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recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01324294v2


Point-to-hyperplane RGB-D Pose Estimation:
Fusing Photometric and Geometric Measurements

Fernando I. Ireta Muñoz1 and Andrew I. Comport2

Abstract— The objective of this paper is to investigate the
problem of how to best combine and fuse color and depth
measurements for incremental pose estimation or 3D tracking.
Subsequently a framework will be proposed that allows to
formulate the problem with a unique measurement vector and
not to combine them in an ad-hoc manner. In particular, the
full color and depth measurement will be defined as a 4-
vector (by combining 3D Euclidean points + image intensities)
and an optimal error for pose estimation will be derived
from this. As will be shown, this will lead to designing an
iterative closest point approach in 4 dimensional space. A kd-
tree is used to find the closest point in 4D-space, therefore
simultaneously accounting for color and depth. Based on this
unified framework a novel Point-to-hyperplane approach will
be introduced which has the advantages of classic Point-to-
plane ICP but in 4D-space. By doing this it will be shown that
there is no longer any need to provide or estimate a scale factor
between different measurement types. Consequently, this allows
to increase the convergence domain and speed up the alignment,
whilst maintaining the robust and accurate properties. Results
on both simulated and real environments will be provided along
with benchmark comparisons.

I. INTRODUCTION

Color and depth images acquired from RGB-D sensors
are increasingly useful, especially in robotics for computing
visual odometry, performing autonomous navigation and re-
constructing 3D environments. One of the most fundamental
problems is estimating the pose that relates measurements
obtained from a moving sensor at different times. Some re-
cent approaches have combined both measurements together
in a limited hybrid manner.

The problem of pose estimation from color or depth
images have each been individually studied in the com-
puter vision and robotics literature. Classically, color and
depth measurements have been used separately in image-
based and geometric-based pose estimation. In the case of
depth images, the well known Iterative Closest Point (ICP)
algorithm prevails [3] and in particular the point-to-plane
ICP algorithm is especially efficient and robust [4]. On the
other hand, color images have been used to estimate the
pose of the camera using direct and dense error functions
based on view synthesis [5]. The latter will be referred to
here as image-based approaches. It can be noted that feature-
based image approaches first extract geometric information
from the image before performing estimation on a geometric
error. Feature-based approaches are a sub-part of the direct
approach and won’t be detailed here.
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Fig. 1. Two hybrid-based approaches to estimate the unknown pose x
between two sequent RGB-D frames. (a) A direct approach for the color
images I and I∗, and a point-to-plane algorithm for the geometric cloud of
points P and P∗ is used. (b) Proposed method: a matching stage considers
the 4-vector for minimizing the integrated error with the point-to-hyperplane
algorithm, which computes the normals N in 4D space. The scale factor λ

is no longer needed.

Whilst color and depth based pose estimation have been
studied separately, similar solutions have been used for
both using a non-linear iteratively re-weighted least squares
(IRLS) method. The general IRLS pipeline for pose estima-
tion, follows the common strategy across different measure-
ment types:

1) Transform/warp the current measurement onto a refer-
ence frame using the last pose estimate.

2) Find the closest points between the two datasets.
3) Determine an error between the two datasets (and

robust weights).
4) Estimate an incremental update on the pose.
5) Repeat to 1. until convergence.
Recently, several strategies have combined color and depth

measurements together in different ways and attempt to
retain the respective benefits of each. The advantages of
using both include increased efficiency, accuracy and robust-
ness. In [22] a recent survey of the real-time performance
of these approaches is provided. Image-based approaches
alone are dependant on texture in the images to constrain
all degrees of freedom. For example, a wall with only
horizontal lines would be degenerate. ICP approaches require
sufficient geometry and are, for example, degenerate in the
case of a movement parallel to a flat wall. In this paper,
those approaches which combine depth and color for robust
and accurate pose estimation will be referred to as hybrid
approaches (See Fig. 1).



Amongst the various hybrid methods, those of most inter-
est are those that minimize a photometric and geometric error
simultaneously in real-time [12], [13], [20], [21]. The two
main differences in the proposed approaches are categorized
as:

• How the closest points are determined between different
RGB-D measurements.

• How the joint optimization is performed.

The aforementioned hybrid approaches are somewhat ad-hoc
because they do not necessarily consider the color and depth
simultaneously when computing closest points. Furthermore,
in the optimization stage they simply combine the classic
ICP and image-based approaches by minimizing both error
types simultaneously. This, however, requires the definition
or estimation of a tuning parameter λ which weights the
respective contribution of each different measurement type.

First, consider a fused version of the closest point search
in Step 2 which is required for both ICP and image-based
approaches. In the case of ICP alone, the closest points are
often obtained by performing a kd-tree (k-dimensional) for
nearest neighbours search. Alternately, in the image-based
approaches the image warping function finds the closest color
values by view interpolation (nearest neighbour, bi-linear,
bi-cubic,...) directly in image space. Of the recent hybrid
approaches [12], [13], [20], [21], each performs the closest
point searching separately for both color and depth and
no fused information is considered. Methods that consider
both color and depth in the closest point matching stage
include [11], [15], [14]. The former and later approach use
3 channels of color and differ in the color spaces used
while [15] considers only greyscale information. Finding
the closest points using both color and depth increases the
accuracy of finding the true nearest neighbour, however, this
requires an efficient search in 4-space (3D points + intensity)
or higher dimensional space.

Now consider the joint optimization problem of the IRLS
algorithm that minimizes both a fused ICP and image-based
error. The large majority of classic approaches involve simply
stacking the two error functions and minimizing the resulting
joint error simultaneously [11], [15], [20], [13], [12], [21],
[14]. All except [11] perform ICP point-to-plane combined
with the image-based approach. The drawback of these
approaches is that they require the definition of a tuning
parameter λ which weights the respective contribution of
each measurement. These methods, then vary in how this
tuning parameter is determined. In [11], λ is computed by
estimating the ratio between the minimum and maximum
values of both, color space and geometric errors and the
best value is chosen experimentally in this range. [15]
proposes interestingly an adaptive λ which is varied using
a sigmoidal function which favors the ICP approach far
from the solution and the image-based approach close to
the minimum. This has the benefit of faster convergence and
more accuracy of the solution. In [20], [13], the scale factor
is automatically estimated as the ratio between the Median
Absolute Deviations (MAD) of the color error and the

median of the depth error (i.e. their relative robust variance).
In [12], [18], λ is estimated by computing the covariance
of the residuals for each point individually assuming a t-
distribution of the error. This improved the convergence rate,
however, is computationally expensive to iteratively compute
a λ for each pixel.

The aim of this paper is to propose a unified framework
for fusing both image-based and ICP strategies for pose
estimation at each stage of the IRLS process. As will
be shown, this leads to a novel Point-to-hyperplane ICP
approach in 4 dimensions (3D + Intensity) which could
easily be extended to greater dimensions (for example color
RGB). This formulation also naturally leads to a fused closest
point search strategy that exploits both color and geometric
information simultaneously. The approach used in the paper
to find the closest points in 4D space uses a kd-tree, however,
alternative search strategies could also be used. In practice,
and for computational efficiency, the ANN (Approximate
Nearest Neighbour) [16] algorithm is used. Furthermore, the
kd-tree can be built only once from the reference image
before the iterative loop, therefore maintaining efficiency.

The paper is organized as follows. Section II briefly
explains the classic hybrid approach that jointly minimizes
intensities and Point-to-plane ICP. In Section III a novel
Point-to-hyperplane approach is introduced. Section IV pro-
vides the implementation details common to all the methods
that were evaluated. Finally, simulated and real experimental
results with benchmarks are presented in Section V.

II. JOINT METHOD FOR COMBINING
GEOMETRIC AND PHOTOMETRIC APPROACHES

Pose estimation from hybrid methods is achieved by fusing
the geometric and photometric optimization functions and
minimizing the errors simultaneously. The main feature of
hybrid methods for estimating the camera poses, is that they
constrain the pose estimation better and can converge faster
than using the techniques alone.

The pose will be defined here as the homogeneous pose
matrix T(x) ∈ R4×4 which depends on a minimal param-
eterization of 6 parameters which are defined here as the
linear and angular velocity x = [υ ,ω]> ∈ R6, respectively.
The homogeneous transformation matrix can be decom-
posed into rotational and translational components T(x) =
(R(x), t(x))∈ SE(3). The relationship between both is given
by the exponential map as T(x) = e[x]

∧
, with the operator

[·]∧ as:

[x]∧ =

[
[ω]× υ

0 0

]
(1)

where [·]× is the skew symmetric matrix operator.
The hybrid approach used to estimate the pose is depicted

in Fig. 1(a). It defines an error function that minimizes the
joint error between subsequent RGB-D image frames (see
[13] for more detail) such as:

eHi = ρi

λ

(
R̂R(x)N∗i

)>(
Pm

i −Π3T̂T(x)P∗i
)

Ii

(
w(T̂T(x),P∗i )

)
− I∗i (p

∗)

 ∈ R4 (2)



where the first row of (2) is the Point-to-plane ICP error
with the projective data association and the second row is the
photometric term. The superscript ∗ identifies the reference
measurements, Π3 = [1,0] ∈ R3×4 is the projection matrix,
N∗i ∈ R3 is the surface normal for each homogeneous 3D
point P∗i ∈ R4. The closest point Pm

i can be obtained by
linearly interpolating the warped pixel coordinates into the
current depth map as in [12], [13], [20]. The geometric
warping function w(·) projects a reference 3D point P∗i ∈R3

onto the current image plane. The closest image intensity is
then found by interpolation of the current intensity function
at the warped pixel coordinates to obtain the corresponding
intensity as: Iw

i (p
∗
i ) = Ii(pw

i ) ∈ Z. The 3D point is com-
puted by the back projection function as Pi = K−1pi Zi =[
Xi Yi Zi

]> ∈ R3, where K ∈ R3×3 is the calibration matrix
which contains the intrinsic parameters of the camera, and
Zi ∈R+ is the metric measurement for each pixel coordinate
pi = [ui vi 1]> ∈ R3 of the depth image.

The given non-linear error in (2) is minimized iteratively
using a Gauss-Newton approach to compute the unknown
parameter x with increments given by:

x =−(J>WJ)−1J>W
[

λeG
eI

]
(3)

where J = [JI JG]
> represents the stacked Jacobian ma-

trices obtained by derivation of the stacked photometric
and geometric error functions (eI and eG respectively), and
the weight matrix W contains the weights ρi associated
to each set of coordinates obtained by M-estimation [9].
The photometric Jacobian JI is computed using the efficient
second order minimization method (ESM) [2]. The pose
estimate T(x) is computed at each iteration and is updated
incrementally as T̂← T̂T(x) until convergence.

The parameter λ is a constant that scales the relative
error distributions. As mentioned in the introduction, many
methods have been proposed to estimate this parameter
ranging from manual tuning to more complex estimation.
Manually fixing λ is not optimal nor efficient and estimating
the parameter requires extra computational cost. For the
purposes of this paper, λ has been estimated as in [20]. In the
following section, is going to be seen that λ is not required
if we consider a Point-to-hyperplane approach.

III. POINT-TO-HYPERPLANE METHOD

As mentioned in the introduction, the objective of this
paper is to perform both closest point matching and mini-
mization using a 4-vector containing color and depth. Since
4D space has an additional degree of freedom, the normal
obtained for the 3D point-to-plane method will be orthogonal
to a surface in 4D which spans both geometry and color.
This surface will be referred in this paper as hyperplane.
The 4-vector is defined as Mi =

[
P>i Ii

]> ∈R4, where the
3D Euclidean point Pi is fused with its associated greyscale
intensity Ii in a single measurement vector.

Two measurement vectors obtained at different views of
the same scene are generally not in correspondence. The
fused error can then be defined as a 4D IRLS problem

between two point clouds. The hybrid error function (case
1) is defined such as:

eHi = ρi
(
N∗>i (M∗i −Mm

i )
)
∈ R4

= ρi

(
N∗i
>

(
P∗i −Π3T̂T(x)Pm

i

I∗i − Ii

(
w(T̂T(x),P∗i )

))) ∈ R4 (4)

where M∗i is the reference 4D point, Mm
i corresponds to the

warped closest points to image according to the unknown
transformation T̂T(x). This is similar to (2) except that the
normal is computed in 4D and the closest points can be
determined in 4D. Also, note that the current measurements
in (4) are all warped to the reference frame so that it is
no longer necessary to rotate the normals as in (2). This
formulation seems better than in [13] and the computational
time is negligible.

Alternately, it is also possible to find the closest points
in the current 4-vector (case 2) that solve the optimization
problem as:

eHi = ρi

(
Nm>

i (Mm
i −Mw

i )
)
∈ R4 (5)

where Mw is the warped 4-vector. Solutions in both cases
will be considered, but first lets consider the 4D normal.

Mathematically, at least four 4D-points are needed to
compute three vectors that will be used to perform a three-
way cross product to obtain the 4D-normal. The cross
product does not, however, account for the uncertainty of
the points in its computation. Instead, a Principal Component
Analysis (PCA) can be computed on the covariance matrix
of the nearest neighbours surrounding each point. In that
case the smallest eigenvalue corresponds to the surface
normal [17]. An alternative solution to compute normals
fast and accurately is given in [1]. Considering that Nm

i is
directly obtained from N∗i , it is only necessary to compute
the normals once for the reference image as in the case of the
inverse compositional algorithm for image-based registration.
The covariance matrix, used in computing the 4D-normal,
allows to project and weight the errors such that the Point-
to-hyperplane error is invariant to any tuning parameter λ

(See [10] for the proof).
Therefore, the error functions (4) or (5) can be minimized

iteratively without scaling the geometric and photometric
error such as:

x =−(J>WJ)−1J>WeH (6)

where eH is the stacked hybrid error N∗>i (M∗i −Mm
i ) or

Nm>
i (Mm

i −Mw
i ), and the weights ρi are stacked in W.

As presented above in (4) and (5) it is possible to find the
closest points either in the reference frame or the current
frame. Consider first case 1. Computing in the reference
frame has the advantage that several parameters can be pre-
computed only once and not at each iteration. In that case
the reference normals can be precomputed along with a quick
search strategy for finding closest points such as a kd-tree.
Consider now case 2. When finding the closest points in the
current image it is not possible to recompute the kd-tree for
each new image because it is computationally too expensive.



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Examples of the Absolute Trajectory Error evaluation, the first and third column show the results obtained by methods that combine the direct
approach with the geometric Point-to-plane method. The second and fourth column for the point-to-hyperplane method. The trajectories presented here
are obtained for the simulated (a)(b) lvr/traj0, (c)(d) lvr/traj2, [7] and the real (e)(f) fr1/xyz, (g)(h) fr1/room [19] sequences. More sequences are shown
in [10].

In this case it is possible to consider approximating the
closest point by simply search for the closest point in the
image (as is done in (2)). In this case nearest neighbour, bi-
linear or bi-cubic interpolation can be performed [12], [13],
[20], [21]. In the case where no depth is provided by the
RGB-D sensor for a pixel, it is rejected, unless it is possible
to interpolate a depth value from neighboring pixels.

Another strategy often used in the ICP literature (see for
example [6], [8]), is to compute closest point matching only
in the first iteration of the IRLS minimization loop. This
allows to avoid to much computational complexity while
obtaining the benefits of finding the closest points. In this
paper a classic kd-tree with an ANN algorithm is considered
so that large displacements will convergence to a solution.
To estimate the closest points, the optimized search function
of the FLANN library [16] is employed to find the true
nearest neighbours in 4D1. In a local tracking situation, faster
projective data association techniques can be employed.

IV. IMPLEMENTATION DETAILS

In this section, some parameters considered for the exper-
iments will be established. The experiments were done for
real and synthetic RGB-D greyscale images in MATLAB. A
multi-resolution pyramid was used to improve the compu-
tational efficiency. The images were warped at the second
level of the pyramid (resolution 160×120).

There are two convergence criteria that stop the iterative
loop for real and simulated experiments. The first one is a
maximum number of iterations, which is established as 200,
and the norm of the estimated rotation and translation. If
the transformation matrix T(x) gets closer to the identity
matrix, then the iterative loop stops. The parameters used
to determine this second break are norm(xR)< 1×10−6 for
rotation and norm(xt)< 1×10−5 for translation.

1The legend NN4D is employed throughout the paper to indicate that
the closest points were estimated in the first iteration only by finding the
nearest neighbours with a kd-tree in the 4-vector.

Fig. 4. Example of 4 estimated camera trajectories between a pair of
images with a random pose in a simulated environment. The green and
red dot indicate the initial and the final pose. The Point-to-hyperplane
methods improve the Point-to-plane + direct methods, obtaining more direct
trajectories when NN4D are estimated. 1000 synthesized images with a
random pose were equally tested, obtaining a similar performance.

To reject outliers, M-estimators were employed. They are
more general because they permit the use of different mini-
mization functions not necessarily corresponding to normally
distributed data. In this paper, the Huber influence function
was used for this purpose.

The normal in 4D is adjusted to a 3× 3 window that
perform the PCA algorithm to find the covariance matrix
of the fused error, leading to find the smallest eigenvalue
which corresponds to the normal parameter.

All the experiments were validated on a workstation with
Ubuntu 14.04, Intel Core i7-4770K and 16 GB RAM.

V. RESULTS

During the experimental part, it was seen that the pa-
rameter λ does not change the performance or accuracy of
the pose estimation when the Point-to-hyperplane approach
is used, but it improves the performance of other hybrid
approaches if it is well estimated. An introduction to the
improvement can be seen in Fig. 4, where the tracking
trajectories estimated by 4 strategies are shown.



(a) fr1/room groundtruth (b) Intensity + 3D Point-to-plane (c) Point-to-hyperplane

(d) fr1/360 groundtruth (e) Intensity + 3D Point-to-plane (f) Point-to-hyperplane

Fig. 3. 3D reconstruction of sequences fr1/room and fr1/360 (first and second row, respectively). In the first column the groundtruth obtained by an
external motion capture system is shown, the column in the middle shown the results of the direct approach + 3D point to plane algorithm and the last
column shown the result of the Point-to-hyperplane method. This difficult 360 degree sequence with motion blur clearly shows that the proposed method
can achieve more robust estimations. The λ parameter was set initially using the automatic approach from [20] and was not tuned individually for each
frame of the sequence. Therefore, the method could be improved with strategies as loop closure detection algorithms and keyframe detectors.

TABLE I
RELATIVE POSE ERROR (RPE) AND ABSOLUTE TRAJECTORY ERROR (ATE) FOR THE SIMULATED AND REAL DATASET [7], [19]. IT CAN BE SEEN

THAT THE POINT-TO-HYPERPLANE METHODS (3 & 4) IMPROVE THE HYBRID METHODS THAT COMBINE THE DIRECT APPROACH AND THE

GEOMETRIC POINT-TO-PLANE (1 & 2) IN THE MAJORITY OF DATASET FOR THE RPE TRANSLATIONAL EVALUATION AND IN ALL DATASET FOR RPE
ROTATIONAL EVALUATION. NOTE THAT THE ONLY DIFFERENCE BETWEEN 1 & 2 AND 3 & 4 IS THE KD-TREE MATCH ON THE FIRST ITERATION,

WHICH ONLY AFFECTS COMPUTATION TIME AND NOT ACCURACY. THE REMAINING ITERATIONS USE THE SAME ERROR FUNCTION.

Sequence Method RPE translational (m) RPE rotational (deg) ATE (m)
RMSE MEAN STD RMSE MEAN STD RMSE MEAN STD

fr1/xyz 1 & 2 0.033 0.030 0.014 2.025 1.741 1.034 0.095 0.087 0.039
3 & 4 0.021 0.019 0.008 1.106 0.998 0.477 0.045 0.038 0.024

fr1/rpy 1 & 2 0.062 0.050 0.037 3.161 2.887 1.288 0.136 0.115 0.072
3 & 4 0.038 0.032 0.020 2.820 2.652 0.959 0.035 0.032 0.015

fr1/360 1 & 2 0.146 0.118 0.086 4.171 3.844 1.621 0.520 0.484 0.188
3 & 4 0.152 0.114 0.100 3.159 2.859 1.343 0.322 0.296 0.125

fr1/room 1 & 2 0.076 0.060 0.048 3.285 2.912 1.520 0.434 0.404 0.158
3 & 4 0.056 0.047 0.030 2.673 2.329 1.313 0.174 0.152 0.086

fr1/desk 1 & 2 0.047 0.039 0.027 2.826 2.503 1.312 0.108 0.104 0.029
3 & 4 0.044 0.036 0.025 2.309 2.027 1.106 0.071 0.067 0.023

fr1/desk2 1 & 2 0.058 0.051 0.027 3.483 3.026 1.725 0.189 0.174 0.075
3 & 4 0.060 0.051 0.031 3.026 2.641 1.478 0.133 0.116 0.065

fr1/floor 1 & 2 0.094 0.038 0.086 4.660 1.953 4.231 0.772 0.666 0.391
3 & 4 0.080 0.051 0.062 3.909 1.915 3.408 0.473 0.405 0.244

fr1/plant 1 & 2 0.106 0.067 0.082 3.941 3.223 2.268 0.324 0.296 0.132
3 & 4 0.055 0.043 0.034 2.130 1.947 0.864 0.101 0.093 0.037

fr1/teddy 1 & 2 0.096 0.081 0.051 3.410 3.021 1.583 0.615 0.553 0.271
3 & 4 0.070 0.056 0.043 2.287 1.954 1.187 0.169 0.158 0.059

lvr/traj0 1 & 2 0.001 0.001 0.001 0.044 0.035 0.027 0.128 0.114 0.057
3 & 4 0.002 0.001 0.002 0.042 0.026 0.033 0.050 0.046 0.019

lvr/traj1 1 & 2 0.002 0.001 0.001 0.048 0.041 0.024 0.114 0.104 0.046
3 & 4 0.001 0.001 0.001 0.021 0.017 0.013 0.041 0.032 0.026

lvr/traj2 1 & 2 0.002 0.001 0.001 0.044 0.039 0.021 0.074 0.067 0.030
3 & 4 0.001 0.001 0.001 0.024 0.019 0.014 0.039 0.036 0.016

lvr/traj3 1 & 2 0.002 0.001 0.001 0.070 0.053 0.045 0.218 0.202 0.082
3 & 4 0.001 0.001 0.001 0.044 0.027 0.035 0.080 0.066 0.045



TABLE II
AVERAGES IN TIME AND IN NUMBER OF ITERATIONS UNTIL

CONVERGENCE FOR 1000 SYNTHESIZED IMAGES AT RANDOM POSES.

Method # Iterations Time (sec)
1) Intensity + point-to-plane 65.65 0.61
2) Intensity + point-to-plane (NN4D) 34.23 0.35
3) Point-to-hyperplane 53.24 0.56
4) Point-to-hyperplane (NN4D) 12.83 0.16

1) Simulated environment - Tracking: A random trans-
formation is applied to a reference RGB-D image. The new
synthesized image is considered as the current image and the
methods finds the alignment between each new image and
the reference. The motivation for using synthetic data is that
the generated images provide a groundtruth for evaluation,
since the correspondences between the transformed views
are known. The averages shown in Table II demonstrates
that the Point-to-hyperplane method improves the number of
iterations and computational time2.

2) Real environment - Visual odometry: The methods
were evaluated on the ICL-NUIM RGB-D benchmark dataset
[7] and on full benchmarks freiburg 1 sequences from TUM
[19]. Therefore, in order to evaluate the estimated trajectories
frame-to-frame, the online tool was used with the default
settings to evaluate the ATE (Absolute Trajectory Error) and
RPE (Relative Pose Error), which are compared alongside an
accurate groundtruth trajectory in Table I. Some examples of
the improvement are shown in Fig. 2. A demonstration of the
performance ot the proposed method can be seen in the video
attachment of this paper.

VI. CONCLUSION

A novel Point-to-hyperplane strategy was proposed based
on a 4D-vector. Two main advantages of this unified frame-
work are underlined. First, it is shown that the sensor pose
can be estimated by minimizing the combined error without
computing a scale parameter between them. Second, it is
shown that nearest neighbour techniques can be used in
4D-space to improve the convergence rate and domain for
IRLS pose estimation. Experimental results and analysis are
provided which compare two variants of the new Point-
to-hyperplane approach with the classic hybrid approach.
The results show improved computation time and faster
convergence on well known benchmarks. Future work will
be dedicated to testing the new approach in a simultane-
ous localization and mapping context which will provide
for interesting comparisons with the map reconstruction.
The framework would also apply directly to volumetric
representations by modifying the projective error function
accordingly. We will also extend the strategy to higher
dimensions by using color and other measurement to increase
robustness.

2The time shown does not consider the computation of normals nor
construction of the kd-tree. A more detailed computational analysis can
be found in [10].
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