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Abstract—As the number of samples and dimensionality of
optimization problems related to statistics an machine learning
explode, block coordinate descent algorithms have gained popu-
larity since they reduce the original problem to several smaller
ones. Coordinates to be optimized are usually selected randomly
according to a given probability distribution. We introduce an
importance sampling strategy that helps randomized coordinate
descent algorithms to focus on blocks that are still far from
convergence. The framework applies to problems composed of
the sum of two possibly non-convex terms, one being separable
and non-smooth. We have compared our algorithm to a full
gradient proximal approach as well as to a randomized block
coordinate algorithm that considers uniform sampling and cyclic
block coordinate descent. Experimental evidences show the clear
benefit of using an importance sampling strategy.

I. INTRODUCTION

In the era of Big Data, current computational methods for

statistics and machine learning are challenged by size of data

both in terms of dimensionality and number of examples.

Parameters of estimators learned from these large amount

of data are usually obtained as minimizer of a regularized

empirical risk problems of the form

min
x∈Rd
{F (x) = f(x) + λh(x)} (1)

where f is usually a smooth and non-convex function with

Lipschitz gradient and h a non-smooth function. In such a

large-scale and high-dimensionality context, most prevalent

approaches use first-order method based on gradient descent

[1] although second-order quasi-Newton algorithms have been

considered [14].

More efficient algorithms can be considered for solving

problem (1) if f and h present some special structures. When

h is separable, Problem 1 can be expressed as

h(x) =

m
∑

i=1

hi(xi)

We suppose that x ∈ R
d is of the form x = [x⊤

1 , . . .x
⊤
m]⊤

where m is the number of groups in x and xi ∈ R
di

and
∑

i di = d. In this case, methods that can use the

group structure such as coordinate descent algorithms [19]

or randomized coordinate descent [12] are among the most

efficient ones for solving problem (1).

In this paper, we focus on a specific class of randomized

block proximal gradient algorithm, useful when each block hi

has a special structure. We suppose that each hi is a difference

of convex functions and is non-smooth. However, it has to

have a closed-form proximal operator [8]. Such a situation

mainly arises when h(x) is a non-convex sparsity-inducing

regularizer. Common non-convex and non-differentiable regu-

larizers are the SCAD regularizer [6], the ℓp regularizer [9],

the capped-ℓ1 and the log penalty [4]. These regularizers have

been frequently used for feature selection or for obtaining

sparse models in machine learning [4], [7], [10].

A large majority of works dealing with randomized block

coordinate descent algorithms (RBCD) considers uniform dis-

tribution of sampling [12], [15], [17]. Few attentions have been

devoted to the use of arbitrary distribution [11], [13]. In these

two latter efforts, principal statement is that the probability

of drawing any block should be not less than a pmin > 0
value to ensure that all blocks have non-zero probabilities to

be selected and hence to guarantee convergence in expectation

of the algorithm. However, because no prior knowledge are

usually available for directing the choice of the probability

distribution of block sampling, experimental analysis of the

randomized algorithms usually consider uniform distribution.

This paper proposes a probability distribution for random-

ized block coordinate sampling that goes beyond the uniform

sampling and that is updated after each iteration of the

algorithm. Indeed, we have designed a distribution that is de-

pendent on approximate optimality condition of the problem.

Owing to such a distribution, described in Section II we can

bias the sampling towards coordinates that are still far from

optimality allowing to save substantial computational efforts

as illustrated by our empirical experiments (see Section III).

II. FRAMEWORK AND ALGORITHM

A. Randomized BCD

We discuss now a generic approach for solving problem (1)

when h(·) is separable by taking advantage of this separabil-

ity. The general framework is shown in Algorithm 1 where

∇if(x) is the partial gradient at x of f with respect to xi.

At each iteration in the algorithm a block i is selected to

be optimized (line 3). Then, a partial proximal gradient step is



Algorithm 1 Randomized Block Coordinate Descent (RBCD)

1: Set initial x0, θ > 0, η > 1, σ > 0
2: for k = 1, 2, . . . do

3: i ← randomly select current block from {1, 2, . . . ,m}
according to a probability distribution p

4: d← 0;di ← ∇if(x)
5: xk ← prox 1

θk
h(x

k−1 − 1
θk
d),j ← 0

6: while F (xk) > F (xk−1)−σ
2 ‖x

k − xk−1‖ do

7: j ← j + 1 and set γ = (η)j

8: xk ← prox 1

θkγ
h(x

k−1 − 1
θkγ

d)

9: end while

10: end for

Table I
FLOATING OPERATION AT EACH ITERATION FOR THE GIST AND RBCD

FOR A LINEAR MODEL OF THE FORM f(x) = L(Ax). di IS THE

DIMENSIONALITY OF THE GROUP i UPDATED AT THE CURRENT ITERATION.

Task GIST RBCD

Gradient computation 2nd+ n 2ndi + n
Proximal operator d di
Cost computation nd+ n ndi + n

performed (line 5) for the selected group. It consists in solving

efficiently the proximal operator

prox 1

θ
h(v) = argmin

x

1

2
‖x− v‖2 +

1

θ
h(x).

Note that since h is separable, the proximal operator can be

applied only on the current group i and will update only xi. A

backtracking (line 6-9) may be necessary to ensure a decrease

in the objective F but a non monotone version can also be

used as discussed in [11]. Finally, if the number of groups

is set to 1, then the algorithm boils down to GIST [8], i.e. a

proximal method for non-convex optimization.

This randomized algorithm is interesting w.r.t. the classical

proximal gradient descent since it does not require the com-

putation of the full gradient at each iteration. For instance,

when estimating a linear model, the loss f can be expressed as

f(x) = L(Ax). The gradient is ∇f(x) = A⊤L′(Ax) where

the derivative L′ is computed pointwise. Computing the partial

gradient ∇if(x) = A⊤
i L

′(Ax) where Ai is the submatrix

of A corresponding to group i requires much less floating

operations as reported in Table I since di ≪ d. In addition,

this computational complexity can be greatly decreased by

storing the prediction Ax and by using the low complexity

update Ai(x
k
i − xk−1

i ) at each iteration.

B. Block selection and importance sampling

The convergence of the RBCD algorithm is clearly depen-

dent of the block selection strategy of line 3 in Algorithm 1.

One can select the group using classic cyclic rule as in [5],

[3] or using the realization of a random distribution [12], [18].

The uniform distribution is often used in order to ensure that

all blocks are updated equally, but convergence in expected

value has been proved for any discrete distribution that have

non-null components, (pmin > 0) [11].

In this work, we introduce a novel probability distribution

for sampling blocks in RBCD. This distribution is dependent

on the optimality conditions of each block. In other words,

we want to update more often blocks that are still far from

convergence. Formally, let p ∈ R
+m be the discrete density

distribution such that pi is the probability that the block i is

selected at a given iteration and
∑

i pi = 1. We propose in

this work to use the following distribution

pi =
ǫ+ (1− ǫ) zi

‖z‖∞

mǫ+ (1− ǫ) 1
‖z‖∞

∑

i zi
(2)

where ǫ ∈ (0, 1] is a user-defined parameter, z ≥ 0 is a vector

composed of coordinates {zi}
m
i=1 and ‖z‖∞ = maxi |zi| is

the infinite norm. As made clearer in the sequel, a component

zi encodes the optimality condition violation in each block.

Indeed, let hi = hi,1 − hi,2, with hi,1 and hi,2 being two

convex functions, then if x⋆ is a local minimizer of F (x),
from Clarke subdifferential calculus [16], one can show that

a necessary condition of optimality is that there exists v ∈
∂hi,1(x

⋆) and u ∈ ∂hi,2(x
⋆) such that 0 ∈ ∇if(x

⋆) + λv −
λu for all i. Accordingly, we define the optimality condition

violation zi as

zi = min
v∈∂hi,1(x),u∈∂hi,2(x)

‖∇if(x) + λv − λu‖∞ (3)

The role of ǫ in Equation (2) is to balance the effect of

the optimality condition on the distribution. When ǫ = 1,

we retrieve a uniform distribution. Other values of ǫ will

ensure that if a variable in a block has not converged, its

block is likely to be updated more often than a block that has

converged. Note that, owing to the DC decomposition of h,

the violation (3) can be easily computed, even for non-convex

penalty function such as SCAD or the log-sum as discussed

in [2].

Computing the optimality condition violation vector z is

not possible in practice for RBCD since it requires the full

gradient of the problem, which as discussed in the previous

section, is not computed at each iteration. As a solution, we

propose to use a vector z̃ initialized with the exact condition

violation computed from the initial vector x0. Thereon, only

the ith entry of z̃ is updated at each iteration leading to an

approximate optimality condition evaluation. Indeed, in algo-

rithm 1 line 4, when a partial gradient ∇if(x) is computed,

we can use it to update the approximate z̃i and then update

the probabilities p accordingly. This latter vector is clearly a

coarse approximation of the optimality condition violation but

as shown in the experiments it is a relevant choice for the

proposed importance sampling scheme.

C. On tricks of the trade

The proposed optimization algorithm has an important pa-

rameter that has to be chosen carefully: the initial gradient

step size 1/θk at each iteration. If chosen too small, the

gradients steps will barely improve the objective value, if

chosen too large the backtracking step in lines 6-9 will require

numerous computation of the loss function. In this work we



use an extension of the Barzilai-Borwein (BB) rule that has

been proposed in a non-convex scheme by [8]. This approach

consists in using a Newton step with the approximate Hessian

σI. When performing the full gradient descent in GIST, the

BB rule gives

θk+1 =
∆x⊤∆g

∆x⊤∆x
(4)

where ∆x = xk − xk−1 and ∆g = ∇f(xk) − ∇f(xk−1).
Again, in our algorithm the full gradient is not available

but we can still benefit from the second-order approximation

brought to us by the BB rule. We propose to this end to

model the Hessian as a diagonal matrix where the weight of

the diagonal is block-dependent. In other word, we store an

estimate θ ∈ R
+m whose components θi are updated similarly

to equation (4) but using instead partial gradient and variations

∆xi = xk
i − xk−1

i and ∆gi = ∇if(x
k) − ∇if(x

k−1). This

new rule is actually more general than the classical BB-rule

since it brings local information and encodes a more precise

Hessian approximation with group-wise coefficients similar to

the variable metric in [5] .

III. NUMERICAL EXPERIMENTS

In this section, we illustrate the behaviour of our randomized

BCD algorithm with importance sampling on some toy and

real-world classification problems. For all problems, we have

considered a logistic loss function and the log-sum non-convex

sparsity inducing penalty defined as

h(x) = ρ

d
∑

i

log

(

1 +
|xi|

ρ

)

with ρ > 0. We have compared our algorithm to a non-

convex proximal gradient algorithm known as GIST [8] and

a randomized BCD version of GIST with uniform sampling

[11]. Note that since this regularization term is fully separable

per variable, we used a separation of m blocks of size d
m

variables.

A. Toy problem

As in [14] we consider a binary classification problem in R
d.

Among these d variables, only T of them define a subspace

of R
d in which classes can be discriminated. For these T

relevant variables, the two classes follow a Gaussian pdf

with means respectively µ and −µ and covariance matrices

randomly drawn from a Wishart distribution W (I, T ) where

I is the identity matrix. The components of µ have been

independently and identically drawn from {−1,+1}. The

other d − T non-relevant variables follow an i.i.d Gaussian

probability distribution with zero mean and unit variance for

both classes. We have respectively sampled n and nt = 1000

number of examples for training and testing. Before learning,

the training set has been normalized to zero mean and unit

variance and test set has been rescaled accordingly. Note

that the hyperparameter λ or any other parameters related to

the regularization term have been set so as to maximize the

performance of the GIST algorithm on the test set. We have

initialized all algorithms with the zero vector (x0 = 0).

The different algorithms have been compared based on their

computational demands and more exactly based on the number

of flops they need for reaching a stopping criterion. Hence, this

criterion is critical for a fair comparison. The GIST algorithm

has been run until it reaches a necessary optimality condition

‖z‖∞ lower than 10−3 or until 1000 iterations is attained.

For the randomized algorithms, including our approach , the

stopping criterion is set according to a maximal number of

iterations. This number is set so that the number of coordinate

gradient evaluations is equal for all algorithms i.e we have used

the number of GIST iterations×m where m is the number of

blocks. In the sequel, the number of flops reported is related to

those needed for computing both function values and gradient

evaluations.

Figure 1 (left) presents some examples of optimality con-

dition ‖z‖∞ evolution with respects to the number of flops.

These curves are obtained as averages over 20 iterations of

the results obtained for a given experimental set-up (here

n = 200, d = 2000 and T = 20). We can first note that

with respect to optimality condition, RBCD algorithm with

uniform sampling (Unif RBCD) behaves similarly to the GIST

algorithm and a cyclic BCD (Cyclic BCD). In terms of flops,

few gain can be expected from such an approach. Instead,

using importance sampling (IS RBCD) considerably helps in

improving convergence. Such a behaviour can also be noted

when monitoring evolution of the objective value (see central

panel in Figure 1). Randomized algorithms tend to converge

faster towards their optimal value with a clear advantage to

the importance sampling approach. Finally, while they are

not reported due to lack of space, the final classification

performances are similar for all three methods.

Figure 1 (right) depicts evolutions of optimality conditions

depending on block-coordinate group size. We can note that

regardless of this size, our importance sampling approach

achieves better performance than the GIST algorithm. In

addition, it is clear that for our examples, the smaller the size

is, the faster convergence we obtain.

B. Real-world classification problems

We have also compared these algorithms on real-world

high-dimensional learning problems. The related datasets have

been already used as benchmark datasets in [8], [14]. For these

problems, we have used 80% of the examples as training

set and the remaining as test set. Again, hyperparameters

of the model have been chosen so as to roughly maximize

performances of the GIST algorithm. Stopping criteria of all

algorithms have been set as previously. However, maximal

number of iterations has been set to 5000 for GIST. In addition,

we have limited the maximal number of iterations to 20000.

The number of blocks has been set to m = 100 for all datasets.

Performances of the different algorithms are reported in

Table II. Three measure of performances have been compared.

Classification rates of all algorithms are almost similar al-

though differences in performances are statistically significant

in favor of GIST according to a Wilcoxon sign rank test with

a p-value of 0.05. We explain this by the fact that regulariza-
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Figure 1. Example of (left) optimality condition violation and (middle) objective value evolution with respects to the number of flops, averaged over 20
iterations and with blocks of size 20. For the left panel, we have plotted the exact violation (computed with z) as well as the approximated one (computed
with z̃). (right) Optimality conditions violation averaged over 20 iterations for different block sizes used in IS RBCD. (Best viewed in color)

Table II
COMPARISON OF GIST AND RANDOMIZED BCD ALGORITHMS ON REAL-WORLD BENCHMARK PROBLEMS. THE FIRST COLUMNS OF THE TABLE PROVIDE

THE NAME OF THE DATASETS, THE NUMBER OF TRAINING EXAMPLES n AND THEIR DIMENSIONALITY d. THREE MEASURES OF PERFORMANCES ARE

PROVIDED : THE CLASSIFICATION RATE, THE NUMBER OF FLOPS NEEDED FOR CONVERGENCE, THE OPTIMALITY CONDITION. THE OBJECTIVE VALUE IS

GIVEN FOR A SAKE OF INFORMATION BUT IT IS NOT A RELEVANT CRITERION IN A NON-CONVEX PROBLEM.

data n d Algorithm Class. Rate (%) Flops ×109 Opt. Condition Obj. Val

classic 7094 41681 GIST 96.37±0.5 9277.76±64.6 0.03±0.0 32.64±2.2
classic 7094 41681 IS RBCD 95.11±0.7 347.16±4.1 0.01±0.0 25.23±0.8
classic 7094 41681 Unif RBCD 95.87±0.6 364.12±66.2 0.03±0.0 35.26±0.8

la2 3075 31472 GIST 91.11±1.1 3148.75±287.8 0.06±0.1 39.42±57.7
la2 3075 31472 IS RBCD 90.98±1.2 101.16±3.6 0.15±0.2 43.35±59.0
la2 3075 31472 Unif RBCD 91.04±0.9 108.11±4.8 0.23±0.3 45.51±59.0

ohscal 11162 11465 GIST 88.30±0.6 7452.22±895.6 2.65±2.3 520.41±451.2
ohscal 11162 11465 IS RBCD 87.88±0.8 164.42±21.5 0.87±0.6 480.53±428.5
ohscal 11162 11465 Unif RBCD 87.75±0.8 156.45±17.7 1.14±1.1 480.55±428.5

sports 8580 14870 GIST 97.93±0.4 5034.75±1219.5 0.11±0.1 208.11±215.2
sports 8580 14870 IS RBCD 97.76±0.5 154.74±20.3 0.07±0.1 212.05±215.3
sports 8580 14870 Unif RBCD 97.86±0.4 173.99±10.6 0.39±0.3 222.38±215.3

tion parameters have been selected w.r.t. to its generalization

performances. The number of flops needed for convergence

are highly in favor of the randomized algorithms. The factor

gain in flops ranges in between 26 to 45. Interestingly, exact

optimality conditions after algorithms have halted are always

in favor of our importance sampling randomized BCD algo-

rithms except for the la2 dataset. Note that, in the table, we

have also provided the objective values of the algorithms upon

convergence. As one may have expected in a non-convex opti-

mization problem, different “nearly” optimal objective values

leads to similar classification rate performances stressing the

existence of several local minimizers with good generalization

property.

IV. CONCLUSION

This paper introduced a framework for randomized block

coordinate descent algorithm that leverages on importance

sampling. We presented a sampling distribution that biases the

algorithm to focus on block coordinates that are still far from

convergence. While this idea is rather simple, our experimental

results have shown that it considerably helps in achieving a

faster empirical convergence of the randomized BCD algo-

rithm. Future works will be devoted to the theoretical analysis

of the importance sampling impact on the convergence rate. In

addition, we plan to carry out thorough experimental analyses

that unveil the impact of the algorithm parameters.
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