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Abstract

Article 30 of Regulation (EC) No 1907/2006 concerns the sharing of data between users of
a chemical substance. We study this bargaining problem by means of a special class of games
in coalitional form called data games (Dehez and Tellone [10]). For such problems, compensation
schemes specify how the data owners should be compensated by the agents in needs of data. On the
class of data games, the Core, the Nucleolus and the Shapley value provide relevant compensation
schemes. We provide three comparable axiomatic characterizations of the set of all (additive)
compensation schemes belonging to the Core, of the Nucleolus and of the Shapley value. The
axioms reflects principles of various theories of justice.

Keywords: REACH, Data sharing problem, Core, Nucleolus, Shapley value, Pooling, Compensa-
tion, Reasonableness, Invariance to deleting non-exclusive data, Equal treatment of Equals, Invari-
ance to enlarging the owner set, Equal concessions.
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1 Introduction

The chemical industry includes a wide range of products and activities covering upstream to down-
stream, base chemicals, specialty chemicals and pharmaceuticals. Nowadays, it appears very difficult
to find products that do not contain chemicals in their production in most societies. For example,
plastics derived from petrochemical processing bases are widely used in packaging, buildings and au-
tomobiles. The European Commission estimates that more than one hundred thousand chemicals are
currently used within the European Union. In Europe, the chemical industry is a major economic
sector. According to Cefic (European Chemical Industry Council), in 2012 it produced more than 21%
of the chemicals sold in the world, is a net exporter, directly employs 1.2 million workers in 29,000
companies and contributes to the European economy by 673 billion euros.

As a consequence, european governments are confronted with two major challenges. The first
is to ensure the health and environmental management of each chemical product as well as their
combinations, especially in a context where European citizens are concerned about these issues. The
second lies in the fact that the chemical industry plays a central role in European economies and is an
asset for economic growth.

It is to meet these challenges simultaneously that the European institutions have decided, since
December 13, 2006, the implementation of a new harmonized legislative framework in the field of
chemical industry: the European Regulation (EC) No 1907/2006 REACH (Registration, Evaluation,
Authorization and Restriction of Chemicals), which ultimately aims to ensure greater human and
environmental safety (based on impact studies by the European Commission it will reduce the number
of deaths due to cancer by a range of 2000 to 4000 per year and lead to a reduction in public health
spending of up to 50 billion over thirty years), while preserving and enhancing the competitiveness
of the European chemical industry. These objectives are explicitly set out in its Article 1: “This
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Regulation should ensure a high level of protection of human health and the environment as well
as the free movement of substances, on their own, in preparations and in articles, while enhancing
competitiveness and innovation”. In other words, REACH aims to transform the European chemical
industry into the world’s first sustainable chemical industry. According to the European institutions,
about 30,000 chemicals are directly affected by this legislation.

The REACH Regulation entered into force on June 1st, 2007 and sets out the principle that it is
for manufacturers, importers and downstream users “to ensure that they manufacture, place on the
market or use such substances that do not adversely affect human health or the environment. Its
provisions are underpinned by the precautionary principle” (Article 1, §3). The effectiveness of this
principle is guaranteed by the fact that all substances, preparations or articles which do not comply with
the Regulation may not be marketed within the European Union. In practical terms, it is the ECHA
(European Chemicals Agency), a European Agency established by the Regulation, which is responsible
for implementing the REACH legislation. It is to ensure that all existing and future chemicals produced
or imported in quantities over one ton per year in the European Union are registered, evaluated and
authorized, except in cases that are expressly exempted (e.g radioactive substances).

The most innovative aspect of this Regulation lies in the fact that companies are forced to provide
all existing data on the properties of the chemicals they use when registering with the ECHA. The
procedure provides that, without data, companies cannot use the substances: “No data, no market”,
summarizes ECHA. To facilitate the exchange of toxicological and ecotoxicological information, to avoid
the duplication of tests including those involving vertebrate animals, and to allow different registrants
to agree on a classification and labeling of a substance, the Regulation created a transitional regime.
During this period, any company wishing to declare a substance must participate in a SIEF (Substance
Information Exchange Forum). Within a SIEF, members are free to decide on legal form, organization
and communication modalities. The Regulation requires, however, that any member of a SIEF meet
the demand for information from another member and that all members work collectively to identify
and implement additional studies that may prove necessary. The purpose of SIEF, operational from
January 2009 to June 2018 (when all substances will have been recorded), is to allow a joint submission
for each substance with a lead registrant, other registrants needing only to refer to this registration and
to provide data on the characteristics of its production or its use. In cases where such a joint submission
involves too high costs for a company or where it requires it to disclose confidential information, the
Regulation provides that it can voluntarily exclude the obligation to participate in the joint submission.
Nevertheless, it remains a member of the SIEF and must continue to share its non-confidential data.
After the transitional regime, the Regulation insists on the fact that registrants “shall make every
effort to ensure that the costs of sharing the information are determined in a fair, transparent and non-
discriminatory way” (Article 27, §3), and ECHA decides in case of disagreement between the parties
on the necessary compensations. The question of how to realize data sharing within a SIEF and to
determine the above-mentioned compensations is therefore a critical issue until June 2018.

In this article, we use games in coalitional form, a classical model to study bargaining, to tackle this
question. The coalitional function specifies for each coalition the total cost of acquiring the missing
data available in the SIEF should its members cooperate. Such games in coalitional form are called
data games and have been introduced in Dehez and Tellone [10]. Since all members of the SIEF have
the obligation to cooperate, it is essential to find compensation vectors specifying how the data owners
should be compensated by the other SIEF members. A compensation scheme assigns a compensation
vector to any data game.

There exists infinitely many compensation schemes, several of which may be considered as intu-
itively appealing. In order to distinguish among them, we adopt the axiomatic approach and proceed
in two steps.1 Firstly, we list desirable properties for a compensation scheme on the class of data
games. These properties conveys principles such as efficiency, equity and fairness. Secondly, various
combinations of the properties are tried out so as to eventually retain a unique compensation scheme
or a pertinent family of compensation schemes. We believe that the axiomatic method is of particu-

1We refer to Thomson [26] for a detailed survey of the axiomatic method.
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lar interest in the field of Law and Economics. Judges and arbitrators often adhere to philosophical
principles which reflects their political ideologies and serve as a basis for making their decisions. For
instance, Kornhauser [17], Spiller [25] and Fleurbaey and Roemer [15] propose an axiomatic approach
to the courts’ decision making process.

In data sharing problems, the determination of fair compensation schemes also relies on philosoph-
ical principles which interpret the ethical vision of the bargainers within a SIEF. On these aspects,
theories of justice offer an abundant literature along the lines of Rawls [22], Dworkin [11], Young [29]
and Fleurbaey and Maniquet [14], among others. These scholars underline that compensation schemes
aim at restoring equality or diminishing individual inequalities. The formal statements of our axioms
borrow to a great extent these theories as exemplified in section 2. While ECHA provides a detailed
guide on data sharing2, this guide only rests on very specific examples instead of offering a general and
operational approach. Our axiomatic analysis remedies this weakness by formulating properties and
investigating compensations schemes for all data sharing problems.

We study compensations schemes stemming from the main three solution concepts used in games
in coalitional form. The Core (Gillies [16]) collects those compensation vectors which no coalition of
SIEF members can improve upon in the Pareto sense. The Core of data games is always nonempty, but
can contain many compensation vectors. It is therefore interesting to extract specific compensation
schemes from the Core. The Nucleolus (Schmeidler [23]) is probably the most-known such Core-
selector. Roughly speaking, the Nucleolus incorporates Rawls [22] vision of distributive justice in
order to be of the greatest benefit to the least-advantaged coalition of SIEF members. Besides Core
compensation vectors, there exist other compensation schemes incorporating fair considerations, such
as the Shapley value (Shapley [24]). The Shapley value measures, for each SIEF member, his average
contribution to all coalitions he can belong to. This article offers three comparable characterizations
of the Core-selectors, of the Nucleolus and of the Shapley value in the sense that the combinations
of axioms in these characterizations only differ with respect to one or two axioms. These results are
outlined in detail in the next section.

Other articles dealing with the data sharing within the REACH legislation via games in coalitional
form are Dehez and Tellone [10], which formulates the Core, the Nucleolus and the Shapley value on the
class of data games, and Béal et al. [4], which provides an alternative axiomatic characterization of the
Shapley value and characterizations of equal surplus division values Games in coalitional form have
also been employed extensively to tackle problems in Law and Economics but in the very different
perspective of measuring voting power. We refer the reader to Bindseil and Hantke [6], Fedeli and
Forte [12] and Algaba, Bilbao and Fernández [3] for the distribution of voting power within the various
institutions of the European Union, and to Braham and Steffen [7], Leech and Manjón [18] and Casajus,
Labrenz and Hiller [9] for studies of voting power in corporate finance.

We are also aware of some limits of our model. The simplicity of the data games comes at a cost,
for instance because no reference is made to the underlying problem of reaching a consensus on the
cost parameters. Moreover, the model is silent on situations in which the composition of the SIEF
members evolves over time. As a consequence, even if our model can be adapted to take these features
into account, it should be considered as a first step towards more sophisticated analysis. It is also true
that we neglect the economic consequences of other facets of the REACH legislation, on which it is
surprising to note the tenuousness of academic work, in particular by economists.3

The rest of the article is organized as follows. An informal presentation of the results is given in
section 2. The data sharing problems modeling the bargaining within a SIEF is introduced in section
3. This section also presents the class of data games. Section 4 is devoted to the axiomatic study and
contains the main results. Concluding remarks are provided in section 5. The logical independence of
the axioms used in our results is demonstrated in the Appendix.

2http://echa.europa.eu/documents/10162/13631/guidance_on_data_sharing_en.pdf
3An attempt is made by Canton and Allen [8]. The other few exceptions are Wolf and Delgado [28], Logomasini

[19], Ackerman, Stanton and Massey [1], Ackerman et al. [2], Lorenz, Lebreton and van Wassenhove [20], Von Holleben,
Rosenfeld and Scheidmann [27] and Bergkamp [5] but lack of theoretical foundations.
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2 Outline of the results

The first principle that we impose is the unquestionable compensation principle, which stipulates
that the compensations chosen by the SIEF members (often called agents henceforth) add up to
zero. This principle is a restatement for data games of the axiom of (Pareto) efficiency for general
games in coalitional form. Our second principle is called pooling and possesses a natural bargaining
interpretation within the REACH legislation: the outcome of multi-data negotiations does not depend
on the agenda chosen by the negotiators. Whether data are discussed separately or all at once does
not affect the result of the negotiation. This principle is a variation for data games of the axiom of
additivity for general games in coalitional form that Shapley himself supports as follows: “the third
axiom (“law of aggregation”) states that when two independent games are combined, their values must
be added player by player” (Shapley [24], page 309). All the compensation schemes mentioned in the
introduction satisfy these first two basic principles. In order to distinguish among them, we invoke
several other principles.

The principle of reasonableness has been introduced by Milnor [21] and requires that any agent’s
compensation lies between its worst and best (marginal) contributions to the coalitions he can belong
to. These contributions are interpreted by Milnor [21] as the minimal and maximal compensations
that an agent can legitimately claim. The principle of invariance to deleting non-exclusive data
states that a compensation scheme should not be affected if a data held by more than one agent is
removed and has a basic non-cooperative economic justification. Assume that a data is not exclusive
in the sense that it is possessed by at least two agents. Then these agents somehow compete against
each other in order to attract monetary compensations from the agents lacking the data. The situation
is therefore similar to a Bertrand oligopoly.4 The data owners set prices at which the agents lacking
the data can buy it. The data owner with the lowest price gets the full demand, i.e. it sells to all
agents lacking the data. Thus, prices are null at equilibrium since there is a zero marginal cost here. If
one adheres to this interpretation, then it seems natural to require an absence of compensation for any
non-exclusive data. Proposition 2 states that if a compensation scheme satisfies the pooling principle,
then it is a Core-selector if and only if it further satisfies the principles of compensation, reasonableness
and invariance to deleting non-exclusive data.

In Proposition 3, the Nucleolus is selected among the set of all Core-selectors. It is sufficient to
replace in Proposition 2 the principle of reasonableness by the principle of equal concessions. The
latter principle only deals with data sharing problems in which every data is exclusive to some agent.
The best contribution of an agent to the coalitions he can belong may be interpreted as his utopia claim
(especially because most of time the sum of the corresponding compensations is unrealistic, i.e. much
less than zero). With this view in mind, equal concessions imposes that all agents abandon exactly the
same amount from their utopia claims. The principle behind equal concessions has the flavor of the
equity based on tangible claims in Young [29], and one of its consequences is to compensate the lack
of individual internal resources (i.e. the lack of data here) as suggested by Dworkin [11].

Finally, Proposition 4 characterizes the Shapley value by replacing invariance to deleting non-
exclusive data in Proposition 3 by invariance to enlarging the owner set and adding equal treatment of
equals. The principle of invariance to enlarging the owner set stipulates that the price necessary
to acquire a data for an agent lacking it should not depend on how many agents initially own it.
Invariance to enlarging the owner set and invariance to deleting non-exclusive data belong to the
larger category of axioms of consistency, which require invariance of a solution if specific modifications
are brought to the problem. Equal treatment of equals is the basic principle which imposes to treat
equally two agents owning the same data. Since Aristotle, this principle appears under different forms
in most of the theories of justice (see Fleurbaey [13] for instance).

4The Regulation reminds that data owners agreeing on the price of their data would be placed under the condemnation
of the European Union competition law.
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3 Data sharing problems and data games

Let N = {1, . . . , n} is a finite set of at least three agents involved in a SIEF. We shall use subscripts
i and j to refer to agents. A coalition of agents is denoted by S and we refer to 2N as the set of all
coalitions on N . A data sharing problem on N is described by a pair (D,O), where

• D is a nonempty finite set of data. Data in D are relevant to the study of the chemical substance
associated to the SIEF. Subscripts k and h are used to refer to data. Data k ∈ D is characterized
by a cost ck ∈ R+, which is interpreted as the cost of replicating the data.

• O : D −→ N is an ownership function assigning to each data k the nonempty set Ok of agents
owning the data, and ok := |Ok|. In other words, function O specifies the distribution of property
rights within the SIEF. Note that every data is owned by some agent.

We denote by P(N) the set of all data sharing problems on N . For a given data sharing problem
(D,O) ∈ P(N), the set of data held by an agent i ∈ N is denoted by Di(O) = {k ∈ D : i ∈ Ok}.
For each nonempty coalition of agents S ∈ 2N , DS(O) = ∪i∈SDi(O) stands for the set of all data
held by the members of S. We shall keep the notations Di(O) instead of D{i}(O) and D instead of
DN (O). For each i ∈ N , DE

i (O) is the set of data in (D,O) that i exclusively holds, i.e. the set,
possibly empty, of data held by i and by no other agent in N\{i}. Thus DE

i (O) = D\DN\{i}(O) or
equivalently DE

i (O) = {k ∈ D : Ok = {i}}. Define DE(O) = ∪i∈NDE
i (O) as the set of exclusive data

in (D,O).
To each data sharing problem (D,O) ∈ P(N), it is useful to associate a data sharing game in

coalitional form or simply a data game C(D,O) on N , where the characteristic function C(D,O) :

2N −→ R+ assigns to each coalition S ∈ 2N the total cost C(D,O)(S) ∈ R+ of the data in D that the
members of S do not hold. Formally, for each S ∈ 2N , S 6= ∅:

C(D,O)(S) =
∑

k∈D\DS(O)

ck,

and by convention C(D,O)(∅) = 0. Observe that C(D,O)(N) = 0. We denote by C(N) the set of all
data games that can be constructed from P(N), i.e. C(N) = {C(D,O) : (D,O) ∈ P(N)}. Each data k
generates elementary data games C({k},O) ∈ C(N).

A compensation vector is a vector x ∈ Rn which assigns a compensation xi ∈ R to each
i ∈ N . If xi > 0, then agent i has to pay a compensation and if xi < 0, then agent i receives a
compensation. For any coalition S ∈ 2N with at least two members, we shall use the shorter notation
x(S) instead of

∑
i∈S xi. A compensation solution is an application which assigns to each data

game a set of compensation vectors. In this article, we are rather interested in compensation schemes,
i.e. compensation solutions assigning a unique compensation vector to each data game. Formally, a
compensation scheme is an application f that assigns to each C(D,O) ∈ C(N) a unique compensation
vector f(C(D,O)) ∈ Rn

+.
The most well-known compensation scheme is the Shapley value (Shapley [24]), which assigns to

each data game C(D,O) ∈ C(N), the compensation vector

Shi(C(D,O)) =
∑

S∈2N :S3i

(n− |S|)!(|S| − 1)!

n!

(
C(D,O)(S)− C(D,O)(S\{i})

)
, i ∈ N.

The Core (Gillies [16]) is the most-used compensation solution that assigns to each data game
C(D,O) ∈ C(N) the set of compensation vectors

Core(C(D,O)) = {x ∈ Rn : x(N) = 0 and x(S) ≤ C(D,O)(S), ∀S ⊂ N}.

The Core of any data game is nonempty since it always contains the n-dimensional null vector 0 :=
(0, . . . , 0). Nonetheless, the Core often contains many compensation vectors. Therefore, it is interesting
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to look for a Core-selector, i.e. a compensation scheme f which selects a Core element f(C(D,O)) in
every data game C(D,O) ∈ C(N). The most famous Core-selector is the Nucleolus (Schmeidler [23]),
denoted by η, which selects the unique Core compensation vector x that lexicographically minimizes
the excesses x(S)−C(D,O)(S) of all coalitions. On the class of data games, the Shapley value, the Core
and the Nucleolus have a specific structure as summarized by the following result.

Proposition 1 (Dehez and Tellone [10]) Consider any data game C(D,O) ∈ C(N). Then Core(C(D,O)) =∑
k∈M Core(C({k},O). Moreover,

• For each k ∈ D such that ok ≥ 2, it holds that Core(C({k},O)) = {0},

• For each k ∈ D such that Ok = {i} for some i ∈ N , it holds that

Core(C({k},O)) = conv({zj(k)}j∈N ),

where zi(k) = 0, and zji (k) = −ck, z
j
j (k) = ck and zjr(k) = 0 for each r ∈ N\{i, j}.

Furthermore, η(C(D,O)) = 0 if DE(O) = ∅ and

ηi(C(D,O)) =
∑

k∈DE(O)

ck
n
−

∑

k∈DE
i (O)

ck, i ∈ N

if DE(O) 6= ∅. Finally,
Shi(C(D,O)) =

∑

k∈D

ck
n
−

∑

k∈Di(O)

ck
ok
, i ∈ N.

This proposition reveals that the Core and the Nucleolus possess an additive property: they can
be computed by looking at elementary data games. The formulas of the Nucleolus and the Shapley
value are also close to each other. The Shapley value contains two parts. In the first part, each agent
contributes to a communal fund through the same fraction 1/n of the total cost of data. In the second
part, the accumulated fund is redistributed data by data at an equal rate to each owner. It is easy to
figure out that the Nucleolus implements the same principle, but only for the exclusive data.

4 Axiomatic studies

Since data games are build from data sharing problem, it makes sense to formulate axioms depend-
ing not only on the structure of data games but also on the primitive of the associated data sharing
problems. Our approach consists of mixing these two types of axioms. More specifically, we invoke the
following axioms for a compensation scheme f on C(N), which have already been informally discussed
in section 2.

Compensation. ∀C(D,O) ∈ C(N), f(C(D,O))(N) = 0.

Pooling. ∀C(D,O) ∈ C(N) and D′, D′′ such that D′ ∪ D′′ = D and D′ ∩ D′′ = ∅, f(C(D,O)) =
f(C(D′,O)) + f(C(D′′,O)).

Equal treatment of equals. ∀C(D,O) ∈ C(N) and all i, j ∈ N such that Di(O) = Dj(O),
fi(C(D,O)) = fj(C(D,O)).

Two of the next axioms rely on the following notation. For a data game C(D,O) ∈ C(N) and an
agent i ∈ N , we denote by

bmax
i (C(D,O)) = max

S∈2N :i∈S

(
C(D,O)(S)− C(D,O)(S\{i})

)

6



and
bmin
i (C(D,O)) = min

S∈2N :i∈S

(
C(D,O)(S)− C(D,O)(S\{i})

)

agent i’s maximal (or worst) and minimal (or best) marginal contributions to the coalitions he belongs
to, respectively.

Reasonableness. ∀C(D,O) ∈ C(N), ∀i ∈ N , bmin
i (C(D,O)) ≤ fi(C(D,O)) ≤ bmax

i (C(D,O)).

Reasonableness prevents an agent to pay more than the total cost of the data he needs, and to be
paid more than the total cost of his data.

Equal concessions. ∀C(D,O) ∈ C(N) such that DE(O) = D, ∀i, j ∈ N , fi(C(D,O)) − bmin
i (C(D,O)) =

fj(C(D,O))− bmin
j (C(D,O)).

Invariance to deleting non-exclusive data. ∀C(D,O) ∈ C(N) such that |D| ≥ 2, ∀k ∈ D\DE(O),
f(C(D,O)) = f(C(D\{k},O)).

So far, all the axioms have been stated for data games associated with the same ownership function.
The last axiom that we invoke relies on interrelated ownership functions.

Invariance to enlarging the owner set. ∀C(D,O), C(D,O′) ∈ C(N) such that Oh = O′h for all
h ∈ D\{k} and Ok ⊂ O′k, and all i ∈ N\O′k, fi(C(D,O)) = fi(C(D,O′)).

This formal definition allows a more detailed description of the axiom than the one given in section
2. Invariance to enlarging the owner set considers two data games based on data sharing problems
that only differ with respect to the owner set of data k. More specifically, the owner set in the second
problem in a strict superset of the owner set in the first problem. Invariance to enlarging the owner set
requires that this enlargement of the owner set has no influence on the compensation paid or received
by an agent who does not hold the corresponding data in both problems. In a sense, the axioms says
that the price necessary to acquire such data should not depend on how many agents initially own it.

Compensation, Pooling, Equal treatment of equals and Invariance to deleting non-exclusive data
are already invoked in Béal et al. [4], Reasonableness is due to Milnor [21], and Equal concessions
and Invariance to enlarging the owner set are newly introduced. We now have the material to study
the consequences of various combinations of the above-defined axioms. As a first result, we show that
if a compensation scheme satisfies Pooling, then it is a Core-selector if and only if it also satisfies
Compensation, Reasonableness and Invariance to deleting non-exclusive data.

Proposition 2 Consider any compensation scheme f on C(N) satisfying Pooling. Then f is a Core-
selector if and only it further satisfies Compensation, Reasonableness and Invariance to deleting non-
exclusive data.

Proof. Let f be any compensation scheme on C(N) satisfying Pooling. The proof is split in two
steps. Firstly, we show that if f is a Core-selector, then it satisfies Compensation, Reasonableness
and Invariance to deleting non-exclusive data. By definition, the sum of all compensations on any
element of the Core is equal to zero so that f trivially satisfies Compensation. It is known that the
Core satisfies Reasonableness (stated for all compensations vector of a compensation solution) on the
class of all games in coalitional form, which implies that any of its element also satisfies Reasonableness
on C(N), and in turn that f satisfies Reasonableness on C(N). Finally, from Proposition 1, for each
k ∈ D such that ok ≥ 2, it holds that Core(C({k},O)) = {0}. Thus, since f is a Core-selector, it must
be that f(C({k},O)) = 0 for such a data game. By Pooling, for each C(D,O) ∈ C(N) and each k ∈ D
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such that ok ≥ 2, we get f(C(D,O)) = f(C(D\{k},O))+ f(C({k},O)) = f(C(D\{k},O))+0 = f(C(D\{k},O)),
proving that f satisfies Invariance to deleting non-exclusive data.

Secondly, we show if a compensation scheme f on C(N) satisfies Compensation, Reasonableness and
Invariance to deleting non-exclusive data (in addition to Pooling), then it is a Core-selector. Pick any
C(D,O) ∈ C(N). By Pooling and the expression of the Core given in Proposition 1, it is enough to show
that f(C({k},O)) ∈ Core(C({k},O)) for each k ∈ D. We consider two cases. As a first case, suppose that
ok ≥ 2. Consider any other data h and the data game C({h,k},O′) such that O′k = Ok. On the one hand,
by pooling, we get f(C({h,k},O′)) = f(C({h},O′))+f(C({k},O′)) = f(C({h},O′))+f(C({k},O)). On the other
hand, applying Invariance to deleting non-exclusive data to k yields that f(C({h,k},O′)) = f(C({h},O′)).
Combining these two observations implies that f(C({k},O)) = 0, and it turns out that 0 is the unique
Core element according to Proposition 1. As a second case, suppose that ok = 1, and denote by
i ∈ N the unique owner of data k. Choose any j ∈ N\{i}, which is possible since n ≥ 2. It
is easy to see that bmin

i ({k}, O) = C({k},O)(N) − C({k},O)(N\{i}) = −ck and that bmax
i ({k}, O) =

C({k},O)({i})−C({k},O)(∅) = 0. By Reasonableness, we obtain fi(C({k},O)) ∈ [−ck, 0]. Similarly, observe
that bmin

j ({k}, O) = C({k},O)(N) − C({k},O)(N\{j}) = 0 and that bmax
j ({k}, O) = C({k},O)({j}) −

C({k},O)(∅) = ck. Another application of Reasonableness yields that fj(C({k},O)) ∈ [0, ck] for each
j ∈ N\{i}. Together with Compensation, it is easy to conclude that f(C({k},O)) ∈ conv({zj(k)}j∈N )

where zi(k) = (0, . . . , 0), and zji (k) = −ck, zjj (k) = ck and zjr(k) = 0 for each r ∈ N\{i, j} as in
Proposition 1. As a consequence, f(C({k},O)) ∈ Core(C({k},O)), as desired. �

Replacing Reasonableness in Proposition 2 by Equal concessions singles out the Nucleolus among
all the Core-selectors.

Proposition 3 The Nucleolus is the unique compensation scheme on C(N) that satisfies Compensa-
tion, Pooling, Invariance to deleting non-exclusive data and Equal concessions.

Proof. As a Core-selector, the Nucleolus satisfies Compensation and Invariance to deleting non-
exclusive data. It also satisfies Pooling by its expression in Proposition 1. It remains to show that it
satisfies equal concessions. So pick any C(D,O) such that DE(O) = D. By Proposition 1, this means
that

ηi(C(D,O)) =
∑

k∈D

ck
n
−

∑

k∈Di(O)

ck, i ∈ N. (1)

Since D only contains data held by a unique agent, we have, for each i ∈ N , that

bmin
i (C(D,O)) = C(D,O)(N)− C(D,O)(N\{i}) = −

∑

k∈Di(O)

ck. (2)

Subtracting (2) to (1) yields ∑

k∈D

ck
n
.

Since this expression does not depend on agent i ∈ N , we get ηi(C(D,O))−bmin
i (C(D,O)) = ηj(C(D,O))−

bmin
j (C(D,O)) for all i, j ∈ N , as desired.

Next, consider any compensation scheme f on C(N) that satisfies Compensation, Pooling, Invari-
ance to deleting non-exclusive data and Equal concessions. Pick any C(D,O) ∈ C(N), and any k ∈ D.
From the proof of Proposition 2, we already know that Pooling and Invariance to deleting non-exclusive
data imply that f(C({k},O)) = 0 = η(C({k},O)) if ok ≥ 2. So suppose that ok = 1 and denote by i ∈ N
the unique owner of data k. In the elementary data game ({k}, O), recall from the proof of Proposition
2 that bmin

i ({k}, O) = −ck and that bmin
j ({k}, O) = 0. Thus, Equal concessions rewrites

fi({k}, O) + ck = fj({k}, O) (3)
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for each j ∈ N\{i}. Summing on all j ∈ N and using Compensation, we obtain

0 = f(({k}, O))(N) = fi({k}, O) + (n− 1)
(
fi({k}, O) + ck

)

so that fi({k}, O) = ck/n− ck = ηi({k}, O). By (3), conclude that fj({k}, O) = ck/n = ηj({k}, O) for
each j ∈ N\{i} as well. By Pooling, f(C(D,O)) = η(C(D,O)), which completes the proof. �

Replacing Invariance to deleting non-exclusive data in Proposition 3 by Invariance to enlarging
the owner set and adding Equal treatment of equals yield a characterization of the Shapley value.
It is known that the Nucleolus also satisfies Equal treatment of equals. As such Propositions 3 and
4 provide comparable characterizations of the Nucleolus and the Shapley value that only differ with
respect to one axiom.

Proposition 4 The Shapley value is the unique compensation scheme on C(N) that satisfies Compen-
sation, Pooling, Equal treatment of equals, Invariance to enlarging the owner set and Equal concessions.

Proof. It is obvious that the Shapley value satisfies Compensation, Pooling and Equal treatment of
equals. To see that it also satisfies Invariance to enlarging the owner set, consider any pair of data
games C(D,O) and C(D,O′) ∈ C(N) such that Oh = O′h for all h ∈ D\{k} and Ok ⊂ O′k ⊂ N for some
k ∈ D. Recall that Ok 6= ∅ by assumption. Choose any i ∈ N\O′k. Observe that Di(O

′) = Di(O)
and Oh = O′h for each h ∈ Di(O). As a consequence, the expression of the Shapley value given in
Proposition 1 immediately yields

Shi(C(D,O′)) =
∑

h∈D

ch
n
−

∑

h∈Di(O′)

ch
o′h

=
∑

h∈D

ch
n
−

∑

h∈Di(O)

ch
oh

= Shi(C(D,O)).

Since the Nucleolus satisfies Equal concessions and η(C(D,O)) = Sh(C(D,O)) whenever DE(O) = D,
the Shapley value satisfies Equal concessions as well.

Next, consider any compensation scheme f on C(N) that satisfies Compensation, Pooling, Equal
treatment of equals, Invariance to enlarging the owner set and Equal concessions. Pick any C(D,O) ∈
C(N), and any k ∈ D. Suppose that ok = 1 and once again denote by i ∈ N the unique owner of
data k. In the elementary data game ({k}, O), from the proof of Proposition 3 and the fact that
{k}E(O) = {k}, we know that the combination of Compensation and Equal concessions imply that
f(C({k},O)) = η(C({k},O)) = Sh(C({k},O)). In particular, for each j ∈ N\{i}, we have fj(C({k},O)) =
ck/n. Now, consider any k ∈ D such that ok ≥ 2. If ok = n, then Equal treatment of equals and
Compensation yield f(C({k},O)) = 0. If 2 ≤ ok < n, we can choose an agent i ∈ Ok and j ∈ N\Ok.
Then, construct the elementary data game ({k}, O′) such that O′k = {i}. Invariance to enlarging
the owner set and Equal concessions can be applied to data games ({k}, O) and ({k}, O′), and to
agent j because j ∈ N\O′k. Thus, since o′k = 1, we obtain from the previous part of the proof that
fj(C({k},O)) = fj(C({k},O′)) = ck/n. Since j was arbitrary chosen in N\Ok, this equality holds for all
agents in N\Ok. By Compensation, we get

f(C({k},O))(Ok) = −(n− ok)
ck
n
.

By Equal treatment of equals,

fi(C({k},O)) =
1

ok
×−(n− ok)

ck
n

=
ck
n
− ck
ok

= Shi(C({k},O)).

Conclude by Pooling that f(C(D,O)) = Sh(C(D,O)) �
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5 Conclusion

The absence of available data on the types of compensation schemes that are actually used within
the SIEF prevents us from concluding this article by a confrontation of our theory with the current
practice. This important step is left for future research. Instead, we offer two concluding remarks by
coming back to the properties mobilized throughout the article.

The set of axioms invoked in Proposition 3 and 4 are almost identical, in particular because the
Nucleolus satisfies Equal treatment of equals even if this axiom is not needed in Proposition 3. There-
fore, it makes sense to ask whether the separating axioms of Invariance to deleting non exclusive data
and Invariance to enlarging the owner set are compatible. As a partial answer, it is possible to show
that the price to have simultaneously both axioms is to rule out any form of compensation if the basic
axioms of Compensation, Pooling and Equal treatment of equals are also imposed. In other words, it
is possible to show that the null compensation scheme that assigns the null compensation vector 0 to
any data game is the unique compensation scheme satisfying Invariance to deleting non exclusive data,
Invariance to enlarging the owner set are compatible, Compensation, Pooling and Equal treatment of
equals.

Such comparisons between axioms are a crucial facet of the axiomatic method. Applied to the
decision problem faced by a judge or and arbitrator, this amounts to examine whether philosophical
principles are not contradictory, or if a philosophical principle has stronger implications than another
one. In order to have a clear overview of our results, we conclude this article by the following recap chart
in which a “+” means that the compensation scheme satisfies the axiom, in which “−” has the converse
meaning and in which the “⊕” symbols indicate the characterizing sets of axioms in Propositions 2, 3
and 4 respectively.5

Core-selectors Nucleolus Shapley value

Compensation ⊕ ⊕ ⊕
Pooling ⊕ ⊕ ⊕
Equal treatment of equals − + ⊕
Reasonableness ⊕ + ⊕
Equal concessions − ⊕ ⊕
Invariance to deleting non exclusive data ⊕ ⊕ −
Invariance to enlarging the owner set − − ⊕

Appendix

In order to demonstrate independence of the axioms imposed in Propositions 2, 3 and 4, we exhibit
the following compensation schemes.

Proposition 2

• The Shapley value Sh on C(N) satisfies Pooling, Compensation, Reasonableness but not Invari-
ance to deleting non exclusive data.

• The compensation scheme f on C(N) defined, for all C(D,O) ∈ C(N) by

f1(C(D,O)) =
∑

k∈DE(O)

ck and fi(C(D,O)) = −
1

n− 1

∑

k∈DE(O)

ck, i ∈ N\{1},

5Recall that Proposition 2 only consider core-selectors satisfying the Pooling axiom. As such, Pooling is rather an
assumption than a requirement in Proposition 2.
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if DE(O) 6= ∅ and f(C(D,O)) = 0 if DE(O) = ∅ satisfies Pooling, Compensation and Invariance
to deleting non exclusive data but not Reasonableness.

• The compensation scheme f on C(N) defined, for all C(D,O) ∈ C(N) by

fi(C(D,O)) = ηi(C(D,O)) +
∑

k∈DE(O)

ck
n
, i ∈ N,

satisfies Pooling, Reasonableness and Invariance to deleting non exclusive data but not Compen-
sation.

Proposition 3

• The compensation scheme f on C(N) defined, for all C(D,O) ∈ C(N) by f(C(D,O)) = 0 satisfies
Compensation, Pooling and Invariance to deleting non exclusive data but not Equal concessions.

• The Shapley value Sh satisfies Compensation, Pooling and Equal concessions but not Invariance
to deleting non exclusive data.

• The compensation scheme f on C(N) defined, for all C(D,O) ∈ C(N) by f(C(D,O)) = η(C(D,O)) if
DE(O) 6= ∅ and f(C(D,O)) = Sh(C(D,O)) ifDE(O) = ∅ satisfies Compensation, Equal concessions
and Invariance to deleting non exclusive data but not Pooling.

• The compensation scheme f on C(N) defined, for all C(D,O) ∈ C(N) by

fi(C(D,O)) = ηi(C(D,O)) + |DE(O)|, i ∈ N,
satisfies Pooling, Equal concessions and Invariance to deleting non exclusive data but not Com-
pensation.

Proposition 4

• The Nucleolus η satisfies Compensation, Pooling, Equal treatment of equals and Equal conces-
sions but not Invariance to enlarging the owner set.

• The compensation scheme f on C(N) defined, for all C(D,O) ∈ C(N) by f(C(D,O)) = 0 satisfies
Compensation, Pooling, Equal treatment of equals and Invariance to enlarging the owner set but
not Equal concessions.

• The compensation scheme f on C(N) defined, for all C(D,O) ∈ C(N) by

fi(C(D,O)) = Shi(C(D,O)) + |D|, i ∈ N,
satisfies Pooling, Equal treatment of equals, Equal concessions, Invariance to enlarging the owner
set but not Compensation.

• Consider any compensation vector a ∈ Rn\{0}. The compensation scheme f on C(N) defined,
for all C(D,O) ∈ C(N) by

fi(C(D,O)) =
∑

k∈D:ok<n

ck
n
−

∑

k∈Di(O):ok<n

ck
ok

+ ai × |{k ∈ D : ok = n}|, i ∈ N,

satisfies Pooling, Compensation, Equal concessions and Invariance to enlarging the owner set but
not Equal treatment of equals.

• Consider the data game C({h,k},O′) ∈ C(N) such that O′h = {1, 3} and O′k = {2, 3}. The com-
pensation scheme f on C(N) defined, for all C(D,O) ∈ C(N) by f(C(D,O)) = Sh(C(D,O)) if
C(D,O) 6= C({h,k},O′) and such that fi(C({h,k},O′)) = Shi(C({h,k},O′)) for each i ∈ N\{1, 2, 3},
f1(C({h,k},O′)) = Sh1(C({h,k},O′))+ch/2, f2(C({h,k},O′)) = Sh2(C({h,k},O′))+ck/2 and f3(C({h,k},O′)) =
Sh3(C({h,k},O′))− ch/2− ck/2 satisfies Compensation, Equal treatment of equals, Equal conces-
sions and Invariance to enlarging the owner set but not Pooling.
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