
UbiUnity: a Dynamic Visual Simulation Framework for

Web of Things

Stéphane Lavirotte, Jean-Yves Tigli, Gérald Rocher, Léa El Beze, Adam

Palma

To cite this version:

Stéphane Lavirotte, Jean-Yves Tigli, Gérald Rocher, Léa El Beze, Adam Palma. UbiUnity: a
Dynamic Visual Simulation Framework for Web of Things. 5th International Conference on
Internet of Things (IoT 2015), Oct 2015, Séoul, South Korea. Proceedings of the 2015 5th
International Conference on Internet of Things (IoT 2015). <hal-01297405>

HAL Id: hal-01297405

https://hal.archives-ouvertes.fr/hal-01297405

Submitted on 5 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-UNICE

https://core.ac.uk/display/52773618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01297405

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

UbiUnity: a Dynamic Visual Simulation Framework

for Web of Things

Stéphane Lavirotte1,2, Jean-Yves Tigli1,2, Gérald Rocher1,2, Léa El Beze1, Adam Palma1,2

(1) Université Nice Sophia Antipolis, Polytech’Nice Sophia

(2) Centre National de la Recherche Scientifique, Laboratoire I3S, CNRS UMR 7271

Sophia Antipolis, France

Stephane.Lavirotte@unice.fr, Jean-Yves.Tigli@unice.fr, Gerald.Rocher@unice.fr

Abstract — The development of smart spaces is a complex and

challenging task. The choice of suitable sensors and actuators to

deploy in these physical testbeds is difficult without

experimentation. Moreover, several challenges still remain in

improving and testing new fields of application based on Web of

Things (WoT). In this paper, we present UbiUnity, a dynamic

visual simulator environment which can be used during the

design phase of smart spaces. Our approach allows to define web

services for devices (WSD) associated to 3D virtual shape in the

simulated environment. These WSD are defined by combining

simple actions in the virtual environment allowing the

researchers to focus on the definition of new algorithms or

middleware to manage the smart space. Moreover, UbiUnity can

dynamically create these WSD during the execution of the

simulation with respect to the fluidity of the graphics rendering.

Keywords—Web of Things, Ubiquitous Computing, Simulation,

Virtual Environment, Web Services for Devices

I. INTRODUCTION

Many initiatives aim at implementing smart spaces [1].
These smart spaces are composed of Things (entities of
interest, like buildings, rooms…) that can be viewed as a set of
devices providing services and/or resources [2]. But the design,
the development and the deployment of such smart spaces,
which are real physical systems, are complex engineering
tasks. The creation of physical spaces equipped with sensors
and actuators have drawbacks: (a) huge investments, (b) a
limited variety of sensors and actuators, (c) updates and
upgrades are complex and limited to physical devices
constraints, and (d) limited deployment scalability. On the
other hand, the definition of new architectures, new
middleware or new algorithms for the management of smart
spaces required for research purposes need a flexibility of
implementation and deployment to ease the experimentations.
Therefore, there are numerous advantages of having software-
based simulators that overcome the limitations of physically
deployed smart spaces. Moreover, simulation enables
researchers to evaluate scenarios and applications without the
difficulties in dealing with hardware sensors and actuators. It
also offers a greater flexibility since it is easy to run a set of
simulations with a wide range of parameters.

In this paper, we propose a framework to simulate smart
spaces of various kinds (house, building, city, open areas ...).

Each device (sensor or actuator) provides services (data like
presence, temperature, humidity, location, luminosity… or
action: acting on the state of a device, moving objects...). It is
possible to add, remove or modify the deployed devices (and
therefore the associated services), easily and dynamically even
at run-time. So it allows to provide a huge flexibility and
openness to test new algorithms or middleware for IoT. The
update of the infrastructure of services in the simulation must
then verify two points: (a) the ease for developers to create or
modify the simulated environment and (b) at run-time, new
devices deployment must be done in a timely fashion in order
to preserve the smart spaces simulation responsiveness.

II. OVERVIEW OF THE PROPOSED FRAMEWORK

A. Architecture

The richness of a simulated smart space comes from the
variety and the number of provided devices. So, the amount of
work to be produced by the developer to add a device to a
virtual object should be as less as possible. This is, for instance,
one of the main drawback of UbiReal1 [3]. The use of services
associated to virtual devices allows loose coupling between the
entities in the simulated world and the functionalities provided
by any kind of client. This corresponds to the notion of Service
on Device or Web Service for Device (WSD) [4]. A WSD can
be defined as a set properties or variables used to define useful
values associated to a device or a specific service of the device
(the state of a light for instance) and a set of actions to be
performed on the device (switching the light on or off). Events
can be generated each time a variable’s value changes. There is
also the possibility to discover services associated to a device.
WSD implementation is based on UPnP protocol. Using this
protocol is also interesting because UPnP offers research and
discovery mechanisms in addition to the request-response and
eventing mechanisms. It’s also possible to use more recent
protocols like DPWS2 providing the same type of
characteristics.

With this approach, one or more service descriptions can be
associated to a 3D virtual device hence becoming a WSD,
attached to a 3D shape, and published outside the simulation

1 http: //ubireal.org/ (release 1.0, published on Sept 28, 2012)
2 http: //docs.oasis-open.org/ws-dd/ns/dpws/2009/01 (July 1st, 2009)

environment. The benefit of this approach is its ability to
externalize the definition and the management of all the virtual
objects intrinsic functionalities. Therefore, the interconnection
of services is not managed inside the virtual framework, an
application, for instance, can take care of it by orchestrating the
services externally to the virtual environment. This is helpful to
avoid the developer to code the behaviors within the virtual
environment and allows the utilization of any kind of
algorithms or technics to manage the simulated smart space.

To keep the simulated devices independent of the 3D
rendering framework and keep the 3D virtual scene rendering
framework reusable for any kind of smart space, we do not
want to modify it and code the web services associated to the
devices directly in it. Therefore, to define a new service
associated to a device, a description of the service is created
using an XML file. This description defines the variables and
actions of the service and specify their interconnection with the
virtual device. A library of generic actions on the 3D virtual
world has been defined and includes a set of basic
functionalities used to manipulate the 3D objects. More
complex services for devices can be created from a
composition of these basic functionalities. For instance, a
traffic light is composed of a red, a yellow and a green lights.
The XML description of the service associated to the traffic
light will propose actions like switching on or off each light.

The device behavior must not be managed inside the 3D
simulator but instead, managed outside. Back to the traffic light
example, its behavior might be very different depending on the
countries where it is used. If the red light prohibits the traffic,
and the green one allows it, the yellow one provides a warning
indicating an imminent state change from green to red but, in
some countries, also for a change from red to green. Managing
this kind of specific behavior outside the 3D scene allows to
use the same 3D simulation engine for different kind of
simulations. And it avoids to change the simulation behavior
inside the 3D environment which is not suitable for reasons
previously detailed. So, the service associated to a traffic light
is the definition of actions to switch on/off each of the lights.
These actions are linked to the 3D shape; actions can be
mapped to 3D visual effects. The XML description of a service
is used to automatically generate the source code
corresponding to the functionalities of the device.

B. Dynamicity of the Simulated Services

To offer the possibility to modify the infrastructure of the
available services in the 3D virtual environment, each of the
WSD associated to 3D virtual objects can be started, paused or
stopped dynamically. WSD can be activated at the simulation
startup or depending on the proximity of the user avatar
relative to the 3D virtual object. It allows the simulation of
some geo-localized services that are only available inside a
specific area (due to the limit of a signal strength for instance).

On the other hand, the WSD are generated by a model
transformation from an XML description to the targeted source
code used in the simulation framework. This is possible with
the use of a managed language offering the possibility to byte
compile the source code on the fly and link this new code to
the environment or by the use of scripting interpreted

languages. In addition, this approach allows to dynamically add
new services, and create new WSD during the execution of the
simulation and then add new functionalities on the fly.

Fig. 1. UbiUnity Implementation

This implies to generate, activate and deactivate the WSD
during the execution of the simulator in order to adapt the
virtual environment to the needs. But this adaptation must be
done within a time controlled and constrained adaptation loop
in order not to affect the responsiveness of the simulation and,
in our case, the fluidity of the graphics rendering (the number
of frames per second). Moreover it is not possible to predict the
number of available services (which depends on the user’s
displacements and on the specified services that can be
dynamically added to the virtual environment). To evaluate the
framework, we measured the graphics rendering engine
responsiveness as a function of the amount of concurrently
activated and/or deactivated services. With the UPnP library
used, it is more efficient to instantiate several UPnP devices at
the same time (within the same frame) rather than starting them
one by one. The average time to create and start a new UPnP
device is about 20ms. This time grows up to more than 100ms
for the 250th UPnP device. We started up to 250 UPnP devices
created three by three and create an algorithm for the framerate
to never drop down under 30fps (the default framerate for
rendering the scene without any instrumentation was 60fps).

REFERENCES

[1] H. Schaffers, N. Komninos, M. Pallot, B. Trousse, M. Nilsson, et A.
Oliveira, « Smart Cities and the Future Internet: Towards Cooperation
Frameworks for Open Innovation », in The Future Internet, J.
Domingue, A. Galis, A. Gavras, T. Zahariadis, D. Lambert, F. Cleary, P.
Daras, S. Krco, H. Müller, M.-S. Li, H. Schaffers, V. Lotz, F. Alvarez,
B. Stiller, S. Karnouskos, S. Avessta, et M. Nilsson, Éd. Springer Berlin
Heidelberg, 2011, p. 431‑446.

[2] S. Haller, « The things in the internet of things », in Poster at the (IoT
2010). Tokyo, Japan, November, Tokyo, Japan, 2010, vol. 5, p. 26.

[3] H. Nishikawa, S. Yamamoto, M. Tamai, K. Nishigaki, T. Kitani, N.
Shibata, K. Yasumoto, et M. Ito, « UbiREAL: realistic smartspace
simulator for systematic testing », in UbiComp 2006: Ubiquitous
Computing, 2006, p. 459–476.

[4] F. Jammes, A. Mensch, et H. Smit, « Service-oriented Device
Communications Using the Devices Profile for Web Services », in
Proceedings of the 3rd International Workshop on Middleware for
Pervasive and Ad-hoc Computing, New York, NY, USA, 2005, p. 1–8.

[5] A. Pattrasitidecha, « Comparison and evaluation of 3D mobile game
engines », Chalmers University of Technology, University of
Gothenburg, Göteborg, Sweden, Master Thesis, févr. 2014.

