− tN(τ)

)NV(τ)

(
1− tN(σ)

)NV(σ)
.
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Then e−2πi/N(τ) is a zero of Fτ unless N(σ) = N(τ) and NV(σ) = NV(τ). One easily
checks that then τ would be a B1-facet.

Case 3: τ contains exactly two 1-dimensional V-faces σ1 and σ2.
In this situation,

Fτ =
ζτζp
ζσ1ζσ2

=
(1− tl)

(
1− tN(τ)

)NV(τ)

(
1− tN(σ1)

)NV(σ1) (1− tN(σ2)
)NV(σ2)

,

where w.l.o.g. {p (l, 0, 0)} = σ1 ∩ σ2.
If N(σ1) 6= N(τ) or N(σ2) 6= N(τ), then see Case 1 and Case 2. If N(τ) = N(σ1) =

N(σ2), then Fτ = (1− tl)
(
1− tN(τ)

)NV(τ)−NV(σ1)−NV(σ2)
.

Case 3.1 : If N(p) = N(τ), then by Proposition 5, NV(τ) = NV(σ1)NV(σ2) and

hence Fτ =
(
1− tN(τ)

)(NV(σ1)−1)(NV(σ2)−1)
. If NV(σ1) or NV(σ2) would be equal to 1,

then it would result that NV(τ) = NV(σi), for some i ∈ {1, 2} and again τ would be a
B1-facet. Consequently, e

−2πi/N(τ) is a zero of Fτ .

Case 3.2 : Suppose that N(p) 6= N(τ). By Proposition 5, we have NV(τ) =
M NV(σ1)NV(σ2), with M ≥ 2. If not both NV(σ1) and NV(σ2) are equal to 1, then
one easily deduces that NV(τ)−NV(σ1)−NV(σ2) > 0. If NV(σ1) = NV(σ2) = 1, then
NV(τ)−NV(σ1)−NV(σ2) > 0 if and only if M > 2. It remains thus to study the case
NV(τ) = M = 2, NV(σ1) = NV(σ2) = 1. As we supposed thatN(τ) = N(σ1) = N(σ2),
the vertices of τ are then p(N(τ)/2, 0, 0), q(x1 , 0, 2), r(x2, 2, 0), and

Aff(τ) ↔ 2x+ (N(τ)/2 − x2)y + (N(τ)/2 − x1)z = N(τ).

From N(σ1) = N(σ2) = N(τ) it follows that N(τ)/2 − x2 and N(τ)/2 − x1 are odd
and hence τ is of type X2.

Case 4: τ contains three 1-dimensional V-faces σ1, σ2 and σ3.
In this situation

Fτ =
ζτζpζqζr
ζσ1ζσ2ζσ3

,

with p = σ1 ∩ σ2, q = σ1 ∩ σ3 and r = σ2 ∩ σ3. We suppose that N(τ) = N(σ1) =
N(σ2) = N(σ3), if not then we fall back on one of the previous cases.

Case 4.1 : If N(τ) = N(σ1 ∩ σ2) = N(σ1 ∩ σ3) = N(σ2 ∩ σ3), then, by Proposition
5, NV(τ) = NV(σ1)NV(σ2) = NV(σ1)NV(σ3) = NV(σ2)NV(σ3), and thus NV(σ1) =
NV(σ2) = NV(σ3). Then Fτ becomes

Fτ =

(
1− tN(τ)

)NV(σ1)2+3

(
1− tN(τ)

)3NV(σ1)
.

Since NV(σ1)
2 + 3 > 3NV(σ1), it follows that e

− 2πi
N(τ) is a zero of Fτ .

13



Case 4.2 : If N(τ) = N(σ1 ∩ σ2) = N(σ2 ∩ σ3) 6= N(σ1 ∩ σ3), then Proposition 5
yields NV(τ) = NV(σ1)NV(σ2) = NV(σ2)NV(σ3) = M NV(σ1)NV(σ3), with M ≥ 2.
We thus get NV(σ3) = NV(σ1) and NV(σ2) = M NV(σ1) and we find then

Aff(τ) ↔ x+My + z = N(τ),

with p(N(τ), 0, 0), q(0, N(τ)/M, 0) and r(0, 0, N(τ)). In this case e
−

2πi
N(τ) is a zero

of Fτ if and only if NV(τ) + 2 > NV(σ1) + NV(σ2) + NV(σ3), or equivalently, if
(M NV(σ1)− 2) (NV(σ1)− 1) > 0. This is always the case, as NV(σ1) = N(τ)/M = 1
would imply that τ is a B1-facet.

Case 4.3 : If N(τ) = N(σ1 ∩ σ2), N(τ) 6= N(σ1 ∩ σ3) and N(τ) 6= N(σ2 ∩ σ3),
then by Proposition 5 one has NV(τ) = NV(σ1)NV(σ2) = M1 NV(σ1)NV(σ3) =
M2 NV(σ2)NV(σ3), with M1 ≥ 2 and M2 ≥ 2. In this configuration we have

Aff(τ) ↔ x+ ky + lz = N(τ),

p(N(τ), 0, 0), q(0, N(τ)/k, 0) and r(0, 0, N(τ)/l) with gcd(k, l) = 1. Then we find that
M1 = k, M2 = l and hence NV(σ2) = kNV(σ1)/l and NV(σ3) = NV(σ1)/l. In this case,
e−2πi/N(τ) would be a zero of Fτ if and only if NV(τ)+1 > NV(σ1)+NV(σ2)+NV(σ3),
or equivalently,

kNV(σ1)
2 − (k + l + 1)NV(σ1) + l > 0.

This is true because NV(σ1) ≥ l while the largest real root of the polynomial on the
left hand side is

k + l + 1 +
√

(k + l + 1)2 − 4kl

2k
< l;

the latter inequality holds because one easily rewrites it as kl > k+ l, which holds since
k, l ≥ 2 and k = l = 2 is excluded by coprimality.

Case 4.4 : If N(τ) 6= N(σ1 ∩ σ2), N(τ) 6= N(σ1 ∩ σ3) and N(τ) 6= N(σ2 ∩ σ3),
then by Proposition 5 one has NV(τ) = M1 NV(σ1)NV(σ2) = M2 NV(σ1)NV(σ3) =
M3 NV(σ2)NV(σ3), with M1 ≥ 2, M2 ≥ 2 and M3 ≥ 2. In this configuration we have

Aff(τ) ↔ kx+ ly +mz = N(τ),

p(N(τ)/k, 0, 0), q(0, N(τ)/l, 0) and r(0, 0, N(τ)/m) with k, l,m pairwise coprime. Then
we find that M1 = k, M2 = l, M3 = m and hence NV(σ2) = lNV(σ1)/m and NV(σ3) =
kNV(σ1)/m. In this case we want to establish that NV(τ) > NV(σ1) + NV(σ2) +
NV(σ3), or equivalently that klmNV(σ1) > k + l +m. This follows from NV(σ1) ≥ 1
and klm ≥ 4max{k, l,m} > 3max{k, l,m} ≥ k + l +m. �

5.2 On false poles contributed by B1-facets and X2-facets

In [BV, Proposition 9.6] it is shown that if a candidate pole contributed only by B1-
facets is an actual pole of Zf,0(χ, s), then it is contributed by two B1-facets w.r.t.
different variables having a 1-dimensional intersection. We will here show that even
in that situation the candidate pole is almost always a false pole of Zf,0(χ, s). We
need this precision here, because for the holomorphy conjecture one has to verify if
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1/Nj gives rise to an eigenvalue of monodromy, rather than the quotient νj/Nj (that
might be simplifiable). We also study when candidate poles of Zf (χ, s) corresponding
to B1-facets are false poles. Finally we provide some facets of type X2 that give rise to
fake poles of Zf,0(χ, s) and Zf (χ, s).

We again assume that the compact facets have been subdivided into simplices with-
out introducing new vertices; this guarantees that every vertex is equipped with a non-
zero coefficient. Then towards our study of contributions of configurations of B1-facets,
we make the following observations (which hold up to permutation of the coordinates).

Fact 1: A vertex P (1, ·, ·) does not contribute. Indeed, as χ is not the trivial char-
acter (and so χ̄ neither is trivial), one immediately deduces from Lemma 8 that the
contribution of P is equal to 0.

Fact 2: A vertex P (a, 0, 0) does not contribute if the order of χ̄ is not a divisor
of a (by Lemma 8).

Fact 3: A segment σ := PQ with P (1, 1, b) and Q(0, 0, a) does not contribute if
the order of χ̄ is not a divisor of a. To compute the contribution of σ, we consider

Lσ = q−3
∑

(x,y,z)∈(F×
q )3

χ̄(c0,0,az
a + c1,1,bxyz

b).

By using Lemma 9, this expression simplifies to

−q−3χ̄(c0,0,a)
∑

(y,z)∈(F×
q )2

χ̄(za).

If the order of χ̄ is not a divisor of a, then it follows from Lemma 8 that the contribution
of σ is equal to 0.

Fact 4: Let σ := PQ with P (·, ·, 0) and Q(·, ·, 0), and let τ := PQR with R(·, ·, 1) be
the facet not contained in {z = 0} that contains σ, then σ and τ cancel each other out.
Indeed, by Lemma 9 with f = fσ it follows that Lσ = (1− q)Lτ . As mult(∆σ) = 1, we
find that LσS(∆σ) + LτS(∆τ ) = 0.

Fact 5: Let σ := PQ with P (·, ·, 0) and Q(·, ·, 1), then again by Lemma 9 one finds
LP = (1 − q)Lσ. Now let τ1 and τ2 be the facets containing σ and let τ0 be the facet
in {z = 0} containing the vertex P . With δP the cone (strictly positively) spanned by
∆τ0 ,∆τ1 and∆τ2 we then find that LσS(∆σ) + LPS(δP ) = 0.

Fact 6: Let σ := PQ with P (·, ·, 0) and Q(·, ·, 1), and let τ1 be a non-compact B1-facet
containing σ. Let τ2 be the non-compact facet containing the vertex Q and sharing a
half line with τ1. Lemma 8 implies that τ1 ∩ τ2 does not contribute in the formula for
Zf (χ, s).

Fact 7: Let σ := PQ with P (·, ·, 0) and Q(·, ·, 1), and let τ1 be a non-compact B1-facet
containing σ. Let τ0 be the non-compact facet containing the vertex P and sharing
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a half line σ1 with τ1. As Lσ1 = (1 − q)Lτ1 and mult(∆σ1) = 1, it follows that the
contributions of τ1 and σ1 cancel each other out.

From these facts one can derive the contributions of all possible configurations of B1-
facets. We begin with the configuration studied (in the local case over Qp) in [BV,
Proposition 9.6] that we mentioned at the beginning of this section.

Case 1: the candidate pole is contributed by a configuration of B1-facets
in which no two facets that share a 1-dimensional face are B1 only for
different variables.

For the contributions to the local Igusa zeta function, one can derive from Facts 1,
4 and 5 that the candidate pole is a false pole. For the global Igusa zeta function, one
in addition uses Facts 6 and 7.

Case 2: the candidate pole is contributed by exactly two compact B1-
facets w.r.t. different variables, having a line segment in common.

If the common line segment is compact, then the configuration is as in Figure 1 with

Figure 1

A(., 0, .), B(1, 1, b), C(0, ., .) and D(0, 0, a). If the order of χ̄ is not a divisor of a, then
it follows from Facts 1 to 5 that the candidate pole is a false pole of Zf,0(χ, s) and
Zf (χ, s).

Case 3: the candidate pole is contributed by two non-compact B1-facets
w.r.t. different variables, having a line segment in common.

If the common line segment is non-compact, then the configuration is as in Figure
2, with A(., 0, .), B(0, ., .) and C(1, 1, .). For the contributions to the local Igusa zeta
function, one deduces from Facts 1, 4 and 5 that the candidate pole is a false pole. For
the global Igusa zeta function, one also has to use Facts 6 and 7.

If the common line segment is compact, then its vertices are given by A(0, 0, a) and
B(1, 1, b). If the order of χ̄ is not a divisor of a, then by Facts 1 to 7 it follows again
that the candidate pole is not an actual pole of Zf,0(χ, s) and Zf (χ, s).
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Figure 2

Case 4: the candidate pole is contributed by one compact B1-facet and
one non-compact B1-facets w.r.t. different variables, having a line seg-
ment in common.

Again using Fact 1 to Fact 7, one finds that the candidate pole is a false pole of
Zf,0(χ, s) and Zf (χ, s) when the order of χ̄ is not a divisor of a,.

Case 5: the candidate pole is contributed by at least two B1-facets
w.r.t. different variables, having a line segment in common.

As in Case 2 the contributions of τ1 := ABD, τ2 := BCD and τ1 ∩ τ2 := BD are
all equal to 0, one can deduce the fakeness of the candidate pole also when there are
other B1-facets having a 1-dimensional intersection with τ1 or τ2. �

We now treat the candidate poles contributed by X2-facets.

Lemma 13. Let τ be a facet with vertices p(N(τ)/2, 0, 0), q(x1 , 0, 2) and r(x2, 2, 0)
where N(τ)/2− x1 and N(τ)/2− x2 are odd. If the order of χ̄ does not divide N(τ)/2
and is different from 2, then τ does not contribute to Zf,0(χ, s) and Zf (χ, s).

Proof. It follows immediately from Fact 2 that the vertices p, q and r do not contribute.
Using Lemma 7 one also verifies that the edge qr does not contribute. We now show
that the contributions of σ1 := pq, σ2 := pr and the facet τ cancel each other. As
N(σ1) = N(σ2) = N(τ), we have that mult(∆σ1) = mult(∆σ2) = 1, and thus

S(∆σi
) =

1

(q − 1)(qN(τ)s+ν(τ) − 1)
, 1 ≤ i ≤ 2.

One gets

Lσ1S(∆σ1) + Lσ2S(∆σ2) + LτS(∆τ ) = 0
m

(q − 1)Lτ = −Lσ1 − Lσ2 .
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The equality between these character sums is proven in Proposition 10. �

If x1 = x2 = 0 (in which case the X2-facet is the only compact facet of Γ0) we can
prove something slightly stronger.

Lemma 14. Let τ be a facet with vertices p(N(τ)/2, 0, 0), q(0, 0, 2) and r(0, 2, 0) where
N(τ)/2 is odd. If the order of χ̄ does not divide N(τ)/2, then τ does not contribute to
Zf,0(χ, s) and Zf (χ, s).

Proof. The previous proof remains valid, except for the conclusions that q, r and
σ3 := qr do not contribute, where we used that the order of χ̄ is not 2. We show that
the contributions cancel. Indeed, since mult(∆q) = mult(∆r) = mult(∆σ3) = N(τ)/2
we have

S(∆σ3) =
N

(q − 1)(qN(τ)s+ν(τ) − 1)
, S(∆q) = S(∆r) =

N

(q − 1)2(qN(τ)s+ν(τ) − 1)

for some common numerator N . One gets

LqS(∆q) + LrS(∆r) + Lσ3S(∆σ3) = 0
m

(q − 1)Lσ3 = −Lq − Lr.

This again follows from Proposition 10 (with α = 0). �

5.3 The holomorphy conjecture for nondegenerate surface singulari-

ties

Theorem 15. Let F be a number field and let f(x, y, z) ∈ OF [x, y, z] be a polynomial
which is nondegenerate over C w.r.t. the compact faces (resp. the faces) of its Newton
polyhedron at the origin Γ0. Let K be a non-archimedean completion of F with valuation
ring R (with maximal ideal P ) and residue field Fq, and suppose that f̄ := f mod P is
nondegenerate over Fq w.r.t. the compact faces (resp. the faces) of Γ0. Let χ be a non-
trivial character of R× which is trivial on 1+P . Let τ be a facet of Γ0. If −ν(τ)/N(τ)
is the real part of a pole of Zf,0(χ, s) (resp. Zf (χ, s)), then the order of χ divides the
order of an eigenvalue of monodromy at some point of f−1{0}.

Proof. As before we assume that all compact facets have been subdivided into simplices,
without introducing new vertices. We first suppose that τ is such a simplex. If every
1-dimensional V-face of Γ0 is contained in a compact facet, then we know from Formula
(3) that the zeta function of monodromy at the origin is a product of polynomials. If
τ is not of type B1 nor of type X2, then Proposition 12 implies that the order of χ
divides the order of an eigenvalue of monodromy of f−1{0} at the origin.

If τ is of type B1, then we found in Subsection 5.2 that there is a point p(0, 0, a)
in the configuration that is not the intersection of two 1-dimensional V-faces in a same
compact facet, and secondly that the order of χ̄ divides this a. This means that the
factor 1− ta appears in ζf,0(t) and so one finds that the order of χ divides the order of
some eigenvalue of monodromy of f−1{0} at the origin.

If τ is of type X2, say with vertices p(N(τ)/2, 0, 0), q(x1 , 0, 2) and r(x2, 2, 0), then
Fτ = 1 − tN(τ)/2 and hence e−2πi/(N(τ)/2) is an eigenvalue of monodromy of f−1{0} at
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the origin. Thus if the order of χ̄ divides N(τ)/2 then we are done. If the order of χ̄
does not divide N(τ)/2, then by Lemma 13 the order of χ̄ should be equal to 2. In this
situation N(τ)/2 is odd and x1 and x2 are even, while by Lemma 14 we can assume
that 0 6= x1 ≥ x2. Let τ

′ be the other facet which contains the segment qr. Notice that
N(τ ′) is even and that τ ′ is not of type B1. We first suppose that τ ′ is compact. If τ ′

is not of type X2, then it follows from Proposition 12 that e−2πi/N(τ ′) is a zero of Fτ ′

and so the order of χ divides the order of some eigenvalue of monodromy of f−1{0} at
the origin. If τ ′ is of type X2, then the configuration is as in Figure 3.

Figure 3

In this situation, we get

ζf,0(t) = (1− tN(τ)/2)(1− tN(τ ′)/2)(1 − t2),

and so again the order of χ divides the order of an eigenvalue of monodromy of f−1{0}
at the origin.

Suppose now that τ ′ is not compact, then necessarily x1 > x2 and

Aff(τ ′) ↔ x+
x1 − x2

2
y = x1.

At a generic point (0, 0, c) of the hypersurface, the polynomial g(x, y, z) := f(x, y, z−c)
is still nondegenerate w.r.t. the compact faces of its Newton polyhedron at the origin
(see Lemma 2) and its Newton polyhedron is the projection onto {z = 0} of the Newton
polyhedron of f times R+. From Varchenko’s formula one sees that this projected
polyhedron fully determines ζg,0(t). Using [LVP2, Proposition 5] it follows that ζg,0(t)
contains the factor 1/(1 − tx1). We thus have that the order of χ divides the order of
an eigenvalue of monodromy at a point of the hypersurface in the neighbourhood of
the origin.

Suppose now that there is a 1-dimensional V-face σ, say in the coordinate plane
z = 0, which is not contained in a compact facet. If e−2πi/N(τ) is a zero of Fσ (we use
the notation Fσ as if σ was a facet of a two-dimensional Newton polyhedron in the
plane z = 0), then we choose c ∈ C close to zero such that g(x, y, z) := f(x, y, z − c)
is still nondegenerate w.r.t. its Newton polyhedron at the origin (see Lemma 2). Then
we have ζg,0(t) =

∏
σ compact facet

Fσ, with Fσ = 1/polynomial (except the case where σ

19



contains two vertices on coordinate axes, but in this case the same conclusion holds)
and so we find that e−2πi/N(τ) is an eigenvalue of monodromy of f at (0, 0, c).

Finally let τ be non-compact. Again by the nondegeneracy argument (Lemma 2) we
can reduce the dimension and conclude that e−2πi/N(τ) is an eigenvalue of monodromy
of f at a point in the neighbourhood the origin. �
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