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IRREDUCIBILITY OF THE MODULI SPACE OF STABLE

VECTOR BUNDLES OF RANK TWO AND ODD DEGREE ON A

VERY GENERAL QUINTIC SURFACE

NICOLE MESTRANO AND CARLOS SIMPSON

Abstract. The moduli space M(c2), of stable rank two vector bundles of
degree one on a very general quintic surface X ⊂ P3, is irreducible for all
c2 ≥ 4 and empty otherwise.

1. Introduction

Let X ⊂ P3
C
be a very general quintic hypersurface. Let M(c2) := MX(2, 1, c2)

denote the moduli space [12] of stable rank 2 vector bundles on X of degree 1 with
c2(E) = c2. Let M(c2) := MX(2, 1, c2) denote the moduli space of stable rank
2 torsion-free sheaves on X of degree 1 with c2(E) = c2. Recall that M(c2) is
projective, and M(c2) ⊂ M(c2) is an open set, whose complement is called the

boundary. Let M(c2) denote the closure of M(c2) inside M(c2). This might be a
strict inclusion, as will in fact be the case for c2 ≤ 10.

In [19] we showed that M(c2) is irreducible for 4 ≤ c2 ≤ 9, and empty for
c2 ≤ 3. In [20] we showed that the open subset M(10)sn ⊂M(10), of bundles with
seminatural cohomology, is irreducible. In 1995 Nijsse [23] showed that M(c2) is
irreducible for c2 ≥ 16.

In the present paper, we complete the proof of irreducibility for the remaining
intermediate values of c2.

Theorem 1.1. For any c2 ≥ 4, the moduli space of bundles M(c2) is irreducible.
For c2 ≥ 11, the moduli space of torsion-free sheaves M(c2) is irreducible. On

the other hand, M(10) has two irreducible components: the closure M(10) of the
irreducible open set M(10); and the smallest stratum M(10, 4) of the double dual
stratification corresponding to torsion-free sheaves whose double dual has c′2 = 4.
Similarly M(c2) has several irreducible components when 5 ≤ c2 ≤ 9 too.

The moduli space M(c2) is good for c2 ≥ 10, generically smooth of the expected
dimension 4c2 − 20, whereas for 4 ≤ c2 ≤ 9, the moduli space M(c2) is not good.
For c2 ≤ 3 it is empty.

Yoshioka [28, 29, 30], Gomez [9] and others have shown that the moduli space
of stable torsion-free sheaves with irreducible Mukai vector (which contains, in
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2 N. MESTRANO AND C. SIMPSON

particular, the case of bundles of rank 2 and degree 1) is irreducible, over an abelian
or K3 surface. Those results use the triviality of the canonical bundle, leading to a
symplectic structure and implying among other things that the moduli spaces are
smooth [22]. Notice that the case of K3 surfaces includes degree 4 hypersurfaces in
P
3.
We were motivated to look at a next case, of bundles on a quintic or degree 5

hypersurface in P3 where KX = OX(1) is ample but not by very much. This paper
is the third in a series starting with [19, 20] dedicated to Professor Maruyama
who, along with Gieseker, pioneered the study of moduli of bundles on higher
dimensional varieties [6, 7, 15, 16, 17]. Recall that the moduli space of stable
bundles is irreducible for c2 ≫ 0 on any smooth projective surface [8, 14, 24, 25],
but there exist surfaces, such as smooth hypersurfaces in P3 of sufficiently high
degree [18], where the moduli space is not irreducible for intermediate values of c2.

Our theorem shows that the irreducibility of the moduli space of bundles M(c2),
for all values of c2, can persist into the range whereKX is ample. On the other hand,
the fact that M(10) has two irreducible components, means that if we consider
all torsion-free sheaves, then the property of irreducibility in the good range has
already started to fail in the case of a quintic hypersurface. We furthermore show
in Section 11 below that irreducibility fails for stable vector bundles on surfaces of
degree 6.

A possible application of our theorem to the case of Calabi-Yau varieties could
be envisioned, by noting that a general hyperplane section of a quintic threefold in
P4 will be a quintic surface X ⊂ P3.

Outline of the proof

Our technique is to use O’Grady’s method of deformation to the boundary
[24, 25], as it was exploited by Nijsse [23] in the case of a very general quintic
hypersurface. We use, in particular, some of the intermediate results of Nijsse who
showed, for example, that M(c2) is connected for c2 ≥ 10. Application of these
results is made possible by the explicit description of the moduli spaces M(c2) for
4 ≤ c2 ≤ 9 obtained in [19] and the partial result for M(10) obtained in [20].

The boundary ∂M(c2) := M(c2) −M(c2) is the set of points corresponding to
torsion-free sheaves which are not locally free. We just endow ∂M(c2) with its
reduced scheme structure. There might in some cases be a better non-reduced
structure which one could put on the boundary or onto some strata, but that won’t
be necessary for our argument and we don’t worry about it here.

We can further refine the decomposition

M(c2) =M(c2) ⊔ ∂M(c2)

by the double dual stratification [25]. LetM(c2; c
′
2) denote the locally closed subset,

again with its reduced scheme structure, parametrizing sheaves F which fit into an
exact sequence

0 → F → F ∗∗ → S → 0

such that F ∈ M(c2) and S is a coherent sheaf of finite length d = c2 − c′2 hence
c2(F

∗∗) = c′2. Notice that E = F ∗∗ is also stable so it is a point in M(c′2). The
stratum can be nonempty only when c′2 ≥ 4, which shows by the way that M(c2)
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is empty for c2 ≤ 3. The boundary now decomposes into locally closed subsets

∂M(c2) =
∐

4≤c′
2
<c2

M(c2; c
′
2).

Let M(c2, c′2) denote the closure of M(c2, c
′
2) in M(c2). Notice that we don’t know

anything about the position of this closure with respect to the stratification; its
boundary will not in general be a union of strata. We can similarly denote by

M(c2) the closure of M(c2) inside M(c2), a subset which might well be strictly
smaller than M(c2).

The construction F 7→ F ∗∗ provides, by the definition of the stratification, a
well-defined map

M(c2; c
′
2) →M(c′2).

The fiber over E ∈M(c′2) is the Grothendieck Quot-scheme Quot(E; d) of quotients
of E of length d := c2 − c′2.

It follows from Li’s theorem [14, Proposition 6.4] that ifM(c′2) is irreducible, then

M(c2; c
′
2) and henceM(c2; c′2) are irreducible, with dim(M(c2; c

′
2)) = dim(M(c′2))+

3(c2 − c′2). See Corollary 4.3 below. From the previous papers [19, 20], we know
the dimensions of M(c′2), so we can fill in the dimensions of the strata, as will be
summarized in Table 2. Furthermore, by [19] and Li’s theorem, the strataM(c2; c

′
2)

are irreducible whenever c′2 ≤ 9.
Nijsse [23] proves that M(c2) is connected whenever c2 ≥ 10, using O’Grady’s

techniques [24, 25]. This is discussed in [21]. By [19], the moduli space M(c2) is
good, that is to say it is generically reduced of the expected dimension 4c2 − 20,
whenever c2 ≥ 10. In particular, the dimension of the Zariski tangent space, minus
the dimension of the space of obstructions, is equal to the dimension of the moduli
space. The Kuranishi theory of deformation spaces implies that M(c2) is locally
a complete intersection. Hartshorne’s connectedness theorem [11] now says that
if two different irreducible components of M(c2) meet at some point, then they
intersect in a codimension 1 subvariety. This intersection has to be contained in
the singular locus.

The singular locus in M(c2) contains a subvariety denoted V (c2), which is the
set of bundles E with h0(E) > 0. It is the image of the space Σc2 of extensions

0 → OX → E → JP (1) → 0

where P satisfies Cayley-Bacharach for quadrics. For c2 ≥ 10, V (c2) is irreducible of
dimension 3c2−11. For c2 ≥ 11 one can see directly that the closure of V (c2) meets
the boundary. For c2 = 10, bundles in V (10) almost have seminatural cohomology,
in the sense that any deformation moving away from V (10) will have seminatural
cohomology, so V (10) is contained only in the irreducible component constructed
in [20], and that component meets the boundary. On the other hand, any other
irreducible components of the singular locus have strictly smaller dimension [19,
Corollary 7.1].

These properties of the singular locus, together with the connectedness state-
ment of [23], allow us to show that any irreducible component of M(c2) meets the
boundary. O’Grady proves furthermore an important lemma, that the intersection
with the boundary must have pure codimension 1.

We explain the strategy for proving irreducibility of M(10) and M(11) below,
but it will perhaps be easiest to explain first why this implies irreducibility ofM(c2)
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for c2 ≥ 12. Based on O’Grady’s method, this is the same strategy as was used by
Nijsse who treated the cases c2 ≥ 16.

Suppose c2 ≥ 12 and Z ⊂ M(c2) is an irreducible component. Suppose induc-
tively we know thatM(c2−1) is irreducible. Then ∂Z := Z∩∂M(c2) is a nonempty
subset in Z of codimension 1, thus of dimension 4c2 − 21. However, by looking at
Table 2, the boundary ∂M(c2) is a union of the stratum M(c2, c2− 1) of dimension
4c2 − 21, plus other strata of strictly smaller dimension. Therefore, ∂Z must con-
tain M(c2, c2 − 1). But, the general torsion-free sheaf parametrized by a point of
M(c2, c2 − 1) is the kernel F of a general surjection E → S from a stable bundle E
general in M(c2−1), to a sheaf S of length 1. We claim that F is a smooth point of
the moduli space M(c2). Indeed, if F were a singular point then there would exist
a nontrivial co-obstruction φ : F → F (1), see [13, 19, 31]. This would have to come
from a nontrivial co-obstruction E → E(1) for E, but that cannot exist because a
general E is a smooth point since M(c2 − 1) is good. Thus, F is a smooth point of
the moduli space. It follows that a given irreducible component of M(c2, c2 − 1) is
contained in at most one irreducible component of M(c2). On the other hand, by
the induction hypothesis M(c2 − 1) is irreducible, so M(c2, c2 − 1) is irreducible.
This gives the induction step, that M(c2) is irreducible.

The strategy for M(10) is similar. However, due to the fact that the moduli
spaces M(c′2) are not good for c′2 ≤ 9, in particular they tend to have dimensions
bigger than the expected dimensions, there are several boundary strata which can
come into play. Luckily, we know that the M(c′2), hence all of the strataM(10, c′2),
are irreducible for c′2 ≤ 9.

The dimension of M(10), equal to the expected one, is 20. Looking at the
row c2 = 10 in Table 2 below, one may see that there are three strata M(10, 9),
M(10, 8) and M(10, 6) with dimension 19. These can be irreducible components
of the boundary ∂Z if we follow the previous argument. More difficult is the case
of the stratum M(10, 4) which has dimension 20. A general point of M(10, 4) is
not in the closure of M(10), in other words M(10, 4), which is closed since it is
the lowest stratum, constitutes a separate irreducible component of M(10). Now,
if Z ⊂ M(10) is an irreducible component, ∂Z could contain a codimension 1
subvariety of M(10, 4).

The idea is to use the main result of [20], that the moduli space M(10)sn of
bundles with seminatural cohomology, is irreducible. To prove that M(10) is irre-
ducible, it therefore suffices to show that a general point of any irreducible compo-
nent Z, has seminatural cohomology. From [20] there are two conditions that need
to be checked: h0(E) = 0 and h1(E(1)) = 0. The first condition is automatic for
a general point, since the locus V (10) of bundles with h0(E) > 0 has dimension
3 ·10− 11 = 19 so cannot contain a general point of Z. For the second condition, it
suffices to note that a general sheaf F in any of the strata M(10, 9), M(10, 8) and
M(10, 6) has h1(F (1)) = 0; and to show that the subspace of sheaves F inM(10, 4)
with h1(F (1)) > 0 has codimension ≥ 2. This latter result is treated in Section
7, using the dimension results of Ellingsrud-Lehn for the scheme of quotients of a
locally free sheaf, generalizing Li’s theorem. This is how we will show irreducibility
of M(10).

The full moduli space of torsion-free sheavesM(10) has two different irreducible

components, the closureM(10) and the lowest stratumM(10, 4). This distinguishes
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the case of the quintic surface from the cases of abelian and K3 surfaces, where the
full moduli spaces of stable torsion-free sheaves were irreducible [30, 29, 9].

For M(11), the argument is almost the same as for c2 ≥ 12. However, there
are now two different strata of codimension 1 in the boundary: M(11, 10) coming
from the irreducible variety M(10), and M(11, 4) which comes from the other 20-
dimensional component M(10, 4) of M(10). To show that these two can give rise
to at most a single irreducible component in M(11), completing the proof, we will
note that they do indeed intersect, and furthermore that the intersection contains
smooth points.

After the end of the proof of Theorem 1.1, the last two sections of the paper
treat some related considerations.

In Section 10 we provide a correction and improvement to [19, Lemma 5.1]
and answer [19, Question 5.1]. Recall from there that a co-obstruction may be
interpreted as a sort of Higgs field with values in the canonical bundle KX ; it has
a spectral surface Z ⊂ Tot(KX). The question was to bound the irregularity of a
resolution of singularities of the spectral surface Z. We show in Lemma 10.1 that
the irregularity vanishes.

At the end of the paper in Section 11, we show that Theorem 1.1 is sharp as
far as the degree 5 of the very general hypersurface is concerned. In the case of
bundles on very general hypersurfaces X6 of degree 6, we show in Theorem 11.4
that the moduli space MX6(2, 1, 11) of stable rank two bundles of degree 1 and
c2 = 11 has at least two irreducible components. This improves the result of [18],
bringing from 27 down to 6 the degree of a very general hypersurface on which there
exist two irreducible components. We expect that there will be several irreducible
components in any degree ≥ 6 but that isn’t shown here.

2. Preliminary facts

The moduli space M(c2) is locally a fine moduli space. The obstruction to
existence of a Poincaré universal sheaf on M(c2)×X is an interesting question but
not considered in the present paper. A universal family exists etale-locally over
M(c2) so for local questions we may consider M(c2) as a fine moduli space.

The Zariski tangent space to M(c2) at a point E is Ext1(E,E). If E is locally
free, this is the same as H1(End(E)). The space of obstructions obs(E) is by
definition the kernel of the surjective map

Tr : Ext2(E,E) → H2(OX).

The space of co-obstructions is the dual obs(E)∗ which is, by Serre duality with
KX = OX(1), equal to Hom0(E,E(1)), the space of maps φ : E → E(1) such that
Tr(E) = 0 in H0(OX(1)) ∼= C4. Such a map is called a co-obstruction.

Since a torsion-free sheaf E of rank two and odd degree can have no rank-
one subsheaves of the same slope, all semistable sheaves are stable, and Gieseker
and slope stability are equivalent. If E is a stable sheaf then Hom(E,E) = C

so the space of trace-free endomorphisms is zero. Notice that H1(OX) = 0 so
we may disregard the trace-free condition for Ext1(E,E). An Euler-characteristic
calculation gives

dim(Ext1(E,E))− dim(obs(E)) = 4c2 − 20,

and this is called the expected dimension of the moduli space. The moduli space is
said to be good if the dimension is equal to the expected dimension.
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Lemma 2.1. If the moduli space is good, then it is locally a complete intersection.

Proof. Kuranishi theory expresses the local analytic germ of the moduli space
M(c2) at E, as Φ−1(0) for a holomorphic map of germs Φ : (Ca, 0) → (Cb, 0)
where a = dim(Ext1(E,E)) (resp. b = dim(obs(E))). Hence, if the moduli space
has dimension a− b, it is a local complete intersection. �

We investigated closely the structure of the moduli space for c2 ≤ 9, in [19].

Proposition 2.2. The moduli space M(c2) is empty for c2 ≤ 3. For 4 ≤ c2 ≤ 9,
the moduli space M(c2) is irreducible. It has dimension strictly bigger than the
expected one, for 4 ≤ c2 ≤ 8, and for c2 = 9 it is generically nonreduced but with
dimension equal to the expected one; it is also generically nonreduced for c2 = 7.
The dimensions of the moduli spaces, the dimensions of the spaces of obstructions
at a general point, and the dimensions h1(E(1)) for a general bundle E in M(c2),
are given in the following table.

Table 1. Moduli spaces for c2 ≤ 9

c2 4 5 6 7 8 9
dim(M) 2 3 7 9 13 16
dim(obs) 6 3 3 3 1 1
h1(E(1)) 0 1 0 0 0 0
generically sm sm sm nr sm nr

The proof of Proposition 2.2 will be given in the next section, with a review of
the cases c2 ≤ 9 from the paper [19].

We also proved that the moduli space is good for c2 ≥ 10, known by Nijsse [23]
for c2 ≥ 13.

Proposition 2.3. For c2 ≥ 10, the moduli space M(c2) is good. The singular
locus M(c2)

sing is the union of the locus V (c2) consisting of bundles with h0(E) >
0, which has dimension 3c2 − 11, plus other pieces of dimension ≤ 13 which in
particular have codimension ≥ 6.

Proof. Following O’Grady’s and Nijsse’s terminology V (c2) denotes the locus which
which is the image of the moduli space of bundles together with a section, called
Σc2 or sometimes {E,P}. See [19, Theorem 7.1]. Any pieces of the singular locus
corresponding to bundles which are not in V (c2), have dimension ≤ 13 by [19,
Corollary 5.1] (see Lemma 10.1 below for a correction and improvement of this
statement). �

The case c2 = 10 is an important central point in the classification, where the
case-by-case treatment gives way to a general picture. In [20] we proved the fol-
lowing partial result that will be used in the present paper to complete the proof
of irreducibility.

Proposition 2.4. Let M(10)sn ⊂ M(10) denote the open subset of bundles E ∈
M(10) which have seminatural cohomology, that is where for any m at most one
of hi(E(m)) is nonzero for i = 0, 1, 2. Then E ∈M(10)sn if and only if h0(E) = 0
and h1(E(1)) = 0. The moduli space M(10)sn is irreducible.

Proof. See [20], Theorem 0.2 and Corollary 3.5. �
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3. Review of c2 ≤ 9

The dicussion of the moduli spaces for c2 ≤ 9 went by a sometimes exhaustive
classification of cases [19, Lemmas 7.3, 7.4]. In retrospect we can give more uniform
proofs of some parts. For this reason, and for the reader’s convenience, it is worth-
while to review here some of the arguments leading to the proof of Proposition
2.2.

There is a change of notation with respect to [19]. There we considered bundles
of degree −1. The bundle of degree 1 denoted here by E is the same as the bundle
denoted by E(1) in [19]. Thus [19, Lemma 5.2] speaks of h1(E) in our notation.
The present notation was already in effect in [20]. Fortunately, the indexing by
second Chern class remains the same in both cases.

Following O’Grady, we denote by V (c2) ⊂M(c2) the subvariety of bundles such
that h0(E) > 0. For c2 ≤ 9 the Euler characteristic argument of [19, §6.1] tells us
that h0(E) > 0 for any E, so V (c2) is the full moduli space.

It will be useful to consider the moduli space Σc2 consisting of pairs (E, η)
where E ∈ M(c2) and η ∈ H0(E) is a nonzero section. The pairs are taken up to
isomorphism, i.e. up to scaling of the section, so the fiber of the map Σc2 → V (c2)
over a bundle E is the projective space PH0(E).

Each irreducible component of Σc2 has dimension ≥ 3c2 − 11, see [25, 23] or [19,
Corollary 3.1].

A point of Σc2 may also be considered as an extension of the form

0 → OX → E → JP/X(1) → 0,

again up to isomorphism. We therefore employ the notation {E,P} := Σc2 too.
Such an extension exists, with E a bundle, if and only if P ⊂ X is locally a

complete intersection of length c2 and satisfies the Cayley-Bacharach condition for
quadrics denoted CB(2). See [2, 10, 26] and the references for the Hartshorne-Serre
correspondence discussed in [1] for the origins of this principle.

Denote by {P} the Hilbert scheme of l.c.i. subschemes P that satisfy CB(2). The
map {E,P} → {P} has fibers described as follows: the fiber over P is a dense open
subset1 of the projective space of all extensions PExt1(JP/X(1),OX); its dimension

by duality is h1(JP/X(1))− 1.
Consider c the number of conditions imposed by P on quadrics. This is related

to h1(E(1)) by the exact sequences

H0(OX(2)) → H0(OP (2)) → H1(JP/X(2)) → 0

and
0 → H1(E(1)) → H1(JP/X(2)) → H2(OX(1)) → 0

where H2(E(1)) = H0(E(1))∗ = 0 by stability, and H2(OX(1)) = H2(KX) =
C. The number c is the rank of the evaluation map of H0(OX(2)) on P , so
h1(JP/X(2)) = c2 − c, and by the second exact sequence we have h1(E(1)) =
c2 − c− 1.

The number c2 − c − 1 is also equal to the dimension of the fiber of the map
from the space of extensions {E,P} to the Hilbert scheme of subschemes {P}. As
stated previously, the space of extensions {E,P} fibers over the moduli space of
bundles {E} with fiber PH0(E) of dimension h1(JP/X(1)).

1It is the open subset of extensions such that E is locally free, nonempty because of the
conditions on P .
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The locus V (c2), image of Σc2 , is the main piece of the set of potentially ob-
structed bundles, that is to say bundles for which the space of obstructions is
nonzero.

The other pieces are of smaller dimension. There was an error in the proof of
this dimension estimate, Lemma 5.1 and hence Corollary 5.1 in [19]. These will be
corrected and improved in a separate section at the end of the present paper, see
Lemma 10.1 below.

3.1. Using the Cayley-Bacharach condition. Recall that a subscheme P ⊂ P3

satisfies the Cayley-Bacharach condition CB(n) if, for any subscheme P ′ ⊂ P with
ℓ(P ′) = ℓ(P ) − 1, a section f ∈ H0(OP3(n)) vanishing on P ′ must also vanish on
P . When P ⊂ X this is the condition governing the existence of an extension
of JP/X(n − 1) by OX that is locally free. For the study of Σc2 we are therefore
interested in subschemes satisfying CB(2).

See [19], [20] and the survey [21] for details on the basic techniques we use to
analyse the Cayley-Bacharach condition.

If U ⊂ P
3 is a divisor, usually for us a plane, and P a subscheme, there is a

residual subscheme P ′ for P with respect to U . In the case of distinct points it is
just the complement of P ∩U , but more generally it has a schematic meaning with
ℓ(P ′)+ℓ(P ∩U) = ℓ(P ). If P satisfies CB(n) and U has degree m then the residual
P ′ satisfies CB(n−m).

The following fact will be used often: if P ′ is the residual of P with respect to U ,
and if Z ⊂ P3 is a subvariety, then the length of Z ∩P at any point is at least equal
to the length of Z ∩P ′. So for example if P ′ has 3 points in a line (schematically),
then P does too.

It is easy to see that the Cayley-Bacharach condition CB(2) cannot be satisfied
by ≤ 3 points, so the moduli space is empty for c2 ≤ 3. Here is a case-by-case
review of the cases 4 ≤ c2 ≤ 9.

3.2. For c2 = 4, 5. Here the subscheme P is either 4 or 5 points contained in
a line. Both of these configurations impose c = 3 conditions on quadrics, since
h0(OP1(2)) = 3. This gives values of 4 − 3− 1 = 0 and 5 − 3 − 1 = 1 for h1(E(1))
respectively. The moduli space is generically smooth and its dimension is equal
to c2 − 2 by [19, Lemma 7.7]. This may be seen directly from the more explicit
descriptions we shall give in Section 7 below. We get the dimension of the space of
co-obstructions by subtracting the expected dimension. This completes the proof
of Proposition 2.2 for the columns c2 = 4, 5.

3.3. For c2 = 6, 7. In both cases, the Euler characteristic argument of [19, Section
6.1] gives h0(E) = 2, hence h0(JP/X(1)) = 1 and P is contained in a unique plane
U . By [19, Lemma 5.5], the space of obstructions has dimension 3.

For c2 = ℓ(P ) = 6, see [19, Proposition 7.4] that we now review. The number
c of conditions imposed on quadrics has to be ≤ 5, in particular P is contained
in a planar conic Y ⊂ U . However, c ≤ 4 may be ruled out by the size of P and
the Cayley-Bacharach condition, see the second paragraph of [19, §7.5]. It follows
that the dimension of {E,P} equals the dimension of {P}, and as noted above this
dimension is ≥ 3c2 − 11 = 7.

Look at the family of length 6 subschemes P ⊂ X ∩ Y such that all points of
P are located either at smooth points of Y , or at smooth points of X ∩ U . Such a
subscheme is uniquely determined by its multiplicities at each point, so given Y the
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set of choices of P is discrete and if we generalize Y , the subscheme P generalizes.
Therefore, this defines a set of irreducible components of dimension is equal to the
dimension of the space of choices of Y , that is 8. For U fixed and Y general, the
choice of P is equivalent to the choice of complementary set of 4 points in Y ∩X ;
but since any 4 points in the plane lie on a conic, the monodromy action as we
move Y can take any choice of 4 points to any other one. Therefore, this family is
a single irreducible component of dimension 8.

The remaining locus of P containing a point where Y is singular and U is tangent
to X , has dimension ≤ 5. For example if there is one such point, then the space
of choices of U has dimension 2; the space of choices of Y has dimension 2; and
by the precise estimate of [3, Proposition 4.3], noting that Y has multiplicity 2 at
the singular point, the space of choices of P has dimension ≤ 1. For more points,
we get one further dimension of the space of choices of P for each other point but
more than 1 new condition imposed by the tangencies. Therefore, the locus of
subschemes not fitting into the situation of the previous paragraph, has dimension
< 7 and it cannot produce a new irreducible component.

This completes the discussion for c2 = 6: we have an irreducible component of
{E,P} of dimension 8 whose general point consists of a choice of 6 out of the 10
intersection points in X ∩ Y for a plane conic Y . Since h0(E) = 2 the dimension
of {E} is 7. For the table, notice that h1(E(1)) = 6 − 5 − 1 = 0. Comparing
dimension, expected dimension 4 · 6 − 20 = 4 and the dimension 3 of the space of
obstructions, we find that the moduli space is generically smooth with vanishing
obstruction maps.

Consider now the case c2 = 7. See [19, Proposition 7.3] to be reviewed as follows.
As previously from the second paragraph of [19, §7.5], the case c ≤ 4 may be ruled
out. If c = 5, then P would be contained in a plane conic Y ⊂ U , but using the
same arguments as before the dimension of the space of choices of P would be ≤ 8;
however any irreducible component of {E,P} has dimension ≥ 3 · 7 − 11 = 10
and the fiber of the map to {P} has dimension 1, so a family of subschemes P
of dimension ≤ 8 cannot contribute an irreducible component. Therefore we may
suppose c = 6, the dimensions of {E,P} and {P} are the same and are ≥ 10. For
a given plane U the space of choices of subscheme P ⊂ X ∩ U of length 7, has
dimension 7 by [3]. The space of choices of P such that U ∩X is singular (i.e. U
tangent to X), therefore has dimension ≤ 9 and cannot contribute. If U is a plane
such that X ∩ U is smooth, the Hilbert scheme of P ⊂ X ∩ U is irreducible and a
general point corresponds to choosing 7 distinct points. We conclude that {E,P}
is irreducible of dimension 10 with general point consisting of a general subscheme
P ⊂ U ∩ X of length 7 that indeed satisfies CB(2) imposing c = 6 conditions on
quadrics.

Notice that since h0(E) = 2 the map {E,P} → {E} is a fibration with fibers
P1 so the corresponding irreducible component of the moduli space has dimension
9 as filled into the table. At a general point where P imposes c = 6 conditions
on quadrics, we get h1(E(1)) = 7 − 6 − 1 = 0. From [19, Proposition 7.3], by
comparing dimensions the moduli space is generically nonreduced. This treats the
column c2 = 7.

3.4. For c2 = 8. See the discussion in [19, Section 6.2] and [19, Theorem 7.2]
which will now be reviewed with some improvement in the arguments allowing us
to bypass certain case-by-case considerations.
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Any component of {E,P} has dimension ≥ 3 · 8− 11 = 13.
The following technique, involving the residual subscheme recalled above, will

be useful.

Lemma 3.1. Suppose U ⊂ P3 is a plane, and let P ′ denote the residual subscheme
for P with respect to U . If nonempty P ′ satisfies CB(1), so ℓ(P ′) ≥ 3 and in case
of equality P ′ is colinear.

Let n be the number of additional conditions needed to insure vanishing on U
of quadrics passing through P . Suppose 10 − c ≥ n + 1. Then there exists a
quadric containing P of the form U.U ′ where U ′ is another plane, containing P .
In particular, P ′ ⊂ U ′. If 10 − c ≥ n + 2 then P ′ is contained in a line, and if
10− c ≥ n+ 3 then P ⊂ U .

Proof. The first paragraph is a restatement of the basic property of the residual
subscheme. Note that one or two points, or three non-colinear points, cannot be
CB(1).

In the second paragraph, we could define n as the dimension of the image of

H0(JP/P3(2)) → H0(OU (2)).

If 10 − c ≥ n + 1 then it means that we can impose n additional conditions
(say, vanishing at general points of U) on the (10 − c)-dimensional space quadrics
H0(JP/P3(2)), to get one that vanishes on U . This quadric has the form U.U ′ of
the union of U with another plane U ′. By definition the residual is contained in
U ′. If 10− c ≥ n+ 2 then the U ′ move in a 2-dimensional family so they cut out a
line containing P ′. If 10− c ≥ n+ 3 the family of U ′ cuts out a point, however P ′

satisfying CB(1) cannot be a single point so in this case it is empty and P ⊂ U . �

Look at the value of c at a general point of an irreducible component. The case
c ≤ 5 may be ruled out (using a simpler version of the subsequent arguments), so
we may assume either c = 6 or c = 7. If c = 6 then the fiber of {E,P} → {P}
has dimension 1 and {P} has dimension ≥ 12, whereas if c = 7 then the irreducible
component of {E,P} is the same as that of {P}, and {P} has dimension ≥ 13.

It follows that a general P is not contained in any multiple of a plane. Indeed,
the space of m.U has dimension 3 whereas for any one, the dimension of the space
of length 8 subschemes P ⊂ X ∩m.U is ≤ 8 by [3].

Lemma 3.2. In a given irreducible component, a general P does not contain a
colinear subscheme of length ≥ 3 in a line.

Proof. Start by noting that P is not contained in U ∪ L for a plane U and a line
L. The space of quadrics containing U ∪L has dimension 2, whereas c ≤ 7 so there
would be a third quadric containing P . One can see that it would have to contain L
so it defines a plane conic Y ⊂ U , meeting L, and P ⊂ Y ∪L. But the dimension of
the space of choices of Y, L is 3 for the plane, 5 for the conic, 1 for the intersection
point with L and then 2 for the direction of L making 11. Given Y, L the choice of
P is discrete (except in some degenerate cases2). The set of such P can therefore
not be dense in an irreducible component.

2Since P is not contained in a double plane, Y is not a double line; in the other cases, sin-
gularities of X ∩ (Y ∪ L) are always contained in planar singularities of multiplicity 2 so by [3]
the dimension of the space of P increases by 1 at any such point; but existence of the singularity
imposes at least one additional condition decreasing the dimension of the space of Y,L.
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We now show that P cannot have three points colinear in a line R, assuming to
the contrary that it does. Choose a point p ∈ P not contained in R (possible by the
paragraph above the lemma). Let U be the plane spanned by p and R. Vanishing
on P ∩R and at p impose 4 conditions on conics of U .

In the case c = 6, by Lemma 3.1 with n ≤ 2 so 4 = 10−c ≥ n+2, the residual P ′

of P with respect to U is contained in a line L, and we get P ⊂ U ∪L contradicting
the first paragraph.

In the case c = 7, by Lemma 3.1 with n ≤ 2 so 3 = 10 − c ≥ n + 1, we get
P ⊂ U.U ′. Both U and U ′ must contain points not touching R. The residual P ′

of P with respect to U has length ≥ 4, indeed if it were to consist of 3 points they
would have to be colinear by the CB(1) property but that would give P ⊂ U ∪ L.

If U ′ doesn’t contain R, the intersection P ∩ (U ′ ∪ R) has length3 at least 7,
but since U ′ ∪ R is cut out by quadrics the CB(2) property of P says that in fact
P ⊂ (U ′ ∪R) contradicting the first paragraph of the proof.

Suppose R ⊂ U ′. Given a residual point lying along R, it cannot correspond to
a subscheme leaving R in a direction different from U ′. For in that case, we could
let U2 be the plane contacting this direction, different from U or U ′, and applying
Lemma 3.1 again would give P ⊂ U2U3 contradicting the fact that both U and U ′

contain points of P not on R. So, any point of P ′ along R corresponds to a point
of extra contact with U ′. We conclude that the residual subscheme of P ∩ U ′ with
respect to R ⊂ U ′, has length ≥ 2. Therefore, n = 1 conditions suffice to imply
vanishing of quadrics on U ′ so by Lemma 3.1 this time with 3 = 10 − c ≥ n + 2
we find that the residual of P with respect to U ′ is contained in a line. This again
gives P contained in a plane plus a line, contradicting the first paragraph of the
proof. �

We may now show that the case c = 6 doesn’t contribute a general point of an
irreducible component. Choose 3 points of P defining a plane U and apply Lemma
3.1 adding n ≤ 3 extra conditions: we get at least one quadric in our family that
has the form U.U ′. Now if say U ∩ P has length 5 then the residual would have
length 3 and satisfy CB(1), therefore it would have to be colinear, contradicting
the previous lemma. It follows that U ∩ P and U ′ ∩ P both have length 4. But
then, it actually sufficed to add n ≤ 2 conditions so we get a line containing the
residual, again contradicting Lemma 3.2. This finishes ruling out the possibility of
an irreducible component whose general point imposes c ≤ 6 conditions on quadrics.

Therefore assume c = 7. Now {E,P} and {P} have the same dimension which
is ≥ 13. There is a vector space of dimension 10−c = 3 of quadrics passing through
P . Let H1, H2, H3 denote the elements of a basis.

3An algebraic argument is needed for the piece of P located at R ∩ U ′; letting A denote its
coordinate algebra, u the equation of U ′, f the equation of U and g the equation of another plane
through R, our hypothesis is fuA = 0 and the local piece of P ∩ (U ′ ∪R) corresponds to A/guA.
Considering the exact sequence

A/guA → A/(fA + gA)⊕ A/uA → C → 0

we see that if the required inequality ℓ(A/guA) ≥ ℓ(A/(fA + gA)) + ℓ(fA) didn’t hold we would
have guA = (fA+ gA) ∩ uA and fA ∼= A/uA hence also uA ∼= A/fA. The exact sequence

0 → guA → uA → A/(fA+ gA)

becomes 0 → g(A/fA) → A/fA
u
→ A/(fA + gA) which would give that multiplication by u on

A/(fA+ gA) is injective, but that isn’t possible since A has finite length.
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Here the proof divides into an analysis of two distinct cases; these were called
(a) and (b) in [19] refering to the two cases of Proposition 7.1 from there. Case (a)
is when H1 ∩H2 ∩H3 has dimension 0. It is a subscheme of length 8 so we get

P = H1 ∩H2 ∩H3.

A general such subscheme satisfies CB(2), and I. Dolgachev pointed out to us that
these are called “Cayley octads”. We shall treat the Cayley octads of case (a)
secondly, since that will use one part of the discussion of case (b).
Case (b).

This is when the subscheme Y = H1 ∩ H2 ∩ H3 contains a pure 1-dimensional
subscheme Y1. Notice that Y1 is a union of components of the curve4 H1 ∩H2. On
the other hand, by Lasker’s theorem [4, p. 314] if Y1 were equal to H1 ∩ H2 then
there couldn’t be a third quadric vanishing on Y1. Therefore, Y1 is a curve of degree
≤ 3.

We will now show that Y1 doesn’t contain a line. Suppose to the contrary that
R ⊂ Y1 is a line. Then, all quadrics in our family contain R.

Choose a point p of P not on R, let U be the plane through R and p, and apply
Lemma 3.1 with n = 2 to get P ⊂ U.U ′. If P ∩ U ′ has length ≥ 5, it doesn’t have
four colinear points so it imposes 5 conditions on conics, hence we can apply Lemma
3.1 with n = 1 and get three residual points in a line, contradicting Lemma 3.2.
Therefore P ∩U has length ≥ 4, however since P ∩R has length ≤ 2 by Lemma 3.2,
the residual of P ∩U with respect to R has length ≥ 2. Now, vanishing on R and on
P ∩ U imposes 5 conditions on conics of U . Thus we may again apply Lemma 3.1
with n = 1 and get a residual consisting of 3 colinear points contradicting Lemma
3.2. This completes the proof that Y1 does not contain a line.

That rules out almost all of the cases listed in [19, Lemma 7.4].
A next case is if Y1 is a conic in a plane U . Then, it suffices to impose a single

condition, n = 1 in Lemma 3.1, so 3 = 10 − c ≥ n+ 2 and the residual subscheme
consists of at least 3 points in a line. This contradicts Lemma 3.2, so Y1 cannot be
a plane conic.

The only remaining possibility for our curve of degree three, is that Y1 could be a
rational cubic curve not contained in a plane. It has to be a rational normal cubic,
in particular smooth. The restriction of OP3(2) to the rational curve has degree
6 so it has seven sections; our three dimensional family of quadrics is therefore
the family of all quadrics passing through Y1. They define Y1 schematically, in
particular P ⊂ Y1.

This case will be of interest for our treatment of case (a) below. We have that P
is a length 8 subscheme of the intersection Y1∩X . For given Y1 the space of choices
of P is discrete, and as Y1 moves any P generizes. The family of such subschemes
may therefore be identified with a covering of the space of choices of rational normal
cubic Y1. The covering is determined, over a general point, by the choice of 8 out
of the 15 points in Y1 ∩ X ; or equivalently by the choice of the 7 complementary
points.

The space of choices of Y1 has dimension 12 (see [19, §6.2]). Therefore, this
family cannot constitute an irreducible component of {P}. This completes the
proof that case (b) cannot happen at a general point of an irreducible component.

4Note that Hi cannot all vanish on some plane, otherwise by CB(1) for the residual P would
have to be contained in the plane as we saw previously.
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Case (a).
We start this discussion by continuing to look at the above 12-dimensional family

of subschemes consisting of points in X ∩ Y1 for a smooth rational normal cubic
curve Y1.

We claim that the family of subschemes, and hence of bundles, obtained in this
way is irreducible. This may be seen as follows. Any 6 points determine the rational
normal cubic, so if we move a set of 6 points around to a different set, we get back to
the same rational normal curve and this shows that the monodromy action includes
permutations sending any subset of 6 points to any other one. On the other hand,
there is a rational normal curve with first order tangency toX , and moving it a little
bit induces a permutation of two points keeping the other points fixed. Therefore,
the subgroup of the symmetric group contains a transposition. Now since it is 6-
tuply transitive, it contains all the transpositions. Thus, the monodromy group is
the full symmetric group and any group of 8 points can be moved to any other one.
This shows that the family is irreducible.

As was pointed out at the end of Section 6.2 in [19], the space of obstructions at
a general point in our family has dimension 1. The expected dimension is 4c2−20 =
12, so the Zariski tangent space to the moduli space has dimension 13; however, as
noted above any irreducible component has dimension ≥ 13 because of the existence
of the extension. Therefore, a general point of our 12-dimensional family lies in a
smooth open subset of a unique 13-dimensional irreducible component of the moduli
space {E} (notice here that the spaces {E,P} and {P} are also the same). As our
12-dimensional family is irreducible by the previous paragraph, this determines a
canonical irreducible component of the moduli space.

This discussion corrects an error of notation in the second paragraph of the proof
of Lemma 7.6 of [19] where it was stated that the irreducible 12-dimensional family
of Cayley-Bacharach subschemes on the rational normal cubic was inside the type
(a) subspace of the moduli space; but that family is clearly of type (b). Those
phrases should be replaced by the argument of the previous paragraph showing
that our 12-dimensional family is contained in a unique 13-dimensional irreducible
component of the moduli space, whose general point is of type (a).

We now turn to consideration of the full set of irreducible components, whose
general points are of type (a), that is to say bundles determined by Cayley octad
subschemes P (since we showed in the previous part that type (b) cannot lead to a
general point of a component).

The argument given in [19, §7.4], using the incidence variety suggested by A.
Hirschowitz, shows that the existence of a canonically defined irreducible component
implies irreducibility of the moduli space.

Let us recall her briefly how this works. We look at the full incidence scheme
{X,P} parametrizing smooth quintic hypersurfaces X together with l.c.i. sub-
schemes P ⊂ X of length 8 satisfying CB(2) of type (a). For a given P ⊂ P3

the space of quintics X containing it is a projective space and these all have the
same dimension. So the fibration {X,P} → {P} is smooth, over the base that
is an open subset in the Grassmanian Grass(3, 10) of 3-dimensional subspaces of
H0(OP3(2)). Thus, the full incidence variety {X,P} is irreducible. There is a dense
open subset of the space of quintics {X}, over which the sets of irreducible compo-
nents of the fibers don’t change locally. Thus, the fundamental group of this open
set acts on the set of irreducible components of the fiber {P}X over a basepoint
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X ∈ {X}. This action is transitive, by irreducibility of the full incidence variety.
On the other hand, we have described above a canonically defined irreducible com-
ponent of {P}X , containing the nearby generalizations of our 12-dimensional family
of subschemes of a rational normal cubic curve. Since it is canonically defined, this
component is preserved by the monodromy action. Transitivity now implies that
{P}X has only a single irreducible component.

This completes the proof of irreducibility for c2 = 8. The generic space of
obstructions has dimension 1. That was seen for points on the rational normal
cubic curve, at the end of §6.2 of [19]; however the moduli space has dimension
13 equal to the expected dimension plus 1, so the space of obstructions remains
1-dimensional at a general point.

As the dimension of the moduli space is equal to the expected dimension plus the
dimension of the space of obstructions, we get that the moduli space is generically
smooth, and in fact that was already the case at a point of the 12 dimensional
family of subschemes on a rational normal cubic. Since c = 7 at a general point we
have h1(E(1)) = 8− 7− 1 = 0, to complete the corresponding column of our table.

3.5. For c2 = 9. For the column c2 = 9, see [19, Theorem 6.1 and Proposition 7.2],
for the dimension 16 and general obstruction space of dimension 1. The proof of
[19, Proposition 7.2] starts out by ruling out, for a general point of an irreducible
component, all cases of [19, Proposition 7.1] except case (d), for which c = 8. Thus
h1(E(1)) = 9− 8− 1 = 0 for a general bundle, as we shall also see below.

We give here an alternate argument by dimension count to show that a general
bundle in any irreducible component consists of a collection of 9 out of the 20 points
on a degree 4 elliptic curve, intersection of two quadrics, intersected with X .

The expected dimension of {E} is 4c2 − 20 = 16, and a general E determines a
unique5 extension hence a unique subscheme P of length 9. The dimension of any
irreducible component of {E,P} is ≥ 16 (notice that it coincides with the value of
3c2 − 11 too).

We first rule out the possibility that c ≤ 7 for a general point. If there were a
three-dimensional family of quadrics passing through P then they cannot intersect
transversally in a zero-dimensional subscheme, since that would have length only 8
and so be unable to contain P . But if the intersection of the three quadrics has a
component of positive dimension, then arguing much as in the previous section we
can get a contradiction. Indeed, the space of length 9 subschemes contained in the
intersection of X with two planes has dimension ≤ 3+3+9 = 15 < 16, so any time
Lemma 3.1 applies we immediately obtain a contradiction. The remaining case of
points on a rational normal curve is ruled out by dimension.

We may therefore assume c = 8, from which it follows that any irreducible
component of {P} has dimension ≥ 16. It follows that a general P contains at
least 7 points in general position on X . Let us explain the details of this argument,
since this kind of dimension count has already been used several times above. Let
H ⊂ {P} denote some component of the Hilbert scheme of subschemes we are
interested in, that is to say l.c.i. subschemes P ⊂ X of length 9 satisfying CB(2).
Let

I ⊂ H×X

5An easy dimension count rules out the possibility that P be contained in a plane.
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be the incidence subscheme, whose fiber over a point h ∈ H is the subscheme Ps

thereby parametrized. Suppose p1, . . . , pk is a collection of distinct points in X ,
and let H(p1, . . . , pk) ⊂ H be the closed subscheme parametrizing those P that
contain p1, . . . , pk. It may be inductively defined as follows: we have the incidence
subvariety I(p1, . . . , pk) ⊂ H(p1, . . . , pk) × X , and for a point pk+1 distinct from
the other ones,

H(p1, . . . , pk, pk+1) := pr2
−1(pk) ⊂ I(p1, . . . , pk).

By induction we show that for general points pi, H(p1, . . . , pk) is nonempty of
dimension ≥ 16− 2k whenever k ≤ 7. Assume it is known for k− 1 but not true for
k. That means that the map I(p1, . . . , pk−1) → X maps onto a closed subvariety, in
other words there is a curve C ⊂ X depending on p1, . . . , pk−1 and containing all of
the subschemes parametrized by points of H(p1, . . . , pk−1). But then the space of
such subschemes has dimension ≤ 9− (k − 1) (by [3]), contradicting our inductive
hypothesis since 9− (k − 1) < 16− 2(k − 1) as (k − 1) < 16− 9 = 7.

After the 7 points in general position there remain two points. We may conclude
that the dimension of a family of subschemes P , once the set theoretical locations
of the points are known, is ≤ 2.

We now claim that if P is general, then for a general element H of our family
of quadrics passing through P , the intersection H ∩X is smooth. The proof is by
a dimension count of the complementary family. If the H ∩ X is always singular,
then the singular point is a basepoint (of the linear system on X), of which there
are finitely many, so it is fixed. Thus, the H are all tangent to X at some point.
The space of 2-dimensional linear systems tangent to x ∈ X is a Grassmanian
Grass(2,C7) of dimension 10. As the point moves in X we have a 12 dimensional
space of choices of the linear system; and each one of these fixes the set-theoretical
location of the points of P so by the previous paragraph, the corresponding space
of P has dimension ≤ 2, so altogether we obtain that the family not satisfying our
claimed condition has dimension ≤ 14. Since any component has dimension ≥ 16
it follows that the complementary family cannot constitute a component, which
proves the claim.

Suppose V := H0(JP/P3(2)) ⊂ C10 = H0(OP3(2)) is the two-dimensional space
of quadrics passing through our general point P . Then any deformation of the
subspace V ⊂ C10 lifts to a deformation of P . This is because, by the previous
claim, we can choose a general element of V corresponding to a quadricH1 such that
H1∩X is smooth. As the smooth curve deforms, our subscheme P of (H1∩X)∩H2

generalizes since it is uniquely determined just by its multiplicities at each point.
From the above discussion it follows that a general point P in any irreducible

component, is obtained by choosing 9 out of the 20 points of (H1 ∩ H2) ∩ X for
a general pair of quadrics H1, H2. But since any 8 points determine the subspace
〈H1, H2〉, the monodromy action on the set of 20 intersection points is 8-tuply
transtive. By going around a curveH1∩H2 with a single simple tangent point to X ,
we get a transposition in the monodromy group; hence it contains all transpositions
and it is the full symmetric group. Therefore, the set of choices of 9 points forms
a single orbit under the monodromy group. This completes the proof that there is
only one irreducible component of dimension 16.

The space of obstructions at a general point has dimension 1, see the discussion
above Theorem 6.1 in [19]. This completes our review of the proof of Proposition
2.2.
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3.6. For c2 ≥ 10. We will not be further reviewing the partial result of the case
c2 = 10 that was treated in [20], giving irreducibility of the open subset of the
moduli space corresponding to seminatural cohomology as was stated in Proposition
2.4 above, since the argument is more involved and it is the subject of a distinct
paper.

On the other hand, it will be useful to discuss in more detail the structure of
V (c2).

Lemma 3.3. For c2 ≥ 11, V (c2) is irreducible of dimension 3c2−11 and its general
point corresponds to a set of points P in general position with respect to quadrics.
The closure of V (c2) meets the boundary.

Proof. See [19, Corollary 7.1], showing that for c2 ≥ 11, Σc2 contains an open
dense subset Σ10

c2 consisting of collections P such that any colength 1 subscheme
imposes vanishing of all quadrics. This is an open subset of the Hilbert scheme of
all subschemes P of length c2 so it is smooth, and it further contains an open dense
subscheme where the points of P are distinct. The latter is an open subset of the
symmetric product of X so it is irreducible.

The closure of V (c2) intersects the boundary, as was discussed in the proof of
[23, Proposition 3.2]. Indeed, choose a collection P0 of distinct points that impose
vanishing of quadrics but that doesn’t satisfy CB(2). Deform this collection in a
family Pt such that the general Pt (for t 6= 0) satisfies CB(2). Since all elements
of the family impose the same number of conditions on quadrics, the space of Ext
groups varies in a bundle with respect to the parameter t and we may choose a
family of extensions such that the general one is locally free. But the special one
is not locally free since P0 didn’t satisfy CB(2). This family gives a curve in Σ10

c2
with parameter t 6= 0, whose limiting sheaf at t = 0 is not locally free: we have a
deformation to the boundary. �

Lemma 3.4. For c2 = 10, V (10) is irreducible of dimension 3c2 − 11 = 19 and
its general point corresponds to a subscheme P composed of 10 general points on
a smooth intersection with a quadric Y = X ∩ H. A general bundle in V (10) has
h1(E(1)) = 0 so any deformation moving away from V (10) will have seminatu-
ral cohomology, and only the irreducible component of M(10) constructed in [20]
contains V (10).

Proof. See [23, Lemma 3.1]. General elements of any irreducible component corre-
spond to subschemes P not contained in a plane, so the irreducible components of
V (10) correspond to those of Σ10 having the same dimension.

By [19, Corollary 7.1], Σ10 is pure of dimension 19. The stratum Σ8
10 consisting

of extensions where P lies in the intersection of two quadrics, has dimension <
19. Indeed, the subscheme P is determined by the two dimensional subspace of
quadrics6 and this has dimension 16, to which we should add 1 for the space of
choices of extension: it comes out strictly less than 19. Similarly, the dimension of
the stratum Σ7

10 is strictly less than 19, and the strata Σc
10 for c ≤ 6 may be ruled

out using our previous line of argument with Lemma 3.1.

6Unless they share a common plane but that case may also be dealt with by a dimension count:
3 for the choice of plane, plus 4 for the choice of line, plus at most 7 for the choice of points in
the plane since they would otherwise all be in the plane and then we could ignore the choice of
line, plus 1 for the choice of extension class, comes out to strictly less than 19.
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We conclude that the stratum Σ9
10 is dense in Σ10. Here the extension class is

determined (up to scaling) so {E,P} and {P} are the same, and {P} is an open
subset of the space {H,P} parametrizing quadrics H together with P ⊂ H ∩ X .
The open subset is given by the conditions that no other quadrics vanish on P , and
that P satisfies CB(2). But the space {H,P} is irreducible.

Thus, V (10) is irreducible and its general point parametrizes collections of 10
general points on a general smooth quadric section Y = X ∩ H . One may now
calculate with the standard exact sequence that for a general E ∈ V (10), we have
h1(E(1)) = 0.

Recall by [20, Corollary 3.5] that the condition of having seminatural coho-
mology, for bundes in M(10), is equivalent to the conjunction of two conditions7

h1(E(1)) = 0 and h0(E) = 0. Bundles in V (10) clearly don’t satisfy the second con-
dition because V (10) is the locus where h0(E) > 0. However, we have seen that a
general point of V (10) satisfies the first condition. On the other hand V (10) is pure
of dimension 19 whereas any component of M(10) has dimension ≥ 20. Therefore,
in any irreducible component of M(10) containing V (10), the general point has
h0(E) = 0, but also h1(E(1)) = 0 since it is a generization of the general point of
V (10) that satisfies this condition. Therefore, any irreducible component of M(10)
containing V parametrizes, generically, bundles with seminatural cohomology.

It now follows from the main result of [20] (stated as Proposition 2.4 above)
that any irreducible component of M(10) containing V (10) must be the unique
component constructed in [20]. �

4. The double dual stratification

Turn now to the proof of the main theorem on the moduli spaces for c2 ≥ 10.
Our subsequent proofs will make use of O’Grady’s techniques [24, 25], as they were
recalled and used by Nijsse in [23]. The main idea is to look at the boundary of
the moduli spaces. His first main observation is the following [25, Proposition 3.3]:

Lemma 4.1 (O’Grady). The boundary of any irreducible component (or indeed,
of any closed subset) of M(c2) has pure codimension 1, if it is nonempty.

The boundary is divided up into Uhlenbeck strata corresponding to the “number
of instantons”, which in the geometric picture corresponds to the number of points
where the torsion-free sheaf is not a bundle, counted with correct multiplicities. A
boundary stratum denotedM(c2, c2−d) parametrizes torsion-free sheaves F fitting
into an exact sequence of the form

0 → F → E
σ
→ S → 0

where E ∈ M(c2 − d) is a stable locally free sheaf of degree 1 and c2(E) = c2 − d,
and S is a finite coherent sheaf of length d so that c2(F ) = c2. In this case E = F ∗∗.
We may think of M(c2, c2 − d) as the moduli space of pairs (E, σ). Forgetting the
quotient σ gives a smooth map

M(c2, c2 − d) →M(c2 − d),

sending F to its double dual. The fiber over E is the Grothedieck Quot scheme
Quot(E, d) parametrizing quotients σ of E of length d.

7We use duality and Euler characteristic to rewrite the conditions of [20, Corollary 3.5].
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Since we are dealing with sheaves of degree 1, all semistable points are stable and
our objects have no non-scalar automorphisms. Hence the moduli spaces are fine,
with a universal family existing etale-locally and well-defined up to a scalar auto-
morphism. We may view the double-dual map as being the relative Grothendieck
Quot scheme of quotients of the universal object Euniv on M(c2 − d) × X over
M(c2 − d). Furthermore, locally on the Quot scheme the quotients are localized
near a finite set of points, and we may trivialize the bundle Euniv near these points,
so M(c2, c2 − d) has a covering by, say, analytic open sets which are trivialized as
products of open sets in the base M(c2 − d) with open sets in Quot(E, d) for any
single choice of E. This is all to say that the map M(c2, c2 − d) →M(c2 − d) may
be viewed as a fibration in a fairly strong sense, with fiber Quot(E, d).

Li shows in [14, Proposition 6.4] that Quot(E, d) is irreducible with a dense open
subset U parametrizing quotients which are given by a collection of d quotients of
length 1 supported at distinct points of X :

Theorem 4.2 (Li). Suppose E is a locally free sheaf of rank 2 on X. Then for any
d > 0, Quot(E, d) is an irreducible scheme of dimension 3d, containing a dense
open subset parametrizing quotients E → S such that S ∼=

⊕

Cyi
where Cyi

is a
skyscraper sheaf of length 1 supported at yi ∈ X, and the yi are distinct. This dense
open set maps to X(d) − diag (the space of choices of distinct d-uple of points in

X), with fiber over {yi} equal to
∏d

i=1 P(Eyi
).

Proof. See Propostion 6.4 in the appendix of [14]. Notice right away that U is an
open subset of Quot(F, d), and that U fibers over the set X(d) − diag of distinct d-
uples of points (y1, . . . , yd) (up to permutations). The fiber over a d-uple (y1, . . . , yd)
is the product of projective lines P(Fyi

) of quotients of the vector spaces Fyi
. As

X(d) − diag has dimension 2d, and
∏d

i=1 P(Fyi
) has dimension d, we get that U is

a smooth open variety of dimension 3d.
This theorem may also be viewed as a consequence of a more precise bound

established by Ellingsrud and Lehn [5], which will be stated as Theorem 7.6 below,
needed for our arguments in Section 7. �

Corollary 4.3. We have

dim(M(c2; c
′
2)) = dim(M(c′2)) + 3(c2 − c′2).

If M(c′2) is irreducible, then M(c2; c
′
2) and hence M(c2; c′2) are irreducible.

Proof. The fibration M(c2; c
′
2) → M(c′2) has fiber the Quot scheme whose dimen-

sion is 3(c2 − c′2) by the previous proposition. Furthermore, these Quot schemes
are irreducible so if the base is irreducible, so is the total space. �

Corollary 4.3 allows us to fill in the dimensions of the strata M(c2; c
′
2) in the

following table. The entries in the second column are the expected dimension
4c2 − 20; in the third column the dimension of M := M(c2); and in the following
columns, dimM(c2, c2−d) for d = 1, 2, . . .. The rule is to add 3 as you go diagonally
down and to the right by one.

The first remark useful for interpreting this information, is that any irreducible
component ofM(c2) must have dimension at least equal to the expected dimension
4c2 − 20. In particular, a stratum with strictly smaller dimension, must be a part
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Table 2. Dimensions of strata

c2 e.d. dim(M) d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8

4 −4 2 − − − − − − − −
5 0 3 5 − − − − − − −
6 4 7 6 8 − − − − − −
7 8 9 10 9 11 − − − − −
8 12 13 12 13 12 14 − − − −
9 16 16 16 15 16 15 17 − − −
10 20 20 19 19 18 19 18 20 − −
11 24 24 23 22 22 21 22 21 23 −
12 28 28 27 26 25 25 24 25 24 26
≥13 4c2−20 4c2−20 4c2−21 ≤4c2−22

of at least one irreducible component containing a bigger stratum. For c2 ≥ 11, we
have

dim(M(c2, c
′
2)) < dim(M(c2)) = 4c2 − 20.

Hence, for c2 ≥ 11 the closures M(c2, c′2) cannot themselves form irreducible com-

ponents ofM(c2), in other words the irreducible components ofM(c2) are the same
as those of M(c2). Notice, on the other hand, that M(10) contains two pieces of
dimension 20, the locally free sheaves in M(10) and the sheaves in M(10, 4) whose
double duals come from M(4).

Recall from Proposition 2.2 that the moduli spaces M(c2) are irreducible for
c2 = 4, . . . , 9. It follows from Corollary 4.3 that the strataM(c2, c

′
2) are irreducible,

for any c′2 ≤ 9. In particular, the pieceM(10, 4) is irreducible, and its general point,

representing a non-locally free sheaf, is not confused with any point ofM(10). Since

the other strata of M(10) all have dimension < 20, it follows that M(10, 4) is an
irreducible component of M(10). One similarly gets from the table that M(c2) has
several irreducible components when 5 ≤ c2 ≤ 9.

5. Hartshorne’s connectedness theorem

Hartshorne proves a connectedness theorem for local complete intersections.
Here is the version that we need.

Theorem 5.1 (Hartshorne). Suppose Z is a local complete intersection of dimen-
sion d. Then, any nonempty intersection of two irreducible components of Z has
pure dimension d− 1.

Proof. See [11, 27]. �

Corollary 5.2. If the moduli space M is good, and has two different irreducible
components Z1 and Z2 meeting at a point z, then Z1 ∩ Z2 has codimension 1 at z
and the singular locus Sing(M) contains z and has codimension 1 at z.

Proof. If M is good, then by Lemma 2.1 it as a local complete intersection so
Hartshorne’s theorem applies: Z1 ∩Z2 has pure codimension 1. The intersection of
two irrreducible components is necessarily contained in the singular locus. �

We draw the following conclusions.
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Corollary 5.3. Suppose, for c2 ≥ 10, that two different irreducible components Z1

and Z2 of M meet at a point z, then z is on the boundary.

Proof. If z is not on the boundary, then by the previous corollary it is in a compo-
nent of the singular locus having codimension 1 inM . We have seen in [19, Theorem
7.1] that for c2 ≥ 10, a piece of Sing(M) having codimension 1 in M(c2) has to
be in V (c2), cf Proposition 2.3 above. On the other hand V (c2) is irreducible, see
Lemmas 3.3 and 3.4, so any such component of Sing(M) has to be equal to V (c2).

Recall that dim(V (c2)) = 3c2 − 11 whereas the dimension of the moduli space is
4c2 − 20, thus for c2 ≥ 11 the singular locus has codimension ≥ 2, so the present
situation could only occur for c2 = 10.

But now by Lemma 3.4, V (10) is contained in only one irreducible component of
M , the one whose general point parametrizes bundles with seminatural cohomology.
So, two distinct components cannot meet along V (10). �

Next, recall one of Nijsse’s theorems, connectedness of the moduli space.

Theorem 5.4 (Nijsse). For c2 ≥ 10, the moduli space M is connected.

Proof. See [23], Proposition 3.2. We have reviewed the argument in [21, Theorem
18.8]. �

Corollary 5.5. Suppose Z is an irreducible component of M(c2) for c2 ≥ 10. Then
Z meets the boundary in a nonempty subset of codimension ≤ 1.

Proof. The codimension 1 property is given by Lemma 4.1, so we just have to show
that Z contains a boundary point.

For c2 ≥ 10, the first boundary stratum M(c2, c2 − 1) has codimension 1, so

it must meet at least one irreducible component of M(c2), call it Z0. Of course
if Z = Z0 we are done. Suppose Z ⊂ M(c2) is another irreducible component
with c2 ≥ 10. By the connectedness of M(10), there exist a sequence of irreducible
components Z0, . . . , Zk = Z such that Zi ∩ Zi+1 is nonempty. By Lemma 5.3,
Zk−1 ∩ Zk is contained in the boundary. �

6. Seminaturality along the 19-dimensional boundary strata

To treat the case c2 = 10, we will apply the main result of our previous paper.

Proposition 6.1. Suppose Z is an irreducible component of M(10). Suppose that
Z contains a point corresponding to a torsion-free sheaf F with h1(F (1)) = 0.
Then Z is the unique irreducible component containing the open set of bundles with
seminatural cohomology, constructed in [20].

Proof. The locus V (c2) of bundles with h
0(E) 6= 0 has dimension ≤ 19, so a general

point of Z must have h0(E) = 0. The hypothesis implies that a general point has
h1(E(1)) = 0. Thus, there is a nonempty dense open subset Z ′ ⊂ Z parametrizing
bundles with h0(E) = 0 and h1(E(1)) = 0. By [20, Corollary 3.5], these bundles
have seminatural cohomology. Thus, our open set is Z ′ = M(10)sn, the moduli
space of bundles with seminatural cohomology, shown to be irreducible in the main
Theorem 0.2 of [20] recalled as Proposition 2.4 above. �

Using Proposition 6.1, and since we know by Corollary 5.5 that any irreducible
component Z meets the boundary in a codimension 1 subset, in order to prove irre-
ducibility ofM(10), it suffices to show that the torsion-free sheaves F parametrized
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by general points on the various irreducible components of the boundary of M(10)
have h1(F (1)) = 0.

The dimension is dim(Z) = 20, so the boundary components will have dimension
19. Looking at the line c2 = 10 in Table 2, we notice that there are three 19-
dimensional boundary pieces, and a 20-dimensional piece which must constitute a
different irreducible component. Consider first the 19-dimensional pieces,

M(10, 9), M(10, 8) and M(10, 6).

Recall that M(10, 10− d) consists generically of torsion-free sheaves F fitting into
an exact sequence

(6.1) 0 → F → F ∗∗ → S → 0

where F ∗∗ is a general point in the moduli space of stable bundles with c2 = 10−d,
and S is a general quotient of length d.

Proposition 6.2. For a general point F in either of the three boundary pieces
M(10, 9), M(10, 8) or M(10, 6), we have h1(F (1)) = 0.

Proof. Notice that χ(F ∗∗(1)) = 15 − c2(F
∗∗) ≥ 6 and by stability h2(F ∗∗(1)) =

h0(F ∗∗(−1)) = 0, so F ∗∗(1) has at least six linearly independent sections. In
particular, for a general quotient S of length 1, 2 or 4, consisting of the direct sum
S =

⊕

Sx of general rank 1 quotients Ex → Sx at 1, 2 or 4 distinct general points
x, the map

H0(F ∗∗(1)) → H0(S)

will be surjective.
For a general point F ∗∗ in either M(9), M(8) or M(6), we have h1(F ∗∗(1)) = 0.

These results from [19] were recalled in Proposition 2.2, Table 1. The long exact
sequence associated to (6.1) now gives h1(F (1)) = 0. �

This treats the 19-dimensional irreducible components of the boundary. There

remains the piece M(10, 4) which has dimension 20. This is a separate irreducible

component. It could meetM(10) along a 19-dimensional divisor, and we would like
to show that h1(F (1)) = 0 for the sheaves parametrized by this divisor. In partic-
ular, we are no longer in a completely generic situation so some further discussion
is needed. This will be the topic of the next section.

7. The lowest stratum

The lowest stratum is M(10, 4), which is therefore closed. We would like to

understand the points in M(10) ∩M(10, 4). These are singular, so our main tool
will be to look at where the singular locus of M(10) meets M(10, 4). Denote this
by

M(10, 4)sing := Sing(M(10)) ∩M(10, 4).

In what follows, we give a somewhat explicit description of the lowest moduli space
M(4).

Lemma 7.1. For E ∈ M(4) we have h1(E) = 0, h0(E) = h2(E) = 3, h0(E(1)) =
11, and h1(E(1)) = h2(E(1)) = 0.
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Proof. Choosing an element s ∈ H0(E) gives an exact sequence

(7.1) 0 → OX → E → JP/X(1) → 0.

In [19] we have seen that P ⊂ X ∩ L is a subscheme of length 4 in the intersection
of X with a line L ⊂ P3. As P spans L, the space of linear forms vanishing on P
is the same as the space of linear forms vanishing on L, so H0(JP/X(1)) ∼= C2. In

the long exact sequence associated to (7.1), note that H1(OX) = 0, giving

0 → H0(OX) → H0(E) → H0(JP/X(1)) → 0

hence H0(E) ∼= C3. By duality, H2(E) ∼= C3, and the Euler characteristic of E is
6, so H1(E) = 0.

For E(1), note that H2(E(1)) = 0 by stability and duality, and (7.1) gives an
exact sequence

0 → H1(E(1)) → H1(JP/X(2)) → H2(OX(1)) → 0.

On the other hand, H1(JP/X(2)) ∼= C corresponding to the length 4 of P , minus the
dimension 3 of the space of sections of OP (2) coming from global quadrics (since
the space of quadrics on L has dimension 3). This gives H1(E(1)) = 0. The Euler
characteristic then gives h0(E(1)) = 11. This is also seen in the first part of the
exact sequence, where H0(OX(1)) = C4 and H0(JP/X(2)) ∼= C7. �

If p ∈ P3, let G ∼= C3 be the space of linear generators of the ideal of p, that is
to say G := H0(Jp/P3(1)), and consider the natural exact sequence of sheaves on

P3

0 → OP3(−1) → OP3 ⊗G∗ → Rp → 0.

Here the cokernel sheaf Rp is a reflexive sheaf of degree 1, and c2(Rp) is the class
of a line. The restriction Rp|X therefore has c2 = 5. If p ∈ X , it is torsion-free but
not locally free, giving a point in M(5, 4). It turns out that these sheaves account
for all of M(4) and M(5).

Theorem 7.2. Suppose E ∈ M(4). Then there is a unique point p ∈ X such
that E is generated by global sections outside of p, and Rp|X is isomorphic to the
subsheaf of E generated by global sections. This fits into an exact sequence

0 → Rp|X → E → S → 0

where S has length 1, in particular E ∼= (Rp|X)∗∗. The correspondence E ↔ p
establishes an isomorphism M(4) ∼= X.

For E′ ∈ M(5) there exists a unique point p ∈ P
3 − X such that E′ ∼= Rp|X .

This correspondence establishes an isomorphism M(5) ∼= P
3 such that the boundary

component M(5, 4) ∩M(5) is exactly X ⊂ P3. Note however that M(5, 4) itself is
bigger and constitutes another irreducible component of M(5).

Proof. Consider the exact sequence (7.1). The space H0(JP/X(1)) consists of linear

forms on X (or equivalently, on P3), which vanish along P . However, a linear form
which vanishes on P also vanishes on L. In particular, elements of H0(JP/X(1))
generate JX∩L/X(1), which has colength 1 in JP/X(1).

Let R ⊂ E be the subsheaf generated by global sections, and let S be the cokernel
in the exact sequence

0 → R→ E → S → 0.
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We also have the exact sequence

0 → JX∩L/X(1) → JP/X(1) → S → 0

so S has length 1. It is supported on a point p. The sheaf R is generated by three
global sections so we have an exact sequence

0 → ker → O3
X → R → 0.

The kernel is a saturated subsheaf, hence locally free, and by looking at its degree
we have ker = OX(−1). Thus, R is the cokernel of a map OX(−1) → O3

X given by
three linear forms; these linear forms are a basis for the space of forms vanishing
at the point p. We see that R is the restriction to X of the sheaf Rp described
above, hence E ∼= (Rp|X)∗∗. The map E 7→ p gives a map M(4) → X , with inverse
p 7→ (Rp|X)∗∗.

The second paragraph, about M(5), is not actually needed later and we leave it
to the reader. �

Even though the moduli space M(4) is smooth, it has much more than the
expected dimension, and the space of co-obstructions is nontrivial. It will be useful
to understand the co-obstructions, because if F ∈ M(10, 4) is a torsion-free sheaf
with F ∗∗ = E then co-obstructions for F come from co-obstructions for E which
preserve the subsheaf F ⊂ E.

Lemma 7.3. Suppose E ∈ M(4). A general co-obstruction φ : E → E(1) has
generically distinct eigenvalues with an irreducible spectral variety in Tot(KX).

Proof. It suffices to write down a map φ : E → E(1) with generically distinct
eigenvalues and irreducible spectral variety. To do this, we construct a map φR :
R→ R(1) using the expression R = Rp|X . The exact sequence defining Rp extends
to the Koszul resolution, a long exact sequence

0 → OP3(−1) → O3
P3 → OP3(1)3 → Jp/P3(2) → 0.

ThusRp may be viewed as the image of the middle map. Without loss of generality,
p is the origin in an affine system of coordinates (x, y, z) for A3 ⊂ P3, and the
coordinate functions are the three coefficients of the maps on the left and right in
the Koszul sequence. The 3× 3 matrix in the middle is

K :=





0 z −y
−z 0 x
y −x 0



 .

Any 3× 3 matrix of constants Φ gives a composed map

φR : Rp →֒ OP3(1)3
Φ
→ OP3(1)3 → Rp(1).

Use the first two columns ofK to give a map k : O2
P3 → Rp which is an isomorphism

over an open set. On the other hand, the projection onto the first two coordinates
gives a map q : Rp → OP3(1)2 which is, again, an isomorphism over an open set.
The composition of these two is the map given by the upper 2× 2 square of K,

qk = K2,2 :=

(

0 z
−z 0

)

.
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We can now analyze the map φR by noting that qφRk = K2,3ΦK3,2 where K2,3

and K3,2 are respectively the upper 2× 3 and left 3× 2 blocks of K. Over the open
set where q and k are isomorphisms,

qφRq
−1 = qφRk(qk)

−1 = K2,3ΦK3,2K
−1
2,2 .

Now

K3,2K
−1
2,2 =





0 z
−z 0
y −x



 ·

(

0 −1/z
1/z 0

)

=





1 0
0 1

−x/z −y/z



 .

Suppose

Φ =





α β γ
δ ǫ ψ
χ θ ρ





then

qφRq
−1 = K2,3ΦK3,2K

−1
2,2

=

(

0 z −y
−z 0 x

)

·





α β γ
δ ǫ ψ
χ θ ρ



 ·





1 0
0 1

−x/z −y/z





=

(

0 z −y
−z 0 x

)

·





α− γx/z β − γy/z
δ − ψx/z ǫ− ψy/z
χ− ρx/z θ − ρy/z





=

(

zδ − ψx− yχ+ ρxy/z zǫ− ψy + yθ − ρy2/z
−zα+ γx− xχ+ ρx2/z −zβ + γy + xθ − ρxy/z

)

.

Notice that the trace of this matrix is

Tr(φ) = x(θ − ψ) + y(γ − χ) + z(δ − β),

which is a section of H0(OP3(1)) vanishing at p. A co-obstruction should have trace
zero, so we should impose three linear conditions

θ = ψ, χ = γ δ = β

which together just say that Φ is a symmetric matrix. Our expression simplifies to

qφRq
−1 =

(

βz − ψx− γy + ρxy/z ǫz − ρy2/z
−αz + ρx2/z −βz + ψx+ γy − ρxy/z

)

.

Now, restrict Rp to X to get the sheaf R, take its double dual to get E = R∗∗,
and consider the induced map φ : E → E(1). Over the intersection of our open set
with X , this will have the same formula. We can furthermore restrict to the curve
Y ⊂ X given by the intersection with the plane y = 0. Note that X is in general
position subject to the condition that it contain the point p. Setting y = 0 the
above matrix becomes

(qφq−1)|y=0 =

(

βz − ψx ǫz
−αz + ρx2/z −βz + ψx

)

.

Choose for example β = ψ = 0 and α = ρ = ǫ = 1, giving the matrix whose
determinant is

det

(

0 z
x2/z − z 0

)

= z2 − x2 = (z + x)(z − x).
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The eigenvalues of φ|Y are therefore ±
√

(z + x)(z − x), generically distinct. For a
general choice of the surface X , our curve Y = X ∩ (y = 0) will intersect the planes
x = z and x = −z transversally, so the two eigenvalues of φ|Y are permuted when
going around points in the ramification locus different from p. This provides an
explicit example of φ for which the spectral variety is irreducible, completing the
proof of the lemma. We included the detailed calculations because they look to be
useful if one wants to write down explicitly the spectral varieties. �

Turn now to the study of the boundary componentM(10, 4) consisting of torsion-
free sheaves in M(10) which come from bundles in M(4). A point in M(10, 4)
consists of a torsion-free sheaf F in an exact sequence of the form (6.1)

0 → F → E
σ
→ S → 0

where E = F ∗∗ is a point in M(4), and S is a length 6 quotient.
The basic description of the space of obstructions as dual to the space of KX -

twisted endomorphisms still holds for torsion-free sheaves. Thus, the obstruction
space for F is Homo(F, F (1))∗. A co-obstruction is a map φ : F → F (1) = F ⊗KX

with Tr(φ) = 0, which is a kind of Higgs field. Since the moduli space is good, a
point F is in Sing(M(10)) if and only if the obstruction space is nonzero, that is to
say, if and only if there exists a nonzero trace-free φ : F → F (1).

To give a map φ is the same thing as to give a map ϕ : E → E(1) compatible
with the quotient map E → S, in other words fitting into a commutative square
with σ, for an induced map ϕS : S → S. The maps ϕ, co-obstructions for E, were
studied in Lemma 7.3 above.

Let P(E) → X denote the Grothendieck projective space bundle. A point in
P(E) is a pair (x, s) where x ∈ X and s : Ex → Sx is a rank one quotient of the
fiber. Suppose given a map ϕ : E → E(1). We can consider the internal spectral
variety

SpE(ϕ) ⊂ P(E)

defined as the set of points (x, s) ∈ P(E) such that there exists a commutative
diagram

Ex
ϕ(x)
−→ Ex

↓ ↓
Sx −→ Sx.

The term ‘internal’ signifies that it is a subvariety of P(E) as opposed to the classical
spectral variety which is a subvariety of the total space of KX . Here, we have only
given SpE(ϕ) a structure of closed subset of P(E), hence of reduced subvariety.
It would be interesting to give it an appropriate scheme structure which could be
non-reduced in case ϕ is nilpotent, but that will not be needed here.

Corollary 7.4. Suppose E ∈M(4) and ϕ : E → E(1) is a general co-obstruction.
Then the internal spectral variety SpE(ϕ) has a single irreducible component of
dimension 2. A quotient E → S consisting of a disjoint sum of rank one quotients
si : Exi

→ Si with S =
⊕

Si and the points xi disjoint, is compatible with ϕ if and
only if the points (xi, si) ∈ P(E) lie on the internal spectral variety SpE(ϕ).

Proof. Notice that z ∈ X is a point such that ϕ(z) = 0, then the whole fiber
P(E)z ∼= P1 is in SpE(ϕ). In particular, if such a point exists then the map
SpE(ϕ) → X will not be finite.
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A first remark is that the zero-set of ϕ is 0-dimensional. Indeed, if ϕ vanished
along a divisor D, then D ∈ |OX(n)| for n ≥ 1 and ϕ : F → F (1 − n). This is
possible only if n = 1 and ϕ : F → F is a scalar endomorphism (since F is stable).
However, the trace of the co-obstruction vanishes, so the scalar ϕ would have to be
zero, which we are assuming is not the case.

At an isolated point z with ϕ(z) = 0, the fiber of the projection SpE(ϕ) → X
contains the whole P(Ez) = P1. However, these can contribute at most irreducible
components of dimension ≤ 1 (although we conjecture that in fact these fibers
are contained in the closure of the 2-dimensional component so that SpE(ϕ) is
irreducible).

Away from such fibers, the internal spectral variety is isomorphic to the external
one, a two-sheeted covering ofX , and by Lemma 7.3, for a general ϕ the monodromy
of this covering interchanges the sheets so it is irreducible. Thus, SpE(ϕ) has a single
irreducible component of dimension 2, and it maps to X by a generically finite (2
to 1) map.

The second statement, that a quotient consisting of a direct sum of rank one
quotients, is compatible with ϕ if and only if the corresponding points lie on SpE(ϕ),
is immediate from the definition. �

Definition 7.5. A triple (E,ϕ, σ) where E ∈ M(4), ϕ : E → E(1) is a non-
nilpotent map, and σ =

⊕

sx is a quotient composed of six rank 1 quotients over
distinct points, compatible with ϕ as in the previous Corollary 7.4, leads to an
obstructed point F = F(E,ϕ,σ) ∈M(10, 4)sing obtained by setting F := ker(σ). Such
a point will be called usual.

Ellingsrud and Lehn have given a very nice description of the Grothendieck
quotient scheme of a bundle of rank r on a smooth surface. It extends the basic
idea of Li’s theorem which we already stated as Theorem 4.2 above, and will allow
us to count dimensions of strata in M(10, 4).

Theorem 7.6 (Ellingsrud-Lehn). The quotient scheme parametrizing quotients of
a locally free sheaf Or

X of rank r on a smooth surface X, located at a given point
x ∈ X, and of length ℓ, is irreducible of dimension rℓ − 1.

Proof. See [5]. We have given the local version of the statement here. �

In our case, r = 2 so the dimension of the local quotient scheme is 2ℓ− 1.
A given quotient E → S decomposes as a direct sum of quotients E → Si located

at distinct points xi ∈ X . Order these by decreasing length, and define the length
vector of S to be the sequence (ℓ1, . . . , ℓk) of lengths ℓi = ℓ(Si) with ℓi ≥ ℓi+1.
This leads to a stratification of the Quot scheme into strata labelled by length
vectors. By Ellingsrud-Lehn, the dimension of the space of quotients supported at
a single (but not fixed) point xi and having length ℓi, is 2ℓi+1, giving the following
dimension count.

Corollary 7.7. For a fixed bundle E of rank 2, the dimension of the stratum
associated to length vector (ℓ1, . . . , ℓk) in the Quot-scheme of quotients E → S with

total length ℓ =
∑k

i=1 ℓi, is
∑

(2ℓi + 1) = 2ℓ+ k.

Recall that the moduli space M(4) has dimension 2, so the dimension of the
stratum of M(10, 4) corresponding to a vector (ℓ1, . . . , ℓk) is 14 + k. In particular,
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M(10, 4) has a single stratum (1, 1, 1, 1, 1, 1) of dimension 20, corresponding to
quotients which are direct sums of rank one quotients supported at distinct points,
and a single stratum (2, 1, 1, 1, 1) of length 19. This yields the following corollary.

Corollary 7.8. If Z ′ ⊂M(10, 4) is any 19-dimensional irreducible subvariety, then
either Z ′ is equal to the stratum (2, 1, 1, 1, 1), or else the general point on Z ′ consists
of a direct sum of six rank 1 quotients supported over six distinct points of X.

Proposition 7.9. The singular locus M(10, 4)sing has only one irreducible com-
ponent of dimension 19. This irreducible component has a nonempty dense open
subset consisting of the usual points (Definition 7.5). For a usual point, the co-
obstruction ϕ is unique up to a scalar, so this open set may be viewed as the moduli
space of usual triples (E,ϕ, σ), which is irreducible.

Proof. Suppose Z ′ ⊂ M(10, 4)sing is an irreducible component. Consider the two
cases given by Corollary 7.8.
(i)—If Z ′ contains an open set consisting of points which are direct sums of six
rank 1 quotients supported on distinct points of X , then this open set parametrizes
usual triples. Furthermore, a point in this open set corresponds to a choice of
(E,ϕ) together with six points on the internal spectral variety SpE(ϕ). We count
the dimension of this piece as follows.

Let M ′(4) denote the moduli space of pairs (E,ϕ) with E ∈ M(4) and ϕ a
nonzero co-obstruction for E. The space of co-obstructions for any E ∈M(4), has
dimension 6 and the family of these spaces forms a vector bundle overM(4) (more
precisely, a twisted vector bundle twisted by the obstruction class for existence of
a universal family over M(4)). Thus, the moduli space of pairs has a fibration
M ′(4) → M(4) whose fibers are P5. In particular, M ′(4) is a smooth irreducible
variety of dimension 7.

For a general such (E,ϕ) the moduli space of usual triples has dimension ≤
12, with a unique 12 dimensional piece corresponding to a general choice of 6
points on the unique 2-dimensional irreducible component of SpE(ϕ). This gives
the 19-dimensional component of M(10, 4)sing mentionned in the statement of the
proposition.

Suppose (E,ϕ) is not general, that is to say, contained in some subvariety of
M ′(4) of dimension ≤ 6. Then, as ϕ is nonzero, even though we no longer can say
that it is irreducible, in any case the internal spectral variety SpE(ϕ) has dimension
2 so the space of choices of 6 general points on it has dimension ≤ 12, and this
contributes at most subvarieties of dimension ≤ 18 inM(10, 4)sing. This shows that
in the first case (i) of Corollary 7.8, we obtain the conclusion of the proposition.
(ii)—Suppose Z ′ is equal to the stratum ofM(10, 4) corresponding to length vector
(2, 1, 1, 1, 1). In this case, we show that a general point of Z ′ has no non-zero co-
obstructions, contradicting the hypothesis that Z ′ ⊂M(10, 4)sing and showing that
this case cannot occur.

Fix E ∈ M(4). The space of co-obstructions of E has dimension 6. Suppose
E → S1 is a quotient of length 2. If it is just the whole fiber of E over x1, then
it is automatically compatible with any co-obstruction. However, these quotients
contribute only a 2-dimensional subspace of the space of such quotients which has
dimension 5 by Ellingsrud-Lehn. Thus, these points don’t contribute general points.
On the other hand, a general quotient of length 2 corresponds to an infinitesimal
tangent vector in P(E), and the condition that this vector be contained in SpE(ϕ)
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imposes two conditions on ϕ. Therefore, the space of co-obstructions compatible
with S1 has dimension ≤ 4. Next, given a nonzero co-obstruction in that subspace,
a general quotient E → S2 of length 1 will not be compatible, so imposing com-
patibility with S1 and S2 leads to a space of co-obstructions of dimension ≤ 3.
Continuing in this way, we see that imposing the condition of compatibility of ϕ
with a general quotient S = S1⊕· · ·⊕S5 in the stratum (2, 1, 1, 1, 1) leads to ϕ = 0.
Thus, a general point of this stratum has no non-zero co-obstructions as we have
claimed, and this case (ii) cannot occur.

Hence, the only case from Corollary 7.8 which can contribute a 19-dimensional
stratum, contributes the single irreducible component described in the statement
of the proposition. One may note that ϕ is uniquely determined for a general set
of six points on its internal spectral variety, since the first 5 points are general in
P(E) and impose linearly independent conditions. �

Corollary 7.10. Suppose M(10, 4) ∩M(10) is nonempty. Then it is the unique
19-dimensional irreducible component of usual triples in M(10, 4)sing identified by
Proposition 7.9.

Proof. By Hartshorne’s theorem, the intersection M(10, 4) ∩M(10) has pure di-
mension 19 if it is nonempty. This could also be seen from O’Grady’s lemma that

the boundary of M(10) has pure dimension 19. However, any point in this inter-
section is singular. By Proposition 7.9, the singular locus M(10, 4)sing has only one
irreducible component of dimension 19, and it is the closure of the space of usual
triples. �

If the intersection M(10, 4) ∩ M(10) is nonempty, the torsion-free sheaves F
parametrized by general points satisfy h1(F (1)) = 0. We show this by a dimension
estimate using Ellingsrud-Lehn. The more precise information about M(10, 4)sing

given in Proposition 7.9, while not really needed for the proof at c2 = 10, will be
useful in treating the case of c2 = 11 in Section 9.

Proposition 7.11. The subspace of M(10, 4) consisting of points F such that
h1(F (1)) ≥ 1, has codimension ≥ 2.

Proof. Use the exact sequence

0 → F → E → S → 0

where E ∈ M(4). One has h1(E(1)) = 0 for all E ∈ M(4), see Lemma 7.1.
Therefore, h1(F (1)) = 0 is equivalent to saying that the map

(7.2) H0(E(1)) → H0(S(1)) ∼= C
6

is surjective.
Considering the theorem of Ellingsrud-Lehn, there are two strata to be looked

at: the case of a direct sum of six quotients of rank 1 over distint points, to be
treated below; and the case of a direct sum of four quotients of rank 1 and one
quotient of rank 2. However, this latter stratum already has codimension 1, and
it is irreducible. So, for this stratum it suffices to note that a general quotient
E → S in it leads to a surjective map (7.2), which may be seen by a classical
general position argument, placing first the quotient of rank 2.

Consider now the stratum of quotients which are the direct sum of six rank 1
quotients si at distinct points xi ∈ X . Fix the bundle E. The space of choices of
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the six quotients (xi, si) has dimension 18. We claim that the space of choices such
that (7.2) is not surjective, has codimension ≥ 2.

Note that h0(E(1)) = 11. Given six quotients (xi, si), if the map (7.2) (with
S =

⊕

Si) is not surjective, then its kernel has dimension ≥ 6, so if we choose five
additional points (yj , tj) ∈ P(E) with tj : Eyj

→ Tj for Ti of length 1, the total
evaluation map

(7.3) H0(E(1)) →
6

⊕

i=1

Si(1)⊕
5

⊕

j=1

Tj(1)

has a nontrivial kernel. Consider the variety

W := {(u, . . . (xi, si) . . . , . . . (yj , tj) . . .) s.t. 0 6= u ∈ H0(E(1)), si(u) = 0, tj(u) = 0}

with the nonzero section u taken up to multiplication by a scalar.
Let Q′

6(E) andQ′
5(E) denote the open subsets of the quotient schemes of length 6

and length 5 quotients of E respectively, open subsets consisting of quotients which
are direct sums of rank one quotients over distinct points. Let K ⊂ Q′

6(E) denote
the locus of quotients E → S such that the kernel sheaf F has h1(F (1)) ≥ 1. It is a
proper closed subset, since it is easy to see that a general quotient E → S leads to
a surjection (7.2). The above argument with (7.3) shows that K ×Q′

5(E) ⊂ p(W )
where p :W → Q′

6(E)×Q′
5(E) is the projection forgetting the first variable u. Our

goal is to show that K has dimension ≤ 16.
We claim that W has dimension ≤ 32 and has a single irreducible component of

dimension 32. To see this, start by noting that the choice of u lies in the projective
space P

10 associated to H0(E(1)) ∼= C
11.

For a section u which is special in the sense that its scheme of zeros has positive
dimension, the locus of choices of (xi, si) and (yj , tj) has dimension ≤ 22, but might
have several irreducible components depending on whether the points are on the
zero-set of u or not. However, the space of sections u which are special in this sense,
is equal to the space of pairs u′ ∈ H0(E), u′′ ∈ H0(OX(1)) up to scalars for both
pieces, and this has dimension 2+3 = 5, which is much smaller than the dimension
of the space of all sections u. Therefore, these pieces don’t contribute anything of
dimension higher than 27.

For a section u which is not special in the sense of the previous paragraph, the
space of choices of a single rank 1 quotient (x, s) which vanishes on the section, has
a single irreducible component of dimension 2. It might possibly have some pieces
of dimension 1 corresponding to quotients located at the zeros of u (although we
don’t think so). Hence, the space of choices of point in W lying over the section u,
has dimension ≤ 22 and has a single irreducible component of dimension 22.

Putting these together over P10, the dimension of W is ≤ 32 and it has a single
irreducible component of dimension 32, as claimed. Its image p(W ) therefore also
has dimension ≤ 32, and has at most one irreducible component of dimension 32.
Denote this component, if it exists, by p(W )′.

Suppose now that K had an irreducible component K ′ of dimension 17. Then
K ′ × Q′

5(E) ⊂ p(W ), but dim(Q′
5(E)) = 15 so p(W )′ would exist and would be

equal to K ′ × Q′
5(E). However, p(W )′ is symmetric under permutation of the 11

different variables (x, s) and (y, t), but that would then imply that P (W )′ was the
whole of Q′

6(E)×Q′
5(E) which is not the case. Therefore,K must have codimension

≥ 2. This completes the proof of the proposition. �
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Corollary 7.12. Suppose M(10, 4)∩M(10) is nonempty. Then a general point of
this intersection corresponds to a torsion-free sheaf with h1(F (1)) = 0.

Proof. By Hartshorne’s or O’Grady’s theorem, if the intersection is nonempty then
it has pure dimension 19. However, the space of torsion-free sheaves F ∈M(10, 4)
with h1(F (1)) > 0 has dimension ≤ 18 by Proposition 7.11. Thus, a general point

in any irreducible component of M(10, 4)∩M(10) must have h1(F (1)) = 0. In fact
there can be at most one irreducible component, by Corollary 7.10. �

8. Irreducibility for c2 = 10

Corollary 8.1. Suppose Z is an irreducible component of M(10). Then, for a
general point F in any irreducible component of the intersection of Z with the
boundary, we have h1(F (1)) = 0.

Proof. By O’Grady’s lemma, the intersection of Z with the boundary has pure
dimension 19. By considering the line c2 = 10 in the Table 2, this subset must be

a union of some of the irreducible subsets M(10, 9), M(10, 8), M(10, 6), and the
unique 19-dimensional irreducible component of M(10, 4)sing given by Proposition
7.9. Combining Proposition 6.2 and Corollary 7.12, we conclude that Z contains
a point F such that h1(F (1)) = 0. Thus, h1(E(1)) = 0 for a general bundle E
parametrized by a point of Z. �

Corollary 8.2. Suppose Z is an irreducible component of M(10). Then the bundle
E parametrized by a general point of Z has seminatural cohomology, and Z is the
closure of the irreducible open set M(10)sn.

Proof. The closure of Z meets the boundary in a nonempty subset, by Corollary
5.5. By the previous Corollary 8.1, there exists a point F in Z with h1(F (1)) = 0,
thus the general bundle E in Z also satisfies h1(E(1)) = 0. By Proposition 6.1,
the irreducible moduli space M(10)sn of bundles with seminatural cohomology is
an open set of Z. �

Theorem 8.3. The moduli space M(10) of stable bundles of degree 1 and c2 = 10,
is irreducible.

Proof. By Corollary 8.2, any irreducible component ofM(10) contains a dense open
set parametrizing bundles with seminatural cohomology. By the main theorem of
[20], there is only one such irreducible component. �

Theorem 8.4. The full moduli space of stable torsion-free sheaves M(10) of degree

1 and c2 = 10, has two irreducible components, M(10) and M(10, 4) meeting along
the irreducible component of usual triples in M(10, 4)sing. These two components
have the expected dimension, 20, hence the moduli space is good and connected.

Proof. Recall that we know M(10, 4) is irreducible by the results of [19]. Also
M(10) is irreducible. Any component has dimension ≥ 20, and by looking at the
dimensions in Table 2, these are the only two possible irreducible components. Since
they have dimension 20 which is the expected dimension, it follows that the moduli
space is good.

It remains to be proven that these two components do indeed intersect in a
nonempty subset, which then by Corollary 7.10 has to be the irreducible component
of usual triples in M(10, 4)sing. Notice that Corollary 7.10 did not say that the
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intersection was necessarily nonempty, since it started from the hypothesis that
there was a meeting point. It is a consequence of Nijsse’s connectedness theorem
that the intersection is nonempty, but this may be seen more concretely as follows.

Consider the stratum M(10, 5). Recall from [19] that the moduli space M(5)
consists of bundles which fit into an exact sequence of the form

0 → OX → E → JP/X(1) → 0,

such that P = L ∩X for L ⊂ P3 a line. In what follows, choose L general so that
P consists of 5 distinct points.

The space of extensions Ext1(JP/X(1),OX) is dual to Ext1(OX , JP/X(2)) =

H1(JP/X(2)). We have the exact sequence

H0(OX(2)) → H0(OP (2)) → H1(JP/X(2)) → 0.

However, H0(OX(2)) = H0(OP3(2)) and the map to H0(OP (2)) factors through
H0(OL(2)), the space of degree two forms on L ∼= P1, which has dimension 3.
Hence, the cokernel H1(JP/X(2)) has dimension 2. The extension classes which

correspond to bundles, are the linear forms on H1(JP/X(2)) which don’t vanish on

any of the images of the lines in H0(OP (2)) corresponding to the 5 different points.
Since X is general, the collection of 5 points X∩L is not in a special position in P1,
so the images of the lines are distinct in the two dimensional space H1(JP/X(2)).
So we can find a family of extension classes whose limiting point is an extension
which vanishes on one of the lines corresponding to a point in P . This gives a
degeneration towards a torsion-free sheaf with a single non-locally free point, still
sitting in a nontrivial extension of the above form. We conclude that the limiting
bundle is still stable, so we have constructed a degeneration from a point of M(5),
to the single boundary stratum M(5, 4).

Notice that the dimension of M(5, 4) is bigger than that of M(5), so the set of
limiting points is a strict subvariety of M(5, 4). We have M(5) = M(5) ∪M(5, 4),
and we have shown that the closures of these two strata have nonempty intersection.
This fact is also a consequence of the more explicit description of M(5) stated in
Theorem 7.2 above (but where the proof was left to the reader).

Moving up to c2 = 10, it follows that the closure of the stratum M(10, 5) in-
tersects M(10, 4). However, M(10, 4) is closed, and the remaining strata of the
boundary have dimension ≤ 19, so all of the other strata in the boundary, in par-
ticular M(10, 5), are contained in the closure of the locus of bundles M(10). Thus,

M(10, 5) ⊂ M(10), but M(10, 4) ∩ M(10, 5) 6= ∅, proving that the intersection

M(10, 4) ∩M(10) is nonempty. �

Physics discussion: From this fact, we see that there are degenerations of stable
bundles in M(10), near to boundary points in M(10, 4). Donaldson’s Yang-Mills
metrics then degenerate towards Uhlenbeck boundary points, metrics where 6 in-
stantons appear. However, these degenerations go not to all points in M(10, 4)
but only to ones which are in the irreducible subvariety M(10, 4)sing ⊂ M(10, 4)
consisting of points on the internal spectral variety of a nonzero Higgs field ϕ : E →
E⊗KX . It gives a constraint of a global nature on the 6-tuples of instantons which
can appear in Yang-Mills metrics on a stable bundle F ∈ M(10). It would be in-
teresting to understand the geometry of the Higgs field which shows up, somewhat
virtually, in the limit.
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9. Irreducibility for c2 ≥ 11

Consider next the moduli space M(11) of stable torsion-free sheaves of degree
one and c2 = 11. The moduli space is good, of dimension 24. From Table 2, the
dimensions of the boundary strata are all ≤ 23, so the set of irreducible components
of M(11) is the same as the set of irreducible components of M(11). Suppose Z is
an irreducible component. By Corollary 5.5, Z meets the boundary in a nonempty
subset of codimension 1, i.e. dimension 23. From Table 2, the only two possibilities
are M(11, 10) and M(11, 4). Note that M(11, 4) is closed since it is the lowest
stratum; it is irreducible by Li’s theorem and irreducibility of M(4). The stratum
M(11, 10) is irreducible because of Theorem 8.3.

Lemma 9.1. The intersection M(11, 4)∩M(11, 10) is a nonempty subset contain-
ing, in particular, points which are torsion-free sheaves F ′ entering into an exact
sequence of the form

0 → F ′ → F → Sx → 0

where F is a usual point of M(10, 4)sing, x ∈ X is a general point, and F → Sx is
a general rank one quotient.

Proof. Theorem 8.4 shows that the intersection M(10, 4) ∩M(10) is nonempty. It
is the unique 19-dimensional irreducible component of M(10, 4)sing, containing the

usual points. Starting with a general point F ∈ M(10, 4) ∩M(10) and taking an
additional general rank 1 quotient Sx, the subsheaf F ′ gives a point in M(11, 4) ∩

M(11, 10). �

Let Y ⊂ M(10, 4) be the unique 19-dimensional irreducible component of the
singular locus M(10, 4)sing. It contains a dense open set where the quotient S is
a direct sum of six quotients (xi, si) of rank 1. Choose a quasi-finite surjection
Y ′ → Y such that (xi, si) are well defined as functions Y ′ → P(E).

Forgetting the quotients and considering only the bundle E gives a map Y ′ →
M(4). Fix a bundle E in the image of Y ′ → M(4). Let Y ′

E denote the fiber of Y ′

over E, which has dimension ≥ 17.
We claim that for any 0 ≤ k ≤ 5, there exists a choice of k out of the 6 points such

that the map Y ′
E → P(E)4 is surjective. For k = 0 this is automatic, so assume that

k ≤ 4 and it is known for k; we need to show that it is true for k+1 points. Reorder
so that the k points to be chosen, are the first ones. For a general point q ∈ P(E)k,
let Y ′

E,q denote the fiber of Y ′
E → P(E)k over q. We have dim(Y ′

E,q) ≥ 17− 3k. We
get an injection

Y ′
E,q → P(E)6−k.

Suppose that the image mapped into a proper subvariety of each factor; then it
would map into a subvariety of dimension ≤ 2(6−k), which would give dim(Y ′

E,q) ≤
12− 2k. However, for k ≤ 4 we have 12− 2k < 17− 3k, a contradiction. Therefore,
at least one of the projections must be a surjection Y ′

E,q → P(E). Adding this

point to our list, gives a list of k + 1 points such that the map Y ′
E → P(E)k+1 is

surjective. This completes the induction, yielding the following lemma.

Lemma 9.2. Suppose Y ⊂M(10, 4) is as above. Then for a fixed bundle E ∈M(4)
corresponding to some points in Y , and for a general point in the fiber YE over E,
some 5 out of the 6 quotients correspond to a general point of P(E)5.

�
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Lemma 9.3. Suppose F is the torsion-free sheaf parametrized by a general point
of Y , and let F ′ be defined by an exact sequence

0 → F ′ → F
(x7,s7)
−→ S7 → 0

where S7 has length 1 and (x7, s7) is general (with respect to the choice of F ) in
P(E). Then F ′ has no nontrivial co-obstructions: Hom(F ′, F ′(1)) = 0.

Proof. The space of co-obstructions for the bundle E has dimension 6. Imposing
a condition of compatibility with a general rank-1 quotient (xi, si) cuts down the
dimension of the space of co-obstructions by at least 1.

By Lemma 9.2 above, we may assume after reordering that the first five points
(x1, s1), . . . , (x5, s5) constitute a general vector in P(E)5. Adding the 7th gen-
eral point given by the statement of the proposition, we obtain a general point
(x1, s1), . . . , (x5, s5), (x7, s7) in P(E)6. As this 6-tuple of points is general with
respect to E, it imposes vanishing on the 6-dimensional space of co-obstructions,
giving Hom(F ′, F ′(1)) = 0. �

Corollary 9.4. There exists a point

F ′ ∈M(11, 10) ∩M(11, 4)

in the boundary of M(11), such that F is a smooth point of M(11).

Proof. By Lemma 9.3, choosing a general quotient (x7, s7) gives a torsion-free sheaf
F ′ with no co-obstructions, hence corresponding to a smooth point of M(11). By

construction we have F ′ ∈M(11, 10)∩M(11, 4). �

Theorem 9.5. The moduli space M(11) is irreducible.

Proof. Suppose Z is an irreducible component. Then Z meets the boundary in a
codimension 1 subset; but by looking at Table 2, there are only two possibilities:

M(11, 10) and M(11, 4). The co-obstructions vanish for general points of M(10, 4)
since those correspond to 6 general quotients of rank 1, and the co-obstructions
vanish for general points of M(10) by goodness. It follows that there are no co-

obstructions at general points ofM(11, 10) orM(11, 4), so each of these is contained
in at most a single irreducible component of M(11). However, in the previous
corollary, there is a unique irreducible component containing F ′, which shows that
the irreducible components containing M(11, 10) and M(11, 4) must be the same.
Hence, M(11) has only one irreducible component. �

Remark: Sarbeswar Pal has pointed out to us a simplified proof for c2 ≥ 11,
avoiding the use of Lemma 9.1. He observes from the connectedness property
and goodness of the moduli of torsion-free sheaves, that any change of irreducible
component must occur along a codimension 1 piece of the singular locus. However,
general points of the boundary components are smooth points of the full moduli
space, by an easier version of the previous discussion, so we can conclude that the
singular locus has codimension ≥ 2. We have nonetheless presented our original
proof since it gives some additional geometrical information on the intersection of
the two boundary strata.

The cases c2 ≥ 12 are now easy to treat.

Theorem 9.6. For any c2 ≥ 12, the moduli space M(c2) of stable torsion-free
sheaves of degree 1 and second Chern class c2, is irreducible.



34 N. MESTRANO AND C. SIMPSON

Proof. By Corollary 5.5, any irreducible component of M(c2) meets the boundary
in a subset of codimension 1. However, for c2 ≥ 12, the only stratum of codimension
1 is M(c2, c2 − 1). By induction on c2, starting at c2 = 11, we may assume that
M(c2, c2 − 1) is irreducible. Furthermore, if E is a general point of M(c2 − 1)
then E admits no co-obstructions, since M(c2 − 1) is good. Hence, a general point
F in M(c2, c2 − 1), which is the kernel of a general length-1 quotient E → S,
doesn’t admit any co-obstructions either. Therefore, M(c2) is smooth at a general
point of M(c2, c2 − 1). Thus, there is a unique irreducible component containing
M(c2, c2 − 1), which completes the proof that M(c2) is irreducible. �

We have finished proving our main statement, Theorem 1.1 of the introduction:
for any c2 ≥ 4, the moduli space M(c2) of stable vector bundles of degree 1 and
second Chern class c2 on a very general quintic hypersurface X ⊂ P

3, is nonempty
and irreducible.

For 4 ≤ c2 ≤ 9, this is shown in [19]. For c2 = 10 it is Theorem 8.3, for c2 = 11
it is Theorem 9.5, and c2 ≥ 12 it is Theorem 9.6. Note that for c2 ≥ 16 it is Nijsse’s
theorem [23].

It was shown in [19] that the moduli space is good for c2 ≥ 10 (shown by Nijsse
for c2 ≥ 13), and from Table 1 we see that it isn’t good for 4 ≤ c2 ≤ 9. The moduli
space of torsion-free sheaves M(c2) is irreducible for c2 ≥ 11, as may be seen by
looking at the dimensions of boundary strata in Table 2. Whereas M(4) = M(4)
is irreducible, the dimensions of the strata in Table 2 imply that M(c2) has several
irreducible components for 5 ≤ c2 ≤ 9, although we haven’t answered the question
as to their precise number. By Theorem 8.4,M(10) has two irreducible components

M(10) and M(10, 4).

10. An irregularity estimate for [19]

In this section we provide a correction and improvement to [19, Lemma 5.1] and
hence [19, Corollary 5.1]. There was an error in the proof given in [19].

Lemma 10.1. Suppose X is a very general quintic hypersurface in P3. Suppose
s ∈ H0(OX(2)) is a section which is not the square of a section of OX(1). It defines
an irreducible spectral covering Z ⊂ Tot(KX) consisting of square-roots of s. Let

Z̃ be a resolution of singularities of Z. Then the irregularity of Z̃ is zero, that is
to say H0(Z̃,Ω1

Z̃
) = 0. Hence the dimension of Pic0(Z̃) is zero.

Proof. The divisor D of zeros of s is reduced since s isn’t a square and in view of
the fact that OX(1) generates Pic(X). Therefore the map Z → X is ramified with
simple ramification along the smooth points of D. The involution of multiplication
by −1 acts in the fibers. Choose an equivariant resolution of singularities Z̃ → Z
with an involution σ : Z̃ → Z̃ covering the given involution of Z. The irregularity
of Z̃ is independent of the choice of resolution, so we would like to show that
H0(Z̃,Ω1

Z̃
) = 0.

The map p : Z̃ → X induces an exact sequence

0 → OX → p∗(OZ̃) → Q→ 0,

with Q a rank 1 torsion-free sheaf on X . The double dual Q∗∗ is a line bundle
L. Using the involution σ, the above exact sequence splits: Q is the anti-invariant
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part. Multiplying together sections of Q gives a map

Q⊗Q→ OX ,

which extends by Hartogs to a map

L⊗ L→ OX .

Look locally near a smooth point of D where X has coordinates (x, y) such that D

is given by y = 0, and Z̃ has coordinates (x, z) with y = z2. As a C{x, y}-module,
Q or equivalently L is generated by z. The image of the multiplication map is
therefore the submodule generated by z2 = y. It is an isomorphism outside of D,
and to get an isomorphism it suffices to look off of codimension 2. This shows that

L⊗ L
∼=
→ OX(−D) ∼= OX(−2)

hence L ∼= OX(−1). It means that L is generated by the linear functions along the

fibers of KX → X , restricted back to Z̃.
Consider similarly the decomposition into invariant and anti-invariant pieces

p∗(Ω
1
Z̃
) = F+ ⊕F−.

These sheaves are torsion-free, and we have a map Ω1
X → F+. Again with the local

coordinates x, y for X and x, z for Z̃ near a smooth point of D as above, we have
that Ω1

Z̃
is generated by dx and dz. As a module over C{x, y}, F+ is generated by

dx and zdz or equivalently dx and dy. This shows that the map Ω1
X → F+ is an

isomorphism on smooth points of D. Since F+ is torsion-free and Ω1
X locally free,

it follows that this map is an isomorphism. We may therefore write

p∗(Ω
1
Z̃
) = Ω1

X ⊕F−.

Consider now the map Ω1
X ⊗Q → F−. Let G := (F−)∗∗ be the double dual, and

the previous map induces a map

Ω1
X ⊗ L→ G.

Consider again the situation at a smooth point of D using local coordinates. Note
that G is generated by zdx and dz, whereas Ω1

X ⊗ L is generated by zdx and
zdy = z2dz = ydz. Recalling that L = OX(−1), we get an exact sequence

0 → Ω1
X(−1) → G → B → 0

where B is a sheaf supported on D, locally near the smooth points being isomorphic
to OD. This says that G and Ω1

X(−1) are related by an elementary transformation.
In particular, we get

0 → G → Ω1
X(−1)(D) = Ω1

X(1).

The irregularity of X vanishes so H0(Ω1
X) = 0. Hence,

H0(Z̃,Ω1
Z̃
) ∼= H0(X, p∗Ω

1
Z̃
)

∼=
→ H0(X,F−) →֒ H0(X,G) →֒ H0(X,Ω1

X(1)).

We have finally shown that there is an injection

H0(Z̃,Ω1
Z̃
) →֒ H0(X,Ω1

X(1)).

One may show8 that the right hand space of sections vanishes. This completes the
proof of the lemma. �

8For convenience, here is the argument. The canonical exact sequence

0 → Ω1

P3
→ OP3 (−1)4 → OP3 → 0
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Therefore Corollary 5.1 of [19] holds, with the improved bound that the dimen-
sion is ≤ 9. Along the way we have answered [19, Question 5.1]: in the notation
from there, A = 0.

11. Example on a degree 6 hypersurface

In this section we shall start in the direction of considering hypersurfaces of
higher degree, and consider briefly the case of hypersurfaces of degree 6. In partic-
ular, the notation differs from that in effect previously.

Here, X ⊂ P3 is a very general hypersurface of degree 6, which will be denoted
X = X6 in the statements of the main corollaries, for precision. We have KX =
OX(2). We consider stable rank 2 vector bundles E of degree 1 and more precisely
with det(E) = OX(1), and some specified value of c2.

Assume h0(E) > 0. Then there is a section, corresponding to a morphism
s : OX → E. The zeros of s are in codimension 2, otherwise it would extend to
OX(1) → E contradicting stability. Therefore, s fits into an exact sequence of the
usual form

(11.1) 0 → OX → E → JP/X(1) → 0,

where P ⊂ X is a local complete subscheme of dimension 0. By the general theory,
P satisfies the condition CB(L−1 ⊗M ⊗KX) where L = OX , and M = OX(1). In
other words, P is a CB(3) subscheme.

Notice that c2(OX ⊕OX(1)) = 0 by the product formula for Chern polynomials;
therefore in the above extension, we have c2(E) = |P |.

In our examples, we will consider the case c2 = 11, and give two different kinds
of 11-point CB(3) subschemes.

Before getting to these, let us note some general things about the deformation
theory. Our bundle satisfies E∗ = E(−1), so

End(E) = E∗ ⊗ E ∼= E ⊗ E(−1).

The decomposition End(E) = End0(E) ⊕ OX into the trace-free plus the central
part, corresponds to the decomposition

E ⊗ E(−1) = Sym2(E)(−1)⊕
2
∧

(E)(−1).

Let us denote for short V := Sym2(E)(−1). The deformation theory of E as a
bundle with fixed determinant is governed by H∗(V ). Notice that if E is stable,
it has no endomorphisms except the scalars, so H0(V ) = 0. We may also apply
Serre duality noting that V is self-dual and recalling KX = OX(2). The space of
infinitesimal deformations is

Def(E) = H1(V ) ∼= H1(V (2))∗

gives rise to
0 → H0(Ω1

P3
(1)) → H0(O4

P3
) → H0(OP3 (1))

in which the right map is an isomorphism, so H0(Ω1

P3
(1)) = 0. We also get H1(P3,Ω1

P3
(−4)) = 0,

thus the exact sequence

0 → Ω1

P3
(−4) → Ω1

P3
(1) → Ω1

P3
(1)|X → 0

implies H0(Ω1

P3
(1)|X ) = 0. Now using H1(OX(n)) = 0, the exact sequence

0 → N∗

X/P3
(1) = OX(−4) → Ω1

P3
(1)|X → Ω1

X(1) → 0

gives H0(Ω1

X(1)) = 0.
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and the space of obstructions is

Obs(E) = H2(V ) ∼= H0(V (2))∗.

Let 2P denote the subscheme defined by the square of the ideal of P , so J2P/X =

(JP/X)2. We have an exact sequence

(11.2) 0 → E(−1) → V → J2P/X(1) → 0

and hence

(11.3) 0 → E(1) → V (2) → J2P/X(3) → 0.

11.1. Points on the rational normal cubic. The first case is when C ⊂ P
3 is

a general rational normal cubic, and P ⊂ X ∩ C is a collection of 11 points. This
exists since C ∩X consists of 18 distinct points and we may choose 11 of them.

Notice that C ∼= P1 and OP3(1)|C = OC(3p) for any point p ∈ C, that is to say
it is a line bundle of degree 3. Thus, OP3(3)|C = OC(9p) has degree 9. If P

′ ⊂ P is
any collection of 10 points, a section of OP3(3) vanishing on P ′ must vanish on C,
hence it must vanish on P . The sections of OX(3) are all restrictions of sections of
OP3(3), so this proves that P satisfies the property CB(3).

The space of extensions of JP/X(1) by OX is dual to H1(JP/X(3)), which in turn
is the cokernel of

(11.4) H0(OX(3)) → H0(P,OP (3)) ∼= C
11.

As we have seen above, a section of H0(OX(3)) vanishing on P corresponds to a
section of H0(OP3(3)) vanishing on C. One may calculate by hand that the map

C
20 = H0(OP3(3)) → H0(OC(9p)) = C

10

is surjective. Indeed, the image of H0(OP3(1)) consists of the sections which may
be written as 1, t, t2, t3 for an affine coordinate t on C ∼= P1 with pole at the point p.
Then, monomials of degree 3 in these sections give all of the monomials 1, t, . . . , t9.

From this surjectivity we get that the kernel is C10. Thus, the kernel of the map
(11.4) is C10 so the image of the map also has dimension 10. Finally, we get that
the cokernel of (11.4) has dimension 1. We have shown that Ext1(JP/X ,OX) has
dimension 1. Therefore, a given subscheme P gives rise to only one bundle since
scaling of the extension class doesn’t change the isomorphism class of the bundle.

For the other direction, we claim that h0(E) = 1. Consider the exact sequence

0 → H0(OX) → H0(E) → H0(JP/X(1)) → H1(OX) = 0.

Given a section ofH0(OX(1)) vanishing on P , it comes from a section ofH0(OP3(1))
which, by the same argument as previously, vanishes on C. If the section is nonzero,
that would say that C is contained in a plane, which however is not the case.

Therefore, H0(JP/X(1)) = 0 and C ∼= H0(OX)
∼=
→ H0(E). We get h0(E) = 1 as

claimed.
In particular, for a given bundle E, the choice of section s is unique up to a

scalar, so the subscheme P is uniquely determined.
By these arguments, we conclude that the space of bundles E in this case is

isomorphic to the space of choices of subscheme P ⊂ C ∩X .
Now, given P ⊂ C ∩X of length 11, we claim that C is the only rational normal

curve passing through P . Indeed, suppose C′ were another one. Note that C′ is cut
out by conics. If Q ⊂ P

3 is a conic containing C′ then Q ∩ C is either equal to C,
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or has length 6; the latter case can’t happen so C ⊂ Q. Thus, any conic containing
C′ also contains C, which shows that C = C′.

The dimension of the space of subschemes P in this case is therefore equal to the
dimension of the space PGL(4)/PGL(2) of rational normal cubic curves, which is
15− 3 = 12. This completes the proof of the following proposition:

Proposition 11.1. The space of bundles E fitting into an exact sequence of the
form (11.1), where P is a length 11 subscheme of C ∩ X for C a rational normal
cubic in P3, has dimension 12.

Lemma 11.2. Suppose E is a bundle fitting into an exact sequence of the form
(11.1), where P is a length 11 subscheme of C ∩X for C a general rational normal

cubic in P
3. Then h1(End0(E)) = h1(V ) = 12.

Proof. Use the exact sequence (11.2). The first step is to calculate h1(E(−1)).
Note that (11.1) gives the following sequence, using that h1(OX(n)) = 0 for any n
as well as H2(JP/X(n)) = H2(OX(n)):

0 → H1(E(−1)) → H1(JP/X) → H2(OX(−1)) → H2(E(−1)) → H2(OX) → 0.

Now H2(E(−1)) is dual to H0(E(2)) which itself fits into the sequence

0 → H0(OX(2)) → H0(E(2)) → H0(JP/X(3)) → 0.

We have H0(JP/X(3)) ∼= H0(JC/P3(3)) = ker(H0(OP3(3)) → H0(OC(9p))). The

latter map is surjective from C20 to C10 so its kernel has dimension 10. This gives
h0(JP/X(3)) = 10. Also h0(OX(2)) = 10 so h2(E(−1)) = h0(E(2)) = 20. We

have h2(OX) = h0(OX(2)) = 10 and h2(OX(−1)) = h0(OX(3)) = 20. Finally,
H1(JP/X) is just C11 modulo H0(OX) = C so h1(JP/X) = 10. The alternating
sum from the above sequence vanishes, saying now that

h1(E(−1))− 10 + 20− 20 + 10 = 0,

so h1(E(−1)) = 0.
The long exact sequence associated to (11.2) starting with H1(E(−1)) = 0 now

gives

0 → H1(V ) → H1(J2P/X(1)) → H2(E(−1)) → H2(V ) → H2(OX(1)) → 0.

As we have seen above, h2(E(−1)) = 20. It is also easy to see that h0(J2P/X(1)) = 0
(we will in fact see this for J2P/X(3) below), so noting that the length of 2P is 33

we get h1(J2P/X(1)) = 33 − h0(OX(1)) = 29. Putting these together and using

h2(OX(1)) = h0(OX(1)) = 4 we get

h1(V )− 29 + 20− h2(V ) + 4 = 0,

so h1(V )− h2(V ) = 5. This is the expected dimension of the moduli space.
Next, by duality h2(V ) = h0(V (2)) which we can calculate using the sequence

(11.3). We have

0 → H0(E(1)) → H0(V (2)) → H0(J2P/X(3)).

We claim that H0(J2P/X(3)) = 0. To see this, consider a quadric surface Q ⊂ P3

containing C. We have Q ∼= P1 × P1 and C is a divisor of bidegree (1, 2) on Q.
On the other hand, OQ(1) has bidegree (1, 1). Suppose we have a section u of
H0(OX(3)) = H0(OP3(3)) vanishing on the 2P (recall that 2P is the subscheme
of X defined by the square of the ideal of P ). We have seen already above that
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vanishing on P implies that it vanishes on C. Therefore u|Q is a section of the
bundle of bidegree (3, 3)− (1, 2) = (2, 1). The intertsection of 2P with Q consists
of a collection of double points transverse to C at the points of P , so it imposes
again a single condition on the section u considered as a section of OQ(2, 1). The
restriction of OQ(2, 1) to C is a line bundle on C ∼= P

1 of degree equal to the
intersection number (2, 1).(1, 2) = 5. Therefore, a section there which vanishes on
11 points has to vanish. This says that our section of bidegree (2, 1) again vanishes
on C, so it is a section of a bundle of bidegree (1,−1); but that is not effective so
this section has to vanish. This proves that our section u|Q vanishes. Therefore, u
may be viewed as a section of OP3(3)(−Q) = OP3(1). The remaining pieces of the
double points composing 2P give conditions of vanishing again at all the points of
P for this section of OP3(1), but as C is not contained in a plane, it implies that the
section vanishes. This completes the proof that H0(J2P/X(3)) = 0. We conclude
from the previous exact sequence that

h2(V ) = h0(V (2)) = h0(E(1)).

Now use the sequence

0 → H0(OX(1)) → H0(E(1)) → H0(JP/X(2)) → 0.

As usual, H0(JP/X(2)) is isomorphic to the kernel of the restriction map

C
10 = H0(OX(2)) → H0(OC(6p)) = C

7

and this restriction map is surjective, so its kernel has dimension 3. We get

h0(E(1)) = 4 + 3 = 7.

Thus, h2(V ) = 7, and putting this together with the formula that the expected
dimension is 5, we have finally shown h1(V ) = 12. This proves the lemma. �

Even though there is a 7-dimensional obstruction space, we have constructed a
12-dimensional family; it follows that all of the obstructions vanish and a general
point lies in a generically smooth irreducible component of dimension 12.

Corollary 11.3. The space of bundles E fitting into an exact sequence of the form
(11.1), where P is a length 11 subscheme of C ∩X for C a rational normal cubic
in P3, consists of a single 12-dimensional generically smooth irreducible component
of the moduli space MX6(2, 1, 11) of stable bundles of rank 2, degree 1 and c2 = 11
on our degree 6 hypersurface X = X6.

Proof. In order to understand how many irreducible components are produced by
this construction, we should investigate the monodromy of the set of choices of
11 out of the 18 points of C ∩ X , as C moves. A choice of 6 points determines
the rational normal cubic C, so any 6 points can be moved to any 6 other ones.
Therefore, the monodromy action is 6-tuply transitive. On the other hand, it
contains a transposition, since we can move C around a choice of curve that is
simply tangent to X at one point. Therefore, the monodromy group contains
all transpositions, hence it is the full symmetric group on 18 elements. It acts
transitively on the set of choices of 11 out of the 18 intersection points, so our
construction produces a single irreducible component. �
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11.2. Points on a plane. The other construction we have found for CB(3) sub-
schemes is to take 11 points in a plane. Let H be a plane in general position with
respect to X , and let Y = X ∩H . Let P consist of a general collection of 11 points
in Y .

Suppose P ′ ⊂ P is a subset of 10 points. The map H0(OH(3)) → H0(OY (3)) is
injective (since Y is a curve of degree 6 in the plane H), so a general collection of
10 points imposes independent conditions on H0(OH(3)). As h0(OH(3)) = 10, it
means that H0(JP ′/H(3)) = 0, hence a section of H0(OP3(3)) vanishing on P ′, has
to vanish on H . In particular it vanishes on P , proving the CB(3) property for P .
This also gives the formula

H0(JP/X(3)) ∼= H0(OX(2)) = C
10.

Consider next the space of choices of extension (11.1). As

dim(Ext1(JP/X(1),OX)) = h1(JP/X(3)) = 11− 20 + h0(JP/X(3)) = 1,

whereas scalar multiples of an extension class give the same bundle, it means that
for a given P there is a single corresponding bundle. On the other hand, we have
h0(JP/X(1)) = 1 since P is contained in a plane, so h0(E) = 2. This means that
for a given bundle E, the space of choices of section s (modulo scaling) leading
to the subscheme P , has dimension 1. Hence the dimension of the space of bun-
dles obtained by this construction is one less than the dimension of the space of
subschemes:

dim{E} = dim{P} − 1.

Count now the dimension of the space of choices of P : there is a three dimensional
space of choices of the plane H , and for each one we have an 11 dimensional space
of choices of the subscheme P of 11 points in Y . This gives dim{P} = 3+11 = 14,
so dim{E} = 13. Altogether, we have constructed a 13 dimensional family of stable
bundles. It follows that this family must be in at least one irreducible component
distinct from the 12-dimensional component constructed above. This proves the
following theorem:

Theorem 11.4. For a very general degree 6 hypersurface X6 ⊂ P3, the moduli
space MX6(2, 1, 11) contains a generically smooth 12 dimensional component from
Corollary 11.3, and contains at least one irreducible component of dimension ≥ 13.
In particular, it is not irreducible.

The general bundle in our 13-dimensional family may be viewed as an elemen-
tary transformation [16, 17]. A general line bundle L of degree 11 on Y has a
2-dimensional space of sections and the two sections generate L. If j : Y →֒ X
denotes the inclusion then we get a bundle E, elementary transformation of O2

X ,
fitting into exact sequences

0 → E(−1) → O2
X → j∗(L) → 0,

0 → O2
X → E → j∗(L

∗)(1) → 0.

This shows that E determines Y and L. Since Y has genus 10, the space of choices
of hyperplane plus choice of L has dimension 3 + 10 = 13. One may see that these
bundles are the same as the previous ones, indeed the zeros of a section of our
elementary transformation E are the same as those of the corresponding section
of L. This gives an alternate canonical viewpoint on our second construction of
bundles that should be useful for understanding the obstruction map.
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We conjecture that the rational normal case and the planar case cover all of
MX6(2, 1, 11). More precisely:

Conjecture 11.5. The 13-dimensional family constructed in the present subsec-
tion constitutes a full irreducible component of MX6(2, 1, 11); this component is
non-reduced and obstructed. Together with the 12-dimensional generically smooth
component constructed in the previous subsection, these are the only irreducible
components of MX6(2, 1, 11). In particular, h0(E) > 0 for any stable bundle with
c2 = 11.

There doesn’t seem to be an easy direct proof of the property h0(E) > 0. The
Euler-characteristic consideration does give h0(E(1)) > 0 so any E has to be in an
extension of O(−1) by JP/X(2) with P satisfying CB(5). If this conjecture is true,

it would imply that any CB(5) subscheme of length 21 contained in X6, would
have to be contained in a quadric hypersurface. We didn’t find a proof of that, but
we couldn’t find any constructions that weren’t contained in quadric hypersurfaces
either, leading to the conjecture.
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