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Université de Nice Sophia Antipolis, CNRS,
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Abstract

The turbulent Rayleigh–Taylor system in a rotating reference frame is investigated by direct

numerical simulations within the Oberbeck-Boussinesq approximation. On the basis of theoretical

arguments, supported by our simulations, we show that the Rossby number decreases in time, and

therefore the Coriolis force becomes more important as the system evolves and produces many

effects on Rayleigh–Taylor turbulence. We find that rotation reduces the intensity of turbulent

velocity fluctuations and therefore the growth rate of the temperature mixing layer. Moreover, in

presence of rotation the conversion of potential energy into turbulent kinetic energy is found to be

less effective and the efficiency of the heat transfer is reduced. Finally, during the evolution of the

mixing layer we observe the development of a cyclone-anticyclone asymmetry.
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I. INTRODUCTION

In natural fluid systems, the interface between regions of different density is subject to

the well-known Rayleigh-Taylor (RT) instability when the heavier fluid is pushed against

the lighter one (see, e.g., [1–3] for reviews on the subject). In the late stage, this instability

evolves in a fully-developed turbulent flow [2–4]. Because of the fact that unstably stratified

interfaces are ubiquitous in nature, fluid mixing induced by RT instability and turbulence

characterizes many systems, over a huge interval of spatial and temporal scales. Among

the possible examples, we mention astrophysical systems, in relation to flame acceleration in

type Ia supernova [5, 6]; geological systems, where RT instability has been invoked to explain

the initiation and evolution of polydiapirs (domes-in-domes) [7]; atmospheric physics, where

RT instability has been invoked as a possible explanation for the formation of the mammatus

clouds [8].

Several experimental [9–14] and numerical [15–20] works have investigated the evolution

of RT instability and turbulence in different physical conditions. In the limit of small density

variations, the simplest mathematical description is provided by the Oberbeck-Boussinesq

approximation of two incompressible, miscible fluids. Under these conditions, the seminal

paper [21] has shown that three-dimensional RT turbulence can be described as a time-

dependent hydrodynamical turbulent flow with a gravity-induced forcing mechanism.

The RT instability and mixing can be significantly affected by the presence of other

physical mechanisms, beside gravity, acting on the flow, including compressibility [22, 23],

viscoelasticity [24], surface tension [25] and physical confinement [26, 27]. An important

instance is the case in which the flow is embedded in a rotating reference frame, which

causes the emergence of the Coriolis force in the ruling equations. Previous works have

shown that the Coriolis force has a stabilizing effect on the RT instability, both in the linear

stage [1] and in the weakly nonlinear stage of the perturbation evolution [28–30].

In this study we focus on the effects of rotation on the fully developed RT turbulence. We

discuss theoretical arguments based on dimensional scaling analysis which predict that the

Rossby number decreases in time during the growth of the mixing layer. The Coriolis force is

therefore expected to become dominant as the system evolves. This prediction is confirmed

by our numerical simulations, which reveals that the turbulent RT system is strongly affected

by rotation. In particular, we find that rotation reduces the efficiency of the heat transfer
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as well as the conversion of potential energy into turbulent kinetic energy. This causes a

reduction of the intensity of turbulent velocity fluctuations and slows down the growth of

the mixing layer. Interestingly, rotation allows the velocity fluctuations to extend outside

the temperature mixing layer. We also observe the development of a cyclone-anticyclone

asymmetry which is weakly dependent on the evolution of the mixing layer.

The paper is organized as follow. In Sec. II we introduce the rotating RT system under

the Oberbeck-Boussinesq framework and we present mean field (scaling) arguments through

which the role of rotation can be inferred. Numerical results from high-resolution DNS of

the rotating RT system are presented and discussed in Sec. III concerning the effects of

rotation on i) the mixing-layer growth, ii) the heat transfer, iii) the energy spectra, and,

finally, iv) the symmetry breaking between cyclones and anticyclones. Final discussions and

perspectives are drawn in Sec. IV

II. EQUATION OF MOTION AND THEORETICAL CONSIDERATIONS

We consider miscible Rayleigh-Taylor turbulence generated at the interface of two layers of

fluid with small temperature (density) difference. The initial (at t = 0) interface is the plane

z = 0, perpendicular to gravity g = (0, 0,−g) and to the uniform rotation Ω = (0, 0,Ω). The

dynamics is ruled by the Boussinesq equations for an incompressible (u(x, 0) = 0) velocity

field u(x, t) = (u, v, w) coupled with a temperature field T (x, t)

∂u

∂t
+ u ·∇u+ 2Ω× u = −∇p+ ν∇2

u− βgT (1)

∂T

∂t
+ u ·∇T = κ∇2T (2)

The reference temperature is set to T = 0, ν and κ are the kinematic viscosity and diffusivity

respectively and β is the thermal expansion coefficient. The initial conditions are u(x, 0) =

0, T (x, 0) = −(θ0/2)sgn(z) where θ0 is the temperature jump at the interface at z = 0,

which fixes the Atwood number A = βθ0/2.

As turbulence develops from the instability at the interface, turbulent kinetic energy in the

mixing layer E = (1/2)〈|u|2〉 is produced at the expense of potential energy P = −βg〈zT 〉

(brackets represent integral over the physical domain of volume Lx × Ly × Lz). The energy

balance is written from (1-2) as

−
dP

dt
= βg〈wT 〉 =

dE

dt
+ εν + βg

κθ0
2Lz

(3)
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where εν = ν〈(∇u)2〉 is the viscous energy dissipation and the last term is negligible in the

limit of small diffusivity. We define the efficiency Σ of turbulent generation as the ratio of the

kinetic energy production over potential energy consumption, Σ = −dE/dt
dP/dt

. We anticipate

that, although the Coriolis force 2Ω × u does not enter directly in the energy balance (3)

it does affect the efficiency of the process which, for Ω > 0 is reduced with respect to the

value Σ = 0.5 observed for Ω = 0 [31].

The development of the RT instability produces a mixing zone of width h(t) which grows

in time. Dimensional arguments derived in absence of rotation [4] predicts that in the

turbulent regime the mixing layer grows as h(t) ≃ Agt2 and the typical velocity fluctuations

inside the mixing layer grow as u ≃ Agt (here u indicates an arbitrary component of the

velocity).

Assuming that the dimensional scalings hold also in the rotating case, one obtains the

prediction that the dimensionless Rossby number Ro = wrms/(2Ωh), which measures the

relative strength of the inertial forces to the Coriolis forces, should decrease in time as

Ro ≃ 1/(Ωt). In particular, in the case of a weak rotation rate Ω even if the effect of

rotation is negligible at the initial times (ensuring the validity of the dimensional scalings),

it becomes more important and eventually competes with the inertial and buoyancy forces

for t & 1/Ω. For large Ω, this time can be sufficiently small for the rotation to affect already

the linear (or quasi-linear) phase of the instability [29, 30].

We performed direct numerical simulations (DNS) of the system of equations (1-2) in

a periodic domain of size Lx × Ly × Lz with Ly = Lx and Lz = 4Lx by means of a fully

parallel pseudo-spectral code at resolution 512 × 512 × 2048 at different values of rotation

Ω. Time evolution is ruled by a second-order Runge-Kutta scheme with explicit integration

of the linear terms. For all runs we have Ag = 0.25, θ0 = 1 and Pr = ν/κ = 1. Viscosity is

sufficiently large to resolve small scales (kmaxη ≥ 1.3 at the end of the simulations) and the

results are made dimensionless with the box size Lx, the characteristic time τ = (Lx/Ag)
1/2

and the characteristic velocity U = Lx/τ .

Rayleigh-Taylor instability is seeded by adding to the initial density field a 10% of white

noise in a thin layer around the unstable interface at z = 0. The same realization of the

random perturbation is used for all the simulations at different rotation. The simulation is

stopped before the mixing layer reaches the dimension of the vertical scale Lz. We remark

that the average quantities in (3) are defined by the integral over the space and therefore
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FIG. 1. Snapshots of the temperature field at time t = 5.2τ for two simulations with Ωτ = 0 (left)

and Ωτ = 10 (right) starting from the same initial conditions. Yellow (blue) represents hot (cold),

light (heavy) fluid.

their time dependence has an additional t2 factor due to the growth of the support of the

integral given by the mixing layer width h(t).

Figure 1 shows two snapshots of the temperature field for two simulations at Ωτ = 0

and Ωτ = 10. Rotation produces clear qualitative effects on the temperature field: Thermal

plumes are more coherent and elongated in the vertical direction while their vertical velocity

is reduced.
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III. NUMERICAL RESULTS

One effect of rotation is to reduce the growth of the mixing layer, a feature which is

evident at a qualitative level from Fig. 1. More quantitatively, this reduction is due to a

suppression of the vertical velocity fluctuations, measured by wrms and shown in Fig. 2. After

the instability, for t > τ , vertical velocity fluctuations in the non-rotating case Ω = 0 are

observed to grow linearly in time, in agreement with the dimensional prediction wrms ≃ Agt.

By increasing the rotation velocity, the growth of wrms is strongly depleted and for Ωτ = 12.5

vertical velocities almost saturates at a constant value. The inset of Fig. 2 shows the ratio

wrms/urms of the vertical to the horizontal velocity fluctuations which is found to be weakly

dependent on Ω. Therefore also horizontal velocities are reduced and the degree of large-scale

anisotropy in the velocity field is not strongly affected by rotation.

One consequence of the reduction of velocity fluctuations is the slowing down of the

growth of the mixing layer in presence of rotation. Different definitions of the mixing layer

width h have been proposed, based on either threshold values or integral quantities [32]. In

the inset of Fig. 3 we plot the time evolution of h defined in terms of the threshold value

z = h/2 at which the temperature profile T (z) reaches a fraction r of the maximum value,

i.e. T (±h/2) = ∓rθ0 [32, 33] (the overline indicates average over the horizontal planes

Lx × Ly). We observe that rotation indeed induces a strong suppression of the growth of

h(t).

A remarkable result shown in Fig. 3 is that the ratio wrms/h is almost independent on

Ω in the late turbulent phase. The natural interpretation is that, since the mixing layer is

produced by the velocity fluctuations, h is essentially given by the integral in time of wrms

and their ratio becomes Ω-independent.

In Figure 4 we plot the temporal evolution of the Rossby number defined as Ro =

wrms/(2Ωh). Even though in the strongly rotating case the wrms and h might deviate from

the scaling expected for Ω = 0, we find that the Rossby number, which is proportional to

their ratio, decreases with time close to the dimensional prediction Ro ≃ 1/(Ωt).

Since vertical velocity fluctuations are responsible for the conversion of potential energy

into kinetic energy, the potential energy loss ∆P (t) = P (0)− P (t) is reduced for Ω > 0, as

shown in Fig. 5. We find that also the efficiency of the process is reduced by rotation: For

Ω = 0 we have Σ ≃ 0.5, i.e. about one half of potential energy is converted into large-scale
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FIG. 2. Vertical velocity fluctuations wrms in the mixing layer as a as a function of time for three

different rotations, Ωτ = 0 (red squares), Ωτ = 6.25 (pink circles) and Ωτ = 12.5 (blue triangles).

Inset: ratio of vertical to horizontal velocity fluctuations as a function of time, for the same values

of rotation.

kinetic energy while the other half feeds the turbulent cascade and is eventually dissipated

by viscosity [31]. For Ω > 0 the efficiency is reduced and we find Σ ≃ 0.3 for the case

Ωτ = 12.5, as shown in Fig. 5, i.e. in this case more potential energy is transferred to small

scales and dissipated.

A. Integral lengths

Rotation produces different effects on the temperature and on the velocity fields in RT

convection. To investigate this issue, we introduce a set of integral lengths based on the

vertical profile f (u,w,T )(z) of velocity or temperature variance, defined as f (u)(z) = u2(z),
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FIG. 3. Ratio of the vertical velocity fluctuations wrms to the width of the mixing layer h as a as

a function of time for three different rotations, Ωτ = 0 (red squares), Ωτ = 6.25 (pink circles) and

Ωτ = 12.5 (blue triangles). Inset: time evolution of the mixing layer width h defined in terms of a

threshold rθ0 in the temperature profile, with r = 0.9.

f (w)(z) = w2(z), f (T )(z) = T 2(z)− T (z)2:

L(u,w,T ) =

[
∫

f (u,w,T )(z)z2dz
∫

f (u,w,T )(z)dz

]1/2

(4)

where the integral are defined over the whole domain [0, Lz]. The advantage of this definition

with respect to the usual h(t), is that it provides information on the extension of the mixing

layer both in terms of (horizontal/vertical) velocity and temperature fluctuations.

The evolution of L(u,w,T ) is shown in Fig. 6 for two values of Ω. In the absence of rotation

the three integral lengths are approximately the same, indicating that temperature and

velocity fluctuations are tightly associated within the mixing layer. On the contrary, for

Ωτ = 12.5 we observe that while L(T ) is reduced (which is already clear from Fig. 1), both

L(u) and L(w) increase, approximately by the same amount. This is a manifestation of the
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line represents t−1 scaling.

Taylor-Proudman phenomenon of bidimensionalization of the velocity field in presence of

rotation [34] which, becoming almost independent on z, extends outside the mixing layer

region defined by temperature fluctuations.

To investigate more in details this issue, in Fig. 7 we plot the temperature profile T and

the vertical velocity profile wrms = w2
1/2

at a late time. It is evident that while in the

case Ω = 0 the two profiles extend over comparable regions, for the case Ωτ = 12.5 the

vertical extension of temperature fluctuations is reduced and at the same time the vertical

extension of velocity fluctuations is increased. Summarizing, our findings show that in

presence of rotation there is not a unique scale characterizing the mixing layer as velocity

and temperature fluctuations define different vertical scales.
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triangles). Inset: potential energy loss −∆P (t) = P (0)−P (t) for the same three values of rotations

(from top to bottom).

B. Heat transfer

The efficiency of the transfer of heat in turbulent convection is quantified by the Nus-

selt number Nu ≡ 〈wT 〉h/(κθ0) (ratio of the convective to conductive heat transfer) while

turbulence intensity is provided by the Reynolds number Re ≡ |u|rmsh/ν. These num-

bers depends on the dimensionless temperature difference quantified by the Rayleigh num-

ber Ra ≡ βgθ0h
3/(νκ). High resolution direct numerical simulations have shown that in

Rayleigh-Taylor turbulenceNu and Re displays the so-called ultimate state regime according

to which Nu ≃ Ra1/2Pr1/2 and Re ≃ Ra1/2Pr−1/2 [35–37] both in two and three dimensions.

We find that rotation reduces the value of Nu both as a function of time (mainly as a

consequence of the reduction of h(t)) and as a function of Ra, i.e. at fixed h as shown in
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without rotation (empty symbols) and for Ωτ = 12.5 (filled symbols).

Fig. 8. This latter result means that also the correlation between w and T is reduced by

rotation. We find that also Re at given Ra decreases in presence of rotation, mainly as a

consequence of the suppression of the velocity fluctuations. Moreover we find that, at larger

values of Ω, the ultimate state scaling is violated as both Nu and Re show a dependence on

Ra slower than Ra1/2.

We remark that our results on the suppression of the heat transport in rotating RT tur-

bulence are qualitatively different to what observed in rotating boundary-forced convective

flow, e.g. in Rayleigh-Benard (RB) convection. In the case of rotating RB convection both

experiments [38–40] and numerical simulations [41–43] have shown an enhancement of Nu

for moderate values of rotation Ω with respect to the case Ω = 0. This enhancement is

ascribed to Ekman pumping which extracts hot and cold fluid from the boundary layers
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w2(z)1/2 for the simulation with Ωτ = 0 (red lines) and Ωτ = 12.5 (blue lines) at time t = 6τ .

and contributes to the heat flux [41]. At large values of rotations (and for large Ra) this

mechanisms is less efficient and a reduction of Nu is observed. Because of the absence of

boundary layers in RT convection, it is not contradictory that here we do not observe an

increase of Nu for any value of Ω and Ra.

Beside the differences between RT and RB turbulence due to the boundary conditions,

other phenomena occurring in the bulk of rotating convection display interesting similarities

between the two systems. In particular, studies of rotating RB has found an increase of

the internal mean gradient with decreasing Ro [44–46] and a corresponding decrease in

horizontal versus vertical fluctuations of temperature, which indicates that rotation favors

the horizontal transport and suppresses the vertical mixing.
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C. Energy spectra

In order to investigate the degree of anisotropy at different scales, we computed at given

times during the evolution of the system the energy spectra of the horizontal and vertical

components of the velocity, indicated respectively as Ex(k) and Ez(k). The spectra has been

computed from the Fourier transform of the velocity fields in the whole periodic domain,

and are plotted as a function of the wavenumber k = (k2
x + k2

y + k2
z)

1/2.

In Fig. 9 we compare the horizontal and vertical spectra computed at the same time t = 6τ

with and without rotation. We see that for Ω = 0 the two spectra are almost identical at

high-wavenumbers, indicating the recovering of isotropy in the flow at small scales. [31].

The recovery of small-scale isotropy does not occur in presence of rotation. For Ωτ = 12.5

we find that vertical velocity fluctuations dominates over horizontal velocity fluctuations at
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all scales. These results indicate that the ratio Ez(k)/Ex(k) is changed by rotation mostly

at small scales, while at large scales rotation reduces both the spectra keeping their ratio

almost constant. This is consistent with the weak dependence on Ω of the ratio wrms/urms

shown in Fig. 2. On the other hand, rotation changes significantly the degree of anisotropy

of the velocity gradient. Indeed we measure that the ratio (∂zw)rms/(∂xu)rms changes from

a value close to one for Ω = 0 [31] to about 0.65 for Ωτ = 12.5.

As rotation slows down the development of turbulence, it is interesting to compare spectra

with and without rotation at two different times at which the peaks of the vertical energy

spectrum are the same. The comparison of the two spectra is shown in Fig. 9 where we

compare the case Ωτ = 0 at t = 2.8τ with the case Ωτ = 12.5 at t = 6.0τ . Vertical spectra

are almost identical (within statistical fluctuations) while for horizontal spectra the effect of

rotation is to reduce small-scale fluctuation in favor of large-scale components.

D. Cyclonic-anticyclonic asymmetry

A remarkable feature of turbulent rotating flows is the predominance of cyclones, i.e.,

vortices co-rotating with the flow, over anticyclones. The cyclone-anticyclone asymmetry

has been observed in the atmosphere [47], and has been studied both in experiments and

numerics (for a review see, e.g., [48]).

Previous studies [49–52] have investigated the dependence of the asymmetry on the

Rossby number and the aspect ratio of the flow. The asymmetry is found to be maxi-

mum for Ro ≃ O(1), and vanishes when the flow is confined in a quasi two-dimensional

geometry. These results suggest that the mechanisms which produce the asymmetry require

the interaction between rotation and turbulent vortex stretching.

Here we address the question whether or not the cyclonic-anticyclonic asymmetry de-

velops also in the rotating Rayleigh-Taylor turbulence. To address this issue we compute

the probability density function (PDFs) of the components of the vorticity field within the

mixing layer, where the vorticity is significantly different from zero.

In Figure 10 we compare the PDFs of the vertical component ωz of the vorticity with and

without rotation. The PDFs are computed in the mixing layer of width h at times at which

h is the same in the two cases. We find that in the non-rotating case the PDF is symmetric,

while in the rotating case it is asymmetric with a positive skewness, which indicates the
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prevalence of cyclonic vortices, as shown in Fig. 10. A similar result has been observed also

for the rotating Rayleigh-Bénard convection [44].

A quantitative measure of this asymmetry is provided by the skewness of the vertical

vorticity:

Sω =
〈ω3

z〉

〈ω2
z〉

3/2
(5)

where the average is here computed within the mixing layer.

The time evolution of Sω is shown in Fig. 11 for two cases with and without rotation.

While for Ω = 0 we have a skewness consistent with zero, for Ωτ = 12.5 we observe, after

the development of the turbulent phase, a value Sω ≃ 0.15 almost independent on time.

The weak time-dependence of the skewness is somehow surprising, because the cyclonic-

anticyclonic asymmetry is known to depend on the Rossby number [50], which in this case

decreases in time as Ro ≃ 1/Ωt. One possible explanation is that is our simulations the

time dependence of Ro is too weak (see Fig. 3) to appreciate a significant variation of the

asymmetry. We conclude by remarking that the other two components of the vorticity are

symmetric also in presence of rotation.

IV. CONCLUSIONS

In this paper we have studied the effect of rotation along the vertical axis on the de-

velopment and the mixing properties of Rayleigh-Taylor turbulence in the Boussinesq ap-

proximation of incompressible flow. We have found that rotation reduces the intensity of

turbulent velocity fluctuations, a generalization of the known stabilizing effect on the linear

phase [1, 29]. As a consequence, the temporal growth of the mixing layer is observed to be

reduced with respect the case without rotation. Rotation also reduces the efficiency of the

conversion of the available potential energy into large-scale kinetic energy, and relatively

more energy is dissipated at small scales. The analysis of the kinetic energy spectra revealed

that rotation induces a strong anisotropy at small scales, where vertical velocity fluctuations

dominate over horizontal ones.

In spite of the reduction of the intensity of velocity fluctuations, we found that rotation

allows them to extends in a broader region, a manifestation of the Taylor-Proudman theorem

on the bidimensionalization of the flow, while the scale associated to temperature fluctua-

tions is reduced. These results imply that in presence of rotation the mixing layer has a
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complex structure which cannot be characterized by a single scale. The presence of different

characteristic scales for velocity and temperature has important dynamical consequences.

Indeed, the analysis of our numerical simulations show that the heat transfer, quantified by

the Nusselt number, is reduced by rotation not only as a function of time, but also at a

given Rayleigh number (i.e. width of the mixing layer). This means that rotation reduces

the correlation 〈wT 〉 between the temperature and the vertical velocity.

Finally, we have analyzed the cyclone-anticyclone asymmetry induced by rotation. We

have found that, as in other turbulent systems, rotation induces an asymmetry in the PDF

of the vertical vorticity which displays a a positive (with respect to the background rotation)

skewness. The skewness is found to be approximatively constant during the development of

the turbulent mixing layer.

In conclusion, we found that rotation induces a rich and complex phenomenology in

Rayleigh-Taylor turbulence. As RT turbulence is a prototypical example of bulk turbulent

convection, not driven by boundary layers, we expect similar effects in other convective flows

dominated by bulk properties. Further numerical and experimental work in this direction

would be extremely interesting.
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FIG. 9. Upper plot: Vertical Ez(k) (red) and horizontal Ex(k) (blue) kinetic energy spectra

computed at the time t = 6.0τ both in the absence of rotation (continuous lines) and with Ωτ = 12.5

(dashed lines). Lower plot: Vertical and horizontal kinetic energy spectra computed at time

t = 2.8τ for Ωτ = 0 and at time t = 6.0τ for Ωτ = 12.5 at which the peaks of the vertical spectra

are the same.
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FIG. 10. PDF of vertical vorticity computed in the mixing layer of width h at time t = 3.2τ for

Ωτ = 0 (red) and t = 5.6τ for Ωτ = 12.5 (blue). At these times the width of the mixing layer in the

two cases is the same. The values of the vertical vorticity has been normalized with the standard

deviation (σ = 0.010 for Ωτ = 0 and σ = 0.039 for Ωτ = 12.5).
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