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Hybrid Monte Carlo Methods In Machine Learning:
Stochastic Volatility Methods, Shadow Hamiltonians, Adaptive Approaches and 

Variance Reduction Techniques

by

Wilson Tsakane Mongwe

Abstract

Markov Chain Monte Carlo (MCMC) methods are a vital inference tool for probabilistic 
machine learning models. A commonly utilised MCMC algorithm is the Hamiltonian 
Monte Carlo (HMC) method. HMC can efficiently explore the ta rget posterior by  tak-
ing into account first-order g radient i nformation. T his a lgorithm h as b een extended 
in various ways, including via the use of non-canonical Hamiltonian dynamics to create 
Magnetic Hamiltonian Monte Carlo (MHMC) and utilising integrator-dependent shadow 
Hamiltonians to create shadow HMC methods. MHMC utilises a magnetic field to more 
efficiently ex plore th e ta rget po sterior co mpared to  HMC. At  th e sa me ti me, shadow 
HMC methods can better scale to larger models without significant deterioration in the 
acceptance rates of the generated samples.

In this thesis, we present novel extensions to the MHMC algorithm by 1) using a 
random mass for the auxiliary momentum variable to mimic the behavior of quantum 
particles, 2) utilising partial momentum refreshment before generating the next sample, 
and 3) deriving the fourth-order modified Hamiltonian implied by the numerical integra-
tor employed in MHMC to construct the novel shadow MHMC algorithm. The results 
reveal that these novel extensions to MHMC lead to enhanced sampling performance 
over MHMC across various targets and performance metrics.

We proceed to improve the sampling performance of Separable Shadow Hamiltonian 
Hybrid Monte Carlo (S2HMC) by using partial momentum refreshment before generat-
ing the next sample using the processed leapfrog integrator used in S2HMC. We further 
address the automatic tuning of the step size and trajectory length parameters of S2HMC 
by extending the No-U-Turn Sampler methodology to incorporate the processed leapfrog 
integrator. The automatic adaptation removes the need to manually tune these param-

ii



eters and thus makes this method more accessible to non-expert users. The results show

that this adaptive algorithm outperforms S2HMC on an effective sample size basis with

minimal user intervention.

We further rely on results from the coupling theory of Hamiltonian chains to show

that employing antithetic sampling in the MHMC and S2HMC algorithms produces

lower variances and consequently higher effective sample sizes compared to the non-

antithetic versions of these MCMC methods. The results show the overall benefits that

can be derived from incorporating antithetic sampling in MCMC algorithms. Given

that antithetic sampling makes minimal assumptions about the target posterior and is

straightforward to implement, there seem to be minor hurdles to using it in practice.

The analysis in this thesis is performed on the Banana shaped distribution, the Mer-

ton jump-diffusion process calibrated to financial market data, multivariate Gaussian

distributions of various dimensions, Neal’s funnel density, Bayesian Logistic Regression,

and Bayesian Neural Network benchmark problems as well as on South African munici-

pal financial statement audit outcome data. To analyse the audit outcomes dataset, we

employ a first-in-literature Bayesian inference approach that incorporates automatic rel-

evance determination to identify important financial ratios in modeling audit outcomes.

We find that repairs and maintenance as a percentage of total assets ratio, current ratio,

debt to total operating revenue, net operating surplus margin and capital cost to total

operating expenditure ratio are the important financial ratios when predicting local gov-

ernment audit outcomes. These results could be useful for various stakeholders to better

understand the financial state of South African local government entities. Auditors could

use them to improve the speed and overall quality of the audit process.

Keywords: Adaptive, Quantum-Inspired, Magnetic, Shadow, Hamiltonian Monte Carlo,

Partial Momentum Refreshment, Antithetic Sampling, Machine Learning, Social Impact.

Supervisor : Prof. Tshilidzi Marwala

Co-supervisor : Dr. Rendani Mbuvha

School : Electrical and Electronic Engineering Science
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“Education is the most powerful weapon which you can use to change the

world”

– Nelson Mandela
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Chapter 1

Introduction

1.1 Background

Machine learning technologies have been successfully deployed in various industries in-

cluding self-driving cars, health, and weather forecasting among others [44, 12, 87, 143].

Deep learning is a class of machine learning models that has fostered the growth of arti-

ficial intelligence in industry and is a crucial enabler of the fourth industrial revolution

[142]. These machine learning models are typically trained within a frequentist paradigm

using gradient and evolutionary-based optimisation techniques, key of which is gradient

descent and its extensions [19].

A disadvantage of the frequentist approach to training machine learning models is

the inability of the trained models to naturally produce uncertainties in the parameters

of the model and their resultant predictions [43, 50]. There has been recent progress

in addressing this limitation, with the majority of the approaches typically being model

specific [5, 88] or already having Bayesian equivalents [50]. Forming uncertainties around

model predictions is particularly important for complex and mission-critical systems such

as self-driving cars, medical diagnosis of patients, and a bank deciding whether or not

to grant credit to a customer [1, 43]. In all these instances, various stakeholders would

be interested in establishing the extent to which the model is certain about its forecasts

[104].

The Bayesian framework offers a probabilistically robust approach to training ma-

1
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chine learning models [1, 88, 50, 96]. This approach provides confidence levels in the

model parameters and the resultant model predictions. It also allows one to perform

comparisons between different models using the Bayesian evidence metric [96]. The

Bayesian approach incorporates already existing knowledge before the data is observed

through the prior distribution. The observations are then incorporated via the likeli-

hood function, which generates the posterior distribution when combined with our prior

beliefs. The posterior distribution is thus a refinement of our prior convictions in light

of the newly observed data [140]. A fundamental limitation of training machine learning

models within the Bayesian paradigm is that Bayesian approaches tend to be compu-

tationally expensive, and are thus difficult to scale to larger and more complex models

[162, 52].

The Bayesian framework of inference is founded on Bayes theorem, which states that

for a given model M with parameters w and data D, we have:

IP(w|M)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
IP(D|w,M)

prior︷ ︸︸ ︷
IP(w|M)

IP(D|M)︸ ︷︷ ︸
evidence

(1.1)

where IP(w|M) is the posterior of the parameters given the model M , IP(D|w,M) is

the likelihood of the data D, IP(w|M) is the prior distribution for the parameters and

IP(D|M) is the Bayesian evidence for model M and can be utilised for model selection

[104]. In this thesis, we aim to infer the posterior distribution of the parameters IP(w|M)

for a given model so we can perform predictions using the model. The posterior distri-

bution is typically not available in closed form, and thus, numerical techniques are often

required to determine the posterior [96]. The common approaches for training mod-

els, that is, determining the posterior distribution, within the Bayesian framework are

variational inference techniques and Markov Chain Monte Carlo (MCMC) algorithms.

Variational inference [70] and its extensions [72] are approximate inference techniques

in that the posterior distribution is assumed to come from a particular family of simpler

distributions, with the commonly used family being that of Gaussian distributions [52].

This allows the sampling problem to be converted into an optimisation problem in which

the Kullback-Leibler divergence between the target posterior and the approximating
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distribution is minimised [52]. This attribute makes variational methods typically much

faster than MCMC methods [70, 52].

MCMC algorithms are preferable to variational techniques as they are guaranteed to

converge to the correct target distribution if the sample size is sufficiently large [148, 149].

These methods are premised on building a Markov chain of samples that asymptotically,

as the number of samples n −→ ∞, converge to the desired equilibrium distribution.

By definition, the samples generated by MCMC algorithms are auto-correlated, which

means that they will have higher variance than classical Monte Carlo techniques. This

branch of inference techniques was initially developed by physicists, with famous exam-

ples being the Metropolis-Hastings (MH) [65] algorithm of Metropolis and Hastings and

Hamiltonian Monte Carlo (HMC) of Duane et al. [41]. These MCMC methods then later

entered the field of computational statistics, where they are used today to sample from

various complex probabilistic models [57]. This thesis focuses primarily on HMC and its

variants with the aim of developing improved versions of HMC and its descendants.

The random walk MH algorithm forms the foundation of more complicated algorithms

such as HMC and the Metropolis Adjusted Langevin Algorithm (MALA) [65, 124, 53].

The simplicity and robustness of this algorithm have resulted in it still being exten-

sively used in various applications [168]. This method generates proposed samples from

a Gaussian distribution whose mean is the last accepted state [65, 98]. This proposal

exhibits random walk behaviour, which usually results in low sample acceptance rates

and generates strongly correlated samples [124, 98]. In practice, the scale matrix of

the Gaussian proposal distribution is typically treated as being diagonal, with all the

dimensions having the same standard deviation σ ≥ 0 [145]. Mongwe et al. [115] extend

random walk MH by treating the scale matrix as being stochastic and allowing it to

depend on the local geometry of the target. The authors show that these minor modifi-

cations to MH result in improvements in sampling behaviour, as well as the predictive

performance of MH.

HMC is the most popular MCMC algorithm within machine learning literature and

is used in a wide range of applications including health, finance and cosmology [121, 127,

124, 53, 157, 140, 112, 113, 68, 98, 114]. Its popularity is largely based on its ability to use

first-order gradient information of the posterior distribution to guide its exploration, thus
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suppressing the random walk behaviour observed with the random walk MH algorithm

[124, 17]. This approach can be easily applied to sample from any differentiable target

on Euclidean spaces [124, 25]. Betancourt [17] provides the geometrical foundations of

HMC, as well as the conditions under which HMC is geometrically ergodic - that is, the

algorithm will eventually visit all parts of the parameter space.

Although HMC serves as an improvement on the MH algorithm, it still results in

relatively high auto-correlations between the generated samples. This has prompted

further development of MCMC algorithms that extend HMC to incorporate second-

order gradient information of the posterior [53, 16], techniques that utilise random mass

matrices [91] for the auxiliary momentum variable, methods that automatically tune the

parameters of HMC [73, 2], algorithms that utilise non-canonical Hamiltonian dynamics

[156, 116, 26], approaches that couple HMC chains so as to reduce the variance of the

resultant HMC based estimators [136, 112, 113], as well as methods that use modified

or shadow Hamiltonians to sample from high dimensional targets [155, 99, 112, 140, 68].

The seminal work of Girolami and Caldehad [53] introduced Riemannian Manifold

Hamiltonian Monte Carlo (RMHMC) which improves on HMC by taking into account the

local geometry of the target through the use of second-order gradient information. Mak-

ing use of second-order gradient information is particularly important for ill-conditioned

target distributions such as Neal’s [123] funnel. The incorporation of local curvature

information results in more efficient exploration of the target compared to HMC. A key

disadvantage of RMHMC is that the Hamiltonian is not separable, which necessitates the

use of an implicit integration scheme that is computationally expensive [53, 35]. Cobb et

al. [35] introduced an explicit scheme for RMHMC which alleviates the computational

burden of using the implicit generalised leapfrog integration scheme without a decrease

in sampling performance.

Quantum-Inspired Hamiltonian Monte Carlo (QIHMC) uses a random mass matrix

to mimic the behaviour of quantum particles as opposed to the fixed mass of classical

particles. This results in better sampling than HMC and RMHMC on spiky and multi-

modal distributions [91, 113, 117]. QIHMC achieves the outperformance over HMC

without any noticeable increase in the execution time. The main drawback of QIHMC

is the requirement for the user to specify the distribution of the mass matrix and the
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likely tuning of the parameters of the chosen distribution [91]. Determining the optimal

distribution to use for the mass matrix is still an open area of research.

The No-U-Turn Sampler (NUTS) of Hoffman and Gelman [73] automates the tuning

of the step size and trajectory length parameters for HMC. The step size parameter

is tuned during the burn-in phase using the primal-dual averaging methodology [8] by

targeting a user-specified level of acceptance rate in the generated samples [2, 73]. The

trajectory length is set by iteratively doubling the trajectory length until specific crite-

ria are met [2, 73, 110, 111]. Empirical results show that NUTS performs at least as

efficiently as and sometimes more efficiently than a well-tuned standard HMC method,

without requiring user intervention or costly tuning runs [73]. NUTS has also been

generalised to Riemannian manifolds [16] and thus allowing the automatic tuning of the

parameters of RMHMC. Wang et al. [164, 163] introduce a Bayesian optimisation frame-

work for tuning the parameters of HMC and RMHMC samplers. The authors show that

their approach is ergodic and, in some instances, precludes the need for more complex

samplers. The empirical results show that this approach has a higher effective number

of samples per unit of computation used than NUTS. Hoffman et al. [71] propose an

adaptive MCMC scheme for tuning the trajectory length parameter in HMC and show

that this new technique typically yields higher effective samples sizes normalised by the

number of gradient evaluation when compared to NUTS. This approach can also be

easily run in parallel and use GPUs, unlike NUTS.

Magnetic Hamiltonian Monte Carlo (MHMC) utilises non-canonical dynamics to bet-

ter explore the posterior [156, 26, 112]. MHMC introduces a magnetic field to HMC in

addition to the force field already present HMC. This magnetic field results in faster

convergence and lower auto-correlations in the generated samples [59, 156, 107]. When

the magnetic component is removed, MHMC has the same performance as HMC. This

implies that the magnetic component adds a degree of freedom to improve the perfor-

mance of HMC. MHMC has been extended to manifolds by Brofos and Lederman [25]

and shows good improvement over MHMC. However, MHMC has the disadvantage that

the magnetic component has to be specified by the user. In the existing literature on

MHMC, there are no automated means of tuning the magnetic component [26, 156, 112].

In addition, the use of a random mass matrix for the momentum variable in MHMC as
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well as the automatic tuning of the step size and trajectory length parameters in MHMC

is yet to be explored in the literature.

Since the seminal work of Izaguirre and Hampton [77] on integrator-dependent shadow

Hamiltonians, there has been a proliferation of shadow HMC methods in the literature.

The shadow Hamiltonian methods are premised on the fact that shadow Hamiltonians

are better conserved when compared to the true Hamiltonians [77]. This allows one to

use larger step sizes or perform sampling on problems with larger dimensions, without a

significant decrease in the acceptance rates when compared to HMC methods [4, 140, 68].

To control the momentum generation, the authors introduce a parameter c, which deter-

mines how close the true and the shadow Hamiltonians are. The momentum generation

increases the overall computational time of the method. In addition, the algorithm

requires the user to tune the parameter c to attain optimal results.

Sweet et al. [155] improve on the work of Izaguirre and Hampton [77] by using a

canonical transformation on the parameters and momentum. This canonical transfor-

mation is substituted into the non-separable Hamiltonian introduced in Izaguirre and

Hampton [77] so that it now becomes separable. The canonical transformation results

in a processed leapfrog integration scheme which is more computationally efficient when

compared to the original shadow HMC method of Izaguirre and Hampton [77]. This is

because computationally expensive momentum generation for the non-separable Hamil-

tonian is no longer required. Furthermore, no new hyperparameters are introduced, with

the method having the same parameters as traditional HMC. The authors refer to this

new method as the Separable Shadow Hamiltonian Hybrid Monte Carlo (S2HMC) algo-

rithm. The tuning of the parameters of S2HMC, and shadow Hamiltonian methods in

general, is yet to be explored in the literature.

Partial momentum refreshment has been utilised by Radivojevic and Akhmatskay

[140] and Akhmatskaya and Reich [4] to generate momenta in the context of non-

separable Hamiltonians. Radivojevic and Akhmatskay [140] also consider higher-order

integrators and their corresponding shadow Hamiltonians and propose the Mix and

Match Hamiltonian Monte Carlo algorithm, which provides better sampling properties to

HMC. Heide et al. [68] derive a non-separable shadow Hamiltonian for the generalised

leapfrog integrator used in RMHMC, which results in improved performance relative
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to sampling from the true Hamiltonian. The authors employed partial momentum re-

freshment to generate the momenta but do not offer an approach for tuning the partial

momentum refreshment parameter that they introduce.

The use of partial momentum refreshment in MHMC and S2HMC is yet to be con-

sidered in the literature. Horowitz [74] employed a partial momentum update to HMC

and found that it significantly improved the performance of HMC. That is, keeping some

of the dynamics of the chain improved performance without harming the legitimacy of

the Monte Carlo method [74, 75, 42, 118, 116]. Given that MHMC is closely related to

HMC, one would expect that employing partial momentum refreshment to MHMC would

result in the same or better sampling properties as observed by Horowitz [74] on HMC.

Similarly, one would expect that incorporating partial momentum refreshment within

the processed leapfrog integrator in S2HMC could potentially improve the performance

of S2HMC.

Although HMC and its variants discussed above serve as an improvement to other

MCMC methods, like other MCMC methods, it still suffers from the presence of auto-

correlations in the generated samples [53, 89]. This results in the high variance of HMC

based estimators. One approach of tackling the high variance of MCMC estimators is

by using results from MCMC coupling theory [78, 69]. The coupling of MCMC methods

has been used as a theoretical tool to prove convergence behaviour of Markov chains

[146, 80, 79, 78, 20]. More recently, MCMC couplings have been studied for HMC with

good results [125, 136]. Markov chain coupling has also been used to provide unbiased

HMC estimators [55, 78, 69]. Piponi et al. [136] use approximate coupling theory to

construct the Antithetic Hamiltonian Monte Carlo (A-HMC) algorithm. These anti-

correlated chains are created by running the second chain with the auxiliary momentum

variable having the opposite sign of the momentum of the first chain [136, 112]. Their

results show that adding antithetic sampling to HMC increases the effective sample size

rates. Incorporating antithetic sampling in MHMC and S2HMC to reduce their variance

is yet to be explored in the literature.

Research objectives: Our primary objective in this thesis is to improve MHMC

and S2HMC by developing more efficient and alternative methodologies to enhance their

performance in sampling from various probabilistic machine learning models. We aim to
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Table 1.1: This table highlights the gaps in the literature that we have identified. A NO

entry means that the item is yet to be considered in the literature. A N/A entry means that

the item is not applicable to the algorithm. For the items that have already been addressed in

the literature, we provide an appropriate reference.

Algorithm Partial

Momentum

Retention

Shadow

Density

Random

Mass

Matrix

Adaptive

Approaches

Antithetic

Sampling

MH [126] N/A [115] [62, 103] [136]

MALA [126] N/A NO [9] [136]

HMC [74] [155, 77] [91] [73, 2] [136]

MHMC NO NO NO NO NO

RMHMC [68] [68] NO [16, 73] [113]

S2HMC NO N/A NO NO NO

do this by combining ideas of utilising random mass matrices for the auxiliary momen-

tum variable, employing partial momentum refreshment, deriving shadow Hamiltonians,

automatically tuning the parameters of the methods as well as using antithetic sampling

to reduce the variance of MHMC and S2HMC. This combination of ideas is based on

addressing the gaps we identified in the literature as summarised in Table 1.1. A sec-

ondary aim of this thesis is to apply MCMC methods in areas that have a societal impact

within the South African context. Thus, we apply Bayesian inference to analysing South

African municipal financial statement audit outcomes to understand the financial state

of South African local government entities. In Section 1.2 below, we outline the original

contributions to knowledge provided by this thesis in more detail.

1.2 Thesis Contributions

The original contributions of this thesis are both of a theoretical nature in terms of new

or improved methods and novel application areas using the Bayesian framework. The

contributions of this thesis are summarised in Figure 1.1 and presented in detail below:

1. We start by introducing a new technique which we refer to as the Quantum-Inspired



1.2. THESIS CONTRIBUTIONS 9

MHMC

MH

HMC RMHMCQIHMC

S2HMC
Antithetic 

S2HMC

Adaptive S2HMC
PS2HMC

QIMHMC

PMHMC

Shadow MHMC

Antithetic 
MHMC

add manifold

A
d

d
 H

am
ilt

o
n

ia
n

 
d

yn
am

ic
s

add random
mass

add antithetic 
sampling

add random
mass

m
o

m
en

tu
m

re
te

n
ti

o
n

add antithetic 
sampling

m
o

d
if

ie
d

eq
u

at
io

n

Figure 1.1: The algorithmic contributions of this thesis are highlighted as the green blocks.

The arrows indicate the relationship between the different algorithms and show how our pro-

posed algorithms are derived from existing methods.

Magnetic Hamiltonian Monte Carlo (QIMHMC) algorithm. This method uses a

random mass matrix instead of a fixed mass for the auxiliary momentum variable

in MHMC. This approach mimics the behaviour of quantum particles and leads to

better results when compared to HMC, MHMC and QIHMC.

2. We proceed to present novel sampling techniques that employ partial momentum

refreshments in the generation of each sample. These are the Magnetic Hamil-

tonian Monte Carlo With Partial Momentum Refreshment (PMHMC) and Sep-

arable Shadow Hamiltonian Hybrid Monte Carlo With Partial Momentum Re-

freshment (PS2HMC). These two new algorithms illustrate the sampling benefits

of not fully refreshing the auxiliary momentum variable in MHMC and S2HMC

respectively. Numerical experiments on numerous targets show that PMHMC out-

performs HMC, MHMC and Hamiltonian Monte Carlo With Partial Momentum

Refreshment (PHMC) while PS2HMC outperforms S2HMC and PMHMC on an

Effective Sample Size (ESS) basis.
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3. We further derive the fourth-order modified Hamiltonian associated with the nu-

merical integrator employed in MHMC. From this shadow Hamiltonian, we con-

struct a novel sampler which we refer to as Shadow Magnetic Hamiltonian Monte

Carlo (SMHMC). Empirical results show that this new method outperforms MHMC

across various benchmarks.

4. We then address the issue of automatically tuning the parameters of the S2HMC

algorithm. We present the adaptive S2HMC algorithm which extends the NUTS

methodology to use the processed leapfrog integrator in S2HMC. This adaptive

approach is shown to outperform the appropriately tuned S2HMC method across

numerous benchmark problems.

5. We consider the use of antithetic sampling for MHMC and S2HMC to reduce

the overall variance of the estimators based on these samplers, or equivalently to

increase the effective sample size of these samplers. The results show that the

new methods with antithetic sampling outperform the original methods without

antithetic sampling.

6. We present the first-in-literature application of a Bayesian approach in modelling

audit outcomes of local government entities. Furthermore, we perform Automatic

Relevance Determination (ARD) using MCMC methods to identify which financial

ratios are essential for modelling audit outcomes of municipalities. Stakeholders

could use these results in understanding what drives the audit outcomes of South

African municipalities.

1.3 Thesis Scope

The scope of the thesis can be summarised as follows:

• Our primary focus is on samplers that are based on Hamiltonian dynamics, and

MHMC and S2HMC in particular

• We only consider Hamiltonian samplers on the Euclidean manifold
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• We do not consider any variational inference techniques

• We do not consider other tuning approaches except for those based on the state-

of-art NUTS methodology

• We limit our focus to incorporating antithetic sampling to HMC based samplers.

Other variance reduction techniques such as control variates are not considered

and

• When Bayesian Neural Network (BNN) models are considered, we limit ourselves

to Multilayer Perceptron (MLP) architectures with one hidden layer, five hidden

units and a single output.

1.4 Publications

The following peer-reviewed journal and conference articles have been produced during

this thesis. Furthermore, a book entitled Hamiltonian Monte Carlo In Machine Learning

based on the work in this thesis has been accepted for publication by Elsevier in 2022.

The Python code used to produce the results in this thesis can be found in the following

github repository: github.com/WilsonMongwe/hybridtorch.

1. Mongwe, W.T., Mbuvha, R. and Marwala, T., 2021. Quantum-Inspired Mag-

netic Hamiltonian Monte Carlo. Plos One, vol. 16, no. 10, pp. e0258277.
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To Appear.

3. Mongwe, W.T., Mbuvha, R. and Marwala, T. 2021. Locally Scaled and Stochastic

Volatility Metropolis–Hastings Algorithms. Algorithms, vol. 14, no. 12: 351.

4. Mongwe, W.T., Mbuvha, R. and Marwala, T., 2021. Magnetic Hamiltonian

Monte Carlo With Partial Momentum Refreshment. IEEE Access, vol. 9, pp.

108009-108016.
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1.5 Thesis Outline

The remainder of this thesis proceeds as follows:

• Chapter 2: In this chapter, we provide a background into MCMC. Furthermore,

we review Hamiltonian dynamics-based samplers. We focus on HMC and its vari-

ants and provide detailed descriptions of the methods that provide the basis of the

new algorithms introduced in this thesis.

• Chapter 3: This chapter covers the benchmark problems, real-world application

areas, and the performance metrics used throughout this thesis. We also introduce

a new dataset into the literature being the South African municipal financial state-

ment audit outcome dataset. We conduct exploratory data analysis on this dataset

using a Self Organising Map (SOM) to understand the nature of this dataset better.

• Chapter 4: In this chapter, we present the novel QIMHMC algorithm which

utilises a random mass matrix for the auxiliary momentum variable in order to

enhance the sampling performance of MHMC.

• Chapter 5: This chapter presents the PMHMC and PS2HMC algorithms which

employ partial momentum refreshment to improve MHMC and S2HMC respec-

tively.

• Chapter 6: In this chapter, we introduce the SMHMC algorithm which uses

the fourth-order shadow Hamiltonian of the leapfrog-like integrator in MHMC to

enhance the sampling performance of MHMC.

• Chapter 7: This chapter introduces an adaptive algorithm for S2HMC to tune

the step size and trajectory length parameters of S2HMC by extending the NUTS

methodology.

• Chapter 8: This chapter employs antithetic sampling to reduce the variance of

MCMC estimators. We introduce two new algorithms, which are antithetic versions

of MHMC and S2HMC.
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• Chapter 9: This chapter presents the first-in-literature fully Bayesian approach

to analysing municipal financial statement audit outcomes. ARD is employed to

extract the most critical features for modeling this domain.

• Chapter 10: This chapter provides a summary of our original contributions to

knowledge as well as ongoing and future work.



Chapter 2

Review of Hamiltonian Samplers

2.1 Introduction

In this chapter, we provide a background to MCMC methods with an emphasis on

samplers that utilise Hamiltonian dynamics. These samplers form the basis on which

we construct our novel algorithms later in this thesis. This chapter proceeds by first

providing an introduction into MCMC and the MH algorithm, after which we study

HMC and its various extensions that currently exist in the literature.

2.2 Background to Markov Chain Monte Carlo

Suppose that we are interested in estimating the expectation of some arbitrary function

f(x) with x ∈ RD having a well specified probability distribution. Mathematically, this

is written as:

Eµ[f ] =

∫
RD

f(x)dµ(x) (2.1)

where f ∈ L1(µ) 1 with respect to a probability measure µ, and D is the dimensionality

of x. If f and the probability measure µ result in a simple tractable product as an

intergrand, one could calculate this expectation analytically. If however, the product of

these two functions is not simple, one would have to consider numerical approximations

1That is:
∫
RD |f(x)|dµ(x) <∞.

15
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to the integral in equation (2.1). These techniques could be deterministic quadrature

(e.g. Trapezoidal rule [141] and various forms of Gaussian quadrature [93]), Monte Carlo

[65], Sparse grids [28] and Bayesian quadrature [131, 60], amongst others.

Deterministic quadrature methods perform poorly as the dimension D of the problem

increases. This is due to the convergence rate being bounded as outlined in Bakhalov’s

theorem [14]. The bulk of quadrature methods were created for integrals with a single

dimension. One would then obtain multi-dimensional integrals by employing the tensor

product rule from Fubini’s theorem [161], which repeats the integrals in each dimension.

Multiple one-dimensional integrals result in the function evaluations growing exponen-

tially with the number of dimensions D. The other three methods being Monte Carlo,

Sparse grids, and Bayesian quadrature, can (to some extent) overcome this curse of

dimensionality.

Sparse grids were developed by Russian mathematician Sergey A. Smolyak and have

various applications, including multi-dimensional interpolation and numerical integration

[172, 15, 28, 84]. Sparse grids were constructed with a focus on extending full grids

methods to higher dimensions, and come at the cost of a slight increase in error [84, 171].

Full-grid approaches are only feasible for small dimensions. For D > 4, full grids become

computationally expensive as the complexity of full grids grows exponentially with D

[15, 171].

Bayesian quadrature is a class of numerical algorithms for solving multi-dimensional

integrals in a probabilistic fashion [24, 131]. It has the advantage of providing uncertainty

over the solution of the integral. This technique has been successfully utilised to calculate

the Bayesian evidence metric [60, 131], which can be used for model comparison and

selection. This approach uses a small number of observations of the likelihood to infer

a distribution of the integrals akin to those in equation (2.1) using Gaussian processes

[60, 131]. Bayesian quadrature offers improved sample efficiency, which is essential for

samples drawn from complex and computationally expensive models. This technique

has, however, displayed high variance around the integral estimate and convergence

diagnostics due to variations in the sample observations selected [60].

Monte Carlo methods utilise repeated random sampling instead of deterministic

points as used in deterministic quadrature, and are easier to extend to multidimen-
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sional integrals. For this approach, the estimator of the integral in equation (2.1) using

n samples has a standard deviation that is proportional to 1√
n
, and importantly does not

rely on the dimension D [159]. At the same time, the worst-case error for quadrature

is ∝ n− r
D where r is the number of quadrature points, with the error depending on D

[159]. This suggests that the Monte Carlo approach may perform better when D is large.

However, it is not straightforward to directly compare quadrature with Monte Carlo as

the former is a frequentist notion while the latter is Bayesian [159].

The Monte Carlo estimate of the integral in equation (2.1) is given as the average of

the observations of xi ∼ µ as [17]:

Eµ[f ] ≈
1

n

n∑
i=1

f(xi) (2.2)

The difficulty in deploying Monte Carlo integration in practice is generating representa-

tive samples xi of the distribution µ.

MCMC techniques, such as the MH algorithm [65] and Slice sampling [123], are a

significant subset of Monte Carlo algorithms which can be used to generate xi ∼ µ. In

this work, we focus on Monte Carlo based, particularly MCMC, methods for solving the

integral in equation (2.1) via the generation of draws from target posterior distributions.

MCMC algorithms produce observations of the distribution of interest using a Markov

chain [99]. This Markov chain is created so that the equilibrium density is equal to the

distribution of interest.

Before delving further into MCMC methods, we recall the following ideas from the

theory of Markov Chains taken from [66].

Definition 1. A Markov chain is a set of stochastic variables {a1, a2, ..., an−1, an} that

satisfy:

IP(an|a1, a2, ..., an−1) = IP(an|an−1) (2.3)

That is, the density of the current position is independent of the past when given the

previous position [66]. This construction implies that one only requires the initial density

and a transition density, governing movements between states, to completely specify a

Markov chain [99, 66].
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Definition 2. π is the stationary distribution for a Markov chain ⇐⇒

π(b) =

∫
a

IP(b|a)π(a)da ∀b, a (2.4)

This definition means that the transitions of the chain from one state to the other

leave such a distribution invariant [66]. This equation is often called the fixed point

equation [153, 66].

Definition 3. A Markov chain is irreducible and aperiodic ⇐⇒ it is ergodic.

Irreducibility refers to the chain being able to traverse to any state from any other

state [66]. Aperiodic means that the chain eventually returns to the current state after

a finite number of steps.

Definition 4. If ∃ π such that:

IP(k|w)π(w) = IP(w|k)π(k) ∀k, w (2.5)

then the Markov chain is reversible.

Note that equation (2.5) implies that the transitions from-and-to two different states

occurs at the same rate when in equilibrium [66]. A chain that satisfies equation (2.5)

is said to satisfy detailed balance, which is a concept we consistently revisit in this

thesis. To guarantee that π is indeed the stationary distribution, we need the chain to

be ergodic as defined in Definition 3 [66]. Detailed balance is a more stringent condition

than ergodicity, and is not necessary (although it is sufficient) for a chain to converge to

the desired equilibrium distribution [66].

MCMCmethods were originally developed by physicists such as Ulam, Von Neumann,

Fermi, and Metropolis, amongst others in the 1940s [144]. MCMC approaches have

since been successfully employed inter alia in cosmology, health, energy and finance

[98, 99]. The MH method is one of the oldest and foundational MCMC algorithms

and forms the core of more complex MCMC techniques which use advanced proposal

distributions. Suppose were are interested in determining the posterior distribution of

parameters w from some model M . This posterior distribution could then be used

to determine expectations of the form in equation (2.1). The MH method produces
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recommended samples using a proposal distribution T (w∗|w). The next state w∗ is

rejected or accepted using the ratio of likelihoods [27, 99]:

IP
(
accept w∗) = min

(
1,

π(w∗)T (w|w∗)

π(w)T (w∗|w)

)
(2.6)

where π(w) is the stationary target density evaluated at w, for some arbitrary w.

Random walk Metropolis is a version of MH that utilises a Gaussian distribution

whose mean is the current state as the proposal distribution [99]. The transition density

in random walk Metropolis is N (w, ϵΣ), where ϵΣ is the covariance matrix of the pro-

posal distribution [99]. Note that Σ is typically set to be the identity matrix in practice,

leaving only ϵ to be specified and tuned by the user. When the proposal distribution

is symmetric (e.g. when it is Gaussian), it results in T (w|w∗) = T (w∗|w) and leads to

equation (2.6) becoming [99]:

IP
(
accept w∗) = min

(
1,

π(w∗)

π(w)

)
(2.7)

The proposal density in random walk MH usually results in random walk behaviour,

which leads to high auto-correlations between the generated samples as well as slow

convergence [99]. Algorithm 1 provides the pseudo-code for the MH algorithm, and

Theorem 2.2.1 shows why this algorithm converges to the correct stationary distribution.

Algorithm 1 The Metropolis-Hastings Algorithm

Data: winit, ϵ, N and unnormalised target π(w)

Result: (w)Ni=0

w0 ← winit

for n← 1 to N do
Σ = I

w∗ ∼ T with T = N (w, ϵΣ)

wn ← w∗ with probability: α(w∗|w) = min

(
1, π(w

∗)T (w|w∗)
π(w)T (w∗|w)

)
end

Theorem 2.2.1. The MH algorithm in Algorithm 1 leaves the target distribution invari-

ant.
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Proof.

α(w∗|w)T (w∗|w)︸ ︷︷ ︸
IP(w∗|w)

π(w) = min

(
1,

π(w∗)T (w|w∗)

π(w)T (w∗|w)

)
T (w∗|w)π(w)

= min

(
T (w|w∗)π(w∗), T (w∗|w)π(w)

)
= min

(
1,

π(w)T (w∗|w)

π(w∗)T (w|w∗)

)
T (w|w∗)π(w∗)

= α(w|w∗)T (w|w∗)︸ ︷︷ ︸
IP(w|w∗)

π(w∗)

=⇒ IP(w∗|w)π(w) = IP(w|w∗)π(w∗)

(2.8)

which is the required result.

A significant drawback of the MH seminal method is the high auto-correlations be-

tween the generated samples. The high auto-correlations lead to slow convergence in the

Monte Carlo estimates and consequently the necessity to generate large sample sizes.

Approaches that reduce the random walk behavior are those that enhance the classical

MH algorithm and utilise more information about the target posterior distributions [53].

The most common extension is to incorporate first-order gradient information to guide

the exploration of the target, as well as second-order gradient information to consider

the local curvature of the posterior [53]. Methods that use first-order gradient informa-

tion include methods that utilise Langevin and Hamiltonian dynamics on a Euclidean

manifold, while approaches that use second-order gradient information are methods on

Riemannian and other manifolds [53, 25, 41, 156, 25]. Methods that use Hamiltonian

dynamics on Euclidean spaces have shown great success in practice, and are a focus of

this thesis. We assess different aspects of Hamiltonian dynamics-based samplers with a

focus on addressing the gaps in the literature that we outlined in Table 1.1.

The remainder of this chapter outlines the methods that form the basis of the new

algorithms presented in this thesis. The chapter proceeds as follows: we first review

MALA, HMC, MHMC and QIHMC, we then proceed to discuss in Section 2.7 how

to improve these samplers via modified or shadow Hamiltonians, we then discuss how

one can automatically tune the parameters of these samplers in Section 2.8, and finally
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in Section 2.9, we conduct a review of coupling theory which will be employed when

reducing the variance of Hamiltonian chains using antithetic sampling.

2.3 Metropolis Adjusted Langevin Algorithm

The MALA is a MCMC method that incorporates first-order gradient information of

the target posterior to enhance the sampling behaviour of the MH algorithm [53, 59].

MALA reduces the random walk behaviour of MH via the use of Langevin dynamics

which are given as follows [53, 59]:

dwt =
1

2
∇w ln π(w)dt+ dZt (2.9)

where π(w) represents the unnormalised target distribution (which is the negative log-

likelihood), w is the position vector and Zt is a Brownian motion process at time t. As the

Langevin dynamics are in the form of a stochastic differential equation, we typically will

not be able to solve it analytically, and we need to use a numerical integration scheme.

The first-order Euler-Maruyama integration scheme is the commonly used integration

scheme for solving Langevin dynamics and the update equation is given as: [53, 59]:

wt+1 = wt +
ϵ2

2
∇w ln π(w) + ϵzt (2.10)

where ϵ is the integration step size and zt ∼ N (0, I).

The Euler-Maruyama integration scheme does not provide an exact solution to the

Langevin dynamics, and hence produces numerical integration errors. These errors re-

sult in detailed balance being broken, and one ends up not sampling from the correct

distribution. In order to ensure detailed balance, an MH acceptance step is required.

The transition probability density function of MALA is given as [59]:

K(w′|w) = N (γ(w), ϵ2I),

K(w|w′) = N (γ(w′), ϵ2I),

γ(w′) = w +
ϵ2

2
∇w ln π(w),

γ(w) = w′ +
ϵ2

2
∇w ln π(w′).

(2.11)
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where K(w′|w) and K(w|w′) are transition probability distributions, w is the current

state and w′ is the new proposed state. The acceptance rate of the MALA takes the

form:

min

[
1,

π(w′)K(w′|w)

π(w)K(w|w′)

]
(2.12)

It can be shown that MALA converges in the correct stationary by showing that it

satisfies the Fokker–Planck equation as in [53], or by following a similar approach to the

proof for MH in Theorem 2.2.1.

Unlike the MH algorithm, the MALA considers the first-order gradient data of the

density, which results in the algorithm converging to the stationary distribution at an

accelerated rate [53, 59]. However, the generated samples are still highly correlated.

Girolami and Caldehad [53] extend MALA from being on a Euclidean manifold to a

Riemannian manifold, and hence incorporating second-order gradient information of the

target. This approach showed considerable improvements on MALA, with an associated

increase in compute time.

In the following sections, we present Hamiltonian dynamics-based methods that ex-

plore the posterior distribution more efficiently than MALA.

2.4 Hamiltonian Monte Carlo

The HMC algorithm is composed of two steps: 1) the molecular dynamics step and 2)

the Monte Carlo step. The molecular dynamics step involves integrating Hamiltonian

dynamics, while the Monte Carlo step employs the MH algorithm to account for any

errors introduced by the numerical integrator used in the molecular dynamics step [41,

77, 4, 122, 65, 121, 127]. Note that if we could exactly solve the molecular dynamics

step, we would not need the Monte Carlo step.

HMC improves upon the MH [65] algorithm by utilising first-order gradient infor-

mation of the unnormalised target posterior. This gradient information is used to guide

HMC’s exploration of the parameter space [41, 127]. This necessities that the target

posterior function is differentiable and has support almost everywhere on RD, which is

the case for the majority of machine learning models of interest. In HMC, the position

vector w is augmented with auxiliary momentum variable p, which is typically chosen
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to be independent of w. The Hamiltonian H(w,p), which represents the total energy,

from this system is written as follows:

H(w,p) = U(w) + K(p) (2.13)

where U(w) is potential energy or the negative log-likelihood of the target posterior

distribution and K(p) is the kinetic energy defined by the kernel of a Gaussian with a

covariance matrix M [124]:

K(p) =
1

2
log
(
(2π)D|M|

)
+

pTM−1p

2
. (2.14)

Within this framework, the evolution of the physical system is governed by Hamil-

tonian dynamics [153, 124]. As the particle moves through time using Hamiltonian

dynamics, the total energy is conserved over the entire trajectory of the particle, with

kinetic energy being exchanged for potential energy and vice versa to ensure that the

Hamiltonian or total energy is conserved [153, 124]. As an illustration, consider a person

skating from position A to C as displayed in Figure 2.1. At position A, the person only

has potential energy and no kinetic energy, and they only have kinetic energy at point B.

At position C, they have both kinetic and potential energy. Throughout the movement

from A to C, the total energy will be conserved if the individual traverses the space

using Hamiltonian dynamics. This allows the individual to traverse long distances. This

energy conservation property of Hamiltonian dynamics is key to the efficiency of HMC

in exploring the target posterior.

The equations governing the Hamiltonian dynamics are defined by Hamilton’s equa-

tions in a fictitious time t as follows [121]:

dw

∂t
=

∂H(w,p)

∂p
;

dp

∂t
= −∂H(w,p)

∂w
. (2.15)

which can also be re-expressed as:

d

∂t

[
w

p

]
=

[
0 I

−I 0

][
∇wH(w, p)

∇pH(w, p)

]
(2.16)

The Hamiltonian dynamics satisfy the following important properties, which make it

ideal for efficiently generating distant proposals [17, 122]:
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Figure 2.1: Illustration of the conservation of the Hamiltonian (i.e., total energy) through

time as the skater moves from position A to C.

1. Conservation of energy: That is, the change of the Hamiltonian through time

is zero as illustrated in Figure 2.1. Mathematically:

∂H(w,p)

∂t
=

∂H(w,p)

∂w

∂w

∂t
+

∂H(w,p)

∂p

∂p

∂t

=
∂H(w,p)

∂w

(
∂H(w,p)

∂p

)
+

∂H(w,p)

∂p

(
−∂H(w,p)

∂w

)
=⇒ ∂H(w,p)

∂t
= 0

(2.17)

2. Reversibility: That is, the dynamics can be moved forward in time by a certain

amount and backwards in time by the same amount to get back to the original

position. Mathematically: Let Φt,H

[
w0

p0

]
be the unique solution at time t of

equation (2.15) with initial position

[
w0

p0

]
. As the Hamiltonian in equation (2.13)

is time-homogeneous, we have that:

Φt,H ◦ Φs,H

[
w0

p0

]
= Φt+s,H

[
w0

p0

]

=⇒ Φ−t,H ◦ Φt,H

[
w0

p0

]
=

[
w0

p0

] (2.18)
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3. Volume preservation: This property serves to simplify the MH step in HMC so

that it does not require a Jacobian term, as volume preservation means that the

Jacobian term is equal to one [2, 124]. There have also been extensions of HMC

that do no not preserve volume [153].

These three properties are significant in that conservation of energy allows one to de-

termine if the approximated trajectory is diverging from the expected dynamics, re-

versibility of the Hamiltonian dynamics ensures reversibility of the sampler, and volume

preservation simplifies the MH acceptance step [68, 124].

The differential equation in equation (2.15) and (2.16) cannot be solved analytically

in most instances. This necessitates the use of a numerical integration scheme. As the

Hamiltonian in equation (2.13) is separable, to traverse the space, we can employ the

leapfrog integrator [41, 121]. The position and momentum update equations for the

leapfrog integration scheme are:

pt+ ϵ
2
= pt +

ϵ

2

∂H (wt,pt)

∂w

wt+ϵ = wt + ϵM−1pt+ ϵ
2

pt+ϵ = pt+ ϵ
2
+

ϵ

2

∂H
(
wt+ϵ,pt+ ϵ

2

)
∂w

.

(2.19)

Algorithm 2 Hamiltonian Monte Carlo Algorithm

Input: N , ϵ, L, winit, H(w, p)

Output: (w)Nm=0

1: w0 ← winit

2: for m→ 1 to N do

3: pm−1 ∼ N (0,M) ← momentum refreshment

4: pm, wm = Leapfrog(pm−1, wm−1, ϵ, L, H) in equation (2.19)

5: δH = H(wm−1, pm−1)−H(wm, pm)

6: αm = min (1, exp (δH))

7: um ∼ Unif(0, 1)

8: wm = Metropolis(αm, um, wm, wm−1) in equation (2.20)

9: end for
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Due to the discretisation errors arising from the numerical integration, the Monte

Carlo step in HMC utilises the MH algorithm in which the parameters w∗ proposed by

the molecular dynamics step are accepted with probability:

P(accept w∗) = min

(
1,

exp (−H(w∗,p∗))

exp (−H(w,p))

)
. (2.20)

Algorithm 2 shows the pseudo-code for the HMC where ϵ is the discretisation step size

and L is the trajectory length. The overall HMC sampling process follows a Gibbs

sampling scheme, where we fully sample the momentum (see line 3 in Algorithm 2) and

then sample a new set of parameters given the drawn momentum.

It can be shown that MALA is a special case of HMC with L = 1 [53]. Although

HMC improves on MH and MALA, it still produces relatively high correlated samples

[156, 77]. In the following sections we consider methods that improve on the sampling

efficiency of HMC in various ways.

2.5 Magnetic Hamiltonian Monte Carlo

Magnetic Hamiltonian Monte Carlo

Nilesh Tripuraneni 1 Mark Rowland 2 Zoubin Ghahramani 2 3 Richard Turner 2

Abstract
Hamiltonian Monte Carlo (HMC) exploits
Hamiltonian dynamics to construct efficient pro-
posals for Markov chain Monte Carlo (MCMC).
In this paper, we present a generalization of
HMC which exploits non-canonical Hamiltonian
dynamics. We refer to this algorithm as magnetic
HMC, since in 3 dimensions a subset of the dy-
namics map onto the mechanics of a charged par-
ticle coupled to a magnetic field. We establish
a theoretical basis for the use of non-canonical
Hamiltonian dynamics in MCMC, and construct
a symplectic, leapfrog-like integrator allowing
for the implementation of magnetic HMC. Fi-
nally, we exhibit several examples where these
non-canonical dynamics can lead to improved
mixing of magnetic HMC relative to ordinary
HMC.

1. Introduction
Probabilistic inference in complex models generally re-
quires the evaluation of intractable, high-dimensional inte-
grals. One powerful and generic approach to inference is to
use Markov chain Monte Carlo (MCMC) methods to gen-
erate asymptotically exact (but correlated) samples from a
posterior distribution for inference and learning. Hamilto-
nian Monte Carlo (HMC) (Duane et al., 1987; Neal, 2011)
is a state-of-the-art MCMC method which uses gradient in-
formation from an absolutely continuous target density to
encourage efficient sampling and exploration. Crucially,
HMC utilizes proposals inspired by Hamiltonian dynamics
(corresponding to the classical mechanics of a point parti-
cle) which can traverse long distances in parameter space.
HMC, and variants like NUTS (which eliminates the need
to hand-tune the algorithm’s hyperparameters), have been
successfully applied to a large class of probabilistic infer-
ence problems where they are often the gold standard for

1UC Berkeley, USA 2University of Cambridge, UK
3Uber AI Labs, USA. Correspondence to: Nilesh Tripuraneni
<nileshtrip@gmail.com>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

(asymptotically) exact inference (Neal, 1996; Hoffman &
Gelman, 2014; Carpenter et al., 2016).

Figure 1. Example sample paths for standard HMC (left) and
MHMC (right) for an isotropic Gaussian target distribution.

In this paper, we first review important properties of Hamil-
tonian dynamics, namely energy-preservation, symplectic-
ity, and time-reversibility, and derive a more general class
of dynamics with these properties which we refer to as non-
canonical Hamiltonian dynamics. We then discuss the re-
lationship of non-canonical Hamiltonian dynamics to well-
known variants of HMC and propose a novel extension of
HMC. We refer to this method as magnetic HMC (see Al-
gorithm 1) since it corresponds to a particular subset of the
non-canonical dynamics that in 3 dimensions map onto to
the mechanics of a charged particle coupled to a magnetic
field – see Figure 1 for an example of these dynamics. Fur-
thermore, we construct an explicit, symplectic, leapfrog-
like integrator for magnetic HMC which allows for an effi-
cient numerical integration scheme comparable to that of
ordinary HMC. Finally, we evaluate the performance of
magnetic HMC on several sampling problems where we
show how its non-canonical dynamics can lead to improved
mixing. The proofs of all results in this paper are presented
in the corresponding sections of the Appendix.

2. Markov chain Monte Carlo
Given an unnormalized target density ρ(θ) defined on Rd,
an MCMC algorithm constructs an ergodic Markov chain
(Θn)n∈N such that the distribution of Θn converges to ρ
(e.g. in total variation) (Robert & Casella, 2004). Often, the
transition kernel of such a Markov chain is specified by the
Metropolis-Hastings (MH) algorithm which (i) given the
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Figure 2.2: Illustration of the sample paths for HMC (on the left) and MHMC (on the right)

for a Gaussian distribution with a diagonal covariance matrix. This illustration is taken from

Tripuraneni et al. [156].

MHMC is a special case of non-canonical HMC using a symplectic structure correspond-

ing to motion of a particle in a magnetic field [156, 26]. MHMC extends HMC by
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endowing it with a magnetic field, which results in non-canonical Hamiltonian dynamics

[156]. This magnetic field offers a significant amount of flexibility over HMC and encour-

ages more efficient exploration of the posterior, which results in faster convergence and

lower auto-correlations in the generated samples [156, 59, 112]. MHMC uses the same

Hamiltonian as in HMC, but exploits non-canonical Hamiltonian dynamics where the

canonical matrix now has a non-zero element on the diagonal. The MHMC dynamics

are given as:

d

∂t

[
w

p

]
=

[
0 I

−I G

][
∇wH(w, p)

∇pH(w, p)

]
(2.21)

whereG is a skew-symmetric 2 (or antisymmetric ) matrix and is the term that represents

the magnetic field. This also shows that MHMC only differs from HMC dynamics in

equation (2.16) by G being non-zero. When G = 0, MHMC and HMC have the same

dynamics. Tripuraneni et al. [156] prove that in three dimensions, these dynamics are

Newtonian mechanics of a charged particle in a magnetic field. How this magnetic field

relates to the force field (e.g. are they orthogonal?) will determine the extent of the

sampling efficiency of MHMC over HMC [59]. Figure 2.2 illustrates the vastly different

motions that can be generated by MHMC when compared to HMC on an isotropic

Gaussian distribution [156].

As with HMC, these non-canonical dynamics cannot be integrated exactly, and we

resort to a numerical integration scheme with a MH acceptance step to ensure detailed

balance. The update equations for the leapfrog-like integration scheme for MHMC, for

the case where M = I, are given as [156]:

pt+ ϵ
2
= pt +

ϵ

2

∂H (wt,pt)

∂w

wt+ϵ = wt +G−1 (exp (Gϵ)− I)pt+ ϵ
2

pt+ ϵ
2
= exp (Gϵ)pt+ ϵ

2

pt+ϵ = pt+ ϵ
2
+

ϵ

2

∂H
(
wt+ϵ,pt+ ϵ

2

)
∂w

.

(2.22)

The above equations show that we can retrieve the update equations of traditional

HMC by first performing a Taylor matrix expansion for the exponential and then sub-

2That is: GT = −G
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stituting G = 0. The pseudo-code for the MHMC algorithm is shown in Algorithm 3. It

is important to note that we need to flip the sign of G (see lines 8-15 in Algorithm 3),

as we do the sign of p in HMC, so as to render the MHMC algorithm reversible. In this

sense, we treat G as being an auxiliary variable in the same fashion as p [156]. In this

setup, p would be Gaussian while G would have a binary distribution [156] and only

taking on the values ±G0, with G0 being specified by the user. Exploring more complex

distributions for G is still an open area of research.

Although MHMC requires matrix exponentiation and inversion as shown in equation

(2.22), this only needs to be computed once upfront and stored [156]. Following this

approach results in computation time that is comparable to HMC, which becomes more

important in models that have many parameters such as neural networks.

As G only needs to be antisymmetric, there is no guarantee that it will be invert-

ible. In this case, we need first to diagonalise G and separate its invertible or singular

components [156]. As G is strictly antisymmetric, we can express it as iH where H is

a Hermitian matrix, and can thus be diagonilised over the space of complex numbers C
as [156]:

G = [WΛ W0]

[
Λ 0

0 0

][
W T

Λ

W T
0

]
(2.23)

where Λ is a diagonal submatrix consisting of the nonzero eigenvalues of G, columns of

WΛ, and W0 are the eigenvectors of G corresponding to its nonzero and zero eigenvalues,

respectively. This leads to the following update for w in equation (2.22) [156]:

wt+ϵ = wt + [WΛ W0]

[
Λ−1 (exp(Λt)− I) 0

0 I

][
W T

Λ

W T
0

]
pt+ ϵ

2
(2.24)

It is worthwhile noting that when G = 0 in equation (2.24) then the flow map will

reduce to an Euler translation as in traditional HMC [156].

2.6 Quantum-Inspired Hamiltonian Monte Carlo

Inspired by the energy-time uncertainty relation from quantum mechanics, Liu and

Zhang [91] developed the QIHMC algorithm which sets M to be random with a proba-

bility distribution rather than a fixed mass as is the case in HMC [127]. That is, QIHMC
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sets the covariance mass matrix M in HMC in equation (2.14) to be a stochastic process

[91]. The authors show that QIHMC outperforms HMC, RMHMC and the NUTS [73]

on a variety of spiky and multi-modal distributions which occur in sparse modeling via

bridge regression, image denoising and BNN pruning, and furthermore leaves the target

distribution invariant. The proof that QIHMC leaves the target distribution invariant

utilises Bayes theorem to marginalize out the random mass matrix, and can be found in

Liu and Zang [91].

Algorithm 3 Magnetic Hamiltonian Monte Carlo Algorithm

Input: N , ϵ, L, winit, H(w, p), G

Output: (w)Nm=0

1: w0 ← winit

2: for m→ 1 to N do

3: pm−1 ∼ N (0,M) ← momentum refreshment

4: pm, wm = Integrator(pm−1, wm−1, ϵ, L, G, H) in equation (2.22)

5: δH = H(wm−1, pm−1)−H(wm, pm)

6: αm = min (1, exp (δH))

7: um ∼ Unif(0, 1)

8: if αm > um then

9: wm = wm

10: G = −G, pm = −pm
11: else

12: wm = wm−1

13: end if

14: pm = −pm ← flip momentum

15: G = −G ← flip magnetic field

16: end for

A key feature of QIHMC is that it requires very little modification to existing HMC

implementations, which makes it straightforward to incorporate into already existing

HMC code. HMC is typically inefficient in sampling from spiky and multi-modal dis-

tributions [91]. Setting the mass matrix M to be random alleviates this drawback of
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HMC.

Suppose it is straightforward to generate samples from the distribution of the mass

matrixM ∼ PM. In that case, there will be very little additional computational overhead

in QIHMC, but with potentially significant improvements in target exploration [91]. It

is worth noting that HMC is a special case of QIHMC when the probability distribution

over the mass matrix is the Dirac delta function [91]. This feature illustrates how closely

related these two algorithms are.

As the Hamiltonian in QIHMC is the same as in HMC, we integrate the dynamics

using the leapfrog scheme outline in equation (2.19). The only difference with HMC is

that the mass matrix of the auxilary momentum variable is chosen from a user-specified

distribution for each generation of a new sample. The pseudo-code for the QIHMC

algorithm is shown in Algorithm 4. Line 3 in Algorithm 4 is the only difference between

QIHMC and HMC.

Algorithm 4 Quantum-Inspired Hamiltonian Monte Carlo Algorithm

Input: N , ϵ, L, winit, H(w, p)

Output: (w)Nm=0

1: w0 ← winit

2: for m→ 1 to N do

3: M ∼ PM(M) ← only difference with HMC in Algorithm 2

4: pm−1 ∼ N (0,M) ← momentum refreshment

5: pm, wm = Leapfrog(pm−1, wm−1, ϵ, L, H) in equation (2.19)

6: δH = H(wm−1, pm−1)−H(wm, pm)

7: αm = min (1, exp (δH))

8: um ∼ Unif(0, 1)

9: wm = Metropolis(αm, um, wm, wm−1) in equation (2.20)

10: end for

A fundamental limitation of QIHMC is what probability distribution PM over M to

use, as well as the potential tuning of the parameters of the chosen probability distri-

bution. An improperly chosen distribution could result in wasted computation without

any significant improvements to sampling performance. Liu and Zhang [91] employ a
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log-normal distribution for the diagonal elements of the mass matrix, but do not pro-

vide a mechanism or a heuristic to tune the parameters to obtain optimal results. The

selection of the optimal PM is still an open research problem.

2.7 Separable Shadow Hamiltonian Hybrid Monte

Carlo

The leapfrog integrator for HMC only preserves the Hamiltonian, that is, the total

energy of the system, up to second order O(ϵ2) [77, 155, 155]. This leads to a larger

than expected value for δH in line 5 of Algorithm 2 for long trajectories, which results

in more rejections in the MH step in line 8 of Algorithm 2. To increase the accuracy

of the preservation of the total energy to higher orders, and consequently maintain high

acceptance rates, one could: 1) decrease the step size and thus only consider short

trajectories, or 2) utilise numerical integration schemes which preserve the Hamiltonian

to a higher order, 3) or a combination of 1) and 2). These three approaches typically

lead to a high computational burden, which is not ideal [68, 140].

An alternative strategy is to assess the error produced by feeding the solution back-

ward through [63, 99] the leapfrog integration scheme in equation (2.19), to derive a

modified Hamiltonian whose energy is preserved to a higher-order by the integration

scheme than the true Hamiltonian [99]. This modified Hamiltonian is also referred to as

the shadow Hamiltonian. We then sample from the shadow density and correct for the

induced bias via importance sampling as is done in [68, 155, 77, 140], among others.

Shadow Hamiltonians are perturbations of the Hamiltonian that are by design ex-

actly conserved by the numerical integrator [140, 77, 112, 99]. In the case of shadow

Hamiltonian Hybrid Monte Carlo, we sample from the importance distribution defined

by the shadow Hamiltonian [99]:

π̂ ∝ exp
(
− H̃[k](w,p)

)
(2.25)

where H̃[k] is the shadow Hamiltonian defined using backward error analysis of the nu-

merical integrator up to the kth order [99]. These modified densities can be proved to be

Hamiltonian for symplectic integrators such as the leapfrog integrator [155, 77, 99, 112].
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In this thesis, we focus on a fourth-order truncation of the shadow Hamiltonian under

the leapfrog integrator. Since the leapfrog is second-order accurate (O2), the fourth-

order truncation is conserved with higher accuracy (O4) than the true Hamiltonian,

which should improve the acceptance rate. In Theorem 2.7.1, we derive the fourth-order

shadow Hamiltonian corresponding to the leapfrog integrator.

Theorem 2.7.1. Let H : Rd × Rd = R be a smooth Hamiltonian function. The

fourth–order shadow Hamiltonian function Ĥ : Rd×Rd = R corresponding to the leapfrog

integrator of HMC is given by:

Ĥ(w,p) = H(w,p) +
ϵ2

12
[KpUwwKp]−

ϵ2

24
[UwKppUw] +O(ϵ4) (2.26)

Proof. The Hamiltonian vector field:
−→
H =

−→
A +

−→
B will generate the exact flow corre-

sponding to exactly simulating the HMC dynamics [156]. We obtain the shadow density

by making use of the separability of the Hamiltonian in equation (2.13). The leapfrog

integration scheme in equation (2.19) splits the Hamiltonian as:

H(w,p) = H1(w) +H2(p) +H1(w) (2.27)

and exactly integrates each sub-Hamiltonian. Through the Baker-Campbell-Hausdorff

(BCH) formula, we obtain [64]:

Φϵ,H = Φϵ,H1(w) ◦ Φϵ,H2(p) ◦ Φϵ,H1(w)

= exp
( ϵ
2

−→
B
)
◦ exp

(
ϵ
−→
A
)
◦ exp

( ϵ
2

−→
B
)

= H(w,p) +
ϵ2

12
{K, {K,U}} − ϵ2

24
{U, {U,K}}+O(ϵ4)

(2.28)

where the canonical Poisson brackets are defined as:

{f, g} = [∇wf,∇pf ]

[
0 I

−I 0

]
[∇wg,∇pg]

T

= −∇pf∇wg +∇wf∇pg

(2.29)

The shadow Hamiltonian for the leapfrog integrator is then:

Ĥ(w,p) = H(w,p) +
ϵ2

12
[KpUwwKp]−

ϵ2

24
[UwKppUw] +O(ϵ4) (2.30)

It is worth noting that the shadow Hamiltonian in (2.30) is conserved to fourth-order

[68, 155, 140].
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Izaguirre and Hampton [77] utilised the shadow Hamiltonian in Theorem 2.7.1 to

derive the Shadow Hamiltonian Monte Carlo (SHMC) algorithm, which produce better

efficiency and acceptance rates when compared to HMC. It is worth noting that the

shadow Hamiltonian in Theorem 2.7.1 is not separable, i.e., the terms that depend on

w and p can not be separated. The non-separable shadow Hamiltonian is not ideal as

it requires computationally expensive methods for generating the momenta. Sweet et

al. improve on the SHMC method by introducing the S2HMC algorithm which utilises

a processed leapfrog integrator to create a separable Hamiltonian [155, 99, 112]. The

separable Hamiltonian in S2HMC is as follows:

H̃(w,p) = U(w) + K(p) +
ϵ2

24
UT

wM
−1Uw +O(ϵ4) (2.31)

which is obtained by substituting a canonical transformation (ŵ, p̂) = X (w,p) into

(2.30). We provide a detailed derivation of the separable Hamiltonian in equation (2.31)

in Appendix B.

The canonical transformation required to generate the separable Hamiltonian in

S2HMC is a transformation of both the position w and the momenta p variables so as to

remove the mixed terms in the shadow Hamiltonian in Theorem 2.7.1. This transforma-

tion or map should commute with reversal of momenta and should preserve phase space

volume so that the resulting S2HMC algorithm satisfies detailed balance [155, 99, 112].

Propagation of positions and momenta on this shadow Hamiltonian is performed after

performing this reversible mapping (ŵ, p̂) = X (w,p). The canonical transformation

X (w,p) is given as [155, 99, 112]:

p̂ = p− ϵ2

12
UwwKp +O(ϵ4)

ŵ = w +
ϵ2

12
KppUw +O(ϵ4)

(2.32)

where (ŵ, p̂) is found through fixed point3 iterations as:

p̂ = p− ϵ

24

[
Uw(w + ϵM−1p̂)− Uw(w − ϵM−1p̂)

]
ŵ = w +

ϵ2

24
M−1

[
Uw(w + ϵM−1p̂) + Uw(w − ϵM−1p̂)

] (2.33)

3Hessian approximated as: UwwKp = 1
2ϵ

[
Uw(w + ϵM−1p̂)−Uw(w − ϵM−1p̂)

]
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After the leapfrog is performed, this mapping is reversed using post-processing via fol-

lowing fixed point iterations:

w = ŵ − ϵ2

24
M−1

[
Uw(w + ϵM−1p̂) + Uw(w − ϵM−1p̂)

]
p = p̂+

ϵ

24

[
Uw(w + ϵM−1p̂)− Uw(w − ϵM−1p̂)

] (2.34)

Theorem 2.7.2 guarantees that S2HMC, which uses the processed leapfrog integrator,

satisfies detailed balance and thus leaves the target density invariant.

Theorem 2.7.2. S2HMC satisfies detailed balance.

Proof. To prove that S2HMC satisfies detailed balance, we need to show that the pro-

cessing map (ŵ, p̂) = X (w,p) commutes with reversal of momenta and preserves phase

space volume. This will ensure that the resulting processed leapfrog integrator used in

S2HMC is both sympletic and reversible. The detailed proof of this is provided in Sweet

et al. [155], and we present this in Appendix C for ease of reference.

Algorithm 5 Separable Shadow Hamiltonian Hybrid Monte Carlo Algorithm

Input: N , ϵ, L, winit, H(w, p), H̃(w, p)

Output: (w)Nm=0, importance weights = (b)Nm=0

1: w0 ← winit

2: for m→ 1 to N do

3: pm−1 ∼ N (0,M) ← momentum refreshment

4: Apply the pre-processing mapping (ŵ, p̂) = X (w,p) in equation (2.33)

5: pm, wm = Leapfrog(pm−1, wm−1, ϵ, L, H̃) in equation (2.19)

6: Apply the post-processing mapping (w,p) = X−1(ŵ, p̂) in equation (2.34)

7: δH = H̃(wm−1, pm−1)− H̃(wm, pm)

8: αm = min (1, exp (δH))

9: um ∼ Unif(0, 1)

10: wm = Metropolis(α, um, wm, wm−1)

11: bm = exp(−(H(wm, pm)− H̃(wm, pm)))

12: end for
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Once the samples are obtained from S2HMC as depicted in Algorithm 5, importance

weights are calculated to allow for the use of the shadow canonical density rather than

the true density. These weights are based on the differences between the true and shadow

Hamiltonians as:

bm = exp[−(H(w,p)− Ĥ(w,p))]. (2.35)

Expectations of f(w) are then computed as a weighted average. It is important to

note that the weights in equation (2.35) should always be taken into account in every

performance measure utilised to asses the performance of S2HMC. This is because non-

uniform weights impact the overall utility of importance samplers.

Lines 4 to 6 in Algorithm 5 represent the processed leapfrog integrator. This scheme

degenerates to the traditional leapfrog integration scheme when the shadow Hamiltonian

is equal to the true Hamiltonian.

2.8 No-U-Turn Sampler Algorithm

We have yet to address how one selects the step size ϵ and trajectory length L parameters

of samplers based on Hamiltonian dynamics such as HMC, MHMC and S2HMC. These

parameters significantly influence the sampling performance of the algorithms [73]. A

significant step size typically results in most of the produced samples being rejected,

while a small step size results in slow convergence and mixing of the chain [73]. When

the trajectory length is too small, then the method displays random walk behaviour, and

when the trajectory length is considerable, the algorithm wastes computational resources

[73]. The NUTS algorithm of Hoffman and Gelman [73] automates the tuning of the

HMC step size and trajectory length parameters.

In NUTS, the step size parameter is tuned through primal-dual averaging during an

initial burn-in phase. A user specified MH acceptance rate δ is targeted via primal-dual

averaging given as [97, 8]:

ϵt+1 ← µ−
√
t

γ

1

t+ t0

t∑
i=1

Hi

ϵ̄t+1 ← ηtϵt+1 + (1− ηt)ϵ̄t

(2.36)
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where µ is a free parameter that ϵt gravitates to, γ controls the convergence towards

µ, ηt is a decaying rate of adaptation in line with [8], and Ht is the difference between

the target acceptance rate and the actual acceptance rate [99, 73]. The primal-dual

averaging updates are such that [99]:

E[Ht] = E[δ − αt] = 0. (2.37)

This has the effect of updating the step size towards the target acceptance rate δ. Hoff-

man and Gelman [73] found that setting µ = log(10ϵ0), ϵ̄0 = 1, H̄0 = 0, γ = 0.05,

t0 = 10, κ = 0.75 with ϵ0 being the initial step size results in good performance across

various target posterior distributions. These are the settings that we utilise in this thesis

with ϵ0 = 0.0001.

In the NUTS methodology, the trajectory length parameter is automatically tuned

by iteratively doubling the trajectory length until the Hamiltonian becomes infinite or

the chain starts to trace back [98, 2]. That is, when the last proposed position state w∗

starts becoming closer to the initial position w. This happens if: (w∗−w)×p ≤ 0. This

approach, however, violates the detailed balance condition. To overcome the violation of

detailed balance in NUTS, a path of states B is generated such that its size is determined

by the termination criterion [2, 73]. The set B has the following property, which is

required for detailed balance [2, 73]:

P (B|z) = P (B|z′) ∀z, z′ ∈ B. (2.38)

where z = (w,p) is the current state. That is, the probability of generating B, starting
from any of its members is the same [2, 73]. Having B, the current state z and a slice

variable u that is uniformly drawn from the interval [0, πZ(z)], a set of chosen states C
[2, 73]:

C := {z′ ∈ B s.t πZ(z) ≥ u} (2.39)

is constructed from which the next state is drawn uniformly.

Algorithm 6 shows the pseudo-code for NUTS with dual averaging, showing how the

trajectory length L and the step size ϵ are set automatically. The NUTS algorithm has

a main while loop that contains the termination criterion and is presented in Algorithm

6, as well as an algorithm for iteratively doubling the trajectory length which is shown
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in Algorithm 7. The overall methodology of generating a single sample from NUTS can

be summarised as follows, with the reader being referred to Hoffman and Gelman [73]

for more information on the NUTS algorithm:

1. Set the initial states - which is the Input step in Algorithm 6

2. Generate the auxiliary momentum and slice variables as shown in line 2 of Algo-

rithm 6

3. Generate the set of chosen states C via the doubling procedure in Algorithm 7.

Note the use of the leapfrog integration scheme in line 2 in Algorithm 7

4. Each proposal is accepted or rejected in line 12 of Algorithm 6. Note that this is

not the typical Metropolis acceptance probability as the proposal is chosen from

multiple candidates in C

5. Update the step size via dual averaging in lines 17 - 21 in Algorithm 6. Note that

this step size is no longer updated post the burn-in period which is indicated by

Madapt.

One then repeats steps 2 through 5 to generate the required number of samples N .
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Algorithm 6 No-U-Turn Sampler With Primal-Dual Averaging Algorithm

Input: M , Madapt, ϵ0, w
0, µ = log(10ϵ0), ϵ̄0 = 1, H̄0 = 0, γ = 0.05, t0 = 10,

κ = 0.75 and ϵ0 = 0.0001

Output: (w)Nm=0

1: for m→ 1 to M do

2: pm−1 ∼ N (0, I), u ∼ Unif[0, exp (−H(wm−1, pm−1))]

3: w− = wm−1, w+ = wm−1, w− = wm−1, p− = pm−1, p+ = pm−1, j = 0, n = 1,

s = 1.

4: while s =1 do

5: v ∼ Unif[−1, 1]
6: if v = −1 then

7: w−, p−,−,−, w′, p′, n′, s′, α, nα =BuildTree(w−, p−, u, v, j, ϵm−1, w
m−1, pm−1)

in Algorithm 7

8: else

9: −,−, w+, p+, w′, p′, n′, s′, α, nα =BuildTree(w+, p+, u, v, j, ϵm−1, w
m−1, pm−1)

in Algorithm 7

10: end if

11: if s′ = 1 then

12: With prob. min(1, n
′

n
), set wm = w′, pm = p′

13: end if

14: n = n+ n′, j = j + 1

15: s = s′I[(w+ − w−)p− ≥ 0]I[(w+ − w−)p+ ≥ 0]

16: end while

17: if m < Madapt then

18: H̄m =
(
1− 1

m+t0

)
H̄m−1 +

1
m+t0

(δ − αm)

19: log ϵm = µ−
√
m
γ
H̄m, log ϵ̄m = m−κ log ϵm + (1−m−κ) log ϵ̄m−1

20: else

21: ϵm = ϵ̄Madapt

22: end if

23: end for
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Algorithm 7 Algorithm For Iteratively Doubling The Trajectory Length

function BuildTree(w, p, u, v, j, ϵ, w0, p0)

Output: w−, p−, w+, p+, w′, p′, n′, s′, α′, n′
α

1: if j = 0 then

2: w′, p′ = Leapfrog(p, w, ϵv)

3: n′ = I[u < exp(−H(w′, p′)], s′ = I[u < exp(∆max −H(w′, p′)]

4: nα = 1, α = min (1, exp(H(w0, p0)−H(w′, p′)))

5: return w′, p′, w′, p′, w′, p′, n′, s′, α, nα

6: else

7: w−,− , w+,+ , w′, p′, n′, s′, α′, n′
α = BuildTree(w, p, u, v, j − 1, ϵ, w0, p0)

8: if s’=1 then

9: if v = −1 then

10: w−, p−,−,−, w′′, p′′, n′′, s′′, α′′, n′′
α = BuildTree(w−, p−, u, v, j − 1, ϵ, w0, p0)

11: else

12: −,−, w+, p+, w′′, p′′, n′′, s′′, α′′, n′′
α = BuildTree(w+, p+, u, v, j − 1, ϵ, w0, p0)

13: end if

14: With prob. n′

n′+n′′ , set w
′ = w′′, p′ = p′′

15: α′ = α′ + α′′, n′ = n′ + n′′, n′
α = n′

α + n′′
α

16: s′ = s′′I[(w+ − w−)p− ≥ 0]I[(w+ − w−)p+ ≥ 0]

17: end if

18: return w−, p−, w+, p+, w′, p′, n′, s′, α′, n′
α

19: end if

2.9 Antithetic Hamiltonian Monte Carlo

The coupling of MCMC chains has been used as a theoretical tool to prove convergence

behaviour of Markov chains [146, 80, 79, 78, 20]. Johnson [80] presents a convergence

diagnostic for MCMC methods that is based on coupling a Markov chain with another

chain that is periodically restarted from fixed parameter values. The diagnostic provides

an informal lower bound on the ESS rates of the MCMC chain. Jacob et al. [78] remove

the bias in MCMC chains by using couplings of Markov chains using a telescopic sum
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argument. The resulting unbiased estimators can then be computed independently in

parallel. More recently, MCMC couplings have been studied for HMC with Heng and

Jacob [69] proposing an approach that constructs a pair of HMC chains that are coupled

in such a way that they meet after some random number of iterations. These chains can

then be combined to create unbiased chains. Unlike the approach of Heng and Jacob

[69] and other authors [136, 78], Bou-Rabee et al. [20] present a new coupling algorithm

where the momentum variable is not shared between the coupled chains.

In this thesis, we explore methods that use the results from coupling theory to create

anti-correlated HMC based chains where the momentum variable is shared between the

chains. We create these anti-correlated chains by running the second chain with the

auxiliary momentum variable having the opposite sign of the momentum of the first

chain. These chains also share the random uniform variable in the MH acceptance step.

When these two chains anti-couple strongly, taking the average of the two chains results

in estimators that have lower variance, or equivalently, these chains produce samples

that have higher ESSs than their non-antithetic counterparts.

The work that is closely related to ours is the recent article by Piponi et al. [136],

where the authors introduce the antithetic HMC variance reduction technique. The

antithetic HMC samplers have an advantage over antithetic Gibbs samplers. Antithetic

HMC methods apply to problems where conditional distributions are intractable and

where Gibbs sampling may mix slowly [136]. The pseudo-code for the antithetic HMC

method of Piponi et al. is shown in Algorithm 8. The difference between the antithetic

HMC algorithm and the original HMC method is that the momentum variable (see line

3 and 4 in Algorithm 8) and the uniform random variable in the MH acceptance step

(see line 13 and 14 in Algorithm 8) are shared between the two chains.

Suppose we have two random variables X and Y , that are not necessarily indepen-

dent, with the same marginal distribution U , we have that:

Var

[
f(X) + f(Y )

2

]
=

1

4
[Varf(X) + Varf(Y )] +

1

2
× Cov [f(X), f(Y )] . (2.40)

When f(X) and f(Y ) are negatively correlated, the average of the two random vari-

ables will produce a lower variance than the average of two independent variables. This

equation forms the basis for the antithetic sampling algorithms that we introduce in this
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thesis.

Algorithm 8 Antithetic Hamiltonian Monte Carlo Algorithm

Input: N , ϵ, L, wx
init, w

y
init, H(w, p)

Output: (wx)Nm=0, (w
y)Nm=0

1: wx
0 ← wx

init

2: wy
0 ← wy

init

3: for m→ 1 to N do

4: pxm−1 ∼ N (0,M)

5: pym−1 = −pxm−1 ← momentum shared between the two chains

6: pxm, w
x
m = Leapfrog(pxm−1, w

x
m−1, ϵ, L, H)

7: pym, w
y
m = Leapfrog(pym−1, w

y
m−1, ϵ, L, H)

8: δHx = H(wx
m−1, p

x
m−1)−H(wx

m, p
x
m)

9: δHy = H(wy
m−1, p

y
m−1)−H(wy

m, p
y
m)

10: αx
m = min (1, exp (δHx))

11: αy
m = min (1, exp (δHy))

12: um ∼ Unif(0, 1) ← uniform random variable shared in line 13 and 14

below

13: wx
m = Metropolis(αx

m, um, w
x
m, w

x
m−1)

14: wy
m = Metropolis(αy

m, um, w
y
m, w

y
m−1)

15: end for

The full benefit of antithetic sampling is most significant when the target distribution

U(w) is symmetrical about some vector [47, 136]. For the majority of target distribu-

tion of interest to machine learning researchers, the symmetry holds only approximately

[136]. The approximate symmetry results in approximate anti-coupling; that is, we will

not observe perfect anti-correlation in practice as would be the case ifU(w) was symmet-

ric. However, the approximate anti-coupling nonetheless still provides decent variance

reduction in practice [136]. We rely on these results to propose new antithetic versions
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of MHMC and S2HMC later in this thesis.

2.10 Conclusion

In this chapter, we presented a review of the MCMC methods that form the core of the

algorithms that we propose in this thesis. In the following chapters, we will introduce

new MCMC methods and apply the Bayesian inference framework in domains that are

socially relevant within the South African context.



Chapter 3

Sampling Benchmarks, Application

Areas and Performance Metrics

3.1 Introduction

This chapter outlines the benchmark problems, datasets, and performance metrics that

we use to assess the performance of the novel MCMC algorithms that we propose in

this thesis. We first outline the benchmark target posterior distributions being the Ba-

nana shaped distribution, multivariate Gaussian distributions of varying dimensionality,

and Neal’s [123] funnel density. We then consider real-world financial market datasets

modelled using Merton [100] Jump-Diffusion Process (JDP)s, and benchmark datasets

modelled using Bayesian Logistic Regression (BLR) and BNNs. Furthermore, we intro-

duce into the literature a new real-world and public interest dataset on the South African

municipal financial statement audit outcomes. This dataset provides significant insight

into the financial stability of South African local government entities. We perform an

exploratory data analysis using a SOM to identify the key financial ratios when modeling

audit opinions. Our analysis using the SOM shows that the current ratio, debt to total

operating revenue and the net surplus profit margin are important financial ratios when

modelling audit outcomes of South African municipalities. The material in this chapter

has been published in the following works:

• Mongwe, W.T. and Malan, K.M., 2020. A survey of automated financial state-

43
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ment fraud detection with relevance to the South African context. South African

Computer Journal, vol. 32, no. 1, pp. 74-112.

• Mongwe, W.T. and Malan, K.M., 2020. The Efficacy of Financial Ratios for

Fraud Detection Using Self Organising Maps. In 2020 IEEE Symposium Series on

Computational Intelligence (SSCI).pp. 1100-1106. IEEE.

3.2 Benchmark Problems and Datasets

In this section, we present the benchmark posterior distributions that we consider in

this thesis. These benchmark target posterior densities have been extensively used in

the literature [53, 140, 156, 116, 68, 113, 112], including in the seminal work of Girolami

and Caldehead [53]. We also present the benchmark datasets that we model using JDPs,

BLR and BNNs respectively.

3.2.1 Banana shaped distribution

The Banana shaped density of Haario et al. [62] is a 2-dimensional non-linear target and

provides an illustration of a distribution with significant ridge-like structural features

that commonly occur in non-identifiable models [62, 140, 68]. The likelihood and prior

distributions are as follows:

y|w ∼ N (w1 + w2
2 = 1, σ2

y), w1, w2 ∼ N (0, σ2
w) (3.1)

We generated one hundred data points for y with σ2
y = 4 and σ2

w = 1. Due to indepen-

dence of the data and parameters, the posterior distribution is proportional to:

i=N∏
i=1

p(yk|w)p(w1)p(w2). (3.2)

where N = 100 is the number of observations.

3.2.2 Multivariate Gaussian distributions

The task is to sample from D-dimensional Gaussian distributions N (0,Σ) with mean

zero and covariance matrix Σ. The covariance matrix Σ is diagonal, with the standard
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deviations simulated from a log-normal distribution with mean zero and unit standard

deviation. For the simulation study, we consider the number of dimensions D to be in

the set {10, 50}.

3.2.3 Neal’s funnel density

Neal [123] introduced the funnel distribution as an example of a density that illustrated

the issues that arise in Bayesian hierarchical and hidden variable models [18, 68]. The

variance of the parameters is treated as a latent variable with a log-normal distribution

[18, 68]. In this thesis, we consider the number of dimensions D = 25. The target density

of interest is:

P (v,x) = N (v|µ, σ2)
D∏
i=1

N (xi|0, exp(v)). (3.3)

where µ = 0, σ = 3, v ∼ N (µ, σ2) and xi ∈ R. Note that v and x are the parameters of

interest.

3.2.4 Merton jump-diffusion process model

It is well documented that financial asset returns do not have a Gaussian distribution,

but instead have fat tails [36, 108]. Stochastic volatility models, Levy models, and

combinations of these models have been utilised to capture the leptokurtic nature of asset

return distributions [3, 6, 101, 158]. JDPs were introduced into the financial markets

literature by Merton and Press in the 1970s [108, 101, 138]. In this thesis, we study the

JDP model of Merton [101], which is a one-dimensional Markov process {Xt, t ≥ 0} with
the following dynamics as described in Mongwe [108]:

d lnXt =

(
a− 1

2
b2
)
dt+ bdZt + d

(
Kt∑
i=1

Ji

)
(3.4)

where a and b are drift and diffusion terms, Zt and Kt are the Brownian motion process

and Poisson process with intensity λ respectively, and Ji ∼ N (ajump, b
2
jump) is the size

of the ith jump. As shown in Mongwe [108], the density implied by the dynamics in
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equation (3.4) is:

P(lnX(t+ τ) = x2| lnX(t) = x1) =
∞∑
n=0

e−λτ (λτ)n

n!

ϕ

(
x2−x1−(aτ+najump)√

b2τ+nb2jump

)
√
b2τ + nb2jump

(3.5)

with x2 and x1 being realisations of lnX(t) at times t + τ and t, and ϕ is a Gaussian

probability density function. The resultant likelihood is multi-modal as it is an infinite

combination of Gaussian random variables, where the Poisson distribution produces the

mixing weights [108]. In this thesis, we truncate the infinite summation in equation

(3.5) to the first 10 terms as done in [108]. Furthermore, the JDP model is calibrated to

historical financial market returns data as outlined in Table 3.2.

3.2.5 Bayesian logistic regression

We utilise BLR to model the real world binary classification datasets in Table 3.2. The

negative log-likelihood l(D|w) function for logistic regression is given as:

l(D|w) =
N∑
i

yilog(w
Txi) + (1− yi)log(1−wTxi) (3.6)

where D is the data and N is the number of observations. The log of the unnormalised

target posterior distribution is given as:

ln p(w|D) = l(D|w) + ln p(w|α) (3.7)

where ln p(w|α) is the log of the prior distribution on the parameters given the hyper-

parameters α. The parameters w are modelled as having Gaussian prior distributions

with zero mean and standard deviation α = 10 as in Girolami and Caldehead [53].

3.2.6 Bayesian neural networks

Artificial neural networks are learning machines that have been extensively employed

as universal approximators of complex systems with great success [99, 112]. This thesis

focuses on MLPs with one hidden layer, five hidden units, and a single output neuron.

An example of this architecture is shown in Figure 3.1. The MLPs are used to model
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x1

x2

x3

x4

Hidden

layer:

hk(x)

Input

layer: xi

Output

layer:

fk(x)

Figure 3.1: An illustration of the data flow in a MLP. In this thesis, we limit our investigations

to MLPs with one hidden layer, five hidden units and a single output.

the real-world benchmark datasets outlined in Table 3.2. These datasets are regression

datasets, with the negative log-likelihood being the sum of squared errors.

The outputs of a network with a single output as depicted in Figure 3.1 are defined

as:

fk(x) = bk +
∑
j

vjkhj(x)

hj(x) = Ψ

(
aj +

∑
i

wijxi

) (3.8)

where wij is the weight connection for the ith input to the jth hidden neuron and vjk

is the weight connection between the jth hidden neuron to the kth output neuron [99].

In this thesis we only consider single output MLPs so that k = 1. Note that Ψ is the

activation function which produces the required non-linearity [99], and we set Ψ to be

the hyperbolic tangent activation function in this thesis.
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3.2.7 Benchmark datasets

We present the details of the financial and real-world benchmark datasets used in this

thesis in Table 3.2. The datasets are subdivided based on the type of model utilised

to model the datasets. The datasets consist of historical financial market data that

we use to calibrate the jump-diffusion process model, as well as real-world benchmark

classification datasets, which we model using BLR, and real-world benchmark regression

datasets modeled using BNNs.

Jump-diffusion process datasets: We calibrate the JDP to three datasets. These

are real-world datasets across different financial markets. The real-world financial market

datasets consist of daily prices, which we convert into log-returns, that were obtained

from Google Finance1 [56]. The specifics of the datasets are as follows:

• Bitcoin dataset : 1 461 daily data points for the cryptocurrency (in USD) from 1

Jan 2017 to 31 Dec 2020.

• S&P 500 dataset :1 007 daily data points for the stock index from 1 Jan 2017 to 31

Dec 2020.

• USDZAR dataset : 1 425 daily data points for the currency from 1 Jan 2017 to 31

Dec 2020.

Note that the formula used to calculate the log-returns is given as:

ri = log (Si/Si−1) (3.9)

where ri is the log-return on day i and Si is the stock or currency level on day i. The

descriptive statistics of the dataset are shown in Table 3.1. This table shows that the

USDZAR dataset has a very low kurtosis, suggesting that it has very few (if any) jumps

when compared to the other two datasets.

Bayesian logistic regression datasets: There are four datasets that we modeled

using BLR. All the datasets have two classes and thus present a binary classification

problem. These datasets are available on the UCI machine learning repository2. The

specifics of the datasets are:

1https://www.google.com/finance/

2https://archive.ics.uci.edu/ml/index.php

http://https://www.google.com/finance/
http://https://archive.ics.uci.edu/ml/index.php
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Table 3.1: Descriptive statistics for the financial markets datasets.

Dataset mean standard deviation skew kurtosis

S&P 500 Index 0.00043 0.01317 -1.159 21.839

Bitcoin 0.00187 0.04447 -0.925 13.586

USDZAR 0.00019 0.00854 0.117 1.673

• Pima Indian Diabetes dataset - This dataset has seven features and a total of 532

observations. The aim of this dataset is to predict if a patient has diabetes based

on diagnostic measurements made on the patient [102].

• Heart dataset - This dataset has 13 features and 270 data points. The purpose

of the dataset is to predict the presence of heart disease based on medical tests

performed on a patient [102].

• Australian credit dataset - This dataset has 14 features and 690 data points. The

objective for this dataset is to assess applications for credit cards [102].

• German credit dataset - This dataset has 25 features and 1 000 data points. The

aim for this datatset was to classify a customer as either good or bad credit [102].

Bayesian Neural Network Datasets: There are four datasets that we model

using BNNs. All the datasets are regression datasets and as with the BLR datasets, are

also available on the UCI machine learning repository. The specifics of the datasets is

as follows:

• Power dataset - This data set has 9 568 observations and 4 features.

• Airfoil dataset - This dataset has 5 features and 1 503 observations.

• Concrete dataset - This dataset has 1 030 observations and 8 features [169].

• Power dataset - This dataset has 9 features and 45 730 observations.
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Table 3.2: Real-world datasets used in this thesis. N represents the number of observations.

BJDP is Bayesian JDP, BLR is Bayesian Logistic Regression, and BNN represents Bayesian

Neural Networks. D represents the number of model parameters.

Dataset Features N Model D

S&P 500 1 1 007 BJDP 5

Bitcoin 1 1 461 BJDP 5

USDZAR 1 1 425 BJDP 5

Pima 7 532 BLR 8

Heart 13 270 BLR 14

Australian 14 690 BLR 15

German 24 1 000 BLR 25

Power 4 9 568 BNN 31

Airfoil 5 1 503 BNN 36

Concrete 8 1 030 BNN 51

Protein 9 45 730 BNN 56

3.2.8 Processing of the datasets

The JDP datasets used a time series of log returns as the input. The features for the

BLR and BNN datasets were normalised. A random 90-10 train-test split was used for

all the datasets. The train-test split is based on a cutoff date that confines 90% of the

data into the training set for the time series datasets.

3.3 Municipal Financial Statement Audit Outcome

Dataset

This section introduces the municipal financial statement audit outcome dataset, which

we use to predict the financial statement audit outcomes for South African local gov-

ernment entities. We also present the results of the exploratory data analysis that we

performed using unsupervised SOM on this dataset. SOM are used due to their visual

nature and the resulting accessibility of information to decision-makers. This exercise
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revealed which features are essential when modelling the dataset, giving great insight

into the dataset.

3.3.1 Overview of financial statement fraud

A 2018 study by audit firm PricewaterhouseCoopers [139] states that 77% of South

African companies surveyed have experienced some form of economic crime. According

to the report, South Africa had the highest percentage of economic crime in the world

in 2018, with Kenya and France coming in at positions two and three, respectively.

One of the companies’ economic crimes reported to have been experienced is accounting

fraud, a subset of which is management fraud or Financial Statement Fraud (FSF). In

South Africa, accounting fraud experienced by the companies surveyed increased from

20% in 2016 to 22% in 2018 [139]. This suggests that accounting fraud is becoming

more common in South Africa and poses a risk to the stability of South African capital

markets.

Accounting fraud cases prominent over the last two decades include (1) Enron, which

was an American natural gas company that used creative accounting to make it appear

as if the firm was growing, but eventually lost over $60 billion in market capitalisation

from January 2001 to January 2002 when the allegations of fraud emerged [67, 94], (2)

Steinhoff, which is a South African retailer that lost over R200 billion in market capi-

talisation in the space of two weeks after it emerged that accounting fraud had allegedly

been perpetrated by the management of the firm [38]. Furthermore, the Public Invest-

ment Corporation, which manages the pension fund assets for South African government

employees, lost at least R19 billion due to its direct and indirect investments in Steinhoff

[40, 137].

The financial statements consist of reports such as the income statement, balance

sheet, and cash flow statements. These statements are usually summarised into financial

ratios and used by different stakeholders for various purposes. For example, the govern-

ment would use financial statements to determine the tax payable to the state by the

entity.

FSF occurs when the financial statements of an entity are manipulated to make the

entity appear to be in a better financial state than is the case [150]. The management
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of the entity often perpetrates this manipulation, and at times with the support and

knowledge of the auditors of the entity [23, 67]. Examples of fraud that can be present

in a financial statement of an entity include the manipulation of the entity’s earnings

and the omission of material information [150, 134].

When using machine learning algorithms to analyse and detect FSF, a critical element

is a definition of what constitutes fraud. The most common definitions of fraud, as shown

in Appendix A, used in the literature are: 1) results of investigations by authorities such

as the Securities and Exchange Commission in the USA [13, 152], and 2) by qualified

audit opinion [106, 109]. In this thesis, the audit opinion expressed by the Auditor

General of South Africa (AG-SA) is used as the definition of FSF.

The audit opinion expressed by the AG-SA on the financial statements of South

African municipalities falls broadly into the following categories [10]:

• Clean or unqualified audit opinion—The financial statements contain no material

misstatements. Note that this does not necessarily mean there was no fraud.

• Qualified audit opinion—The financial statements contain material misstatements

in specific amounts, or there is insufficient evidence to conclude that the amounts

are not materially misstated.

• Adverse audit opinion—The financial statements contain material misstatements.

This, however, does not necessarily mean that there was fraud present.

• Disclaimer audit opinion—The municipality provided insufficient evidence in the

form of documentation on which to base an audit opinion.

For this thesis, we consider the statements of a municipality to be a fraudulent

instance if the audit opinion is not a clean or unqualified audit, which is consistent with

other studies in the literature [106, 39] as highlighted in Appendix A. Thus, we consider a

financial statement fraudulent if the AG-SA expressed a qualified, adverse, or disclaimer

audit opinion, and a financial statement is considered not fraudulent when it receives a

clean or an unqualified audit opinion. In addition, we limit our analysis to using financial

ratios. We do not use other features such as the text in the financial statements or the

credit ratings of the entity. We plan to incorporate such information in future work.
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3.3.2 Self organising maps

...
...

x1

x2

xi−1

xi

Figure 3.2: An illustration of the data flow in a Kohonen [85] SOM.

We now present our chosen unsupervised tool of analysing the dataset being the SOM.

The SOM was invented by Teuvo Kohonen in 1981/2, and various versions and gener-

alisations of the SOM have been developed since then [85]. The SOM is a two-layer

neural network that can learn to represent distributions of the data presented to it.

[85, 132, 107]. The two layers, being the input and output layers, are fully connected

in that each neuron in the input layer is connected to every neuron in the output layer

[107, 85, 132]. These connections from the input to output layer store an exemplar vector

[132]. A SOM is equipped with a structure, typically a hypercube or hexagonal lattice

as shown in Figure 3.2.

SOMs are preferable to other clustering approaches due to their ability to learn online,

i.e., learning additional cases when they arise, and their ability to use a topological map

for visualisation - which assists in the identification and discovery of clusters [132]. This

makes SOMs easy to interpret for interested stakeholders.

The output layer of the SOM can be viewed as a 2D grid as illustrated in Figure 3.2.

The SOM preserves the topological structure of the data so that inputs that are close in

feature space will be close on the 2D grid [85, 132, 107]. The SOM is unsupervised as

the training process does not require labels.



3.3. MUNICIPAL FINANCIAL STATEMENT AUDIT OUTCOME DATASET 54

The SOM implementation used in this section was the R Kohonen package [165, 166].

The parameters used for the SOM was a map with a 20 by 20 grid, and the SOM was

trained for 20 000 iterations. The learning rate was set to 0.05. After training the SOM,

k-means clustering with 10 clusters was performed. The 10 clusters were chosen because

they gave the best visual representation when compared to setting the clusters to be 2

through 20 for the dataset.

3.3.3 Data description

The data used is obtained from South African municipalities’ audited financial statement

data for the period 2010 to 2018. The years 2010 to 2012 had missing data and were

excluded from our analysis. The data was sourced from the South African National

Treasury website3 [120]. The dataset had a total of 1 560 records from 2012 to 2018.

This dataset contains, for each municipality in South Africa, the income statement,

balance sheet, and cash flow statement for each year. The dataset also contains reports

that outline audit opinions, conditional grants, and capital expenditure. In this thesis,

we create financial ratios based on each municipality’s income statement, balance sheet

statement, cash flow statement, and capital acquisition report. The conversion of the

financial statements into financial ratios is discussed in Section 3.3.4.

The municipalities in South Africa are governed by the Municipal Finance Manage-

ment Act, and are audited by the AG-SA [11]. The distribution of audit opinions for

the dataset shows that the unqualified data instances are just under 55%, with the rest

being qualified or worse cases. This distribution also means that there is no large class-

imbalance problem for this dataset. Note that outstanding audit opinions, which were

only 3 in the data set, are assigned to the disclaimer audit opinion class [10].

3.3.4 Financial ratio calculation

The financial ratios used in this thesis are based on the municipal circular number 71

issued by the National Treasury of the Republic of South Africa [119]. The financial ra-

tios considered can be grouped into two broad categories, namely financial performance

3https://municipaldata.treasury.gov.za/

http://https://municipaldata.treasury.gov.za/
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and financial position. The financial performance ratios can be further broken down

into efficiency, distribution losses, revenue management, expenditure management, and

grant dependency. The financial position ratios can be subdivided into asset manage-

ment/utilisation, debtors management, liquidity management, and liability management.

The specific ratios considered in this thesis are [119]:

1. Debt to Community Wealth/Equity - Ratio of debt to the community equity. The

ratio is used to evaluate a municipality’s financial leverage.

2. Capital Expenditure to Total Expenditure - Ratio of capital expenditure to total

expenditure.

3. Impairment of PPE, IP and IA - Impairment of Property, Plant and Equipment

(PPE) and Investment Property (IP) and Intangible Assets (IA).

4. Repairs and Maintenance as a percentage of PPE +IP - The ratio measures the

level of repairs and maintenance relative to assets.

5. Debt to Total Operating Revenue - The ratio indicates the level of total borrowings

in relation to total operating revenue.

6. Current Ratio - The ratio is used to assess the municipality’s ability to pay back

short-term commitments with short-term assets.

7. Capital Cost to Total Operating Expenditure - The ratio indicates the cost of ser-

vicing debt relative to overall expenditure.

8. Net Operating Surplus Margin - The ratio assesses the extent to which the entity

generates operating surpluses.

9. Remuneration to Total Operating Expenditure - The ratio measures the extent of

remuneration of the entity’s staff to total operating expenditure.

10. Contracted Services to Total Operating Expenditure - This ratio measures how much

of total expenditure is spent on contracted services.
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11. Own Source Revenue to Total Operating Revenue - The ratio measures the extent

to which the municipality’s total capital expenditure is funded through internally

generated funds and borrowings.

12. Net Surplus / Deficit Water - This ratio measures the extent to which the munic-

ipality generates surplus or deficit in rendering water service

13. Net Surplus / Deficit Electricity - This ratio measures the extent to which the

municipality generates surplus or deficit in rendering electricity service.

The first six ratios above are measures of financial position, while the rest are mea-

sures of financial performance. Table 3.3 provides descriptive statistics of the financial

ratios in the dataset. None of the financial ratios had missing values. Furthermore, the

financial ratios were not strongly correlated, with the maximum absolute pairwise linear

correlations being less than 0.5.

Feature selection was performed on the financial ratios. The three ratios that had

the largest correlation with the output variable, that is audit opinions, were selected.

The selected ratios were current ratio (ratio 6), debt to total operating revenue (ratio

5) and net operating surplus margin (ratio 8). Note that the number of ratios to use,

which is three, was based on the number that produced the most visually explainable

results from the SOM, while simultaneously avoiding SOM clusters that had single data

instances. The features were normalised before being passed into the SOM for training.

3.3.5 Exploratory data analysis

The trained SOM, after applying k-means clustering with 10 clusters, is displayed in

Figure 3.3(a). The purpose of the clustering is to identify groups of instances, in this

case municipal financial statements, with a similar financial ratios profile. Table 3.4

presents the results of labelling each of the data instances in each of the clusters by their

associated audit opinions. Table 3.5 shows the percentage splits of unqualified (i.e.,

non-fraudulent) and not-unqualified (qualified, disclaimer, and adverse opinions - i.e.,

fraudulent) in each of the ten classes, sorted by the percentage of unqualified instances.

Table 3.5 shows that clusters 1, 8, and 10 (top three clusters in the table) consist of

predominantly unqualified / non-fraudulent instances, while clusters 2, 5, and 9 (bottom
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(a) Trained SOM. K-means clustering (with 10

clusters) was applied to the SOM nodes. The

labels of the resultant clusters are shown in each

node. For example, the green cluster is labelled

as cluster 1. Table 3.4 presents the breakdown

by audit opinion for each cluster.

(b) Debt to total operating revenue feature

overlaid on the trained SOM in Figure 3.3(a).

Nodes with a high debt to total operating rev-

enue ratio are in the bottom left corner. These

nodes correspond to clusters 2, 5 and 9 in Fig-

ure 3.3(a).

(c) Current ratio overlaid on the trained SOM

in Figure 3.3(a). Nodes with a high current ra-

tio are in the top right corner. These nodes cor-

respond with clusters 8 and 10 in Figure 3.3(a).

(d) Net operating surplus margin feature over-

laid on the trained SOM in Figure 3.3(a). Nodes

with a high net operating surplus margin ratio

are on the right of the figure. These nodes cor-

respond broadly with cluster 7 in Figure 3.3(a).

Figure 3.3: Clustering results from the SOM applied to the South African municipal financial

statement audit outcome dataset.
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Table 3.3: Five number summary of the thirteen financial ratios in the South African munic-

ipal financial statement audit opinion dataset. Note that mil represents a million. Q1 and Q3

are the lower and upper quartiles.

Ratio Min Q1 Median Q3 Max

1 -2046.45 11.97 19.43 35.49 6640.18

2 -3.81 11.22 17.85 25.36 77.66

3 -15.34 3.67 4.94 6.58 159.27

4 -1.86 0.00 0.83 1.91 170.67

5 -0.09 0.28 0.43 0.63 2.64

6 -0.88 0.56 1.16 2.19 23.06

7 -0.31 0.207 0.98 2.33 13.97

8 -147.32 -7.08 4.71 15.34 81.07

9 -67.61 26.31 32.51 41.17 159.98

10 -11.31 0.00 0.97 4.91 51.83

11 7.87 98.14 99.85 100.00 103.54

12 -114100 mil 0 0 83 1436 mil

13 -555400 mil 0 0 21 14970 mil

three clusters in the table) consist of predominantly qualified / fraudulent instances.

Looking at Figure 3.3(a), we see that the mostly non-fraudulent clusters (purple, white

and green) are positioned together in the top-right corner of the SOM, while the mostly

fraudulent clusters (grey, brown and blue) are positioned together in the bottom-left

corner of the SOM. The remaining clusters between these two extremes have a roughly

50-50 split of non-fraudulent to fraudulent classes, and so it is not clear whether these

clusters are of fraudulent entities or not.

Figures 3.3(b)-3.3(d) display the results of overlaying the SOM with the financial ratio

features, being the debt to total operating revenue, current ratio and the net operating

surplus margin. In these feature maps, red neurons correspond with the highest values

of the feature, while blue neurons correspond with the lowest values of the feature. For

example, we see in Figure 3.3(c) that the instances that have the highest values of current

ratio are positioned in the top right corner of the SOM, which corresponds with cluster
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Table 3.4: The ten clusters on the SOM in Figure 3.3(a) and associated breakdown by audit

opinion. UQ = Unqualified, Q = qualified, D = disclaimer and A = adverse. The colours of

the clusters correspond to those in Figure 3.3(a).

Cluster (colour) UQ Q D A Total

1 (green) 128 44 7 4 183

2 (blue) 27 55 46 1 129

3 (red) 251 130 52 11 444

4 (yellow) 129 51 45 6 231

5 (gray) 7 8 8 0 23

6 (pink) 86 60 32 5 183

7 (orange) 155 84 27 10 276

8 (purple) 12 1 0 0 13

9 (brown) 4 3 8 0 15

10 (white) 57 5 1 0 63

Total 856 441 226 37 1 560

Table 3.5: Percentage distribution between unqualified and not unqualified (i.e. qualified,

disclaimer and adverse) in each of the ten clusters on the SOM in Figure 3.3(a). The colours

of the clusters correspond to those in Figure 3.3(a).

Cluster (colour) Unqualified Not-unqualified

8 (purple) 92% 8%

10 (white) 90% 10%

1 (green) 70% 30%

3 (red) 57% 43%

4 (yellow) 56% 44%

7 (orange) 56% 44%

6 (pink) 47% 53%

5 (gray) 30% 70%

9 (brown) 27% 73%

2 (blue) 21% 79%
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8 (the purple cluster) in Figure 3.3(a). Note that overlying the other ten financial ratios

outlined in Section 3.3.4 did not produce clear partitions of the clusters, and we thus do

not include the results.

Looking simultaneously at Figure 3.3(a) and Figures 3.3(b) - 3.3(d), it is clear that

high values of the current ratio are associated with clusters 8 and 10, which are non-

fraudulent classes, while high values of the debt to total operating revenue ratio are

associated with clusters 2, 5 and 9, which are the fraudulent clusters. High values of the

net operating margin surplus ratio are associated with cluster 7, which is a moderately

(with 57%) non-fraudulent cluster. On the other hand, the lowest values of the net

operating margin (blue nodes) fall into cluster 9 (brown cluster), which is primarily

fraudulent.

These results make intuitive sense because a high current ratio means that the entity

has more current assets than current liabilities, meaning that it is in an excellent financial

position and less likely to be fraudulent. On the other hand, a high debt to total operating

revenue ratio means that the entity has too much debt compared to the revenue that

it is generating, which makes it more likely to act fraudulently. In addition, entities

with high net operating surplus margins are profitable and less likely to be fraudulent.

In contrast, entities with meager and negative net operating surplus margins are more

likely to act fraudulently. These results are in line with what has been observed for listed

entities in previous studies [128, 58].

3.4 Performance Metrics

We now present the performance metrics used to measure the performance of the algo-

rithms proposed in this thesis. The performance metrics used are the acceptance rate,

the multivariate ESS, the multivariate ESS normalised by the execution time, as well

predictive performance on unseen data. We also assess the convergence of the proposed

MCMC methods using the potential scale reduction factor metric. The acceptance rate

metric measures the number of generated samples that are accepted in the MH accep-

tance step of the algorithm. The higher the number of accepted samples for the same

step size, the more preferable the method. We discuss the remaining metrics in more
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detail in the following sections.

3.4.1 Effective sample size

The ESS metric is a commonly used metric for assessing the sampling efficiency of an

MCMC algorithm. It indicates the number of effectively uncorrelated samples out of the

total number of generated samples [140]. The larger the ESS, the better the performance

of the MCMC method. The ESS normalised by execution time metric takes into account

the computational resources required to generate the samples and penalises MCMC

methods that require more computational resources to generate the same number of

uncorrelated samples. The larger this metric, the better the efficiency of the algorithm.

This thesis employs the multivariate ESS metric developed by Vats et al. [160] instead

of the minimum univariate ESS metric typically used in analysing MCMC results. The

minimum univariate ESS measure is not able to capture the correlations between the

different parameter dimensions, while the multivariate ESS metric can incorporate this

information [112, 160, 53, 113]. The minimum univariate ESS calculation results in the

estimate of the ESS being dominated by the parameter dimensions that mix the slowest

and ignore all other dimensions [160, 112]. The multivariate ESS is calculated as:

mESS = N ×
(
|Λ|
|Σ|

) 1
D

(3.10)

where N is the number of generated samples, D is the number of parameters, |Λ| is the
determinant of the sample covariance matrix and |Σ| is the determinant of the estimate

of the Markov chain standard error. When D = 1, mESS is equivalent to the univariate

ESS measure [160]. Note that when there are no correlations in the chain, we have that

|Λ| = |Σ| and mESS = N .

We now address the ESS calculation for Markov chains that have been re-weighted

via importance sampling, such is the case for the shadow HMC algorithms considered in

this thesis [140, 68, 112, 99]. For N samples re-weighted by importance sampling, the

common approach is to use the approximation by Kish [83, 68] given by

ESSIMP =
1(∑N

j=1 b̄
2
j

) (3.11)
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where b̄j = bj/
∑N

k=1 bk. This accounts for the possible non-uniformity in the importance

sampling weights. In order to account for both the effects of sample auto-correlation and

re-weighting via importance sampling, we approximate ESS under importance sampling

by taking directions from Heide et al. [68] and using:

ESS :=
ESSIMP

N
×mESS =

1(∑N
j=1 b̄

2
j

) × ( |Λ|
|Σ|

) 1
D

(3.12)

3.4.2 Convergence analysis

The R̂ diagnostic of Gelman and Rubin [51] is a popular method for establishing the

convergence of MCMC chains [147]. This diagnostic relies on running multiple chains

{Xi0, Xi1, ..., Xi(N−1)} for i ∈ {1, 2, 3, ...,m} staring at various initial states with m being

the number of chains and N being the sample size. Using these parallel chains, two

estimators of the variance can be constructed. The estimators are the between-the-chain

variance estimate and the within-the-chain variance. When the chain has converged, the

ratio of these two estimators should be one. The R̂ metric, which is formally known as

the potential scale reduction factor, is defined as:

R̂ =
V̂

W
(3.13)

where

W =
m∑
i=1

N−1∑
j=0

(
Xij − X̄i.

)2
m(N − 1)

(3.14)

is the within-chain variance estimate and V̂ = N−1
N

W+ B
N
is the pooled variance estimate

which incorporates the between-chains

B =
N−1∑
j=0

(
X̄i. − X̄..

)2
m− 1

(3.15)

and within-chain W variance estimates, with X̄i. and X̄.. being the ith chain mean and

overall mean respectively for i ∈ {1, 2, 3, ...,m}. Values larger than the convergence

threshold of 1.05 for the R̂ metric indicate divergence of the chain [26, 51]. In this thesis,

we asses the convergence of the chains by computing the maximum R̂ metric over each

of the parameter dimensions for the given target.
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3.4.3 Predictive performance on unseen data

Examples of performance measures used for classification problems is shown in Table 3.7

where TP is the true positive, FN is the false negative, FP is the false positive and TN is

the true negative. Other examples of performance measures include Receiver Operating

Curve (ROC) as well as Area Under The Receiver Operating Curve (AUC). ROC plots

the true positives from the model on the y-axis against the false positives on the x-axis

[109]. AUC is the area under the ROC, and represents the average miss-classifications

rate. AUC is useful as a performance measure when the costs of classification are un-

known [22, 49, 109], such as when modelling FSF.

Table 3.6: Common classification performance measures.

accuracy = TP+TN
TP+FP+FN+TN

sensitivity = TP
TN+FN

specificity = TN
TN+FP

precision = TP
TP+FP

recall = TP
TP+FN

F-Measure = 2 × precision × recall
precision + recall

Examples of performance metrics used in regression problems are the coefficient of

determination (R2), Mean Absolute Error (MAE), and the Mean Square Error (MSE)

and are shown in Table 3.6 [99]. In this table, we have that Ki are the observations

with average K̄, M is the number of observations and Pi are the predictions. MSE

and MAE are similar in that they measure the difference between the observations and

the predictions, while the R2 measures the percentage of the variability in the target

variable that is explained by the model. Models that have low values for MSE and MAE

are preferable, while models that have a high R2 measure are preferable.

Table 3.7: Common regression performance measures.

MSE = 1
M

∑M
i=1

(
Ki − Pi

)2
MAE = 1

M

∑M
i=1

∣∣Ki − Pi

∣∣ R2 = 1−
∑M

i=1

(
Ki−Pi

)2
∑M

i=1

(
Ki−K̄

)2
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3.5 Algorithm Parameter Tuning

As mentioned in Section 2.5, the matrix G in the MHMC method provides an extra

degree of freedom which typically results in better sampling behavior than HMC [112,

156, 25]. It is not immediately clear how this matrix should be set - this is still an open

area of research [112, 156, 26]. In this thesis, we take direction from the inventors [156]

of the method and select only a few dimensions to be influenced by the magnetic field.

In particular, G was set such that G1i = g, Gi1 = −g and zero elsewhere where g = 0.2

for the BLR datasets, and g = 0.1 for all the other targets.

Table 3.8: Step size and trajectory length parameters used for HMC and MHMC in this

thesis. These methods serve as the baselines against which the novel methods presented in

this thesis are compared. Five thousand samples were used to tune the step size for the given

trajectory length using primal-dual averaging. The target acceptance rate was set to 80%.

Problem L HMC MHMC

Banana 15 0.1209 0.1179

Neal with D = 25 50 0.3823 0.0507

Gaussian with D = 10 15 0.3491 0.1414

Gaussian with D = 50 15 0.1491 0.1219

Bitcoin 15 0.0021 0.0021

S&P 500 15 0.0028 0.0027

USDZAR 15 0.0003 0.0003

Pima 50 0.1062 0.0300

Heart 50 0.1595 0.0241

Australian 50 0.1060 0.0300

German 50 0.0572 0.0413

Power 25 0.0281 0.0275

Airfoil 25 0.0547 0.0497

Concrete 25 0.0761 0.0634

Protein 25 0.0793 0.0691

These settings mean that the choice of G is not necessarily the optimal choice for
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all the target distributions considered, but was sufficient for our purposes as this basic

setting still leads to good performance on the algorithms that we propose in this thesis.

Tuning G for each target posterior should result in improved performance compared to

the results presented in this manuscript. An alternative approach to the selection of G

would have been to follow [26] and selecting G to be a random antisymmetric matrix.

It is not immediately clear if the approach of [26] is necessary optimal, and we plan to

explore this approach in future work.

In this thesis, unless otherwise stated, we tune the step size ϵ parameter for each

problem for a given fixed trajectory length L parameter for the HMC and MHMC meth-

ods, with G being as described above. The methods we construct on top of these two

algorithms then use the same step size as these two base methods. The step size is tuned

to target an acceptance rate of 80% using the primal-dual averaging methodology [73].

The trajectory lengths used vary across the different targets, with the final step sizes

and trajectory lengths used for the various problems presented in Table 3.8.

All the experiments in this thesis were conducted on a machine with a 64bit CPU

using PyTorch. We are in the process of making the PyTorch code used in this thesis

open source.

3.6 Conclusion

This chapter outlined the target distributions considered in this thesis. Various combina-

tions of these target distributions will be used throughout the thesis. We also introduced

a new public interest dataset being the South African municipal financial statement au-

dit outcome dataset. The preliminary analysis performed on this dataset using a SOM

showed that financial ratios are useful in modelling audit outcomes of local government

entities. Furthermore, the important financial ratios were identified as the current ratio,

debt to total operating revenue as well as the net surplus profit margin.

In the next chapter, we present the novel QIMHMC algorithm, which employs a

random mass matrix M for the auxiliary momentum variable p in MHMC to enhance

the performance of MHMC.



Chapter 4

Quantum-Inspired Magnetic

Hamiltonian Monte Carlo

4.1 Introduction

Liu and Zhang [91] have recently shown in their work on QIHMC that making use of the

energy-time uncertainty relation from quantum mechanics, one can devise an extension

to HMC by allowing the mass matrix of the auxiliary momentum variable to be random

with a probability distribution instead of being fixed. Furthermore, MHMC has been

proposed as an enhancement to HMC by adding a magnetic field to HMC which results

in non-canonical dynamics associated with the movement of a particle under a magnetic

field. In this chapter, we utilise the non-canonical dynamics of MHMC while allowing

the mass matrix to be random to create the novel QIMHMC algorithm, which is shown

to converge to the correct steady-state distribution. Empirical results on a broad class of

target posterior distributions and various performance metrics show that the proposed

method produces better sampling performance than HMC, MHMC and QIHMC. The

work in this chapter was published in the following international journal article:

Mongwe, W.T., Mbuvha, R. and Marwala, T., 2021. Quantum-Inspired Mag-

netic Hamiltonian Monte Carlo. PloS One, vol. 16, no. 10, pp. e0258277.

66
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4.2 Proposed Algorithm

One of the parameters of HMC and MHMC that needs to be set by the user is the mass

matrix M of the auxiliary momentum variable. This mass matrix is typically set to equal

the identity matrix I [156, 53, 122, 127]. Although this typically produces good results in

practice, it is not necessarily the optimal choice across all possible target distributions.

An approach to address this drawback would be to set the mass matrix to depend on the

target distribution’s local geometry or make the mass matrix a stochastic process with

a user-specified distribution.

In RMHMC, the mass matrix is the Hessian of the negative log-density, which is the

fisher information metric [53, 16]. This allows the method to take into account the local

curvature of the target and has been shown to enhance the sampling performance of

HMC, especially for ill-conditioned target distributions [53, 35, 68]. On the other hand,

QIHMC [91] sets the mass matrix to be a stochastic process and varies for each sample

generated. This is motivated by the energy-time uncertainty relation from quantum

mechanics, which allows a particle’s mass to be stochastic rather than fixed, as is the

case with classical particles [91].

QIHMC has been shown to improve the sampling performance when sampling from a

broad class of distributions which occur in sparse modeling via bridge regression, image

denoising, and BNN pruning [91, 113]. This is particularly important for spiky and

multi-modal distributions where HMC is inefficient [91, 113]. The use of a random

mass matrix is yet to be considered for MHMC in the literature. Given that MHMC

is closely related to HMC and outperforms HMC for a well-chosen magnetic field, one

would expect that making the mass matrix random in MHMC would result in improved

sampling performance when compared to MHMC with a fixed mass.

In this chapter, we set the mass matrix M in MHMC in Algorithm 3 to be ran-

dom with distribution PM(M) to create the novel QIMHMC method. This proposed

algorithm has simiarly dynamics to MHMC in equation (2.22), with the exception that

the mass matrix is random and is re-sampled before generating the auxiliary momen-

tum variable. The algorithmic description of QIMHMC is presented in Algorithm 9.

QIMHMC only differs from MHMC by the addition of line 3 in Algorithm 9 and a mod-

ified integrator in line 5, with every other step of the algorithm being the same as that
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of MHMC in Algorithm 3.

Note that the algorithm for QIHMC used in this chapter is the one outlined in

Algorithm 4.

Algorithm 9 Quantum-Inspired Magnetic Hamiltonian Monte Carlo Algorithm

Input: N , ϵ, L, winit, H(w, p), G, PM(M)

Output: (w)Nm=0

1: w0 ← winit

2: for m→ 1 to N do

3: M ∼ PM(M) ← re-sample mass matrix.

4: pm−1 ∼ N (0,M)

5: pm, wm = Integrator(pm−1, wm−1, ϵ, L, H, G, M) in equation (4.1)

Remaining steps proceed as in MHMC in Algorithm 3

6: end for

It is worth noting that we refer to the proposed algorithm as Quantum-Inspired

Magnetic Hamiltonian Monte Carlo as it utilises a random mass matrix, which is con-

sistent with the behaviour of quantum particles. A particle can have a random mass

with a distribution in quantum mechanics, while in classical mechanics, a particle has a

fixed mass. The classical version of the proposed algorithm is the Magnetic Hamiltonian

Monte Carlo method. When a random mass is utilised as inspired by quantum particles,

the result is Quantum-Inspired Magnetic Hamiltonian Monte Carlo. Furthermore, this

naming convention is consistent with that used by Liu and Zhang [91] for Hamiltonian

Monte Carlo. Their work differs from ours in that the quantum particle is now subjected

to a magnetic field.

In Theorem 4.2.1, we extend equation (2.22) of Tripuraneni et al. [156] to allow for

the presence of a mass matrix that is not equal to the identity, that is for the case M ̸= I.

This extension is required for the implementation of the new QIMHMC method that we

are proposing. This is because the mass matrix M will be changing for each new position

sample generated, and this new M must be incorporated in the integration scheme.

Theorem 4.2.1. The leapfrog-like numerical integration scheme for MHMC in the pres-

ence of a mass matrix M that is not equal to the identity matrix I is:
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pt+ ϵ
2
= pt +

ϵ

2

∂H (wt,pt)

∂w

wt+ϵ = wt +G−1
(
exp

(
GM−1ϵ

)
− I
)
pt+ ϵ

2

pt+ ϵ
2
= exp

(
GM−1ϵ

)
pt+ ϵ

2

pt+ϵ = pt+ ϵ
2
+

ϵ

2

∂H
(
wt+ϵ,pt+ ϵ

2

)
∂w

.

(4.1)

Proof. The Hamiltonian in equation (2.13) can be re-expressed as:

H(w,p) =
U(w)

2
+ K(p) +

U(w)

2

=
U(w)

2︸ ︷︷ ︸
H1(w)

+
1

2
log
(
(2π)D|M|

)
+

pTM−1p

2︸ ︷︷ ︸
H2(p)

+
U(w)

2︸ ︷︷ ︸
H1(w)

H(w,p) = H1(w) +H2(p) +H1(w)

(4.2)

where each of the sub flows H1(w) and H2(p) can be integrated exactly as follows:

d

dt

[
w

p

]
=

[
0 I

−I G

][
∇wH1(w)

∇pH1(w)

]
=

[
0 I

−I G

][
U(w)
2

0

]
=

[
0

−U(w)
2

]

=⇒ dp = −dt

2
U(w)

p = p− ϵ

2
U(w)

=⇒ Φϵ,H1(w)

[
w

p

]
=

[
w

p− ϵ
2
U(w)

]
(4.3)
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and

d

dt

[
w

p

]
=

[
0 I

−I G

][
∇wH2(p)

∇pH2(p)

]
=

[
0 I

−I G

][
0

M−1p

]
=

[
M−1p

GM−1p

]
=⇒ dp = GM−1pdt

p = exp
(
GM−1t

)
p

dw = M−1 exp
(
GM−1t

)
pdt

=⇒ w = w +M−1(GM−1)−1
(
exp

(
GM−1t

)
− I
)
p

w = w +G−1
(
exp

(
GM−1t

)
− I
)
p

=⇒ Φϵ,H2(p)

[
w

p

]
=

[
w +G−1 (exp (GM−1ϵ)− I)p

exp (GM−1ϵ)p

]
(4.4)

Equation (4.1) is then generated by the map Φϵ,H(w,p)
= Φϵ,H1(w) ◦Φϵ,H2(p) ◦Φϵ,H1(w).

In the QIMHMC algorithm, we introduced another source of randomness in the

form of a random mass matrix into MHMC. We thus need to show that the proposed

algorithm converges to the correct steady-state distribution. This is provided in Theorem

4.2.2, which guarantees that the proposed algorithm produces the correct steady-state

distribution.

Theorem 4.2.2. Consider continuous-time non-canonical Hamiltonian dynamics with

a deterministic time-varying positive-definite mass matrix M(t) in equation (4.1). The

marginal density πw(w) ∝ exp(−U(w)) is a unique steady state distribution in the w

space if momentum re-sampling steps pp(p) ∝ exp
(

pTM(t)−1p
2

)
are included.

Proof. Following the approach of [91] for QIHMC, we consider the joint distribution of

(w,p,M) given by π (w,p,M) . Here we have dropped the explicit dependence of M on

t because M(t) obeys the mass distribution PM(M) for all t. Employing Bayes theorem
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we have that:

π (w,p,M) = p (w,p|M)PM(M)

π (w,p,M) ∝ exp(−U(w)) exp

(
pTM−1p

2

)
=⇒ π (w) =

∫
p

∫
M

π (w,p,M) dwdM

π (w) ∝ exp(−U(w))

(4.5)

which means that the marginal steady state distribution π (w) is the correct posterior

distribution.

An aspect that we are yet to address is which distribution PM(M) should be used

for the mass matrix. This is still an open area of research [91, 113]. In this work, we

consider the simple case where M is a diagonal matrix with the entries being sampled

from a log-normal distribution where the mean is zero and the standard deviation, which

we refer to as the volatility of volatility or vol-of-vol for short, is equal to a tunable

parameter β ∈ R≥0. That is, for each mii ∈ M ∀ i ∈ {1, 2, ..., D} is generated as

lnmii ∼ N (0, β2) and mij = 0 for i ̸= j. We present the sensitivity analysis to the

chosen value of β in Section 4.3.2.

4.3 Experiment Description

In this section, we outline the settings used for the experiments, the performance metrics,

and we present the sensitivity analysis for the vol-of-vol parameter β in QIMHMC.

4.3.1 Experiment settings

In all our experiments, we compare the performance of QIMHMC to HMC, MHMC and

QIHMC using the multivariate ESS and the ESS normalised by execution time metrics

presented in Section 3.4.1. We further assess the convergence behaviour of the MCMC

methods using the R̂ metric described in Section 3.4.2. The targets we consider in this

chapter are the Banana shaped distribution, the multivariate Gaussian distributions with
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D ∈ {10, 50} and BLR on the Pima, Australian and German credit datasets outlined in

Table 3.2.

The vol-of-vol parameter β that we use depends on the particular target density.

The sensitivity analysis for β is presented in Section 4.3.2. We set β to 0.1 for the

Banana shaped distribution and Australian credit dataset, while β was set to 0.3 for the

other targets. The trajectory length and step size parameters for the MCMC methods

considered in this chapter were set to the values outlined in Table 3.8, with QIHMC and

QIMHMC using the same step size as HMC and MHMC respectively. Ten independent

chains were run for each method on each target distribution. Three thousand samples

were generated for each target, with the first 1 000 samples discarded as burn-in. This

sample size and burn-in period were sufficient for all the algorithms to converge on all the

targets. It is worth highlighting that we set the mass matrix M to the identity matrix

for the HMC and MHMC methods. This setting for M is what is commonly used in

practice [17, 156, 59, 164].

4.3.2 Sensitivity to the vol-of-vol parameter

In this section, we present the sensitivity analysis for the chosen vol-of-vol parameter β.

We considered values of β ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9, 1.0}, with all the other

settings being the same as those outlined in Section 4.3.1. It is worth highlighting that

when β = 0, QIMHMC is equivalent to MHMC and QIHMC is equivalent to HMC. The

results of the analysis are presented in Figure 4.1. The results show that the ESS has a

tendency of decreasing for both QIHMC and QIMHMC with increasing β on both the

Australian and German credit datasets. In addition, the QIMHMC algorithm is able to

maintain a high acceptance rate as the value of β is increased, while the acceptance rate

of QIHMC decays to zero at a faster rate.

The results also indicate that smaller values of β are preferable, with the optimal

value of the Australian credit dataset being 0.1 and around 0.5 for the German credit

dataset. Furthermore, QIMHMC outperforms QIHMC for all values of β on both an

ESS and normalised ESS basis, showing the robust results that can be obtained from

QIMHMC.
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Figure 4.1: Acceptance rates, ESS and ESS/Time for ten runs of QIHMC (blue) and

QIMHMC (orange) on the a) Australian and b) German credit datasets with varying choices

of the vol-of-vol β parameter. The results indicate that these metrics are a decreasing function

of the vol-of-vol β parameter, with QIMHMC decreasing at a slower rate than QIHMC.

4.4 Results and Discussion

We present the performance of the HMC, MHMC, QIHMC, and QIMHMC methods

using different performance metrics in Figure 4.3 and Tables 4.1 to 4.3. In Figure 4.3,

the plots on the first row for each dataset show the ESS, while the plots on the second

row show the ESS normalised by execution time. The results are for the ten runs of each

algorithm. In Tables 4.1 to 4.3, each column corresponds to the results for a particular
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MCMC method. Values that are in bold indicate that the MCMC method outperforms

the other MCMC algorithms on that particular metric. The execution time t in Figure

4.3 and Tables 4.1 to 4.3 is in seconds. The results in Tables 4.1 to 4.3 are the mean

results over the ten runs for each algorithm. We use the mean values over the ten runs

in Tables 4.1 to 4.3 to form our conclusions about the performance of the algorithms.

The results in Tables 4.1 to 4.3 and Figure 4.2 show that all the MCMC methods have

converged as indicated by the R̂ metric and the diagnostic trace-plots for the negative

log-likelihood. It is also worth noting that the quantum-inspired algorithms consistently

produce better convergence across the different targets based on the R̂ metric, indicating

that β ̸= 0 improves the convergence behaviour of QIHMC and QIMHMC respectively.

The results in Figure 4.3 and Tables 4.1 to 4.3 show that the proposed QIMHMC

method outperforms all the other methods across the ESS and normalised ESS perfor-

mance metrics on all the targets. The outperformance also increases with increasing

dimensionality of the problem, suggesting that QIMHMC is able to scale to larger mod-

els without a significant deterioration in sampling performance. It is also worth noting

that MHMC sometimes outperforms QIHMC, for example on the Gaussian distribution

with D = 10, suggesting that MHMC with an appropriately tuned magnetic field is able

to outperform QIHMC.
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Figure 4.2: Diagnostic trace-plots of the negative log-likelihood across various targets aver-

aged over ten runs of each method. These results show that all the MCMC methods have

converged on all the targets.



4.4. RESULTS AND DISCUSSION 75

400

600

800

1000

1200

1400

1600

1800

ES
S

Banana

500

750

1000

1250

1500

1750

2000

2250

Gausian with D = 10

1500

1750

2000

2250

2500

2750

3000

3250

3500

Gausian with D = 50

20

30

40

50

60

70

80

ES
S 

/ T
im

e

40

60

80

100

80

100

120

140

160

750

1000

1250

1500

1750

2000

2250

ES
S

Pima Dataset

1000

2000

3000

4000

5000

Australian Credit Dataset

1600

1800

2000

2200

2400

2600

2800

German Credit Dataset

HMC MHMC QIHMC QIMHMC

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

ES
S 

/ T
im

e

HMC MHMC QIHMC QIMHMC

10

20

30

40

50

60

HMC MHMC QIHMC QIMHMC
3.5

4.0

4.5

5.0

5.5

6.0

6.5

Figure 4.3: Results for the datasets over ten runs of each method. For each dataset, the plots

on the first row show the multivariate effective sample size and the plots on the second row

show the multivariate effective sample size normalised by execution time (in seconds). For all

the plots, the larger the value the better the method. The dark horizontal line in each violin

plot represents the mean value over ten runs of each algorithm.

As expected, MHMC outperforms HMC on the majority of the targets across all

the metrics. This is in line with what has been previously observed [156, 26, 112]. The

MHMC method underperforms HMC on the Banana and Australian target distributions,

suggesting that the magnetic field chosen for these two targets might not be optimal. It

is also worth noting that MHMC and HMC produce similar execution times, with HMC
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Table 4.1: Banana shaped distribution results averaged over ten runs. The time t is in seconds.

The values in bold indicate that the particular method outperforms the other methods on that

specific metric.

Banana shaped distribution

Metric HMC MHMC QIHMC QIMHMC

ESS 964 878 1 061 1 450

t 19.24 19.12 19.34 20.63

ESS/t 50.1 46.1 54.8 70.3

R̂ max 1.01 1.02 1.00 1.00

marginally outperforming MHMC on the majority of the targets on an execution time

basis.

Table 4.2: Multivariate Gaussian distribution results averaged over ten runs. The time t is

in seconds. The values in bold indicate that the particular method outperforms the other

methods on that specific metric.

Gaussian with D = 10

Metric HMC MHMC QIHMC QIMHMC

ESS 653 1 844 965 2 184

t 19.6 19.5 19.8 20.9

ESS/t 33.3 94.5 48.9 104.7

R̂ max 1.03 1.02 1.00 1.00

Gaussian with D = 50

ESS 1 705 2 313 2 619 3 302

t 21.1 19.4 21.2 23.3

ESS/t 80.7 119.11 124.3 141.7

R̂ max 1.01 1.03 1.00 1.00

We also noted that QIHMC outperforms HMC across all the targets. This confirms

the results observed by Liu and Zhang [91] using different target posteriors to those
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considered in this chapter. This shows the significant benefit that utilising a random

mass can provide to the sampling properties of HMC based samplers. However, the real

performance gains are only realised when the vol-of-vol parameter β has been appropri-

ately tuned. Establishing an automated approach for tuning β is still an open research

problem, which we aim to address in future work.

Table 4.3: Bayesian logistic regression results averaged over ten runs. The time t is in seconds.

The values in bold indicate that the particular method outperforms the other methods on that

specific metric.

Pima dataset

Metric HMC MHMC QIHMC QIMHMC

ESS 645 902 1 591 2 019

t 85.5 84.2 84.7 89.9

ESS/t 7.5 10.7 18.8 22.5

R̂ max 1.00 1.02 1.00 1.00

Australian credit dataset

ESS 1 184 867 1 956 4 750

t 79.2 77.8 79.0 81.0

ESS/t 15.0 11.1 24.8 58.7

R̂ max 1.01 1.04 1.00 1.01

German credit dataset

ESS 1 617 1 686 1 927 2 794

t 453.9 449.8 456.41 459.3

ESS/t 3.56 3.75 4.22 6.08

R̂ max 1.02 1.01 1.00 1.00
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4.5 Conclusion

In this chapter, we introduced the QIMHMC method, which employs a random mass

matrix for the auxiliary momentum variable in the non-canonical Hamiltonian dynamics

of MHMC. This results in significant sampling improvements over MHMC. The new

method is compared to HMC, MHMC and QIHMC. The methods are compared on

the Banana shaped distribution, multivariate Gaussian distributions, and on real-world

datasets modelled using BLR.

The empirical results show that the new method outperforms all the other methods

on a time-normalised ESS basis across all the targets. Furthermore, QIHMC outperforms

HMC as expected. This shows the significant benefit provided by using a random mass

matrix for the momenta to the sampling properties of HMC based samplers in general.

A limitation of the method is the need to tune the vol-of-vol parameter. Although

typically smaller values of the parameter improve the ESSs, a more robust approach to

the selection of the parameter is still required. This work can be improved by establishing

a heuristic or an automated approach to tune the vol-of-vol parameter. In addition, the

tuning of the magnetic component could also be of interest as the outperformance of

MHMC over HMC, and consequently, the outperformance of QIMHMC over QIHMC,

depends on the chosen magnetic field. We also plan to incorporate a random mass matrix

in S2HMC in future work.

In the following chapter, we extend MHMC and S2HMC by incorporating partial

refreshment of the auxiliary momentum variable into MHMC and S2HMC respectively.



Chapter 5

Partial Momentum Refreshment

5.1 Introduction

In the preceding chapter, we assumed that the auxiliary momentum variable used to

generate each parameter sample is fully regenerated at each step. This is not always the

optimal approach of treating the momenta [74, 68, 140]. In their work on generalised

HMC, Horowitz [74] showed that partially updating the momentum, and thus retaining

some of the past dynamics, can improve the sampling performance of HMC and al-

lows one to make the trajectory length equal to one while keeping the auto-correlations

roughly the same. This concept has also been extensively utilised in the context of

sampling from integrator-dependent shadow Hamiltonians in which the Hamiltonian is

not separable [4, 68, 77, 140]. The use of partial momentum refreshment is yet to be

considered for MHMC and S2HMC in the literature. In this chapter, we present novel

algorithms based on MHMC and S2HMC algorithms which employ partial momentum

refreshment to improve the sampling performance of MHMC and S2HMC respectively.

The results across various targets and using different performance metrics show that

the proposed algorithms enhance the sampling performance of the original algorithms.

The results also show the overall utility of incorporating partial momentum update in

Hamiltonian dynamics-based samplers. The material in this chapter has been published

in the following two international journal articles:

• Mongwe, W.T., Mbuvha, R. and Marwala, T., 2021. Magnetic Hamiltonian

79
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Monte Carlo With Partial Momentum Refreshment. IEEE Access, vol. 9, pp.

108009-108016.

• Mongwe, W.T., Mbuvha, R. and Marwala, T., 2021. Utilising Partial Momen-

tum Refreshment in Separable Shadow Hamiltonian Hybrid Monte Carlo. IEEE

Access, vol. 9, pp. 151235-151244.

5.2 Proposed Partial Momentum Retention Algo-

rithms

The sampling process for HMC, MHMC and S2HMC follows a Gibbs sampling scheme

where the auxiliary momentum variable is generated first, after which the position vector

is generated based on the recently drawn momenta. The momenta are fully regenerated

each time a new sample is drawn, with the old momenta being discarded. This is not

always the optimal approach of treating the momenta across all possible target posterior

distributions [74, 68, 140, 29].

Horowitz [74] was amongst the first to observe this and employed a partial momentum

update to HMC and found that it significantly improved the performance of HMC. That

is, keeping some of the dynamics of the chain improved performance without harming

the legitimacy of the Monte Carlo method [74, 75, 42]. The concept of partial momen-

tum refreshment has been further developed in the context of sampling from integrator

dependent shadow Hamiltonians [4, 68, 77, 140]. Akhmatskaya et al. [4, 140] apply

partial momentum refreshment to shadow Hamiltonians on the Euclidean space, while

Heide et al. [68] employ it when sampling from shadow Hamiltonians on the Rieman-

nian manifold. The use of partial momentum refreshment is yet to be considered for

MHMC and S2HMC in the literature. Given that MHMC is closely related to HMC, one

would expect that employing partial momentum refreshment in MHMC would result in

the same or better sampling performance as observed by Horowitz [74] on HMC. Simi-

larly, utilising partial momentum refreshment in S2HMC should improve the sampling

behaviour of S2HMC.

In this chapter, we combine the non-canonical dynamics of MHMC with partial mo-
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mentum refreshment to create the PMHMC algorithm, which converges to the target

distribution. We also combine the separable Hamiltonian in S2HMC with partial mo-

mentum refreshment to create the PS2HMC algorithm, which also converges to the

correct stationary distribution. The performance of the proposed methods is compared

against HMC, MHMC, S2HMC and PHMC respectively.

Algorithm 10 Magnetic Hamiltonian Monte Carlo with Partial Momentum Re-

freshment Algorithm

Input: L, ϵ, ρ, N , G and (w0,p0).

Output: (wi,pi)
N
i=0

1: for i→ 1 to N do

2: (w,p)← (wi−1,pi−1).

3: u ∼ N (0,M)

4: p̄← ρp+
√

1− ρ2u

5: (ŵ, p̂) = ΦL
ϵ,H(w, p̄,G) in equation (2.22)

6: ζ = min [1, exp(−δH)], u ∼ Unif(0, 1)

7: if ζ > u then

8: (wi,pi,G)← (ŵ, p̂,G)

9: else

10: (wi,pi,G)← (w,−p,−G)

11: end if

12: end for

A key consideration when one implements partial momentum refreshment is what

technique to use to update the momenta - that is, what should the momenta update

equation be? Horowitz [74] mixes the momenta with a Gaussian random number with

some user-specified mixing angle. In contrast, Akhmatskaya et al. [4, 140] and Heide et

al. [68] introduce a momentum refreshment parameter that controls the extent of the

momentum refreshment between observations, with the new momentum being generated

from a Gaussian distribution. This thesis utilises the approach outlined in [153, 68, 140].

In this approach, the updated momentum p̄ to generate the next state is then taken to
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be:

p̄ = ρp+
√
1− ρ2u (5.1)

with probability one, where ρ is the partial momentum refreshment parameter, u is

Gaussian with mean zero and covariance = M, and p is the momenta for the current

state [140].

Algorithm 11 Separable Shadow Hamiltonian Hybrid Monte Carlo with Partial

Momentum Refreshment Algorithm

Input: L, ϵ, ρ, N and (w0,p0).

Output: (wi,pi, bi)
N
i=0

1: for i→ 1 to N do

2: (w,p)← (wi−1,pi−1).

3: u ∼ N (0,M)

4: p̄← ρp+
√

1− ρ2u

5: Apply the pre-processing mapping in equation (2.33) :

(ŵ, p̂) = X (w, p̄)

6: (ŵ, p̂) = ΦL
ϵ,H̃

(ŵ, p̂) in equation (2.19)

7: Apply the post-processing mapping in equation (2.34):

(ŵ, p̂) = X−1(ŵ, p̂)

8: ζ = min
[
1, exp(−∆H̃)

]
, u ∼ Unif(0, 1)

9: if ζ > u then

10: (wi,pi)← (ŵ, p̂)

11: else

12: (wi,pi)← (w,−p)
13: end if

14: bi = exp
(
H̃(wi,pi)− H(wi,pi)

)
15: end for

Note that p̄ has a Gaussian distribution and ρ ∈ (0, 1). The two extremes that ρ can

assume are: when ρ = 1, the momentum is never updated and thus possibly affecting the

ergodicity [153] of the chain and when ρ = 0, the momentum is always updated, which is

the behaviour of the original HMC based samplers. The resultant chain preserves some
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dynamics, with the exact amount depending on the value of ρ, between the generated

samples [68, 4, 140, 74]. The parameter ρ introduces an extra degree of freedom into

the sampler and needs to be set [4, 68]. In Section 5.3.2, we assess the sensitivity of the

results on the chosen value of ρ. A key aspect to note is that the proposed algorithms

will improve the performance without high additional computational cost and typically

do not alter the acceptance rates of the original algorithms in practice [140].

The algorithmic description of the PMHMC and PS2HMC algorithms is presented in

Algorithms 10 and 11 respectively. Theorem 5.2.1 guarantees that the proposed methods

satisfy detailed balance and hence converge to the correct target density.

Theorem 5.2.1. PMHMC and PS2HMC satisfy detailed balance.

Proof. The guarantee that the proposed algorithms satisfy detailed balance provided by

the use of the same argument in Horowitz [75] which is: after the MH step, the sign of

the momentum (and magnetic field for PMHMC) must be reversed in case of rejection.

Given that p̄ in (5.1) is Gaussian, the proof that the proposed methods satisfy detailed

balance follows that of MHMC and S2HMC respectively.

Note that the algorithm for PHMC used in this thesis is the same as the PMHMC

method outlined in Algorithm 10, except that we use Hamiltonian dynamics in step 6

instead of non-canonical Hamiltonian dynamics corresponding to MHMC.

5.3 Experiment Description

In this section, we outline the settings used for the experiments, the performance metrics

used, and we also present the sensitivity analysis for the partial momentum refreshment

parameter α in PMHMC, PHMC and PS2HMC.

5.3.1 Experiment settings

In all our experiments, we compare the performance of PMHMC to HMC, MHMC,

S2HMC and PHMC using the acceptance rate of the generated samples, ESS, ESS nor-

malised by execution time and the R̂ metric for convergence analysis of the MCMC
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chains. The target densities considered are multivariate Gaussian distributions with

D ∈ {10, 50}, JDPs calibrated to financial market data and real-world datasets mod-

elled using BLR. For all the target posteriors considered in this chapter, the momentum

refreshment parameter ρ is set to 0.7. This setting worked well on all the targets. Further

experiments of the sensitivity to ρ are presented in Section 5.3.2.

The trajectory length and step sizes parameters for the MCMC methods considered

in this chapter were set to the values outlined in Table 3.8. The PMHMC method used

the same step size as MHMC, while the S2HMC and PS2HMC methods used the same

step size as HMC.

Ten independent chains were run for each method on each target distribution. Three

thousand samples were generated for each target, with the first one-thousand samples

discarded as burn-in. These settings were sufficient for all the algorithms to converge

across all the targets.

5.3.2 Sensitivity to momentum refreshment parameter

To investigate the effects of varying the momentum refreshment parameter ρ, we ran

ten independent chains of PHMC, PMHMC and PS2HMC on two targets for ρ ∈
{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Note that we did not consider the case where

ρ = 1 as for this case the momentum variable is not refreshed, and this could possibly

affect the ergodicity of the proposed methods.

For this analysis, each chain used the same parameters as those in Section 5.3.1.

The results are displayed in Figure 5.1. The results show that PHMC, PMHMC and

PS2HMC have stable acceptance rates across the different values of ρ on all the targets

- indicating that ρ does not impact the acceptance rates of the proposed methods. This

result is consistent with the observation of [140]. Furthermore, PS2HMC has the highest

acceptance rate, and given that it uses the same step size as PHMC, it highlights the

benefits that can be obtained from sampling from the shadow Hamiltonian instead of

the true Hamiltonian.

The methods show a general trend of increasing ESS and normalised ESS with in-

creasing ρ for both datasets, with a deterioration of performance occurring at ρ = 0.9 as

the chain becomes “less ergodic”. In addition, PS2HMC has higher ESSs than PHMC
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Figure 5.1: Acceptance rates, ESS and ESS/Time for ten runs of PHMC (blue), PMHMC

(orange), and PS2HMC (green) on the a) Australian and b) German credit datasets with

varying choices of the momentum refreshment parameter ρ. The results indicate that the ESS

metrics are increasing functions of ρ, while the acceptance rate remains constant across all

values of ρ.

and PMHMC for these two targets, but has the lowest time-normalised ESS due to its

large execution time. On the German credit dataset, the time-normalised ESS of all the

methods jump to a higher level for ρ > 0.5, suggesting that the execution time improves

for all the methods for ρ > 0.5. This phenomenon is not observed on the Australian

credit dataset (which has D = 14) and is only present on the German credit dataset

(which has D = 25). This seems to suggest that the impact of partial momentum re-
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Figure 5.2: Diagnostic trace-plot of the negative log-likelihood showing the convergence be-

haviour of the algorithms on the Bitcoin dataset. The methods which employ partial momen-

tum refreshment converge faster than the original algorithms. This plot was produced by using

ρ = 0.7. Two thousand samples were generated with no burn-in period. The other settings are

as outlined in Section 5.3.1. The results are for a single run of each algorithm.

freshment becomes more pronounced on a time-normalised ESS as D increases. We

intend to investigate this behaviour further in future work.

The automatic tuning of ρ is still an open research problem. We plan to address the

automatic tuning of this parameter in future work. As a guideline, higher values of ρ

seem to be associated with higher ESS.

5.4 Results and Discussion

We first assess the convergence and mixing behaviour of the algorithms through plotting

the convergence profile of the negative log-likelihood in Figure 5.2. This plot is from

the point at which the first sample is generated until the last sample is generated. The

results indicate that the methods which employ partial momentum refreshment converge
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Figure 5.3: Results for the targets over ten runs of each method. For each dataset, the plots

on the first row show the multivariate effective sample size and the plots on the second row

show the multivariate effective sample size normalised by execution time (in seconds). The dark

horizontal line in each violin plot represents the mean value over ten runs of each algorithm.

For all the plots, the larger the value, the better the method.

faster than the original algorithms. This shows that the mixing speed of Hamiltonian

dynamics-based samplers can be improved by including partial momentum refreshment.

The performance of the algorithms across different metrics is shown in Figure 5.3

and Tables 5.1 to 5.3. In Figure 5.3, the plots on the first row for each dataset show the

ESS, and the plots on the second row show the ESS normalised by execution time. The
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Table 5.1: JDP results averaged over ten runs. The time t is in seconds. The values in bold

indicate that the particular method outperforms the other methods on that specific metric.

AR stands for the acceptance rate of the generated samples post the burn-in period.

USDZAR dataset

Metric HMC MHMC S2HMC PHMC PMHMC PS2HMC

AR 99.99 99.93 99.97 99.99 99.97 99.99

ESS 27 26 28 38 40 41

t 179 181 484 181 181 482

ESS/t 0.15 0.14 0.05 0.21 0.22 0.08

R̂ max 1.03 1.02 1.03 1.01 1.02 1.00

S&P 500 dataset

AR 92.72 92.68 99.3 92.33 92.58 99.3

ESS 211 217 222 602 577 715

t 173 174 601 172 173 597

ESS/t 1.22 1.24 0.36 3.49 3.32 1.19

R̂ max 1.03 1.02 1.04 1.01 1.02 1.01

results are for ten runs of each algorithm. The execution time t in Figure 5.3 and Tables

5.1 to 5.3 is in seconds. The results in Tables 5.1 to 5.3 are the mean results over ten

runs for each algorithm. We use the mean values over the ten runs in Tables 5.1 to 5.3

to form our conclusions about the performance of the algorithms.

The results in Figure 5.3 and Tables 5.1 to 5.3 show that, as expected, MHMC

outperforms HMC on all but one target being the Australian credit dataset. This is in

line with the behaviour which we saw in Section 4.3 of Chapter 4. Furthermore, these

results are in line with what has been previously observed in the literature [156, 26].

We also notice that S2HMC produces higher acceptance rates than HMC across

all the targets while using the same step size. This shows the benefits that can be

derived from sampling from shadow Hamiltonians. We further find that the methods

that partially refresh the momentum produce similar acceptance rates to the original

algorithms. In addition, the results show that the PS2HMC and S2HMC algorithms
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Table 5.2: Multivariate Gaussian distribution results averaged over ten runs. The time t is

in seconds. The values in bold indicate that the particular method outperforms the other

methods on that specific metric. AR stands for the acceptance rate of the generated samples

post the burn-in period.

Gaussian with D = 10

Metric HMC MHMC S2HMC PHMC PMHMC PS2HMC

AR 86.21 80.96 100.00 86.22 82.86 100.00

ESS 653 1 844 2 197 3 345 1 936 3 878

t 19.61 19.52 55.67 17.63 19.52 56.25

ESS/t 33.33 94.45 39.48 189.78 99.17 68.95

R̂ max 1.03 1.02 1.02 1.03 1.02 1.01

Gaussian with D = 50

AR 73.50 83.32 99.68 73.56 82.32 99.92

ESS 1 705 2 313 3 164 2 366 3 008 7 390

t 21.12 19.42 78.28 19.22 19.20 78.73

ESS/t 80.71 119.11 40.43 123.14 156.61 93.86

R̂ max 1.01 1.03 1.02 1.03 1.02 1.01

consistently produce high acceptance rates across all the targets and outperform the

other methods on this metric.

The results also indicate that PMHMC and PS2HMC outperformMHMC and S2HMC

across all the targets considered on the ESS and ESS normalised by execution time met-

rics, respectively. Furthermore, PHMC outperforms HMC - which was also observed by

Horowitz [74]. This result was also observed in the context of RMHMC in [68]. This

shows the significant benefit partial momentum updates can provide to the sampling

properties of HMC based samplers. However, the real performance gains are realised

when the momentum refreshment parameter ρ has been appropriately tuned.

In general, we find that the algorithms with partial momentum refreshment have

similar execution times compared to the original algorithms, except on the German

credit dataset, where the execution time of the partial momentum refreshment algorithms
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Table 5.3: BLR results averaged over ten runs. The time t is in seconds. The values in bold

indicate that the particular method outperforms the other methods on that specific metric.

AR stands for the acceptance rate of the generated samples post the burn-in period.

Pima dataset

Metric HMC MHMC S2HMC PHMC PMHMC PS2HMC

AR 78.195 82.35 99.89 78.39 80.60 99.94

ESS 645 902 1 339 1 179 1 595 2 731

t 85.54 84.13 199 65 76 215

ESS/t 7.55 10.72 6.76 17.90 21.88 13.26

R̂ max 1.00 1.02 1.00 1.00 1.01 1.00

Heart dataset

AR 81.69 79.10 99.96 81.93 83.67 100.00

ESS 1 030 2 864 1 447 1 460 4 215 2 528

t 66 68 170 66 67 170

ESS/t 15.48 41.96 8.48 22.09 62.42 14.83

R̂ max 1.02 1.01 1.02 1.01 1.01 1.02

Australian credit dataset

AR 79.88 82.06 100 80.33 82.22 100

ESS 1 184 867 2 005 2 030 2 053 3 862

t 79.18 77.82 178 68 69 178

ESS/t 14.96 11.14 11.21 29.61 29.63 21.62

R̂ max 1.01 1.04 1.00 1.00 1.00 1.00

German credit dataset

AR 81.89 81.41 100.0 82.03 84.9 100.0

ESS 1 617 1 686 1 828 1 756 1 808 3 375

t 421.79 420.51 630.08 130.01 131.11 382.62

ESS/t 3.83 4.01 2.90 13.42 13.77 8.82

R̂ max 1.02 1.01 1.02 1.01 1.01 1.01
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drops. This is due to the phenomenon that we outlined in Section 5.3.2. This particular

aspect of the method requires further investigation, which we plan to conduct in future

work. It is worth highlighting that the S2HMC and PS2HMC algorithms have the most

considerable execution times across all the targets. This is mainly due to the multiple

times that the shadow Hamiltonian is evaluated. This affects the time-normalised ESS

performance of these algorithms.

We find that PS2HMC outperforms all the methods on an ESS basis on all the targets,

except on the Heart dataset where PMHMC outperforms all the methods. PMHMC

outperforms all the methods on a time-normalised ESS basis on the BLR datasets, with

mixed results on the Gaussian and JDP targets. We further find that S2HMC sometimes

outperforms, on an ESS basis, all the other methods except for PS2HMC, for example,

on the Gaussian targets and the German credit dataset. This indicates that S2HMC

sometimes precludes, baring the slow execution time, the need for PMHMC in practice.

It is worth noting that all the methods produce low ESSs on the JDP datasets,

indicating the difficulty of sampling from JDPs. The results of the R̂ metric across

all the targets show that the methods have converged, with the algorithms displaying

similar R̂ metrics without an outright outperformer on all the targets.

5.5 Conclusion

In this chapter, we introduced partial momentum refreshment to MHMC and S2HMC.

We showed that these modifications result in improved sampling performance over MHMC

and S2HMC with minimal additional computational costs. We find that PS2HMC out-

performs all the methods on an ESS basis on the majority of the targets, with PMHMC

outperforming on the BLR datasets on a time-normalised ESS basis. These results indi-

cate the overall efficacy of incorporating partial momentum refreshment in Hamiltonian

dynamics-based samplers.

A limitation of the proposed methods is the need to tune the momentum refreshment

parameter. Although typically larger parameter values improve the effective sample sizes,

a more robust approach to selecting the parameter is still required. This work can be

improved by establishing a heuristic or an automated approach to tune the momentum
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refreshment parameter. Furthermore, exploring techniques for accelerating the execution

time of S2HMC and PS2HMC is worthwhile as these two algorithms produce the lowest

execution times, which hampers their performance on a normalised ESS basis.

In the next chapter, we extend MHMC by deriving the fourth-order shadow Hamilto-

nian associated with the integration scheme used in MHMC. We then use this modified

Hamiltonian to construct the new SMHMC sampler.



Chapter 6

Shadow Magnetic Hamiltonian

Monte Carlo

6.1 Introduction

In the preceding chapter, we showed that PMHMC improves the sampling performance

of MHMC through the incorporation of partial momentum refreshment. Sampling from

an integrator-dependent shadow or modified target density has been utilised to boost the

acceptance rates of HMC. This leads to more efficient sampling as the shadow Hamilto-

nian is better conserved by the integrator than the true Hamiltonian [77]. Sampling from

the modified Hamiltonian associated with the numerical integrator used in MHMC is yet

to be explored in the literature. This chapter aims to address this gap in the literature

by combining the benefits of the non-canonical Hamiltonian dynamics of MHMC with

those achieved by targeting the modified Hamiltonian. We first determine the modified

Hamiltonian associated with the MHMC integrator and use this to construct a novel

method, which we refer to as SMHMC, that leads to better sampling behaviour when

compared to MHMC while leaving the target distribution invariant. Furthermore, the

SMHMC algorithm employs partial momentum refreshment for the momenta generation.

The new SMHMC method is compared to MHMC and PMHMC. The material in this

chapter is currently under review at an international journal.

93
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6.2 Background

It has been previously confirmed that the performance of HMC suffers from the dete-

rioration in acceptance rates due to numerical integration errors that arise as a result

of large integration step sizes ϵ, or as the system size increases [77, 68]. As MHMC is

an extension of HMC, and becomes HMC when the magnetic component is absent, one

would expect that it also suffers from the pathology of a rapid decrease in acceptance

rates as the system size increases. The results in Figure 6.1 suggest that MHMC may

indeed suffer from a deterioration in acceptance rates.

The rapid decrease in acceptance rates results in significant auto-correlations be-

tween the generated samples, thus requiring large sample sizes. The deterioration of

the acceptance rates can be reduced by using more accurate higher-order integrators, by

using smaller step sizes, or by employing shadow Hamiltonians [140]. The first two ap-

proaches tend to be more computationally expensive than the latter approach [68, 140].

In this chapter, we explore the approach of utilising shadow Hamiltonians to enhance

the sampling performance of MHMC.

Samplers based on shadow Hamiltonians have been successfully employed to address

the deterioration of sample acceptance as the system, and step sizes increase and also

lead to more efficient sampling of the target posterior [4, 155, 77]. The shadow Hamil-

tonians are constructed by performing backward error analysis of the integrator and, as

a result, are better conserved when compared to the true Hamiltonian [63]. Numerous

approaches have been proposed for sampling from shadow Hamiltonians of various nu-

merical integrators [4, 68, 155, 77]. Sampling from the modified Hamiltonian associated

with the numerical integrator employed in MHMC is yet to be explored in the literature.

In this chapter, we address this gap in the literature by deriving the fourth-order modi-

fied Hamiltonian associated with the numerical integrator in MHMC. From this modified

Hamiltonian, we create the new SMHMC method, which satisfied detailed balance. We

compare the performance of the proposed method to MHMC and PMHMC across the

Banana shaped distribution, multivariate Gaussian distribution, Protein dataset mod-

eled using BNNs, and the Heart dataset modeled using BLR as highlighted in Table

3.2.

We proceed in this chapter by first deriving the shadow Hamiltonian corresponding
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Figure 6.1: Impact of the step size on the acceptance rate of SMHMC and MHMC on the

Airfoil dataset. The results show that SMHMC maintains higher acceptance rates than MHMC

as the step size increases. Three thousand samples were generated for each run, with the first

one thousand samples being the burn-in period. The results displayed in this plot were averaged

over five runs of the algorithms.

to the leapfrog-like integration scheme in MHMC, after which we utilise this shadow

Hamiltonian to construct the novel SMHMC algorithm.

6.3 Shadow Hamiltonian for MHMC

In this chapter, we focus on a fourth-order truncation of the shadow Hamiltonian under

the leapfrog-like integrator in equation (2.22). Since the leapfrog-like integrator is second-

order accurate (O2) [156], the fourth-order truncation is conserved with higher accuracy

(O4) by the intergrator than the true Hamiltonian. In Theorem 6.3.1, we derive the

fourth-order shadow Hamiltonian under the leapfrog-like integrator.

Theorem 6.3.1. Let H : Rd × Rd = R be a smooth Hamiltonian function. The

fourth–order shadow Hamiltonian function Ĥ : Rd×Rd = R corresponding to the leapfrog-

like integrator used in MHMC is given by:

Ĥ(w,p) = H(w,p) +
ϵ2

12
[KpUwwKp +KpGKppUw]−

ϵ2

24
[UwKppUw] +O(ϵ4) (6.1)

Proof. As outlined in Tripuraneni et al. [156], the Hamiltonian vector field
−→
H =
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∇pH∇w + (−∇w + G∇pH)∇p =
−→
A +

−→
B will generate the exact flow corresponding

to exactly simulating the MHMC dynamics [156]. We obtain the shadow Hamiltonian

via the separability of the true Hamiltonian [156]. The leapfrog-like integration scheme

in equation (2.22) splits the Hamiltonian as: H(w,p) = H1(w) + H2(p) + H1(w) and

exactly integrates each sub-Hamiltonian [156]. Using the BCH [64] formula we obtain:

Φfrog
ϵ,H = Φϵ,H1(w) ◦ Φϵ,H2(p) ◦ Φϵ,H1(w)

= exp
( ϵ
2

−→
B
)
◦ exp

(
ϵ
−→
A
)
◦ exp

( ϵ
2

−→
B
)

= H(w,p) +
ϵ2

12
{K, {K,U}} − ϵ2

24
{U, {U,K}}+O(ϵ4)

(6.2)

where the non-canonical Poisson brackets [32, 26] are defined as:

{f, g} = [∇wf,∇pf ]

[
0 I

−I G

]
[∇wg,∇pg]

T

= −∇pf∇wg +∇wf∇pg +∇pfG∇pg

(6.3)

and collapse to the canonical Poisson brackets when G = 0 [32, 26]. The corresponding

derivatives from the non-canonical Poisson brackets are presented in Appendix D. The

shadow Hamiltonian for the leapfrog-like integrator is then:

Ĥ(w,p) = H(w,p) +
ϵ2

12

KpUwwKp +KpGKppUw︸ ︷︷ ︸
A

− ϵ2

24
[UwKppUw] +O(ϵ4) (6.4)

where A is the factor induced by the presence of the magnetic field G. When G = 0,

the shadow in (6.4) becomes the shadow for Hamiltonian dynamics [77, 155] in equation

(2.30). It is worth noting that the shadow Hamiltonian in (6.4) is conserved to fourth-

order [68, 155, 140], and is thus more accurately conserved by leapfrog-like integrator

than the true Hamiltonian [151].

6.4 Proposed Shadow Magnetic Algorithm

We now present the SMHMC algorithm, which combines non-canonical Hamiltonian

dynamics in MHMC with the high conservation property of shadow Hamiltonians. The
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benefits of employing non-canonical Hamiltonian dynamics in MHMC have already been

established in [156, 59, 116], while the advantages of shadow Hamiltonians in general

are presented in [155, 68, 99, 112, 4]. We combine these two concepts to create a new

sampler that outperforms MHMC across various performance metrics.

An analysis of the shadow Hamiltonian corresponding to MHMC in equation (6.1)

shows that the conditional density for the momenta πH(p|w) is not Gaussian. This

suggests that if we fully re-sample the momenta from a normal distribution, as we did in

Chapter 5, we will attain a sampler that does not satisfy detailed balance [68, 4]. This

necessitates computationally intensive momentum generation [77] or partial momentum

refreshment [140, 4] with an MH step. In this chapter, we utilise the partial momentum

refreshment procedure outlined in [4, 68], in which a Gaussian noise vector u ∼ N (0,M)

is drawn. The momentum proposal is then produced via the mapping:

R(p, u) =
(
ρp+

√
1− ρ2u,−

√
1− ρ2p+ ρu

)
(6.5)

The new parameter, which we refer to as the momentum refreshment parameter, ρ =

ρ(w,p, u) takes values between zero and one, and controls the extent of the momentum

retention [116, 68, 140]. When ρ is equal to one, the momentum is never updated

and when ρ is equal to zero, the momentum is always updated [116]. The momentum

proposals are then accepted according to the modified non-separable shadow Hamiltonian

given as H̄(w,p, u) = Ĥ(w,p) + 1
2
uM−1u. The updated momentum is then taken to be

ρp+
√
1− ρ2u with probability:

ω := max{1, exp(H̄(w,p, u)− H̄(w, R(p, u)))}. (6.6)

The incomplete refreshment of the momentum produces a chain which saves some

of the behaviour between neighbourhood samples [116, 74, 68, 4, 140]. In Section 6.5.2,

we assess the sensitivity of the sampling results on the user-specified value of ρ. An

algorithmic description of the SMHMC sampler is provided in Algorithm 12. It is worth

noting from Algorithm 12 that the SMHMC sampler uses two reversible MH steps, which

implies that the resulting Markov chain is no longer reversible [68, 4, 140]. By breaking

the detailed balance condition, it is no longer immediately clear that the target density

is stationary, and so this must be demonstrated [68, 140].
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Theorem 6.4.1. The SMHMC algorithm leaves the importance target distribution in-

variant.

Proof. The proof of theorem 6.4.1 is obtained in Appendix A of the paper by Radivo-

jevic and Akhmatskay [140]. The proof involves showing that the addition of step 4 in

Algorithm 12 leaves the target invariant. The result follows from [140] by making use

of the fact that the explicit form of the shadow Hamiltonian, which has the additional

magnetic component A = KpGKppUw in equation (6.4) in our case, is not required for

the proof [140, 68].

Algorithm 12 Shadow Magnetic Hamiltonian Monte Carlo Algorithm

Input: L, ϵ, ρ, N , G, (w0,p0).

Output: (wi, pi, bi)
N
i=0

1: for i→ 1 to N do

2: (w,p)← (wi−1,pi−1).

3: u ∼ N (0,M)

4: p̄← ρp+
√

1− ρ2u with probability ω in equation (6.6).

5: (ŵ, p̂) = ΦL
ϵ,H(w, p̄,G) in equation (2.22)

6: ζ = min
[
1, exp(−δĤ)

]
, u ∼ Unif(0, 1)

7: if ζ > u then

8: (wi,pi,G)← (ŵ, p̂,G)

9: else

10: (wi,pi,G)← (w,−p,−G)

11: end if

12: bi = exp
(
Ĥ(wi,pi)− H(wi,pi)

)
13: end for

6.5 Experiment Description

In this section, we outline the settings used for the experiments, the performance metrics

used, and we also present the sensitivity analysis for the partial momentum refreshment

parameter ρ in SMHMC and PMHMC.
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6.5.1 Experiment settings

In our analysis, we compare the performance of SMHMC against MHMC and PMHMC

across the Banana shaped distribution, multivariate Gaussian distribution with D = 10,

the Protein dataset modeled using a BNN and the Heart dataset modeled using BLR.

We assess the performance using the acceptance rate, ESS, time-normalised ESS metrics

and assess the convergence behaviour of the chains using the R̂ metric. Note that for all

our experiments in this chapter, we set M = I which is the common approach in practice

[17].

For all the target posteriors used in this chapter, the momentum refreshment param-

eter ρ is set to 0.7, which is consistent with the settings used in Chapter 5. This setting

worked well on all the targets. Further experiments of the sensitivity to ρ are presented

in Section 6.5.2. The trajectory length and step size parameters for the MCMC methods

considered in this chapter were set to the values outlined in Table 3.8. Note that the

SMHMC and PMHMC methods used the same step size as MHMC.

Ten independent chains were run for each method on each target distribution. Three

thousand samples were generated for each target, with the first one-thousand samples

discarded as burn-in. These settings were sufficient for all the algorithms to converge on

all the targets.

6.5.2 Sensitivity to momentum refreshment parameter

We investigate the effects of varying the momentum refreshment parameter ρ on the

sampling performance of the proposed shadow Hamiltonian method. Ten chains, starting

from different positions, of the PMHMC and shadow MHMC algorithms were ran on the

Australian credit dataset for ρ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Note that

we exclude ρ = 1.0 from the analysis due to the same reasons outlined in Section 5.3.2.

Figure 6.2 shows the results for the Australian credit dataset. The results show that

PMHMC and SMHMC have stable acceptance rates across the different values of ρ

on all this target. SMHMC has higher acceptance rates and ESS than PMHMC for the

same step size. However, due to the high execution time of SMHMC, PMHMC produced

better time-normalised ESS compared to SMHMC. The methods show a general trend of
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Figure 6.2: Acceptance rates, ESS and ESS/Time for ten chains of PMHMC (blue) and

SMHMC (orange) the Australian credit dataset with varying choices of ρ. The ESS metrics are

an increasing function of ρ with the acceptance rate of SMHMC being larger than PMHMC

for the same step size ϵ.

increasing ESS and time-normalised ESS with increasing ρ, which is consistent with what

was observed in Section 5.3.2 for other Hamiltonian methods that incorporate partial

momentum refreshment.

6.6 Results and Discussion

Figure 6.3 shows the diagnostic trace-plots of the negative log-likelihood across various

target posteriors. The results show that all three methods have converged on the four

target densities analysed in this chapter.
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Table 6.1: Multivariate Gaussian distribution with D = 10 results averaged over ten runs.

The time t is in seconds. The values in bold indicate that the particular method outperforms

the other methods on that specific metric. AR stands for the acceptance rate of the generated

samples post the burn-in period.

Gaussian with D = 10

Metric MHMC PMHMC SMHMC

AR 80.96 82.86 84.64

ESS 1 844 1 936 2 546

t 19.52 19.52 69.01

ESS/t 94.45 99.17 36.90

R̂ max 1.02 1.02 1.01
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Figure 6.3: Diagnostic trace-plots of the negative log-likelihood across various targets aver-

aged over ten runs of each method. These results show that all the MCMC methods have

converged on all the targets.

The performance of the algorithms across different metrics is shown in Figure 6.4

and Tables 6.1 to 6.4. In Figure 6.4, the plots on the first row for each dataset show

the effective sample size, and the plots on the second row show the effective sample

size normalised by execution time. The results are for the ten runs of each algorithm.

The execution time t in Figure 6.4 and Tables 6.1 to 6.4 is in seconds. The results in

Tables 6.1 to 6.4 are the mean results over the ten runs for each algorithm. We use the

mean values over the ten runs in Tables 6.1 to 6.4 to form our conclusions about the



6.6. RESULTS AND DISCUSSION 102

1750

2000

2250

2500

2750

3000

3250

3500

ES
S

Protein Dataset

1600

1800

2000

2200

2400

2600

2800

Gausian with D = 10

2

3

4

5

6

7

ES
S 

/ T
im

e

40

60

80

100

120

600

800

1000

1200

1400

1600

1800

ES
S

Pima Dataset

2500

3000

3500

4000

4500

5000

5500

Heart Dataset

MHMC PMHMC SMHMC

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

ES
S 

/ T
im

e

MHMC PMHMC SMHMC

40

50

60

70

Figure 6.4: Results for the datasets over ten runs of each method. For each dataset, the plots

on the first row show the multivariate effective sample size and the plots on the second row

show the multivariate effective sample size normalised by execution time (in seconds). For all

the plots, the larger the value, the better the method. The dark horizontal line in each violin

plot represents the mean value over ten runs of each algorithm.

performance of the algorithms.

Tables 6.1 to 6.4 show that SMHMC produces the highest acceptance rate across all

the targets, which is consistent with what we observed for other shadow Hamiltonian

algorithms in Chapter 5. Furthermore, the SMHMC algorithm produces the largest

ESS on all the targets. In particular, it outperforms PMHMC, which shows that the
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Table 6.2: Protein dataset results averaged over ten runs. The time t is in seconds. The

values in bold indicate that the particular method outperforms the other methods on that

specific metric. AR stands for the acceptance rate of the generated samples post the burn-in

period.

Protein Dataset

Metric MHMC PMHMC SMHMC

AR 80.28 79.4 82.09

ESS 1 729 2 467 3 244

t 373 374 1 579

ESS/t 4.51 6.54 2.05

R̂ max 1.01 1.00 1.00

method is doing something extra than just incorporating partial momentum refreshment

into the MHMC. However, the source of the outperformance of SMHMC seems to be

mostly driven by the incorporation of the partial momentum refreshment, highlighting

the benefits of utilising partial momentum refreshment in Hamiltonian dynamics-based

samplers in general.

The results show that the MHMC and PMHMC produce the lowest execution times

across all the targets, with SMHMC having the largest execution time, sometimes as

much as two times that of the MHMC method. The large execution time of SMHMC

can be attributed to the multiple times that the shadow Hamiltonian is evaluated, as well

as the extra MH step for the momenta generation. The slow execution time is the key

drawback of SMHMC, and hinders the performance of the method on a time-normalised

ESS basis. We find that PMHMC outperforms all the methods on a time-normalised

ESS basis. SMHMC outperforms MHMC on the BLR datasets on a time-normalised

ESS basis, with MHMC outperforming SMHMC on the other targets on the same basis.

Furthermore, the R̂ metric shows that all the methods have converged, with PMHMC

and SMHMC producing marginally better convergence behaviour compared to MHMC.
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Table 6.3: Heart dataset results averaged over ten runs. The time t is in seconds. The values

in bold indicate that the particular method outperforms the other methods on that specific

metric. AR stands for the acceptance rate of the generated samples post the burn-in period.

Heart Dataset

Metric MHMC PMHMC SMHMC

AR 79.10 83.67 84.66

ESS 2 864 4 215 4 350

t 68.24 67.5 71.90

ESS/t 41.96 62.42 60.50

R̂ max 1.01 1.01 1.00

Table 6.4: Pima dataset results averaged over ten runs. The time t is in seconds. The values

in bold indicate that the particular method outperforms the other methods on that specific

metric. AR stands for the acceptance rate of the generated samples post the burn-in period.

Pima Dataset

Metric MHMC PMHMC SMHMC

AR 82.35 80.60 84.80

ESS 902 1 595 1 699

t 84.13 72.91 110.66

ESS/t 10.72 21.88 15.35

R̂ max 1.02 1.01 1.01
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6.7 Conclusion

In this chapter, we introduced the novel SMHMC algorithm, which combines the non-

canonical dynamics of MHMC with the benefits of sampling from a shadow Hamilto-

nian. This combination results in improved exploration of the posterior when compared

to MHMC. The empirical results show that the new algorithm provides a significant

improvement on the MHMC algorithm in terms of higher acceptance rates and larger

effective sample sizes, even as the dimensionality of the problem increases.

A primary limitation of the proposed algorithm is the computational time associated

with the method, mainly since it involves the computation of the Hessian matrix of the

target distribution. This leads to poor performance on a time-normalised ESS basis.

A straightforward approach to circumvent the computational burden is to use closed-

form expressions for the first-order derivatives and the Hessian matrix. This approach,

however, restricts the possible targets that can be considered. We aim to address this

issue in the future by using a surrogate model to approximate the shadow Hamiltonian

during the burn-in period of the method as an active learning task.

Another limitation of the method is the need to tune the momentum refreshment

parameter. Although typically higher values of the parameter improve the effective

sample sizes, a more robust approach to selecting the parameter is still required. In

future work, we plan on improving the proposed method by establishing an automated

approach to tune the momentum refreshment parameter.

In the next chapter, we address a crucial impediment in the general use of the S2HMC

method, which is the tuning the parameters of S2HMC. Tuning of parameters of shadow

Hamiltonian methods is yet to be explored in the literature. The next chapter aims to

fill this gap and simultaneously make S2HMC more accessible to non-expert users.



Chapter 7

Adaptive Shadow Hamiltonian

Monte Carlo

7.1 Introduction

As already highlighted in this thesis, HMC has two main practical issues. The first is

the deterioration in acceptance rates as the system size increases, and the second is its

sensitivity to two user-specified parameters: the step size and trajectory length. The

former issue is addressed by sampling from an integrator-dependent modified or shadow

density and compensating for the induced bias via importance sampling. The latter issue

is addressed by adaptively setting the HMC parameters, with the state-of-art method

being the NUTS algorithm. The automatic tuning of parameters of shadow Hamiltonian

methods is yet to be considered in the literature. In this chapter, we combine the benefits

of NUTS with those attained by sampling from the shadow density by adaptively setting

the trajectory length and step size of S2HMC to make it more accessible to non-expert

users. This leads to a new algorithm which we refer to as adaptive S2HMC, that shows

improved performance over S2HMC and NUTS across various targets and leaves the

target density invariant. The work in this chapter was published in the following journal

article:

1. Mongwe, W.T., Mbuvha, R. and Marwala, T., 2021. Adaptively Setting the Path

Length for Separable Shadow Hamiltonian Hybrid Monte Carlo. IEEE Access, vol.

106
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9, pp. 138598-138607.

7.2 Proposed Adaptive Shadow Algorithm

The performance of HMC suffers from two significant practical issues. The first practical

issue relates to the degeneration in acceptance rates due to numerical integration errors

as the system size grows [77, 68]. This deterioration in acceptance rates results in

significant auto-correlations in the generated samples, necessitating the generation of

large sample sizes. The second difficulty with HMC is the need to tune performance-

sensitive parameters in the step size and trajectory length. A small trajectory length

leads to the display of random walk behaviour [73, 2], and one that is too large leads to

wasted computation [73, 2]. In contrast, small step sizes are computationally wasteful,

leading to correlated samples and poor mixing. Large step sizes compound discretisation

errors, which also lead to lousy mixing [73, 2]. Finding the optimal values for these

parameters is of paramount importance but is far from trivial [73, 2].

An approach to address the rapid decrease in acceptance rates with increases in

system size is to use modified or shadow Hamiltonian based samplers. These modi-

fied Hamiltonian methods leverage backward error analysis of the numerical integrator,

which results in higher-order conservation of the shadow Hamiltonian relative to the

true Hamiltonian [63]. Numerous methods have been put forward for sampling from a

shadow Hamiltonian [4, 68, 155, 77, 99].

Sweet et al. [155] present S2HMC which leverages a processed leapfrog integrator

that results in a separable shadow Hamiltonian. The separable shadow Hamiltonian

reduces the need for computationally intensive momentum generation [77] or partial mo-

mentum refreshment [140, 4] evaluations that are necessitated by non-separable shadow

Hamiltonians. Heide et al. [68] derive a non-separable shadow Hamiltonian for the gen-

eralised leapfrog integrator in RMHMC, which results in improved performance relative

to sampling from the true Hamiltonian. These methods still suffer from the practical

impediment of setting the integration step size and trajectory length.

Hoffman and Gelman [73] present the NUTS methodolog which automatically sets

the trajectory length of HMC by setting a termination criterion that avoids retracing of
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steps. Hoffman and Gelman [73] also address step size adaptation through primal-dual

averaging in the burn-in phase. These two approaches for setting these parameters have

been widely adopted in the literature [167, 16, 30, 110].

There has been no attempt to adaptively set the step size and trajectory length

parameters for shadow HMC methods. A particular constraint in trajectory length

tuning is that most shadow Hamiltonian methods proposed in the literature rely on non-

separable Hamiltonians. These non-separable Hamiltonian require special treatment

of the auxiliary momentum variable as the momentum is no longer Gaussian. This

precludes these methods from being directly used within the NUTS methodology [4,

140, 77, 68]. We overcome this constraint by relying on a separable shadow Hamiltonian

based sampler, which is the S2HMC algorithm. This allows for both tuning of step sizes

through primal-dual averaging and the trajectory length via a binary tree recursion as

in Hoffman and Gelman [73]. We refer to this new algorithm as adaptive S2HMC.

The sampling performance of the proposed adaptive S2HMC method is compared

against NUTS, S2HMC with a fixed trajectory length and S2HMC with a uniform ran-

dom trajectory length. We refer to the latter approach that uses a random trajectory

length as Jittered S2HMC (JS2HMC). Note that the step size is tuned via primal-dual

averaging during the burn-in period in all the methods. We show that our adaptive

S2HMC method achieves better exploration of the posterior and higher effective sample

sizes than S2HMC, JS2HMC and NUTS across various benchmarks while leaving the

target density invariant. The analysis is performed on the Banana shaped distribution,

a multivariate Gaussian distribution with D = 10, Neal’s [123] funnel with D = 25 and

BLR posterior targets using the Pima and Australian credit datasets as set out in Table

3.2.

The adaptive S2HMC method differs from NUTS in that a different integrator is used.

Instead of using the leapfrog integrator associated with HMC, the processed leapfrog

integrator, which is explicit and symplectic, corresponding to S2HMC is used. The

processed leapfrog integrator used in the adaptive S2HMC sampler proceeds by first

performing the pre-processing step and then passing the momenta, position, and the

shadow density to the leapfrog integrator, after which a post-processing step is employed

to recover the momenta and position. The post-processed position and momenta are then
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Algorithm 13 Adaptive Separable Shadow Hybrid Hamiltonian Monte Carlo Al-

gorithm

Main loop same as NUTS in Algorithm 6. We are extending the

BuildTree method in Algorithm 7 to support the processed leapfrog

integration scheme.

function BuildTree(w, p, u, v, j, ϵ, w0, p0)

Output: w−, p−, w+, p+, w′, p′, n′, s′, α′, n′
α

1: if j = 0 then

2: Apply the pre-processing mapping (ŵ, p̂) = X (w, p) in equation (2.33)

3: w∗, p∗ = Leapfrog(p̂, ŵ, ϵv, H̃)

4: Apply the post-processing mapping (w′, p′) = X−1(w∗, p∗) in equation (2.34)

5: n′ = I[u < exp(−H̃(w′, p′)], s′ = I[u < exp(∆max − H̃(w′, p′)]

6: nα = 1, α = min
(
1, exp(H̃(w0, p0)− H̃(w′, p′))

)
7: return w′, p′, w′, p′, w′, p′, n′, s′, α, nα

8: else

9: w−, p−, w+, p+, w′, p′, n′, s′, α′, n′
α = BuildTree(w, p, u, v, j − 1, ϵ, w0, p0)

10: if s′ = 1 then

11: if v = −1 then

12: w−, p−,−,−, w′′, p′′, n′′, s′′, α′′, n′′
α = BuildTree(w−, p−, u, v, j−1, ϵ, w0, p0)

13: else

14: −,−, w+, p+, w′′, p′′, n′′, s′′, α′′, n′′
α = BuildTree(w+, p+, u, v, j−1, ϵ, w0, p0)

15: end if

16: With prob. n′

n′+n′′ , set w
′ = w′′, p′ = p′′

17: α′ = α′ + α′′, n′ = n′ + n′′, n′
α = n′

α + n′′
α

18: s′ = s′′I[(w+ − w−)p− ≥ 0]I[(w+ − w−)p+ ≥ 0]

19: end if

20: return w−, p−, w+, p+, w′, p′, n′, s′, α′, n′
α

21: end if

used in the stopping criterion to prevent a U-turn. Note that the stopping criteria in
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adaptive S2HMC are the same as in the original NUTS algorithm, except that now the

target distribution is the shadow density, and the position and momentum are the post-

processed position and momentum. That is, the criterion in equation (2.39) changes from

using πZ(z) to using the shadow equivalent π̂Z∗(z∗) where z∗ is the state representing

the post-processed position and momenta. We then calculate the weights of the adaptive

S2HMC method, as it is an importance sampler, by comparing the modified and true

Hamiltonian at each generated state. Theorem 7.2.1 guarantees that the new method

leaves the target distribution, which is the modified density, invariant.

Theorem 7.2.1. Adaptive S2HMC satisfies detailed balance and thus leaves the target

distribution invariant.

Proof. To show that adaptive S2HMC satisfies detailed balance, we are required to show

that the processed leapfrog algorithm is both symplectic and reversible as necessitated by

the NUTS methodology. This is guaranteed by Theorem 2.7.2, with the proof presented

in Section 2.7.

We present the pseudo-code for the adaptive S2HMC sampler in Algorithm 13, with

parts in blue indicating the additions to NUTS with primal-dual averaging methodology

of Hoffman and Gelman [73]. Suppose the blue sections are omitted, and we now sample

from the true Hamiltonian. In that case, the processed leapfrog reduces to the original

leapfrog integration scheme, which then makes adaptive S2HMC to become NUTS. Note

that when the dash “−” character is used as an output, it means that the corresponding

argument is left unaltered.

For JS2HMC, we generate each sample using a random trajectory length drawn from

a discrete uniform distribution. That is, L ∼ U(1, Lmax) with Lmax specified by the

user. The use of random trajectory lengths has been explored before in the context of

HMC [71, 164], but is yet to be considered for S2HMC. To show that JS2HMC preserves

detailed balance, one would need to note that JS2HMC amounts to using a mixture

of different S2HMC transition kernels which each preserve detailed balance, and hence

JS2HMC preserves detailed balance. JS2HMC serves as a naive adaptive scheme for

S2HMC, which should highlight if the more advanced adaptive schemes are adding any

value.
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7.3 Experiment Description

We consider five test problems to demonstrate the performance of adaptive S2HMC

over S2HMC, JS2HMC and NUTS. The targets are the Banana shaped distribution, a

multivariate Gaussian distribution with D = 10, Neal’s [123] funnel with D = 25 and

BLR posterior targets using the Pima and Australian credit datasets as set out in Table

3.2.

Performance is measured via ESS and ESS per second, and we assess the convergence

behaviour of the chains using the R̂ metric. For all the algorithms, the step size was set

by targeting an acceptance rate of 80% during the burn-in period. The trajectory length

for the targets considered in this chapter was set to the values outlined in Table 3.8 for

HMC. Ten independent chains were run for each method on each target distribution. Ten

thousand samples were generated for each target, with the first 5 000 samples discarded

as burn-in. These settings were sufficient for all the algorithms to converge on all the

targets.

7.4 Results and Discussion

Figure 7.1 shows the diagnostic trace-plots of the negative log-likelihood across various

target posteriors. The results show that all four methods have converged on the target

densities considered.

The performance of the algorithms across different metrics is shown in Figure 7.2

and Tables 7.1 to 7.4. In Figure 7.2, the plots on the first row for each dataset show

the effective sample size, and the plots on the second row show the effective sample

size normalised by execution time. The results are for the ten runs of each algorithm.

The execution time t in Figure 7.2 and Tables 7.1 to 7.4 is in seconds. The results in

Tables 7.1 to 7.4 are the mean results over the ten runs for each algorithm. We use the

mean values over the ten runs in Tables 7.1 to 7.4 to form our conclusions about the

performance of the algorithms.

The results show that NUTS and adaptive S2HMC produce similar average trajectory

lengths L across the targets, but with adaptive S2HMC producing the larger step size

on the majority of the targets. Note that the average trajectory lengths L are calculated
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Figure 7.1: Diagnostic trace-plots of the negative log-likelihood across various targets aver-

aged over ten runs of each method. These results show that all the MCMC methods have

converged on all the targets.
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Figure 7.2: Results for the datasets over ten runs of each method. For each dataset, the plots

on the first row show the multivariate effective sample size and the plots on the second row

show the multivariate effective sample size normalised by execution time (in seconds). For all

the plots, the larger the value, the better the method. The dark horizontal line in each violin

plot represents the mean value over ten runs of each algorithm.
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Table 7.1: Banana shaped distribution results averaged over ten runs. The time t is in seconds.

The values in bold indicate that the particular method outperforms the other methods on that

specific metric. Average L represents the average trajectory length used to generate the post-

burn-in samples.

Metric NUTS S2HMC Jittered S2HMC Adaptive S2HMC

Average L 7 15 7 12

ϵ 0.14 0.12 0.13 0.10

ESS 294 317 235 582

t 17.26 91.26 72.12 693.37

ESS/t 16.83 3.48 3.26 0.84

R̂ max 1.00 1.00 1.00 1.00

post the burn-in period. This combination of step size and trajectory length result in

substantial execution times for adaptive S2HMC, which can be attributed to the multiple

times the shadow density is evaluated as the adaptive algorithm moves forwards and

backwards in time to ensure detailed balance. NUTS outperforms all the methods on an

execution time basis, followed by JS2HMC. Note that JS2HMC uses, on average, half

the trajectory length of S2HMC due to drawing the trajectory length from a uniform

distribution, where the mean would be the upper bound divided by two. In our case,

we set the upper bound to be equal to the trajectory length used in S2HMC. We also

find that S2HMC and JS2HMC produce similar step sizes, with JS2HMC producing the

largest step size of all the methods across all the target posteriors.

We find that adaptive S2HMC outperforms all the methods on an ESS basis across all

the targets except for the Australian credit dataset, where it is outperformed by NUTS.

More crucially, the adaptive S2HMC produces significantly higher ESSs when compared

to S2HMC. What is interesting to note about the ESS performance of S2HMC is that

when we target an acceptance rate of 80% as done in this chapter, it produces lower ESSs

than when using the step size of HMC in Table 3.8 (as we saw in Chapter 5), which was a

smaller step size. The drop in ESS is attributed to non-uniform weights that tend to be

produced when we target lower acceptance rates for the generated samples. This suggests

that S2HMC prefers targeting higher acceptance rates; this is to ensure that the resultant
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Table 7.2: Multivariate Gaussian distribution with D = 10 results averaged over ten runs.

The time t is in seconds. The values in bold indicate that the particular method outperforms

the other methods on that specific metric. Average L represents the average trajectory length

used to generate the post-burn-in samples.

Metric NUTS S2HMC Jittered S2HMC Adaptive S2HMC

Average L 6 15 7 7

ϵ 0.38 0.48 0.48 0.40

ESS 4 735 1 648 3 408 5 342

t 14.84 160.63 127.64 628.53

ESS/t 318.99 10.26 26.70 8.50

R̂ max 1.00 1.00 1.00 1.00

weights of the importance sampler are uniform. JS2HMC outperforms S2HMC on an

ESS basis across all the majority of the targets, suggesting that one can achieve more

uniform weights in S2HMC by simply making the trajectory length random. This naive

approach requires minimal modifications to already existing S2HMC implementations.

The adaptive S2HMC method outperforms S2HMC and JS2HMC on a normalised

ESS basis on all the targets except on the Banana shaped distribution and multivariate

Gaussian distribution. JS2HMC outperforms S2HMC across all the targets except on

the Banana shaped distribution. Given the very insignificant change that is required to

create JS2HMC from S2HMC, there seems to be little reason not to use it instead of

S2HMC in practice. Overall, NUTS outperforms all the methods across all the targets

on a time-normalised ESS basis, and all the methods produced good convergence on all

the targets as measured by the R̂ metric.
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Table 7.3: Neal’s funnel density with D = 25 results averaged over ten runs. The time t

is in seconds. The values in bold indicate that the particular method outperforms the other

methods on that specific metric. Average L represents the average trajectory length used to

generate the post-burn-in samples

Metric NUTS S2HMC Jittered S2HMC Adaptive S2HMC

Average L 20 50 25 17

ϵ 0.30 0.30 0.33 0.017

ESS 7 719 374 1 116 8 441

t 120.80 347.78 233.14 1 143.33

ESS/t 65.25 1.07 4.78 8.53

R̂ max 1.00 1.00 1.00 1.00
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Table 7.4: BLR dataset results results averaged over ten runs. The time t is in seconds.

The values in bold indicate that the particular method outperforms the other methods on

that specific metric. Average L represents the average trajectory length used to generate the

post-burn-in samples

Pima Dataset

Metric NUTS S2HMC Jittered S2HMC Adaptive S2HMC

Average L 7 50 25 7

ϵ 0.10 0.13 0.14 0.11

ESS 5 302 288 1 273 6 102

t 21.62 485.28 306.41 724.87

ESS/t 245.53 0.59 4.16 8.42

R̂ max 1.00 1.00 1.00 1.00

Australian Credit Dataset

Average L 10 50 25 8

ϵ 0.10 0.15 0.16 0.14

ESS 5 853 794 1 034 5 478

t 36.65 484.87 335.68 943.27

ESS/t 159.73 1.63 3.11 5.80

R̂ max 1.00 1.00 1.00 1.00



7.5. CONCLUSION 117

7.5 Conclusion

In this chapter, we introduced the novel adaptive S2HMC algorithm, which combines

the benefits of sampling from a shadow Hamiltonian and adaptively sets the trajectory

length and step size parameters for S2HMC, while leaving the target invariant. The new

method was compared against S2HMC, JS2HMC and NUTS. The JS2HMC method

utilises a random trajectory length, and we are the first to introduce such a concept

for shadow Hamiltonians into the literature. The empirical results show that the new

algorithms provide significant improvement on the S2HMC algorithm.

An important limitation of the adaptive S2HMC is the computational time associated

with the method. This leads to poor performance on a normalised ESS basis. We aim

to address this issue in the future by using a surrogate model as we intend to do for

SMHMC outlined in Chapter 6. The naive JS2HMC method offers improvements to

S2HMC without requiring much extra effort, and at half the execution time of S2HMC.

It thus provides a practical adaptive scheme for non-expert users.

In the following chapter, we rely on the coupling theory of Hamiltonian samplers and

incorporate antithetic sampling into the MHMC and S2HMC samplers. This approach

leads to a reduction of the variance of their estimators or, equivalently, serves to increase

their effective sample sizes.



Chapter 8

Antithetic Hamiltonian Monte Carlo

Techniques

8.1 Introduction

In the preceding chapters, we proposed novel extensions to the MHMC and S2HMC algo-

rithms that enhance their performance through the utilisation of random mass matrices,

partial momentum retention, automatically tuning their parameters as well as the use of

integrator-dependent shadow Hamiltonians. In this chapter, we use antithetic sampling

to reduce the variance of Hamiltonian dynamics-based estimators and consequently in-

crease the ESSs of their samplers. A-HMC has been recently introduced into literature

by Piponi et al. [136] and has been shown to outperform antithetic versions of random

walk MH and MALA. We now introduce novel antithetic samplers based on the MHMC

and S2HMC methods to create samplers that outperform A-HMC. The results show that

these two new methods outperform their non-antithetic counterparts as well as A-HMC

on a time-normalised ESS basis. The results also indicate the overall utility that can be

derived from incorporating antithetic sampling in Hamiltonian dynamics-based MCMC

methods. The material in this chapter was published in the following journal article:

• Mongwe, W.T., Mbuvha, R. and Marwala, T., 2021. Antithetic Magnetic and

Shadow Hamiltonian Monte Carlo. IEEE Access, vol. 9, pp. 49857-49867.
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8.2 Proposed Antithetic Samplers

In their inspired work, Piponi et al. [136] combined antithetic sampling and control

variate variance reduction techniques with Hamiltonian dynamics to create the A-HMC

and control variate HMC methods respectively. The HMC based antithetic samplers

Algorithm 14 Antithetic Magnetic Hamiltonian Monte Carlo Algorithm

Input: N , G, ϵ, L, wx
init, w

y
init, H(w, p)

Output: (wx)Nm=0, (w
y)Nm=0

1: wx
0 ← wx

init

2: wy
0 ← wy

init

3: for m→ 1 to N do

4: pxm−1 ∼ N (0,M)

5: pym−1 = −pxm−1 ← Momentum shared between the two chains

6: pxm, w
x
m = Integrator(pxm−1, w

x
m−1, ϵ, L, G, H)

7: pym, w
y
m = Integrator(pym−1, w

y
m−1, ϵ, L, G, H)

8: δHx = H(wx
m−1, p

x
m−1)−H(wx

m, p
x
m)

9: δHy = H(wy
m−1, p

y
m−1)−H(wy

m, p
y
m)

10: αx
m = min (1, exp (δHx))

11: αy
m = min (1, exp (δHy))

12: um ∼ Unif(0, 1) ← Uniform random number shared between the two

chains

13: The Metropolis-Hastings step is the same as in Algorithm 3 for both

chains.

14: end for

have an advantage over antithetic Gibbs samplers presented in Frigessi et al. [48] in

that they are applicable to problems where conditional distributions are intractable, and

where Gibbs sampling may mix slowly [136]. The control variate HMC variance
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Algorithm 15 Antithetic Separable Shadow Hamiltonian Hybrid Monte Carlo Al-

gorithm

Input: N , ϵ, L, wx
init, w

y
init, H(w, p), H̃(w, p)

Output: (wx)Nm=0, (w
y)Nm=0, (b

x)Nm=0, (b
y)Nm=0

1: wx
0 ← wx

init

2: wy
0 ← wy

init

3: for m→ 1 to N do

4: pxm−1 ∼ N (0,M)

5: pym−1 = −pxm−1 Momentum shared between the two chains

6: Apply the pre-processing mapping to both chains

7: pxm, w
x
m = Leapfrog(pxm−1, w

x
m−1, ϵ, L, H̃)

8: pym, w
y
m = Leapfrog(pym−1, w

y
m−1, ϵ, L, H̃)

9: Apply the post-processing mapping to both chains

10: δHx = H̃(wx
m−1, p

x
m−1)− H̃(wx

m, p
x
m)

11: δHy = H̃(wy
m−1, p

y
m−1)− H̃(wy

m, p
y
m)

12: αx
m = min (1, exp (δHx))

13: αy
m = min (1, exp (δHy))

14: um ∼ Unif(0, 1) ← Uniform random number shared between the two

chains

15: The Metropolis-Hastings step and the weight calculation is the same

as in Algorithm 5 for both chains.

16: end for

reduction technique is more generally applicable than the antithetic approach, which

requires the target distribution to be symmetric about some vector. Control variate

techniques rely on the practitioner being able to construct efficient and accurate ap-

proximate distributions, which is difficult for neural networks and is an impediment to
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general use [136]. Thus, this thesis focuses on the antithetic sampling approach, which

is straightforward to implement for BNNs as well as for BLR. In particular, we expand

on the work of Piponi et al. [136] by presenting two new antithetic sampling MCMC

methods being the Antithetic Separable Shadow Hamiltonian Hybrid Monte Carlo (A-

S2HMC) and Antithetic Magnetic Hamiltonian Monte Carlo (A-MHMC) algorithms.

The A-S2HMC algorithm is based on sampling from the shadow Hamiltonian using

S2HMC [77, 155]. Sampling using the S2HMC algorithm provides benefits over HMC -

and the results in the preceding chapters of this thesis attest to this. One benefit is that

the shadow Hamiltonian is better conserved by the numerical integrator, which allows

one to use larger step sizes, and thus reducing auto-correlations, than in HMC without

a significant drop in the acceptance rates [77, 155, 140, 4]. In addition, S2HMC is an

importance sampler and already offers variance reduction over HMC. The A-S2HMC

algorithm thus combines the benefits of antithetic sampling with importance sampling,

which should provide even more variance reduction than is provided by S2HMC over

HMC. The disadvantage of S2HMC over HMC is that it consumes more computational

resources than HMC, which reduces the outperformance on a time-normalised ESS basis.

The A-MHMC algorithm is based on adding antithetic sampling to the MHMC algo-

rithm. The MHMC algorithms provide an improvement on HMC by adjusting the range

of exploration via a magnetic field. This has the effect of enhancing the convergence

speed and reducing the auto-correlations of the samples [156, 59]. In the A-MHMC al-

gorithm, we combine antithetic sampling with the benefits that MHMC already has over

HMC intending to create a sampler that outperforms A-HMC. Unlike S2HMC, MHMC

has comparable execution time with HMC, which means that the computational burden

should not outweigh the benefits of higher ESSs produced by MHMC and A-MHMC,

respectively.

The pseudo-code for the new antithetic algorithms that we are proposing is presented

in Algorithms 14 and 15. The difference between the antithetic algorithms and the

original algorithms is that the momentum variable and the uniform random variable

in the MH acceptance step are shared between the two chains. These differences are

appropriately highlighted in the respective algorithms.



8.3. EXPERIMENT DESCRIPTION 122

8.3 Experiment Description

The performance of the algorithms is compared on real-world benchmark datasets. The

real-world data used are the four classification datasets used in Girolami and Calderhead

[53], which we model using BLR. We also apply BNNs to model real world regression

benchmark datasets. The datasets, their number of features and their associated models

are outlined in Table 3.2. For all the algorithms, we set the mass matrix M = I, which

is the common approach in practice [17, 124].

The performance metrics used in this chapter are the multivariate ESS, the execution

time and the ESS normalised by the execution time. Note that the ESS for the variance

reduced chain is related to the ESS of the original chain as [136]:

ESSantithetic =
2× ESSoriginal

1 + η
(8.1)

where η is the correlation coefficient between the corresponding pairs of chains. In this

thesis, the correlation is taken as the maximum correlation across all the parameter

dimensions, which creates a lower bound for ESSantithetic. Note that we estimate η

using the Spearman rank correlation coefficient [170]. A careful analysis of equation

(8.1) reveals that we can increase the ESS by ensuring that the correlation is as close

as possible to -1, which is what the anti-coupling methodology aims to do. This also

means that the ESSantithetic can be orders of magnitude greater than the total number

of generated samples N .

For all the datasets, we generated three thousand samples with a burn-in period

of one thousand samples. This was sufficient for all the algorithms to converge on all

the datasets. The step sizes were chosen by targeting an acceptance rate of 95%, as

suggested by Piponi et al. [136], through the primal-dual averaging methodology. Note

that we only tune the step size of the primary chain X, and use this step size in the

secondary chain Y . The trajectory length parameters for each target are the same as

the ones in Table 3.8, with S2HMC using the same trajectory length as HMC, and the

antithetic versions using the same trajectory length as the non-antithetic counterparts.

In evaluating the S2HMC algorithm and its antithetic variant, we set a convergence

tolerance of 10−6 or the completion of one-hundred fixed point iterations.
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8.4 Results and Discussion
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Figure 8.1: Diagnostic trace-plots of the negative log-likelihood across various targets aver-

aged over ten runs of each method. These results show that all the MCMC methods have

converged on all the targets. X is the primary chain and Y is the secondary chain for each

method.

Figure 8.1 shows the diagnostic trace-plots of the negative log-likelihood averaged over

ten runs for both the primary (X) and secondary/antithetic (Y ) chains. The results

show that all the MCMC methods have converged on all the targets, and on both the

X and Y chains.
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Figure 8.2: Results for the datasets over ten runs of each method across the BLR and BNN

datasets. For each dataset, the plots on the first row show the multivariate effective sample

size and the plots on the second row show the multivariate effective sample size normalised

by execution time (in seconds). For all the plots, the larger the value, the better the method.

The dark horizontal line in each violin plot represents the mean value over ten runs of each

algorithm.

The performance of the algorithms across different metrics is shown in Figure 8.2

and Tables 8.1 and 8.2. In Figure 8.2, the plots on the first row of each dataset show

the ESS, and the plots on the second row show the ESS normalised by execution time



8.4. RESULTS AND DISCUSSION 125

Table 8.1: Mean results over ten runs of each algorithm for the BLR datasets. Each column

represents the mean value for the specific method. The execution time t is in seconds. The

values in bold indicate that the particular method outperforms the other methods on that

specific metric.

Pima Indian dataset

HMC A-HMC MHMC A-MHMC S2HMC A-S2HMC

ϵ 0.0577 0.0076 0.1152

ESS 1 831 30 152 5 367 43 703 1 970 52 595

t (in secs) 76 151 79 157 130 260

ESS/t 24.13 198.96 67.99 275.38 15.12 201.92

η -0.8462 -0.6967 -0.9247

Heart dataset

ϵ 0.08307 0.0058 0.17799

ESS 1 721 8 418 1 119 47 917 1 912 13 545

t (in secs) 67 134 70 139 114 227

ESS/t 25.53 62.45 16.01 342.41 16.84 59.63

η -0.5884 -0.9536 -0.7172

Australia credit dataset

ϵ 0.0546 0.0068 0.1213

ESS 2 405 12 751 4 515 42 075 1 925 21 820

t (in secs) 77 154 81 162 130 260

ESS/t 31.178 82.64 55.45 257.97 14.76 83.63

η -0.6209 -0.7624 -0.8232

German credit dataset

ϵ 0.0295 0.0074 0.0772

ESS 1 465 13 630 3 335 22 000 1 899 43 045

t (in secs) 416 832 420 840 701 1 402

ESS/t 3.52 16.40 7.93 26.16 2.70 30.69

η -0.7779 -0.6898 -0.9116
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Table 8.2: Mean results over ten runs of each algorithm for the BNN datasets. Each column

represents the mean value for the specific method. The execution time t is in seconds. The

values in bold indicate that the particular method outperforms the other methods on that

specific metric.

Power dataset

HMC A-HMC MHMC A-MHMC S2HMC A-S2HMC

ϵ 0.0151 0.0115 0.0307

ESS 138 927 131 965 166 1 266

t (in secs) 402 804 414 831 1 499 2 991

ESS/t 0.35 1.15 0.31 1.16 0.11 0.42

η -0.6873 -0.7218 -0.7332

Airfoil dataset

ϵ 0.0290 0.0278 0.0627

ESS 336 1 874 363 2 013 459 2 550

t (in secs) 149 301 154 308 466 932

ESS/t 2.24 6.27 2.36 6.53 0.98 2.73

η -0.6397 -0.6384 -0.6392

Concrete dataset

ϵ 0.0366 0.0367 0.0935

ESS 500 1 995 588 2 250 813 2 822

t (in secs) 37 74 40 80 110 219

ESS/t 13.34 26.63 14.70 28.12 7.41 12.85

η -0.4984 -0.4766 -0.4226

Protein dataset

ϵ 0.0437 0.0438 0.0790

ESS 860 6 013 997 6 870 914 6 343

t (in secs) 87 174 88 175 211 422

ESS/t 9.88 34.54 11.39 39.22 4.32 14.99

η -0.7138 -0.7096 -0.711
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(which is in seconds). The results are for the ten runs of each algorithm. As with Figure

8.2, the execution time t in Tables 8.1 and 8.2 is in seconds. The results in Tables 8.1

and 8.2 are the mean results over the ten runs for each algorithm. Note that we use the

mean values over the ten runs in Tables 8.1 and 8.2 to form our conclusions about the

performance of the algorithms.

We find that the shadow Hamiltonian methods produce the largest step size for the

targeted 95% acceptance rate. This can be attributed to the leapfrog integration scheme

better conserving the modified Hamiltonian compared to the true Hamiltonian. This

has been a recurring observation in this thesis. Furthermore, we find that the MHMC

methods produce the smallest step size. This is due to the presence of the magnetic field,

which has the effect of reducing the step size required to reach the same level of sample

acceptance rates when compared to HMC. This phenomenon is also clearly highlighted

in Table 3.8 where MHMC is shown to produce lower step sizes consistently across all

the target posterior distributions.

On the majority of the datasets, we find that MHMC and S2HMC have higher ESSs

than HMC, with the outperformance being more pronounced on the BLR datasets.

The A-MHMC and A-S2HMC methods produce superior ESSs on all 8 benchmark

datasets when compared to A-HMC. A-MHMC produces higher ESSs than A-HMC

and A-S2HMC on 7 of the 8 benchmark datasets, with A-MHMC underperforming A-

S2HMC on the German credit dataset. These results show that the proposed methods

produce significant outperformance on the BLR datasets, with the outperformance on

the BNN datasets being less than on the BLR datasets. An explanation of this behaviour

can be traced to two aspects: 1) the average correlations η produced by the methods -

the proposed method produce very high correlations on the BLR datasets, with A-HMC

producing comparable or better average correlations to MHMC and S2HMC on the BNN

datasets, and 2) the magnetic field used for the MHMC methods may not be optimal

for the BNN datasets, and this can be seen by the marginal outperformance of MHMC

over HMC on an ESS basis on the BNN datasets.

As expected, HMC has the lowest execution time t on all of the datasets, with MHMC

being a close second. The execution time for MHMC is similar to that of HMC on the

BLR datasets and becomes slightly worse on the BNN datasets. This can be attributed
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to the larger dimensionality of the BNN models when compared to BLR models, which

pronounces the computational costs of the extra matrix operations required for MHMC.

The large compute time of the shadow Hamiltonian algorithms can be attributed to the

fixed-point iterations in equations (2.33) and (2.34). Note that the execution time for

the antithetic variants is twice the execution time for the non-antithetic algorithms. This

is because two chains are run for the antithetic versions. The execution time of all the

algorithms increases with the dimensionality of the problem, which is expected. On a

time-normalised ESS basis, A-MHMC outperforms A-HMC on all the datasets.

The results in this chapter show that although the proposed methods have, in general,

a higher computational cost than HMC, they still provide improved normalised ESS rates.

It is also worth noting that all the algorithms have similar predictive performance on

all the benchmark datasets, with the predictive performance being similar between the

antithetic and non-antithetic counterparts.

8.5 Conclusion

In this chapter, we introduced the antithetic S2HMC and antithetic MHMC variance

reduction schemes based on approximate Markov chain coupling. We compare these

two new algorithms to the A-HMC algorithm on classification tasks using BLR, and on

regression tasks using BNN models. We find that the antithetic versions of all the algo-

rithms have higher ESSs than their non-antithetic variants, which shows the usefulness

of antithetic MCMC methods.

The work in this chapter can be improved by automatically tuning the magnetic

term in MHMC and A-MHMC, which should improve the results on the BNN datasets.

We plan to consider larger datasets and deeper neural networks in future work, albeit

the computation cost will be higher. A comparison of the performance of the proposed

algorithms to their control variate counterparts, and the exploration of the possibility of

using Riemannian manifold-based Monte Carlo algorithms is also of interest.

In the following chapter, we present the first application of MCMC methods to the

modelling of financial statement audit outcomes, with a focus on South African local

government entities.



Chapter 9

Bayesian Inference of Local

Government Audit Outcomes

9.1 Introduction

This chapter presents the first-in-literature application of Bayesian inference to predict

financial statement audit outcomes of South African local government entities. The audit

outcomes are modelled using BLR with financial ratios as input features. The inference is

performed using the MHMC, S2HMC, random walk MH, MALA and HMC methods. We

employ BLR with ARD to identify the features that are most important when modeling

audit outcomes. Most of the considered algorithms agree on which financial ratios are

the most relevant for modeling audit opinions. Our analysis shows that the repairs and

maintenance as a percentage of total assets ratio, current ratio, debt to total operating

revenue, net operating surplus margin and capital cost to total operating expenditure ratio

are the five most important features when predicting local government audit outcomes.

These results could be of use for various stakeholders, including the AG-SA, as focusing

on these ratios can speed up the detection of fraudulent behaviour in municipal entities

and improve the speed and overall quality of the audit. The material in this chapter has

been published in the following international journal article:

• Mongwe, W.T., Mbuvha, R. and Marwala, T., 2021. Bayesian Inference of Local

Government Audit Outcomes. Plos One, doi: 10.1371/journal.pone.0261245
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9.2 Background

The AG-SA revealed that South African local government entities lost over $2 billion

in irregular expenditure in the 2018-2019 financial year [11, 109]. This irregular expen-

diture has consequently harmed service delivery and returns on the rapidly increasing

government debt [11]. The manipulation of financial statements is not only limited to the

public sector, with the Steinhoff collapse being a prime example of management fraud

in the private sector [38, 37]. Steinhoff is a South African retailer that lost over R200

billion in market capitalisation on the Johannesburg Stock Exchange (JSE) over a short

space of time after allegations of accounting fraud [38, 109].

The recent scandal of Wirecard, and previously Enron, also indicate that financial

statement fraud is not only a problem for South Africa, but the world at large [129, 67].

Wirecard is a German payment processing company, which filed for insolvency in 2020,

that manipulated its financial statements by misstating its profit [129]. Enron was an

American natural gas company that lost over $60 billion in market capitalisation in the

early 2000s after the allegations of fraud emerged [67].

The use of automated techniques for the analysis and detection of financial statement

fraud has been on the increase in the past decade, as highlighted in Appendix A [109, 107,

45, 54, 61, 82, 90, 106, 134]. In our literature survey of 52 papers, which we summarise in

Appendix A, we outline how artificial intelligence and other automated methods can be

used to construct decision support tools for various stakeholders. For example, auditors

may use the decision support tool to flag entities who are at risk of having committed

financial statement fraud and reduce the turnaround time of the audit, amongst other

benefits [109, 107]. A prime example within the South African context is the AG-SA

having to audit all local and provincial government entities at the end of each financial

year [11, 107].

As shown in Table A.3, logistic regression has been successfully used in the litera-

ture for the detection of financial statement fraud [135, 45, 81, 86, 76, 133, 130, 7, 105].

Moepya et al. [105] use logistic regression in the detection of fraud in companies listed

on the JSE, while Boumediene et al. [21] performed a similar study for entities listed in

Tunisia. Logistic regression has advantages over more complicated models such as artifi-

cial neural networks in that the results are more easily interpretable by the stakeholders,
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which is an important consideration when building a decision support tool [107, 105, 82].

In logistic regression, as with any other machine learning model, one has to decide

on the input features to use. Correctly selecting the variables to use as inputs for

the models is essential because it can influence the performance of the models [97].

Utilising feature selection techniques can improve the model’s predictive performance

and reduce the model complexity as fewer features would be required [31, 109]. Examples

of feature selection methods used in the financial statement fraud detection literature

include correlation, t-test, analysis of variance, decision trees, and principal component

analysis [109, 21, 105, 34, 154, 33, 46]. In this thesis, we limit ourselves to only using

financial ratios to predict financial statement audit outcomes. Thus feature selection

in this context amounts to selecting which financial ratios are the most important or

relevant for inferring financial statement audit opinions.

In this chapter, we present the first use of BLR with automatic relevance determi-

nation (BLR-ARD) for the inference of audit outcomes. The Bayesian approach allows

us to measure the uncertainty in our predictions, which gives a sense of how much con-

fidence we have in a particular prediction. The use of ARD allows us to automatically

determine which of the input features are the most relevant, with uncertainty measures

around these as well [97, 95]. This formulation of the problem results in the model out-

comes being more interpretable, allowing stakeholders to understand the model results

better.

This chapter’s motivation is to understand the financial performance of South African

municipalities in terms of audit outcomes, particularly the features or financial ratios

that drive these audit outcomes. We approach this problem from a Bayesian perspective

as it provides a probabilistically principled framework for predicting and understanding

the audit performance of local government entities. This framework also enables us to

provide uncertainty levels in the predictions produced by the models and further allows us

to automatically identify and rank the most important financial ratios for audit outcome

modelling using prior distributions - which is an essential contribution of this chapter.

We train the BLR-ARD model parameters with MCMC methods. This chapter also

presents the first use of the random walk MH, HMC, MALA, MHMC, S2HMC algorithms

in the training of BLR-ARD models for inference of financial statement audit opinions.



9.3. EXPERIMENT DESCRIPTION 132

9.3 Experiment Description

We model the local government audit outcomes using BLR due to the simplicity of this

model and the fact that it is one of the commonly used methods in the FSF literature

as shown in Table A.4. The negative log-likelihood l(Dx|w) function, where w are the

model parameters, associated with logistic regression is given by:

l(Dx|w) =

Nobs∑
i

yilog(w
Txi) + (1− yi)log(1−wTxi) (9.1)

where Dx is the data and Nobs is the number of observations. Thus, the target unnor-

malised posterior log distribution is given as:

ln p(w|Dx) = l(Dx|w) + ln p(w|α) + ln q(α) (9.2)

where ln p(w|α) is the log of the prior distribution placed on the parameters given the

hyperparameters, and ln q(α) is the marginal distribution of the hyperparameters. We

model the parameters w as having a Gaussian prior with each parameter having zero

mean and its own standard deviation αi. The α′
is are assumed to follow a log-normal

distribution with mean zero and variance 1. The αi indicates how vital the parameter

associated with the input feature is. The larger the value of αi, the more critical the

input feature is in predicting the audit outcomes and election results, respectively.

The aim is to infer the parameters w and hyperparameters α using MCMC methods.

In the literature, this problem is typically formulated as a Gibbs sampling scheme, where

the hyperparameters are sampled first and then the parameters and so on [121, 97]. The

approach taken in this chapter is to jointly infer the parameters w and hyperparameters

α. This approach has the advantage of resulting in a more stable exploration of the

posterior, at least for the current dataset. However, it results in the effective parameter

space being doubled - which can significantly reduce the sampling time compared to the

Gibbs sampling approach.

For each of the random walk MH, MALA, HMC, MHMC and S2HMC algorithms used

in this chapter, we generate ten Markov chains of 10 000 samples. The first 5 000 samples

were used as the burn-in period, and any required tuning of algorithm parameters was

performed during the burn-in period. For the HMC, MHMC and S2HMC algorithms we
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set the pre-conditioning mass matrix M = I, which is the common approach in practice

[121, 17].

We target a 25% acceptance rate for random walk MH [145], 60% for MALA [145] and

80% acceptance rates for the remaining MCMC algorithms. A trajectory length of 50 was

used for HMC, MHMC and S2HMC. We then assess the performance of the algorithms

by generating the trace-plots of the unnormalised target posterior distribution, the ESSs

of the generated samples, the ESSs of the generated samples normalised by execution

time, and predictive performance on unseen data. Note that the execution time is the

time taken to generate the samples after the burn-in period.

The ESS calculation used is described in Section 3.4.1. The predictive performance on

unseen data is performed using the ROC as well as AUC. The ranking of the importance

of the financial ratios is performed by calculating the mean or average α, which are the

standard deviations in equation (9.2), for each model parameter over the ten chains.

The higher the α value, the more important the input financial ratio is for modelling the

audit outcomes.

9.4 Results and Discussion

In evaluating the S2HMC algorithm, we set a convergence tolerance of 10−6 or the

completion of 100 fixed point iterations. Figure 9.1 shows the inference results, while

Figures 9.2 and 9.3 shows the input feature importance or relevance for the considered

MCMC methods. The results in Figures 9.2 and 9.3 are summarised, as rankings for

each financial ratio, in Table 9.1.

Figure 9.1 (a) shows that the S2HMC produces the largest effective sampling sizes, in-

dicating that the algorithm produces less correlated samples when compared to the other

methods. HMC and MHMC have the second-highest ESSs, with random walk MH and

MALA having very low ESSs, indicating that these two methods produce significantly

correlated samples.

Figure 9.1 (b) shows that on a normalised (by execution time) ESS basis, the HMC

and S2HMC have similar time normalised ESSs and outperform the other methods.

Although MH is also relatively fast, since the ESS it produces is very low, it still under-
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Figure 9.1: Inference results for the BLR-ARD model across various sampling methods. a)

Effective sample sizes, b) Effective sample sizes normalised by execution time and c) Predictive

performance based on the AUC.

performs on a normalised ESS basis. Figure 9.1 (c) shows that the MH algorithm has

the lowest predictive performance. S2HMC and MHMC have the joint highest predictive

performance, which corresponds with the high ESSs generated by these methods. Note

that a convergence analysis of the chains was performed using the R̂ metric. We found

that all the methods had converged on the target.
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(a) Importance’s for MH.
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(b) Importance’s for MALA.

Figure 9.2: Average posterior standard deviations from the random walk MH and MALA

algorithms. The higher the value, the more important the financial ratio is to modelling audit

opinions.

Figures 9.2 and 9.3 shows the relative importance or relevance of each of the financial

ratios produced by each of the MCMC methods. The results show that the MH algorithm

struggles to distinguish between important and not-so-important financial ratios. This

is because of the poor exploration of the target. On the other hand, the other MCMC

methods can extract the importance or most relevant features for the audit opinion

modeling task. Table 9.1 shows the ranking of the importance of the financial ratios

produced by each of the methods. The most commonly featured financial ratios in the

top five rankings are:

• Ratio 5 - Debt to Total Operating Revenue: This ratio is selected by all the five

methods
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(a) Importance’s for HMC.
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(b) Importance’s for MHMC.
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(c) Importance’s for S2HMC.

Figure 9.3: Average posterior standard deviations from the HMC, MHMC and S2HMC al-

gorithms. The higher the value, the more important the financial ratio is to modelling audit

opinions.
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Table 9.1: Ranking of the financial ratios by each method. For example, MHMC ranks ratio

four as the most important, while MH ranks ratio seven as the third most important. The

financial ratios are described in more detail in Section 3.3.4.

Ranking MH MALA HMC MHMC S2HMC

1 5 6 4 4 4

2 10 1 6 6 6

3 7 5 5 5 5

4 8 7 8 8 7

5 2 4 7 7 8

6 13 2 2 2 2

7 11 8 13 13 13

8 1 12 12 12 12

9 9 9 1 1 1

10 4 13 3 10 3

11 6 10 11 3 10

12 12 11 10 11 11

13 3 3 9 9 9

• Ratio 7 - Capital Cost to Total Operating Expenditure: This ratio is selected by all

the five methods

• Ratio 4 - Repairs and Maintenance as a percentage of PPE +IP : This ratio is

selected by MALA, HMC, MHMC and S2HMC

• Ratio 6 - Current Ratio: This ratio is selected by MALA, HMC, MHMC and

S2HMC

• Ratio 8 - Net Operating Surplus Margin: This ratio is selected by the MH, MHMC

and S2HMC algorithms.

These results are in line with the results we observed in Section 3.3, where features were

selected based on the correlation feature selection metric and passed into the SOM. In

Section 3.3, we found that the financial ratios that are critical for distinguishing fraudu-

lent instances from non-fraudulent instances are the current ratio, net operating surplus
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margin, and the debt to total operating revenue. Our analysis in this chapter shows that

the most relevant financial ratios are the repairs and maintenance as a percentage of

PPE and IP, followed by the ratios found Section 3.3, with the last relevant ratio being

the capital cost to total operating expenditure ratio.

These results make intuitive sense as, for example, a high repairs and maintenance

ratio means that the municipality is undertaking more repairs to assets than the assets’

total value. This is likely an indication of a lack of adherence to proper corporate gov-

ernance as repairs to assets should typically be less than the value of those assets - else

those assets should be written-off. Furthermore, a high capital cost to total expenditure

ratio means that debt repayments are the most significant component of total expendi-

ture, indicating that the entity has a large debt. This might prompt the entity to act in

a manner that flouts corporate governance procedures to hide its dire financial situation.

In Section 3.3, we provided an interpretation of the current ratio, net operating

surplus margin, and capital cost to total operating expenditure financial ratios in terms

of how they relate with audit outcomes. Our findings in this chapter agree with those in

Section 3.3 in that we find that a high current ratio, a high net surplus operating margin,

and low debt to total operating revenue financial ratios are associated with entities that

are less likely to engage in manipulation of their financial statements as they are in good

financial standing - with the converse also being true.

These results can prove to be particularly useful for auditors as focusing on these

ratios can speed up the detection of inadequate corporate governance behaviour in mu-

nicipal entities and improve the overall quality of the audits.

9.5 Conclusion

This chapter presented the first-in-literature fully Bayesian approach to inferring financial

statement audit opinions. This Bayesian approach is applied to South African local

government entity audit outcomes using financial ratios as inputs. The inference is

performed using random walk MH, MALA, HMC, MHMC and S2HMC. The sampling

was applied to BLR-ARD. Automatic relevance determination allows one to determine

which features are the most important in an automated manner and thus implicitly
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perform feature selection.

In our approach, the parameters and the hyperparameters, which measure the rel-

evance of the financial ratios, are jointly sampled. The results show that the S2HMC

produces the best sampling results, with the largest ESSs. However, the predictive per-

formance of MALA, HMC, MHMC and S2HMC is found to be the same. The random

walk MH algorithm produces the worst sampling behaviour due to its random walk

nature and has both the lowest effective sample rates and predictive performance.

The results further show that the five most essential features in the modelling of

audit outcomes for municipalities are the 1) repairs and maintenance as a percentage of

total assets ratio, 2) current ratio, 3) debt to total operating revenue, 4) net operating

surplus margin, and 5) capital cost to total operating expenditure ratio. These results

could prove helpful for auditors as focusing on these ratios can speed up the detection

of possible fraudulent behaviour of municipal entities. The work in this chapter can

be improved upon by comparing the performance of the BLR with ARD model with

other models such as the BNN with ARD model. Furthermore, we plan to perform

this analysis for listed entities and compare the results to the local government entities

considered in this chapter. The consideration of a more extensive set of financial ratios

could also improve the results.

In the next chapter, we provide a summary of the overall original contributions to

knowledge of this thesis as well as ongoing and future work.



Chapter 10

Conclusions

10.1 Summary of Contributions

In this thesis, we explore and propose novel extensions and enhancements to the MHMC

and S2HMC algorithms. These methods are descendants of HMC, which is a popular and

go-to method for performing Bayesian inference of complex machine learning models.

We compare the extensions to MHMC and S2HMC that we introduce to the original

algorithms across numerous performance metrics and various benchmark problems. We

also present a first-in-literature application of MCMC methods to the prediction of South

African municipal financial statement audit outcomes.

HMC is the preferred MCMC algorithm due to its ability to intelligently explore the

posterior through the use of first-order gradient information of the target via Hamiltonian

dynamics. It turns out that when a magnetic field is added to HMC to produce non-

canonical Hamiltonian dynamics, the target can be explored even more efficiently. This

enhancement of HMC with a magnetic field leads to the MHMC algorithm. The MHMC

method is a key focus of this thesis, and we enhance it in the following ways:

• We employ a random mass matrix for the auxiliary momentum variable to mimic

the behaviour of quantum particles to create the QIMHMC algorithm. We prove

that this new algorithm converges to the correct stationary distribution. Further-

more, experiments across various target distributions show that QIMHMC outper-

forms HMC, MHMC and QIHMC on a time-normalised effective sample size basis.

140
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A limitation of the proposed algorithm is the requirement for the user to manually

specify the distribution of the mass matrix and tune the parameters of the distri-

bution. As with MHMC, the magnetic component of QIMHMC still needs to be

tuned. These are open areas of research.

• We utilise partial momentum refreshment, instead of a total refreshment, of the

momentum variable to create PMHMC which enhances the performance of MHMC.

The results show that this approach leads to significant improvements in perfor-

mance over HMC, MHMC and PHMC on a time-normalised effective sample size

basis. A drawback of this method is the need to tune the partial momentum re-

freshment parameter, which determines the extent of the momentum retention.

Our analysis shows that higher parameter values are favourable, but these values

tend to vary between different target distributions. Tuning this parameter is still

an open area of research.

• We obtain the fourth-order modified Hamiltonian associated with the numerical

integrator employed in MHMC to create the new SMHMC method, which employs

partial momentum refreshment for the generation of the momentum. The results

show that the new method outperforms MHMC and PMHMC on an effective sam-

ple size basis across numerous targets. This method has two main drawbacks. The

first relates to having to tune the partial momentum refreshment parameter as

with PMHMC. The second relates to the method’s high execution time due to the

computation of the non-separable Hamiltonian. The high execution time leads to a

decrease in performance on a time-normalised basis. Reducing the execution time

is a crucial area of improvement of the proposed algorithm.

Previous studies have shown that HMC’s sampling performance decreases as the

step size or the system size increases. Methods based on sampling from the shadow

Hamiltonian instead of the true Hamiltonian have been shown to address this pathology.

This is due to the shadow Hamiltonian being better conserved by the numerical integrator

than the true Hamiltonian. One such method is the S2HMC algorithm, which utilises a

processed leapfrog integrator to avoid the computationally expensive generation of the

momentum. In this thesis, we extend S2HMC in the following ways:



10.1. SUMMARY OF CONTRIBUTIONS 142

• We employ partial momentum refreshment to enhance the performance of S2HMC.

This was achieved by partially retaining the momentum used to generate the pre-

vious sample in the current momenta generation before passing these momenta to

the processed leapfrog integrator. The results showed that this approach results in

outperformance over S2HMC and PMHMC on an ESS basis. As with SMHMC,

the drawback of this method is the requirement to tune the partial momentum

refreshment parameter as well as the associated long execution times typical of

shadow Hamiltonian methods.

• We propose a method for tuning the parameters of S2HMC which is based on sub-

stituting the leapfrog integrator in NUTS with the processed integrator. This is a

first-in-literature on methods for tuning parameters of algorithms based on shadow

Hamiltonians. This removes the need for the user to manually specify and tune

the trajectory length and step sizes parameters. Tuning these parameters would

otherwise require time-consuming pilot runs. The results show that the method

produces better ESSs than NUTS, outperforms S2HMC on a time-normalised ESS

basis but underperforms NUTS on a normalised ESS basis due to the long execution

time of the proposed algorithm.

MCMC estimators have a higher variance when compared to classical Monte Carlo es-

timators due to auto-correlations present between the generated samples. In this thesis,

we use antithetic sampling to tackle the high variance problem in HMC based methods.

Antithetic sampling involves running two chains concurrently, with one of the chains

having a negated momentum variable compared to the other chain. In this thesis, we

present the antithetic versions of MHMC and S2HMC. The results show that the anti-

thetic versions of the algorithms produce higher time-normalised effective sample sizes

when compared to antithetic HMC and the non-antithetic versions of the algorithms.

These results show the usefulness of incorporating antithetic sampling into samplers

that employ Hamiltonian dynamics. As this approach is straightforward and requires

minimal assumptions about the target, there seems very little reason not to deploy it in

practice.

We further provide a first-in-literature application of Bayesian inference to the anal-

ysis of municipal financial statement audit outcomes to understand the financial state
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of South African local government entities. Within this Bayesian framework, we can

extract the most important features for modeling audit outcomes through the use of

ARD. We trained a BLR model with ARD on this dataset using the random walk MH,

MALA, HMC, MHMC and S2HMC methods. The analysis shows that the repairs and

maintenance as a percentage of total assets ratio, current ratio, debt to total operating

revenue, net operating surplus margin, and capital cost to total operating expenditure

ratio are the important features when predicting local government audit outcomes using

financial ratios. These results could be useful for auditors as focusing on these ratios

can speed up the detection of fraudulent behaviour in municipal entities and improve

the speed and quality of the overall audit.

10.2 Ongoing and Future Work

The analysis performed in this thesis relied on the minimal tuning of the magnetic field

in MHMC. We plan to address this drawback by assessing various methods for auto-

matically tuning the magnetic field in future work. The manual tuning of the magnetic

component performed in this thesis suggests that if the magnetic field is optimally tuned,

it could significantly improve the performance of the MHMC algorithm. We are also cur-

rently investigating possible heuristics and automated approaches to automatically tune

the partial momentum refreshment parameter in the PMHMC and PS2HMC methods.

The QIMHMC algorithm can also be refined by developing automated approaches to

select an optimal distribution from a user-specified class of distributions.

The slow execution times associated with evaluating shadow Hamiltonians in S2HMC

and SMHMC can be addressed through the use of surrogate model approaches. A sur-

rogate approach that could be considered is the use of Sparse grid [171] interpolation to

pre-compute the gradients of the Hamiltonian before the sampling process begins. This

would improve the time-normalised performance of the methods, but possibly at the cost

of accuracy. Furthermore, the shadow Hamiltonian itself could be learned during the

burn-in period using Gaussian Processes. As evaluating the shadow Hamiltonian is the

most expensive part of the algorithms, this should reduce the execution time post-burn-in

period and consequently improve the time-normalised effective sample size performance.
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Furthermore, when we developed SMHMC, we only focused on a shadow Hamiltonian

that is only conserved up to fourth-order. The results could be improved by considering

higher-order shadow Hamiltonians, albeit at a higher computation cost.

One of the key issues in machine learning is model selection. Within the Bayesian

framework, model selection and comparison are conducted via the Bayesian evidence

metric. We are currently extending the MHMC methods presented in this thesis so that

they are also able to produce the evidence metric. The approach that we are currently

considering is creating a continuously tempered version of MHMC in a similar fashion

to continuously tempered HMC outlined in [57]. Given than MHMC outperforms HMC

across various targets, one would expect continuously tempered MHMC to outperform

continuously tempered HMC.

The application areas of the methods presented in this thesis could be extended to

larger datasets such as MNIST and deeper neural networks as opposed to the small

neural networks considered in this thesis. This will consequently result in longer execu-

tion times. This could be improved by considering stochastic gradient versions of the

algorithms proposed in this work. Currently, the literature does not cover stochastic

gradient approaches for shadow Hamiltonian based samplers. Addressing this gap in the

literature could prove to be a significant contribution to knowledge.

Lastly, in this thesis, we only considered variance reduction techniques based on using

antithetic sampling. In the future, we plan to create a control variate version of MHMC.

As control variate techniques are more generally applicable compared to antithetic sam-

pling (which assumes symmetry of the target distribution), we expect control variate

MHMC and the combination of control variate and antithetic sampling MHMC to out-

perform the antithetic MHMC method presented in this thesis. Furthermore, comparing

the antithetic methods introduced in this thesis with the antithetic versions of RMHMC

and QIHMC could be of interest.
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[9] Y. F. Atchadé. An adaptive version for the metropolis adjusted langevin algo-

rithm with a truncated drift. Methodology and Computing in applied Probability,

8(2):235–254, 2006.

[10] Auditor-General South Africa. Background to the three aspects we audit. https:

//www.agsa.co.za/portals/0/AGSA Terminology.pdf, 2011. Last accessed: 16

August 2020.

[11] Auditor-General South Africa. MFMA 2018 - 2019. https://www.agsa.co.za

/Reporting/MFMAReports/MFMA2018-2019.aspx, Jul 2020. Last accessed: 16

August 2020.

[12] C. Badue, R. Guidolini, R. V. Carneiro, P. Azevedo, V. B. Cardoso, A. Forechi,

L. Jesus, R. Berriel, T. M. Paixao, F. Mutz, et al. Self-driving cars: A survey.

Expert Systems with Applications, 165:113816, 2021.

[13] B. Bai, J. Yen, and X. Yang. False financial statements: Characteristics of China’s

listed companies and cart detecting approach. International Journal of Information

Technology & Decision Making, 7(02):339–359, 2008.

[14] N. Bakhvalov. The optimization of methods of solving boundary value prob-

lems with a boundary layer. USSR Computational Mathematics and Mathematical

Physics, 9(4):139–166, 1969.

[15] V. Barthelmann, E. Novak, and K. Ritter. High dimensional polynomial interpo-

lation on sparse grids. Advances in Computational Mathematics, 12(4):273–288,

2000.

[16] M. Betancourt. Generalizing the no-u-turn sampler to riemannian manifolds. arXiv

preprint arXiv:1304.1920, 2013.

https://www.agsa.co.za/portals/0/AGSA_Terminology.pdf
https://www.agsa.co.za/portals/0/AGSA_Terminology.pdf
https://www.agsa.co.za/Reporting/MFMAReports/MFMA2018-2019.aspx
https://www.agsa.co.za/Reporting/MFMAReports/MFMA2018-2019.aspx


BIBLIOGRAPHY 147

[17] M. Betancourt. A conceptual introduction to hamiltonian monte carlo. arXiv

preprint arXiv:1701.02434, 2017.

[18] M. Betancourt and M. Girolami. Hamiltonian monte carlo for hierarchical models.

Current trends in Bayesian methodology with applications, 79(30):2–4, 2015.

[19] L. Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the

trade, pages 421–436. Springer, 2012.

[20] N. Bou-Rabee, A. Eberle, R. Zimmer, et al. Coupling and convergence for hamil-

tonian monte carlo. Annals of Applied Probability, 30(3):1209–1250, 2020.

[21] S. L. Boumediene. Detection and prediction of managerial fraud in the financial

statements of Tunisian banks. Accounting & Taxation, 6(2):1–10, 2014.

[22] A. P. Bradley. The use of the area under the ROC curve in the evaluation of

machine learning algorithms. Pattern recognition, 30(7):1145–1159, 1997.

[23] W. W. Bratton. Enron and the dark side of shareholder value. Tul. L. Rev.,

76:1275, 2001.

[24] F.-X. Briol, C. J. Oates, M. Girolami, and M. A. Osborne. Frank-wolfe bayesian

quadrature: Probabilistic integration with theoretical guarantees. arXiv preprint

arXiv:1506.02681, 2015.

[25] J. A. Brofos and R. R. Lederman. Magnetic manifold hamiltonian monte carlo.

arXiv preprint arXiv:2010.07753, 2020.

[26] J. A. Brofos and R. R. Lederman. Non-canonical hamiltonian monte carlo. arXiv

preprint arXiv:2008.08191, 2020.

[27] S. Brooks, A. Gelman, G. Jones, and X.-L. Meng. Handbook of markov chain

monte carlo. CRC press, 2011.

[28] H.-J. Bungartz and M. Griebel. Sparse grids. Acta numerica, 13:147–269, 2004.

[29] C. M. Campos and J. M. Sanz-Serna. Extra chance generalized hybrid monte carlo.

Journal of Computational Physics, 281:365–374, 2015.



BIBLIOGRAPHY 148

[30] B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt,

M. A. Brubaker, J. Guo, P. Li, and A. Riddell. Stan: a probabilistic programming

language. Grantee Submission, 76(1):1–32, 2017.

[31] G. Chandrashekar and F. Sahin. A survey on feature selection methods. Computers

& Electrical Engineering, 40(1):16–28, January 2014.

[32] K.-C. Chen. Noncanonical poisson brackets for elastic and micromorphic solids.

International Journal of Solids and Structures, 44(24):7715–7730, 2007.

[33] S. Chen. Detection of fraudulent financial statements using the hybrid data mining

approach. SpringerPlus, 5(1):1–16, January 2016.

[34] Y.-J. Chen. On fraud detection method for narrative annual reports. In The Fourth

International Conference on Informatics & Applications (ICIA2015), pages 121–

129, 2015.

[35] A. D. Cobb, A. G. Baydin, A. Markham, and S. J. Roberts. Introducing an explicit

symplectic integration scheme for riemannian manifold hamiltonian monte carlo.

arXiv preprint arXiv:1910.06243, 2019.

[36] R. Cont. Empirical properties of asset returns: stylized facts and statistical issues.

Quantitative Finance, 1:223 – 236, 2001.

[37] J. Cotterill. Steinhoff shareholders sue Deloitte for damages. https://www.ft

.com/content/4f4d591a-6f0f-11e8-92d3-6c13e5c92914, June 2018. Last

accessed: 15 November 2019.

[38] J. Cronje. Steinhoff’s market cap a mere R20bn as shares drop another 30%.

https://www.fin24.com/Companies/Retail/steinhoff-shares-drop-by-a-

fifth-in-early-trade-20171220, Dec 2017. Last accessed: 15 November 2019.
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Appendix A

Summary of Audit Outcome

Literature Survey

In this appendix, we present a summary of the findings from the FSF detection and audit

outcomes literature survey that we provide in our article in [109]. This summary uses

the themes of the most common: 1) definitions of fraud, 2) features used for detecting

fraud, 3) region of the case study, dataset size and imbalance, 4) algorithms used for

detection, 5) approach to feature selection / feature engineering, 6) treatment of missing

data, and 7) performance measure used in the literature.

Tables A.1 to A.3 provides a summary of some of the aspects of FSF detection as

reflected in the 52 papers surveyed in [109], with a visual representation of changes over

time. Table A.1 shows three different definitions of FSF and the total number of studies

from the survey that have used each definition. In the table, each digit ‘1’ under a

time period indicates a study using the given definition of fraud. Similarly, Tables A.2

and A.3 show the data feature type and the most commonly used detection methods,

respectively. In Table A.3, the digit ‘2’ is used to indicate two studies using the given

method. Note that most studies used multiple methods, so the totals do not correspond

to the number of studies for each period. Table A.4 summarises the overall findings from

the survey, where the percentages in the brackets show the proportion of studies in the

survey that used the particular approach.
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Table A.1: FSF definitions used through time. Each digit 1 in the table represents a study

that used a given definition of FSF in the time period, where A: Investigation by authorities,

Q: Qualified audit opinion, C: Combination of both definitions.

Definition Total 1995–1999 2000–2004 2005–2009 2010–2014 2015–2018

A 33 (63%) 111 1 111111 111111111111 11111111111

Q 12 (23%) 1111 11111 111

C 7 (13%) 1 1 111 11

Totals 52 4 2 13 19 14

Table A.2: FSF data features used through time. Each digit 1 in the table represents a study

that used a given type of data feature in the time period, where F: financial ratios, F&NF:

financial and non-financial ratios, T: text, and F&T: financial variables and text.

Data feature Total 1995–1999 2000–2004 2005–2009 2010–2014 2015–2018

F 27 (52%) 111 11 1111111111 11111111 1111

F&NF 16 (31%) 1 111 11111111 1111

T 7 (13%) 111 1111

F&T 2 (4%) 11

Totals 52 4 2 13 19 14

Table A.3: The FSF detection methods through time. Each digit 2 in the table represents

two studies that used the given detection method in the time period, where LR: logistic regres-

sion, ANN: artificial neural network, SVM: support vector machine, DT: decision tree, DA:

discriminant analysis, and OTH: other.

Method Total 1995–1999 2000–2004 2005–2009 2010–2014 2015–2018

LR 24 (18%) 2 2 222 22222 22

ANN 26 (21%) 2 222 22222 2222

SVM 16 (13%) 2 222 2222

DT 14 (12%) 22 222 22

DA 6 (6%) 2 22

OTH 36 (29%) 22222 2222222222 222

Totals 122 6 2 32 52 30
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Table A.4: Summary of findings from the FSF detection literature survey

Implementation issue Most common approach in the literature

Fraud definition Investigations by authorities (63%)

Data features Financial ratios (52%)

Data imbalance Match fraud firms with non-fraud firms (71%)

Data region USA (38%) and Taiwan (13%)

Data size min (27), mean (2 365), median (190), max (49 039)

Methods used ANN (21%), logistic regression (18%) and SVM (13%)

Feature selection Filter based approaches (69%)

Missing data treatment Not specified or delete records (94%)

Performance measures Classification accuracy (35%)

Learning approach Supervised classification (97%)

Best FSF detection method Varies across datasets



Appendix B

Derivation of Separable Shadow

Hamiltonian

Using the BCH [64] formula, it can be shown that the fourth-order shadow Hamiltonian

is given as:

H̃[4](w,p) = H(w,p) +
ϵ2

12
KT

pUwwKp −
ϵ2

24
UT

wKppUw +O(ϵ4) (B.1)

One can interpret the first error term in equation (B.1) as a perturbation to the kinetic

energy K and the next as a perturbation to the potential energy U. The perturbation to

the kinetic energy K alters the fixed mass matrix M into a different and likely position-

dependent matrix. In most situations, this makes the distribution of the momentum

variable non-Gaussian.

We now seek a canonical transformation that can transform the Hamiltonian in Equa-

tion (B.1) to a separable Hamiltonian. Sweet et al. [165] use the following canonical

transformation [92]:

W = w + ϵ2λKppUw +O(ϵ2)

P = p− ϵ2λUwwKp +O(ϵ2)
(B.2)
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After substitution of (B.2) into (B.1) the shadow Hamiltonian becomes:

H̃[4](X (w,p)) = H(W,P) +
ϵ2

12
KPUWWKP −

ϵ2

24
UWKPPUW +O(ϵ4)

= U(W)︸ ︷︷ ︸
A

+K(P)︸ ︷︷ ︸
B

+
ϵ2

12
KPUWWKP︸ ︷︷ ︸

C

− ϵ2

24
UWKPPUW︸ ︷︷ ︸

D

+O(ϵ4)
(B.3)

where taking the first order Taylor expansion of U(W) at w and substituting W gives:

A = U(w) + Uw (W −w) +
1

2
(W −w)Uww (W −w)T +O(ϵ4)

= U(w) + Uw

(
ϵ2λKppUw

)
+
(
ϵ2λKppUw

)
Uww

(
ϵ2λKppUw

)T
+O(ϵ4)

= U(w) + Uwϵ
2λKppUw +O(ϵ4)

(B.4)

and substituting P into B gives:

B =
1

2

(
p− ϵ2λUwwKp +O(ϵ2)

)
Kpp

(
p− ϵ2λUwwKp +O(ϵ2)

)
= K(p)− ϵ2λKpUwwKp +O(ϵ4)

(B.5)

By using the second order Taylor approximation of U(W) at w and substituting W, we

have that:

U(W) = U(w) + Uw (W −w) +
1

2
(W −w)Uww (W −w)T +O(ϵ4)

UW = Uw +Uww (W −w) +O(ϵ4)

UWW = Uww +O(ϵ4)

(B.6)

We then have that:

C =
ϵ2

12
KPUWWKP

=
ϵ2

12
KP

(
Uww +O(ϵ4)

)
KP

=
ϵ2

12
KPUwwKP +O(ϵ4)

(B.7)

Similarly, from the first order Taylor approximation of U(W) at w, it follows that
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UW = Uw +O(ϵ2) and noting that KPP = Kpp as K is quadratic, we have that:

D =
ϵ2

24
UWKPPUW

=
ϵ2

24

(
Uw +O(ϵ2)

)
Kpp

(
Uw +O(ϵ2)

)
=

ϵ2

24
UwKppUw +O(ϵ4)

(B.8)

It then follows that:

H̃[4](X (w,p)) = A+B + C +D

= H(w,p) + ϵ2
(

1

12
− λ

)
KpUwwKp + ϵ2

(
λ− 1

24

)
UwKppUw +O(ϵ4)

(B.9)

To remove the second term which contains mixed derivatives of w and p and noting that

Kpp is a constant, we set λ = 1
12

and have that:

H̃[4](X (w,p)) = H(w,p) +
ϵ2

24
UwKppUw +O(ϵ4) (B.10)

which is the required separable shadow Hamiltonian which is used in S2HMC.



Appendix C

S2HMC Satisfies Detailed Balance

Theorem C.0.1. S2HMC satisfies detailed balance.

Proof. This proof is taken from Sweet et al. [155] Section III A. To show that S2HMC

satisfies detailed balance, we need to show that the processed leapfrog integration scheme

is both sympletic and reversible. That is, we need to show that the processing map

(ŵ, p̂) = X (w,p) commutes with reversal of momenta and preserves phase space volume

so that the resulting processed leapfrog integrator used in S2HMC is both sympletic and

reversible and thus ensures detailed balance.

We can get a symplectic map using a generating function of the third kind [92]:

S(w, p̂) = wp̂+
ϵ

24

[
Uw(w + ϵM−1p̂)− Uw(w − ϵM−1p̂)

]
(C.1)

The map (ŵ, p̂) = X (w,p) is then given by:

ŵ =
∂S

∂p̂
; p =

∂S

∂w
. (C.2)

The map (ŵ, p̂) = X (w,p) from equation (C.1) is given precisely by equations (2.33).

This map is the pre-processing step of S2HMC. In other words, it is the canonical change

in variables that preserves the symplectic property of the processed leapfrog algorithm.

The inverse mapping (w,p) = X−1(ŵ, p̂) is given by equation (2.34). The inverse

mapping is the post-processing step of S2HMC. The reversibility of the processed leapfrog

algorithm can be shown by X (w,−p) = diag(I,−I)X (w,p). Thus, since the processed

leapfrog algorithm is both symplectic and reversible, S2HMC preserves detailed balance.
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Appendix D

Derivatives From Non-Canonical

Poisson Brackets

In this appendix, we present the derivatives derived from the non-canonical Poisson

brackets:

{K,U} = −∇pK∇wU +∇wK∇pU +∇pKG∇pU −KpUw

{K, {K,U}} = −KpUwwKp −KpGKppUw

{U,K} = UwKp

{U, {U,K}} = UwKppUw

(D.1)

where∇af = ∂f
∂a

for some function f which is a function of some variable a. Note that the

derivatives from the non-canonical Poisson brackets differ from the canonical derivatives

through the presence of the magnetic field G. When G = 0, the non-canonical Poisson

bracket derivatives collapse to the canonical derivatives.
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