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THE MULTISCALE HYBRID-MIXED METHOD FOR THE MAXWELL
EQUATIONS IN HETEROGENEOUS MEDIA

STÉPHANE LANTERI, DIEGO PAREDES, CLAIRE SCHEID, AND FRÉDÉRIC VALENTIN

Abstract. In this work, we address time dependent wave propagation problems with

strong multiscale features (in space and time). Our goal is to design a family of innovative

high performance numerical methods suitable to the simulation of such multiscale problems.

Particularly, we extend the Multiscale Hybrid-Mixed finite element method (MHM for short)

for the two- and three-dimensional time-dependent Maxwell equations with heterogeneous

coefficients. The MHM method arises from the decomposition of the exact electric and

magnetic fields in terms of the solutions of locally independent Maxwell problems tied to-

gether with a one-field formulation on top of a coarse-mesh skeleton. The multiscale basis

functions, which are responsible for upscaling, are driven by local Maxwell problems with

tangential component of the magnetic field prescribed on faces. A high-order discontinuous

Galerkin method in space combined with a second-order explicit leap-frog scheme in time

discretizes the local problems. This makes the MHM method effective and yields a staggered

algorithm within a “divide-and-conquer” framework. Several numerical tests assess the op-

timal convergence of the MHM method and its capacity to preserve the energy principle, as

well as its accuracy to solving heterogeneous media problems on coarse meshes.

1. Introduction

Partial differential equations embedding multiscale features occur in a wide range of scien-

tific and technological applications involving wave propagation in heterogenous media. We

consider here the case of electromagnetic wave propagation, more precisely light propaga-

tion (e.g. optical wave) in interaction with nanometer scale structures, i.e., nanophotonics.

Nanophotonics is the field of science and technology aiming at establishing and using the pe-

culiar properties of light and light-matter interaction in various nanostructures. Nanostruc-

tured photonic crystals are very attractive as these structures serve as excellent waveguides.

In fact, light paths are created inside these structures, removing background electromag-

netic modes and keeping only the desired band of frequencies. Generally the medium is a

periodic structure, but interesting phenomena arise when band gaps are included to increase

(or decrease) local dielectric function for a certain frequency range. Such a gap breaks the
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periodicity and creates simple cavity modes. These modes can be combined to generate

more complex structures where the fields deviate even further from symmetry, pushing them

towards the photonic band gap. Overall, photonic-crystal waveguiding structures have led

to the design of optical components such as sensors or/and logic gates that are orders of

magnitude smaller than currently available devices (see [11] for an interesting review).

Such a scenario represents a big challenge for numerical methods in view of computational

simulations. In a broad sense, very fine meshes must be adopted to approximate the high-

frequency field distributions as they are greatly impacted by the multiscale structures of

the medium and the anisotropic nature of the cavity regions. The idea of using high-order

polynomial interpolations on coarse meshes, as proposed in [28] for instance, is not a feasi-

ble option since interfaces between different material media and faces of the partition must

coincide to avoid spurious numerical modes. Consequently, effective numerical methods for

long-time simulations require a fine mesh to fit the complex geometry with high-order ap-

proximation to minimize dispersion. This leads to cost-prohibitive large-scale computations,

placing realistic three-dimensional problems out of reach. In the quest of overcoming such a

shortcoming, high-order numerical methods have been devised on building-block structures

so as to better match massive parallel facilities. Indeed, it is natural to strive for alternatives

to standard techniques such as the finite difference FDTD scheme [17] or the finite volume

methods for which parallelization was not a goal-driven feature. An interesting alternative

is the Discontinuous Galerkin method for time domain (DGTD) (see [12, 19, 32]) which

encompass some of these requirements at the price to increase the total number of degrees

of freedoms. A bias is that the DGTD method still relies on (global) fine meshes so as to

incorporate the influence of the heterogeneous geometries into numerical solutions.

Multiscale finite element methods have attracted great attention with their capacity to

be accurate on coarse meshes (see [6, 1, 7, 20] just to cite a few). Beginning with the

seminal work by Babuska et al. [8], the multiscale methods were further extended to higher

dimensions in [29]. The approach carries the concept of multiscale basis functions, which

upscale to the coarse mesh. They are driven by independent local problems which make the

multiscale methods particularly attractive to implement in parallel environments. Recently,

the classical hybridization procedure [39] has been used to devise a new family of high-

order multiscale finite element method called MHM method. Particularly adapted to handle

multiscale and/or high contrast coefficients on coarse meshes, the MHM method permits

face-crossing interfaces endowed in local boundary conditions. Originally proposed for the

Laplace problem in [25], the MHM method has been analyzed in [4], and further extended

to other elliptic problems in [24, 26] and mixed problems in [5, 37]. Also, its robustness with
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respect to (small) physical parameters has been established in [36], and an abstract general

setting to develop and analyze MHM methods has been proposed in [27].

This work extends the MHM method to the first-order Maxwell system in time domain,

with the upshot that the physical coefficients may be highly heterogeneous as found in wave

propagation in nano-structured problems. Within the vast literature on numerical meth-

ods for wave propagation models, some methods share similarities (and/or the same goals)

with the MHM methods. One is the DG method in [16] proposed for the two-dimensional

first-order Maxwell equation with constant coefficients. Others include the Hybrid Discontin-

uous Galerkin (HDG) method first presented in [15], and extended to the frequency domain

Maxwell equation in homogeneous media in [35, 33], the Heterogenous Multiscale method

(HMM) for the wave equation [2], the Discontinuous Petrov-Galerkin method (DPG) [23],

the Localizable Orthogonal Decomposition (LOD) method [38] for the Helmholtz equation

with constant coefficient, and numerical methods built using asymptotic expansions such as

the one presented in [22] for the Helmholtz equation with multiscale coefficients. However,

the primal hybridization of the Maxwell model selected as the starting point in this work as

well as the nature of the solution decomposition leads to a different global-local family of nu-

merical methods when compared to those proposed in the aforementioned papers. Thereby,

the proposed method is, to the best of our knowledge, the first in the literature of multiscale

finite element method to be devised for the first-order Maxwell equations in time domain

with heterogeneous coefficients.

To highlight the main points involved in the construction of the MHM method, let Ω ⊂ R3

be an open bounded simply-connected domain with Lipschitz boundary ∂Ω, where ∂Ω is a

perfect electrically conducting boundary and (0, T ) is the time interval, with T > 0 fixed.

We consider the Maxwell problem to find the electric field e : (0, T ) × Ω → R3 and the

magnetic field h : (0, T )× Ω→ R3 such that

(1)



ε ∂te−∇× h = f in (0, T )× Ω ,

µ ∂th+∇× e = 0 in (0, T )× Ω ,

∇ · (ε e) = ρ in (0, T )× Ω ,

∇ · (µh) = 0 in (0, T )× Ω ,

e× n = 0 on (0, T )× ∂Ω ,

e = e0 , h = h0 at t = 0 on Ω ,
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where n is the unit outward normal vector on ∂Ω, f is the electric current density, ρ is the

charge density. They verify the compatibility relation

∇ · f − ∂t ρ = 0 in (0, T )× Ω ,(2)

and e0 and h0 are given regular functions with values in R3. Here µ and ε denote the magnetic

permeability and the electric permittivity, respectively, which are in general third-order

symmetric tensors possibly depending on x := (x1, x2, x3)T ∈ Ω and embedding multiple

geometrical scales. They are both measurable, uniformly positive definite and bounded, i.e.,

there exist positive constants cµmin and cµmax, cεmin and cεmax such that

(3) cµmin|ζ|2 ≤ ζTµ ζ ≤ cµmax|ζ|2 for all ζ ∈ R3 ,

and

(4) cεmin|ζ|2 ≤ ζT ε ζ ≤ cεmax|ζ|2 for all ζ ∈ R3 ,

where |.| stands for the Euclidean norm. We recall that, for a given vector function v :=

(v1, v2, v3)T with values in R3, ∇ × v is a vector function with values in R3 defined by

∇ × v := (∂x2v3 − ∂x3v2, ∂x3v1 − ∂x1v3, ∂x1v2 − ∂x2v1)T and ∇ · v is a scalar function with

value in R defined by ∇ · v := ∂x1v1 + ∂x2v2 + ∂x3v3.

The MHM approach is constructive. It starts from a hybrid formulation of the Maxwell

model (1) defined on a (coarse) partition TH of Ω, formed by elements K ∈ TH , and on

a partition T∆t of the time interval [0, T ] decomposed in elements In := [tn−1, tn] ∈ T∆t,

where n ∈ {1, ..., N}, N ∈ N∗. Next, the continuity of the variables is relaxed on the set

of boundaries ∂K for all K ∈ TH , hereafter denoted by ∂TH . A weak continuity of the

tangential component of the electric field e is imposed on the boundary elements in ∂TH ,

whereas the continuity in time is imposed strongly on each time-step tn. More specifically,

we propose the following hybrid weak formulation: For each In ∈ T∆t, find (en; hn, λn) ∈
C0(In; V)× C0(In; V)× C0(In; Λ) such that

(5)



∑
K∈TH

∫
K
ε ∂t e

n · v −
∫
K
hn · ∇ × v + 〈λn,v〉∂K =

∑
K∈TH

∫
K
f · v for all v ∈ V ,

∑
K∈TH

∫
K
µ ∂t h

n · w +
∑
K∈TH

∫
K
∇× en · w = 0 for all w ∈ V ,

∑
K∈TH

〈µ, en〉∂K = 0 for all µ ∈ Λ ,

en(tn−1, ·) = en−1(tn−1, ·) and hn(tn−1, ·) = hn−1(tn−1, ·) ,
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with

(6) e0(0, ·) = e0 and h0(0, ·) = h0 in Ω .

Here, we denote by 〈., .〉∂K the pairing product between H−1/2(∂K) and H1/2(∂K), for all

K ∈ TH , and the space V stands for the broken H1 space, i.e.,

V :=
¶
v ∈ L2(Ω) : v |K ∈H1(K) for all K ∈ TH

©
,(7)

and Λ the space of the restriction of the tangential component of functions in H(curl; Ω) to

the boundaries ∂K, i.e,

Λ :=
¶
v × nK |∂K ∈H−1/2(∂K) for all K ∈ TH : v ∈H(curl; Ω)

©
,(8)

with nK being the outward normal vector on ∂K. The spaces have their usual meaning, and

they will be detailed in the next sections. The global solution in time (e,h,λ) is defined

such that (e,h,λ)|In = (en,hn,λn), for all In ∈ T∆t. Hereafter, it is said that (e,h,λ)

satisfy the hybrid formulation (5)-(6). Importantly, the solution of the classical weak form

of (1) and the solution (e,h,λ) of (5)-(6) coincides. This result will be precisely addressed

in the next section.

Next, before going discrete, formulation (5) is reduced to the statement of a system of

locally- and globally-defined problems. To this end, we use the linearity of the Maxwell

equations and decompose

en = en,λ + en,f and hn = hn,λ + hn,f ,(9)

where, from the two-first equations in (5), the functions (en,λ,hn,λ) are defined as the solution

of the following local Maxwell problem (in a distributional sense)

(10)



ε ∂te
n,λ −∇× hn,λ = 0 in In ×K ,

µ ∂th
n,λ +∇× en,λ = 0 in In ×K ,

nK × hn,λ = −λn on In × ∂K ,

en,λ(tn−1, ·) = 0 and hn,λ(tn−1, ·) = 0 ,

e0,λ = 0 and h0,λ = 0 in K at t = 0 ,
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and (en,f ,hn,f ) solves

(11)



ε ∂te
n,f −∇× hn,f = f in In ×K ,

µ ∂th
n,f +∇× en,f = 0 in In ×K ,

nK × hn,f = 0 on In × ∂K ,

en,f (tn−1, ·) = en−1(tn−1, ·) and hn,f (tn−1, ·) = hn−1(tn−1, ·) ,

e0,f = e0 and h0,f = h0 in K at t = 0 .

Owing to characterization (9), the third equation in (5) becomes a global one-field face

formulation for the Lagrange multiplier, i.e., for all t ∈ In ∈ T∆t, find λn(t) ∈ Λ such that

(12)
∑
K∈TH

〈µ, en,λ〉∂K = −
∑
K∈TH

〈µ, en,f 〉∂K for all µ ∈ Λ .

The MHM method is a byproduct of the discretization of the coupled problems (10)-(12).

The one-level MHM arises from the choice of a finite dimensional space of C0(0, T ; Λ)

(possibly non-conforming) and looking for the approximate solution λH(t) of λ(t) in such

a space satisfying (12) at discrete times. In this work, the Lagrange multipliers λH(t) are

assumed to be constant in each In ∈ T∆t and polynomial of high degree on ∂TH . Interestingly,

we verify that such a simple choice leads to a second-order time scheme. Also, by going

discrete, problems (10)-(12) may be decoupled as follows:

• the local problem (10) is responsible for computing the multiscale basis, with its

boundary condition λn replaced by the space-time basis of λH ;

• the global problem (12) is responsible for the calculation of the degrees of freedom of

λH , which depend on In ∈ T∆t.

As a result, the one-level approximation (eH ,hH) of (e,h) stems from the combination of

the multiscale basis functions, the degrees of freedom of λH and the solution of (11). A

detailed description of (eH ,hH) is the subject of Section 4.

The aforementioned one-level MHM method relies on closed formulas for the multiscale

basis functions and for the solution of (11) which are not available in general. As such,

one has to resort to a second level of discretization to make the method (12) effective.

Interestingly, such choices can be quite general in the sense that any numerical method with

approximate properties could be locally adopted. However, in this setting, the global problem

is naturally impacted by the choice made at the second level. We propose to associate the

discontinuous Galerkin method proposed in [21] to discretize the local problems in space with

the explicit second-order leap frog scheme for the time marching process. These options are

particularly attractive in practice as they lead to a fully explicit scheme (see [21] for details)
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which fulfills the discrete energy principle. Also, the discontinuous interpolation at the local

level turns out to be of paramount importance to preserve the quality of the numerical

solution in the case of interface crossing faces. A detailed description of the two-level MHM

method and its properties will be presented in Section 5.

The theoretical foundations of the MHM strategy for the Maxwell equations is one of the

main contribution of this work. Particularly, we demonstrate the equivalence between the

hybrid formulation (5) and the original weak form of the Maxwell equations and we establish

the well-posedness of local problems (10) and (11). In regard to the numerical aspects of the

one- and two-level methods, we prove that they preserve the energy conservation properties

under a certain CFL condition, for the latter. We also dedicate this work to a complete

numerical validation of the new MHM method. Specifically, we verify that the method

yields optimal convergence for all variables, with super-convergence for the electric field,

in their natural norms, and it out-performs standard methods. Also, a wave propagation

problem defined on a heterogeneous nano-scale device shows that the method is accurate on

coarse meshes when the faces are not aligned with interfaces. In view of such novelties, the

error analysis of the semi- and fully-discrete MHM methods are left to be addressed in a

future work.

The paper is organized as follows: The next section states the problem and addresses

some preliminary theoretical results. The characterization of the exact fields in terms of

global-local problems is the subject of Section 3. Section 4 is devoted to the one-level MHM

method. The fully discrete two-level MHM method is presented in Section 5, and Section 6

is dedicated to the numerical validation of the MHM method. Appendix A details the proofs

of the theoretical result anticipated in the previous sections, and Appendix B presents the

MHM method for the Transverse Magnetic (TM) two-dimensional model. Conclusions follow

in Section 7.

2. Statement and preliminaries

As usual, we assume that the initial electric and magnetic fields e0 and h0 satisfy

∇ · (ε e0) = ρ(0, ·) and ∇ · (µh0) = 0 in Ω .(13)

Hence, problem (1) simplifies observing that the third equation (Gauss law) and the fourth

equation (absence of magnetic monopoles) in (1) stem from the first (Faraday law) and

second (Ampere law) equations in (1). As a result, problem (1) can be rewritten in an
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equivalent way as follows: Find e : (0, T )× Ω→ R3 and h : (0, T )× Ω→ R3 such that

(14)



ε ∂te−∇× h = f in (0, T )× Ω ,

µ ∂th+∇× e = 0 in (0, T )× Ω ,

e× n = 0 on (0, T )× ∂Ω ,

e = e0 , h = h0 at t = 0 on Ω ,

constrained by equation (2). The following spaces will be used in the sequel

H(curl; Ω) :=
¶
v ∈ L2(Ω) : ∇× v ∈ L2(Ω)

©
,

H0(curl; Ω) := {v ∈H(curl; Ω) : v × n |∂Ω = 0} ,

H(div; Ω) :=
¶
v ∈ L2(Ω) : ∇ · v ∈ L2(Ω)

©
,

H(div, µ; Ω) :=
¶
v ∈ L2(Ω) : ∇ · (µv) ∈ L2(Ω)

©
,

H0(div, µ; Ω) := {v ∈H(div, µ; Ω) : v · n |∂Ω = 0} ,

H(div, ε; Ω) :=
¶
v ∈ L2(Ω) : ∇ · (εv) ∈ L2(Ω)

©
,

equipped with their usual inner-product and induced norms. The standard weak formulation

of problem (14) consists of finding (e, h) ∈ C0(0, T ;H0(curl; Ω))×C0(0, T ;H(curl; Ω)) such

that

(15)


(ε ∂t e,v)Ω − (∇× h,v)Ω = (f , v)Ω for all v ∈H(curl; Ω) ,

(µ ∂t h,w)Ω + (e,∇×w)Ω = 0 for all w ∈H(curl; Ω) ,

where (·, ·)D stands for the usual L2(D) inner-product, and D is an open set. We recall that

problem (15) is well-posed (c.f. [14]) as follows.

Theorem 1. Assume that Ω is an open, bounded, simply-connected domain with Lipschitz

boundary such that the neighborhood of each point of ∂Ω is located in one side of ∂Ω. If the

following regularity conditions hold

(i) ρ ∈ C1(0, T ;L2(Ω)), f ∈ C0(0, T ;H(div; Ω)) and ∂tf ∈ L2(0, T ;L2(Ω)) ,

(ii) e0 ∈H0(curl; Ω) ∩H(div, ε; Ω) and h0 ∈H(curl; Ω) ∩H0(div, µ; Ω) ,

then there exists a unique solution (e,h) to (15) such that

(e, ∂te) ∈ C0(0, T ;H0(curl; Ω) ∩H(div, ε; Ω))× C0(0, T ;L2(Ω)) ,

(h, ∂th) ∈ C0(0, T ;H(curl; Ω) ∩H0(div, µ; Ω))× C0(0, T ;L2(Ω)) .
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Remark 2. In the case ε and µ are smooth functions in Ω, and Ω is of class C1,1 or convex, the

solution (e, h) of (15) belongs to the more regular space C0(0, T ;H1(Ω))×C0(0, T ;H1(Ω))

(c.f. [3]). When these coefficients are piecewise smooth functions (piecewise constant, for

instance) the fields turn out to be piecewise H1 in the subdomains where the coefficients are

smooth (see e.g. [18]). Hereafter, we suppose the solutions of (15) are H1(Ω) regular. To

be complete, we shall raise some comments on what one should change if this assumption is

relaxed every time it is used. �

Now, instead of working directly with problem (15), we adopt the following perspective: we

seek (e,h) as the solution of the Maxwell model (15) in a weaker, broken space which relaxes

continuity and localizes computations. Ultimately, we find that the approach allows for the

construction of e and h using local problems. From this perspective, we first partition

the space-time domain Ω × [0, T ]. We discretize the time interval [0, T ] in N + 1 points

0 = t0 < t1... < tN−1 < tN = T , with N ∈ N∗, (not necessarily) equally distributed, define

In := [tn−1, tn] and collect them in the set T∆t, where ∆t := maxn=1,...,N |In|. The partition

of the space domain Ω can be general (as the partitions used in the Virtual Finite Element

method (VEM) [41], for instance). However, we focus here on partitions based on a family of

regular meshes {TH}H>0, where H is the characteristic length of TH . The mesh can be very

general, composed of heterogeneous element geometries. Each element K has a boundary

∂K consisting of faces F , and we collect in ∂TH the boundaries ∂K, and in EH the faces

associated with TH . We denote by E∂ the set of faces on ∂Ω, and E0 := EH \ E∂ the set of

internal faces. To each F ∈ EH , we associate a normal n, taking care to ensure this is facing

outward on ∂Ω for each F ∈ E∂. For each K ∈ TH , we further denote by nK the outward

normal on ∂K, and let nKF := nK |F for each F ⊂ ∂K.

We recall that the broken space V given in (7) and the space

W :=
¶
v ∈ L2(Ω) : v |K ∈H(curl;K) for all K ∈ TH

©
,

are Hilbert spaces with the following respective scalar products

(u,v)V :=
∑
K∈TH

(u,v)K +
∑
K∈TH

(∇u,∇v)K ,

(u,v)W :=
∑
K∈TH

(u,v)K +
∑
K∈TH

(∇× u,∇× v)K ,

and we denote their induced norms by ‖ · ‖V and ‖ · ‖W, respectively. Also, the space Λ

given in (8) is a Banach space when equipped with the following quotient norm

‖µ‖Λ := inf
v∈H(curl;Ω)

v×nK |∂K=µ ,∀K∈TH

‖v‖W .
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We denote by (·, ·)TH and (·, ·)∂TH the summation of the respective inner (or dual) products

over the sets K and ∂K, respectively, given by

(w,v)TH :=
∑
K∈TH

∫
K
w · v dx and (µ,v)∂TH :=

∑
K∈TH

〈µ,v〉∂K ,

where w, v ∈ V and µ ∈ Λ. Here, 〈·, ·〉∂K is uniquely defined via the dual product involving

H−1/2(∂K) and H1/2(∂K) through

〈µ,v〉∂K :=
∫
K
∇× w · v dx−

∫
K
w · ∇ × v dx ,

where w × nK = µ on ∂K, and we denote it by (·, ·)∂K if µ ∈ L2(∂K). Owing to these

notations and setting

Dn :=
Ä
C0(In; V) ∩ C1(In;L2(Ω))

ä
×
Ä
C0(In; V) ∩ C1(In;L2(Ω))

ä
× C0(In; Λ) ,(16)

we propose the following hybrid version of problem (15): For all In ∈ T∆t, find (en, hn, λn) ∈
Dn such that

(17)



(ε ∂t e
n,v)TH − (hn,∇× v)TH + (λn,v)∂TH = (f , v)TH for all v ∈ V ,

(µ ∂t h
n,w)TH + (∇× en,w)TH = 0 for all w ∈ V ,

(µ, en)∂TH = 0 for all µ ∈ Λ ,

en(tn−1, ·) = en−1(tn−1, ·) and hn(tn−1, ·) = hn−1(tn−1, ·) on Ω ,

e0(0, ·) = e0, and h0(0, ·) = h0 at t = 0 on Ω .

We emphasize that the first three equations in (17) should be read as being valid for all

t ∈ In (fixed although arbitrary), and the global solution (e,h,λ) is defined such that

(e,h,λ) |In = (en,hn,λn), for all In ∈ T∆t, and hereafter we will say that (e,h,λ) is a

solution of (17).

Remark 3. When the V-regularity assumption for solutions is relaxed, the hybrid formulation

(17) still makes sense by replacing the space V by W and interpreting the operator (·, ·)∂TH
as the unique density extension to Λ ×W of (·, ·)∂TH defined on Λ ×V (see Appendix A

for details). �

Observe that the variables in (17) belong a priori to a larger space than the solution of

the original problem (15). However, the space of Lagrange multipliers imposes H(curl; Ω)-

conformity on the solution and respects the boundary condition e×n |∂Ω = 0. Also, problem

(17) has a unique solution (in the sense of Remark 3) where (e,h) coincides with the solution

of problem (15). These results are summarized next and the proof detailed in Appendix A.
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Lemma 4. The function (e,h,λ) is the solution of (17) if and only if (e,h) solves (15) in

the sense of Theorem 1. Furthermore, it holds

λ = −nK × h on (0, T )× ∂K .(18)

Remark 5. Absorbing boundary conditions can be prescribed in (14). They are taken into

account as a natural condition within the hybrid formulation (17). Indeed, assume that the

following boundary condition is set on a subset ∂ΩA of the boundary ∂Ω

n× e− n× (αh× n) = n× g on (0, T )× ∂ΩA ,(19)

where the given right-hand side g is defined by

g := ei − αhi × n and α2 := ε−1µ .

The functions (ei,hi) are the incident electric and magnetic fields, respectively. Hence, using

equivalence (18), condition (19) is prescribed by replacing the third equation in (17) by

(µ, e)∂TH = (µ, g)∂ΩA
− (µ, αλ)∂ΩA

for all µ ∈ Λ .

�

We are ready to propose an equivalent global-local formulation to (17) which turns out to

be more convenient to build “divide and conquer” numerical algorithms.

3. A global-local formulation

Rather than selecting a pair of finite subspaces of V×V×Λ at this point, we rewrite (17)

in an equivalent form which is suitable to reduce the statement to a system of locally- and

globally-defined problems. Such an approach guides the definition of stable finite subspaces

composed of functions which incorporate multiple scales into the basis functions.

First, observe that problem (17) is equivalent, for all In ∈ T∆t, to find (en,hn,λn) ∈ Dn
such that

(µ, en)∂TH = 0 for all µ ∈ Λ ,(20) 
(ε ∂te

n,v)K − (hn,∇× v)K = (f ,v)K − 〈λn,v〉∂K ,

(µ ∂th
n,w)K + (∇× en,w)K = 0 ,

en(tn−1, ·) = en−1(tn−1, ·) and hn(tn−1, ·) = hn−1(tn−1, ·) on K ,

(21)

for all (v,w) ∈ V(K)×V(K), where (e0(0, ·),h0(0, ·)) = (e0,h0) and V(K) stands for the

space of functions in V restricted to K. The corresponding electric and magnetic fields in

(20)-(21) respect the classical energy principle. This is the subject of the next lemma.
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Lemma 6. Let E : (0, T )→ R be defined as follows

(22) E(t) :=
1

2
(ε e, e)TH +

1

2
(µh,h)TH ,

where (e,h) solve (20)-(21). Then, it holds

(23) E(t) = E(0) +
∫ t

0
(f , e)TH for all t ∈ (0, T ) .

Proof. Let In ∈ T∆t, and choose en and hn as test functions in the first and second equations

of (21), respectively. This leads us to

(24)


(ε ∂te

n, en)K − (hn,∇× en)K = (f , en)K − 〈λn, en〉∂K ,

(µ ∂th
n,hn)K + (∇× en,hn)K = 0 ,

en(tn−1, ·) = en−1(tn−1, ·) and hn(tn−1, ·) = hn−1(tn−1, ·) on K .

Summing up the resulting equations over all the elements K of TH , we arrive at

(25) (ε ∂te
n, en)TH + (µ ∂th

n,hn)TH = (f , en)TH − (λn, en)∂TH .

Next, using equation (20) in (25), we get

(ε ∂te
n, en)TH + (µ ∂th

n,hn)TH = (f , en)TH ,

and from the regularity of en, we conclude that

(26) ∂tE = (f , e)TH .

The result follows by integrating (26) in the interval [0, t], with t ∈ (0, T ). �

Notice that (21) implies that e and h can be computed in each element K ∈ TH from

f and λ once the latter is known. Owing to this property, we can use the linearity of the

Maxwell operator to decompose the fields as follows

en = en,λ + en,f and hn = hn,λ + hn,f for all n ∈ {1, ..., N} ,(27)

where (en,λ,hn,λ) satisfies

(28)


(ε ∂te

n,λ,v)K − (hn,λ,∇× v)K = −〈λn,v〉∂K for all v ∈ V(K) ,

(µ ∂th
n,λ,w)K + (∇× en,λ,w)K = 0 for all w ∈ V(K) ,

en,λ(tn−1, ·) = 0 and hn,λ(tn−1, ·) = 0 ,
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with (e1,λ,h1,λ)(0, ·) = 0, and (en,f ,hn,f ) solves

(29)


(ε ∂te

n,f ,v)K − (hn,f ,∇× v)K = (f ,v)K for all v ∈ V(K) ,

(µ ∂th
n,f ,w)K + (∇× en,f ,w)K = 0 for all w ∈ V(K) ,

en,f (tn−1, ·) = en−1(tn−1, ·) and hn,f (tn−1, ·) = hn−1(tn−1, ·) ,

with (e0,f ,h0,f )(0, ·) = (e0,h0). The corresponding strong versions of (28) and (29) (meant

in a distributional sense) were anticipated in (10) and (11), respectively. Also, the initial

boundary value problems (28) and (29) are well-posed as proved in Lemma 16 (see Appendix

A).

Owing to characterization (27) and replacing it in (20), we can rewrite the global problem

(20) in an equivalent form in which the Lagrange multipliers are the leading variable, i.e.,

for each In ∈ T∆t and t ∈ In, we look for λn(t) ∈ Λ such that

(30) (µ, en,λ)∂TH = −(µ, en,f )∂TH for all µ ∈ Λ .

Remark 7. If an absorbing boundary condition is prescribed on ∂ΩA ⊂ ∂Ω, then from

Remark 5, equation (30) becomes

(µ, en,λ)∂TH + (µ, αλn)∂ΩA
= −(µ, en,f )∂TH + (µ, g)∂ΩA

for all µ ∈ Λ .

�

4. Space-time discretization: The first level

Since λ uniquely determines eλ, it is enough to select a finite dimensional space Q∆t
H of

C0(0, T ; Λ) (possibly non conform) in order to discretize problem (30) in space and time.

To this end, we define P0(In) the space of piecewise constant functions in the time intervals

In ∈ T∆t, and set ΛH ⊂ Λ as the following polynomial space

ΛH = Λm
l :=

¶
µH ∈ Λ : µH |F ∈ Pml (F )3 for all F ∈ EH

©
.(31)

Here, the space Pml (F ) is the space of discontinuous polynomial functions on F of degree

less than or equal to l ≥ 0 and defined on an equally spaced partition of F , composed of m

elements (m ≥ 1). In what follows, the space Λl stands for Λ1
l .

Owing to these choices, we set

Q∆t
H :=

⊕
In∈T∆t

P0(In)⊗ΛH ,(32)

where ΛH is given in (31), and observe that such a space is nonconforming in C0(0, T,Λ)

with respect to the time variable. This corresponds to the simplest space-time element.
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More involved time interpolation choices may be used with the upside that the conformity is

recovered. It is worth mentioning that the simplicity of (32) associated with its second-order

accuracy in time (see Section 6) makes the space (32) the best compromise between precision

and computational cost.

Next, mimicking (27), the one-level approximated fields are decomposed as follows

enH = en,λH + en,f and hnH = hn,λH + hn,f ,(33)

and the one-level MHM method results from the standard Galerkin method applied to (30),

i.e., for all In ∈ T∆t, find λnH ∈ ΛH such that

(34) (µH , e
n,λH )∂TH = −(µH , e

n,f )∂TH for all µH ∈ ΛH ,

where λH |In = λnH . The function (en,f ,hn,f ) solves (29) and, using (28), the function

(en,λH ,hn,λH ) satisfies

(35)



Ä
ε ∂te

n,λH ,v
ä
K
−
Ä
hn,λH ,∇× v

ä
K

= −(λnH ,v)∂K for all v ∈ V(K) ,Ä
µ ∂th

n,λH ,w
ä
K

+
Ä
∇× en,λH ,w

ä
K

= 0 for all w ∈ V(K) ,

en,λH (tn−1, ·) = 0 and hn,λH (tn−1, ·) = 0 on Ω ,

where e0,λH (0, ·) = 0 and h0,λH (0, ·) = 0. Well-posedness of (35) follows from Lemma 16

(see Appendix A) and the corresponding strong problem associated to (35) is given in (10)

(with λn replaced by λnH).

We analogously define the one-level global electric and magnetic fields eH and hH such

that their restrictions to In ∈ T∆t coincide with enH and hnH , respectively. Hence, the local

conservation property of their exact counterpart (under the same assumption (13)) holds

following the proof in Lemma 6. Specifically, the discrete energy EH given by

(36) EH(t) :=
1

2
(ε eH , eH)TH +

1

2
(µhH ,hH)TH

is preserved as follows

(37) EH(t) = EH(0) +
∫ t

0
(f , eH)TH .

It is instructive to consider (en,λH ,hn,λH ) in more detail as it plays a central role in

(34). Let {ψi}, with i ∈ {1, ..., dim ΛH}, be a basis for ΛH and set {ψi1In}, with (i, n) ∈
{1, ..., dim ΛH}× {1, ..., N} a basis for Q∆t

H , where 1In stands for the characteristic function

of In ∈ T∆t. If βni ∈ R are the corresponding degrees of freedom associated to the basis of
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Q∆t
H , then we write

λnH =
dim ΛH∑
i=1

βni ψi for all n ∈ {1, ..., N} .(38)

Now, define the set (ηn,ei ,ηn,hi ) ⊂ Dn×Dn, with i ∈ {1, ..., dim ΛH}, such that (ηn,ei ,ηn,hi ) |K×In
satisfies the following Maxwell problem, for all K × In ∈ TH × T∆t,

(39)

Ä
ε ∂tη

n,e
i ,v

ä
K
−
Ä
ηn,hi ,∇× v

ä
K

= −(ψi,v)∂K for all v ∈ V(K),Ä
µ ∂tη

n,h
i ,w

ä
K

+
Ä
∇× ηn,ei ,w

ä
K

= 0 for all w ∈ V(K) ,

where (ηn,ei (tn−1, ·),ηn,hi (tn−1, ·)) = (0,0). Here ψi changes its sign according to the sign of

nKF · n, for each F ⊂ ∂K, as a consequence of ΛH in (31). As a result of (38) and (39), we

can write (en,λH ,hn,λH ) the solution of (35) in the following form

en,λH =
dim ΛH∑
i=1

βni η
e
i and hn,λH =

dim ΛH∑
i=1

βni η
h
i on In ∈ T∆t ,

and then from (33), on each In ∈ T∆t we get

enH =
dim ΛH∑
i=1

βni η
n,e
i + en,f and hnH =

dim ΛH∑
i=1

βni η
n,h
i + hn,f .(40)

The one-level approach assumes that closed formulas are available for (ηn,ei ,ηn,hi ) and

(en,f ,hn,f ). As such, to compute (40) effectively, it remains to obtain the degrees of freedom

βni . To this end, we use the face-based global formulation (34) evaluated on N discrete

time-steps (one per time slab In). Indeed, replacing (40) in (34) it follows that βni , for

i ∈ {1, ..., dim(ΛH)} and n ∈ {1, ..., N}, satisfy the following discrete system

dim ΛH∑
i=1

∑
K∈TH

βni

∫
∂K
ψj η

n,e
i ds = −

∑
K∈TH

∫
∂K
ψj e

n,f ds for all j ∈ {1, ..., dim(ΛH)} ,

where ηn,ei and en,f are evaluated at one time per interval In ∈ T∆t (for instance at tn+1/2 :=
tn−1+tn

2
).

Remark 8. Observe that problem (39) is equivalent (in a distributional sense) to the following

strong problem

(41)



ε ∂tη
n,e
i −∇× η

n,h
i = 0 in In ×K ,

µ ∂tη
n,h
i +∇× ηn,ei = 0 in In ×K ,

nK × ηhi = −ψi on In × ∂K ,

ηn,ei (tn−1, ·) = 0 and ηn,hi (tn−1, ·) = 0 in K .
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Thereby, the functions (ηn,ei ,ηn,hi ) are in one-to-one correspondence with the basis ψi and are

responsible for the upscaling since they are designed to naturally incorporate the influence of

physical coefficients and geometry. This multiscale basis spans a conforming local subspace

of Dn×Dn. As usual, the global basis functions (ηei ,η
h
i ) and (ef ,hf ) are defined such that

their restrictions coincide with (ηn,ei ,ηn,hi ) and (en,f ,hn,f ) on In ∈ T∆t, respectively, and we

notice that the support of the multiscale basis functions is restricted to two elements K ∈ TH
with clear (positive) impact on the sparsity of the underlying matrices. �

Remark 9. The one level MHM method is non-conforming in H1(Ω) as the normal compo-

nent of the variables may be discontinuous across faces, for all t ∈ (0, T ). On the other hand,

it is a H(curl; Ω)-conforming method for the magnetic field since its tangential component

is continuous across faces (see (10)) �

As mentioned, the one level MHM method assumes that the basis functions (ηei ,η
h
i ) and

(ef ,hf ) are known exactly. However, this is generally not feasible, meaning a second level

of discretization is necessary to make the method practical. This is the subject of the next

section.

5. The two-level MHM method

5.1. The semi-discrete MHM method. We discretize local problems (39) (or (41)) and

(29) with respect to the space variable by selecting a local finite dimensional space Vh(K)

whose functions are defined over a regular partition of K, denoted by
¶
T Kh
©
h>0

. Such a

partition may differ in each K ∈ TH and h denotes the characteristic length of T Kh . Also,

let EKh be the set of faces on T Kh , and EK0 be the set of internal faces. To each face γ ∈ EKh
we associate a normal vector nτγ, taking care to ensure this is facing outward on ∂τ , for all

τ ∈ T Kh . The global finite dimensional space is then given by

Vh :=
⊕
K∈TH

Vh(K) ,(42)

and on top of (42) a second level numerical method is proposed. First observe that the

MHM algorithm is quite general, and standard face-based elements [34] or nodal continuous

stabilized methods [9], for instance, can be incorporated into the MHM algorithm at this

point.

In this work, we focus on a simple nodal, non-conforming finite element space defined as

a piecewise discontinuous polynomial space in each element K ∈ TH , i.e., Vh(K) 6⊂ V(K) is
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given by

Vh(K) :=
¶
vh ∈ L2(K) : vh |τ ∈ [Pk(τ)]3 for all τ ∈ T Kh

©
,(43)

where Pk(τ) is the space of polynomial functions on τ of degree less than or equal to k ≥ 1.

Notice that, whatever choice of numerical method we make at the second level, the format

of the global problem remains unchanged and reads: For all In ∈ T∆t, find λnH ∈ ΛH such

that

(44) (µH , e
n,λH
h )∂TH = −(µH , e

n,f
h )∂TH for all µH ∈ ΛH ,

where en,λH
h and en,fh belong to Vh (as well as the corresponding hn,λH

h and hn,fh ). They

correspond to the second level approximation of en,λH and en,f . As a result, the semi-discrete

approximation of the exact solution is given by

(e,h) ≈ (eH,h,hH,h) := (eλH
h + efh ,h

λH
h + hfh) ,(45)

where, as usual, the global functions in time (eλH
h ,hλH

h ) and (efh ,h
f
h) are defined through

their local (in time) counterpart (en,λH
h ,hn,λH

h ) and (en,fh ,hn,fh ).

Now, we detail the non-conforming method [21] to compute the semi-discrete basis func-

tions of (eλH
h ,hλH

h ) and (efh , e
f
h) needed to solve (44). Seen as an alternative to the standard

Galerkin method on continuous polynomial interpolations, the discontinuous Galerkin (DG)

method (within the MHM framework) consists of relaxing the continuity of the interpolator

on the faces γ of a sub-mesh T Kh , for all K ∈ TH . Such an option can be particularly at-

tractive when high-contrast heterogeneities still persist within local problems, making their

resolution computationally expensive. In these cases a second level of parallelization may be

needed. Another important application of the DG method lies when material interfaces are

not aligned with faces. In such a case, the space Λm
l in (31) with m ≥ 1 must be adopted,

and then, it is important to take into account such discontinuities with precision within the

second level approximations. This attractive feature of the MHM method will be explored

in the numerical section (see Section 6).

To introduce the DG method proposed in [21] in the context of the MHM methodology,

we need first some extra notations. Let us denote by {vh} :=
1

2
((vh) |τ + (vh) |τ ′) the mean

value of a vector function vh on faces γ ∈ EKh (with τ and τ ′ being the two elements sharing

the face γ), which coincides with the value of vh if γ ⊂ ∂K. We define the jump on a face

γ ∈ EKh as follows

JvhK := nτγ × vh |τ + nτ
′

γ × vh |τ ′ on γ ⊂ ∂τ ∩ ∂τ ′ where τ, τ ′ ∈ T Kh ,(46)
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with JvhK = nτγ × vh |τ if γ ⊂ ∂K, and the inner-products on the sub-mesh T Kh are given by

(·, ·)T K
h

:=
∑
τ∈T K

h

(·, ·)τ and (·, ·)EK
h

:=
∑
γ∈EK

h

(·, ·)γ .

Owing to these definitions, and for each K ∈ TH , the DG method applied to (35) consists

of finding (en,λH
h ,hn,λH

h ) ∈ C0(In,Vh(K))× C0(In,Vh(K)), for all In ∈ T∆t, such that

(47)



Ä
ε ∂te

n,λH
h ,vh

ä
T K
h

−
Ä
hn,λH
h ,∇× vh

ä
T K
h

+ (
¶
hn,λH
h

©
, JvhK)EK0 = −(λnH ,vh)∂K ,Ä

µ ∂th
n,λH
h ,wh

ä
T K
h

+
Ä
en,λH
h ,∇×wh

ä
T K
h

− (
¶
en,λH
h

©
, JwhK)EK

h

= 0 ,

en,λH
h (tn−1, ·) = 0 and hn,λH

h (tn−1, ·) = 0 ,

for all (vh,wh) ∈ Vh(K) ×Vh(K), with e0,λH
h (0, ·) = 0 and h0,λH

h (0, ·) = 0. When applied

to (29), it becomes to find (en,fh ,hn,fh ) ∈ Vh(K)×Vh(K) such that

(48)



Ä
ε ∂te

n,f
h ,vh

ä
T K
h

−
Ä
hn,fh ,∇× vh

ä
T K
h

− (
¶
hn,fh

©
, JvhK)EK0 = (f ,vh)T K

h
,Ä

µ ∂th
n,f
h ,wh

ä
TH,h

+
Ä
en,fh ,∇×wh

ä
T K
h

+ (
¶
en,fh

©
, JwhK)EK

h

= 0 ,

en,fh (tn−1, ·) = en−1
h (tn−1, .) and hn,fh (tn−1, ·) = hn−1

h (tn−1, ·),

for all (vh,wh) ∈ Vh(K) × Vh(K), with e0,f
h (0, ·) = e0 and h0,f

h (0, ·) = h0. Here e0 and

h0 must be understood as well-chosen projections of the exact initial conditions in the sense

that such approximations do not undermine convergence rates.

Remark 10. The second level discrete energy given by

EH,h(t) :=
1

2
(ε eH,h, eH,h)TH +

1

2
(µhH,h,hH,h)TH ,

where (eH,h,hH,h) are given in (45), fulfills the following energy principle

EH,h(t) = EH,h(0) +
∫ t

0
(f , eH,h)TH .

The proof of this result follows closely the one in Lemma 6, using the central flux formulation

presented in the DG method [31], and the global problem (44). We refer to [31] for the further

details. �

5.2. The fully discrete MHM method. In this section, we devise the fully discrete two-

level MHM method by setting up a time-marching scheme for the local problems (47) and

(48). An explicit local finite difference time scheme is proposed which yields an effective

MHM method. It turns out that, after some manipulations, the scheme is equivalent to the

second-order leap-frog time scheme.



THE MHM METHOD FOR THE MAXWELL EQUATIONS IN HETEROGENEOUS MEDIA 19

First, we need some additional notations associated to the (local) time discretization. We

decompose In in a (non necessary) uniform partition, i.e., tn = t0n < t1n < .... < tNn
n = tn+1,

with Nn ∈ N∗ and ∆tkn = tk+1
n − tkn, and k = 0, ..., Nn − 1, and set ∆tn := max

k∈[0,Nn−1]
∆tkn.

Observe that such a partition can be set differently in each element K ∈ Th, which naturally

induces a local time stepping scheme. For sake of clarity, we drop such a dependency in the

notation. Next, we explore the intrinsic local time stepping of the MHM method within a

simple framework by assuming that T∆t is uniform with characteristic length ∆t := tn+1−tn.

Moreover, for each In ∈ T∆t, we consider a three point subdivision t0n = tn, t1n =
tn + tn+1

2
and t2n = tn+1 (observe that t1n = tn+ 1

2
) for the electric field and a two point subdivision

t0n = tn and t1n = tn+1 for the magnetic field.

We denote en,iH,h (resp. hn,iH,h) the approximated field of enH,h (resp. hnH,h) at the discrete

local time ti, i ∈ {n−1, n− 1

2
, n} (resp. i ∈ {n−1, n}). On each In, we propose the following

scheme to approximate (enH,h,h
n
H,h) at time ti, adopting the DG method in space presented

in the last section:

(49)



Ö
ε
e
n,n− 1

2
H,h − en,n−1

H,h
∆t
2

,vh

è
T K
h

−
Ä
hn,n−1
H,h ,∇× vh

ä
T K
h

+ (
¶
hn,n−1
H,h

©
, JvhK)EK0 =

−(λn−1
H ,vh)∂K +

Ä
fn−1,vh

ä
T K
h

,Ñ
µ
hn,nH,h − h

n,n−1
H,h

∆t
,wh

é
T K
h

+
Å
e
n,n− 1

2
H,h ,∇×wh

ã
T K
h

−
Åß
e
n,n− 1

2
H,h

™
, JwhK

ã
EK
h

= 0 ,Ö
ε
en,nH,h − e

n,n− 1
2

H,h
∆t
2

,vh

è
T K
h

−
Ä
hn,nH,h,∇× vh

ä
T K
h

+ (
¶
hn,nH,h

©
, JvhK)EK0 =

− (λnH ,vh)∂K + (fn,vh)T K
h
,

en,n−1
H,h = en−1,n−1

H,h and hn,n−1
H,h = hn−1,n−1

H,h ,

with the initial conditions e0,0
H,h = e0 and h0,0

H,h = h0. Interestingly, by rearranging the

contribution terms from each In ∈ T∆t, we recognize the explicit second-order leap-frog time

scheme. In what follows, we lighten the notation and use e
n+ 1

2
H,h and hnH,h to mean e

n,n+ 1
2

H,h

and hn,nH,h. As a result, the fully discrete MHM method reads: For all n ∈ {1, ..., N}, find

(e
n+ 1

2
H,h ,h

n
H,h,λ

n
H) ∈ Vh ×Vh ×ΛH such that

(50) (µH , e
n+ 1

2
H,h )∂TH = 0 for all µH ∈ ΛH ,
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(51)



Ä
µ
hnH,h − hn−1

H,h

∆t
,wh

ä
T K
h

= −
Ä
e
n− 1

2
H,h ,∇×wh

ä
T K
h

+
Åß
e
n− 1

2
H,h

™
, JwhK

ã
EK
h

,Ä
ε
e
n+ 1

2
H,h − e

n− 1
2

H,h

∆t
,vh
ä
T K
h

= (fn,vh)T K
h

+
Ä
hnH,h,∇× vh

ä
T K
h

−
Ä¶
hnH,h

©
, JvhK

ä
EK0

− (λnH ,vh)∂K ,

for all (vh,wh) ∈ Vh(K) ×Vh(K). Here we set e
1
2
H,h = e0 + ε−1∆t∇ × h0 and h0

H,h = h0

and fn = f(tn).

Remark 11. The DG method naturally increases the number of degrees of freedom needed

to approximate the basis functions. However, we recall that this is an attractive alternative

since the two-level MHM method would now enjoy the flexibility to be implemented using a

multi-level parallel strategy. �

It is important to verify the conditions under which the discrete energy principle associated

with the solution of the fully discrete MHM method (50)-(51) is preserved. Such a stability

result is closely related to a CFL condition as shown next.

Lemma 12. Let E
n+ 1

2
H,h be defined as follows

(52) E
n+ 1

2
H,h :=

1

2
(ε e

n+ 1
2

H,h , e
n+ 1

2
H,h )TH +

1

2
(µhnH,h,h

n+1
H,h )TH for n = 1, ..., N ,

where (e
n+ 1

2
H,h ,h

n
H,h) is the solution of (50)-(51). Then, E

n+ 1
2

H,h is a quadratic form under the

CFL condition ∆t ≤ C h (where C is a generic constant, that is independant of ∆t and H,

and h), and it holds

(53) E
n+ 1

2
H,h = E

n− 1
2

H,h +
1

2
∆t(fn, e

n+ 1
2

H,h + e
n− 1

2
H,h )TH for n = 1, ..., N .

Proof. Take e
n− 1

2
H,h + e

n+ 1
2

H,h as a test function in the first equation of (51) and hnH,h in the

second equation of (51) evaluated at time-steps n and n+ 1, to get

(54)

Ä
ε
e
n+ 1

2
H,h − e

n− 1
2

H,h

∆t
, e

n+ 1
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ä
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+
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2
H,h )

ä
T K
h

−
Å¶
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©
, Jen+ 1

2
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2

H,h K
ã
EK0
− (λnH , e
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2

H,h + e
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2
H,h )∂K ,Ä

µ
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ä
T K
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Ä
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T K
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+
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EK
h
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2
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e
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.
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Now, summing up the above equations over K ∈ TH , and using the properties of fluxes (see

[31, 21] for these standard arguments), we arrive at

∑
K∈TH

ï
(ε e

n+ 1
2

H,h , e
n+ 1

2
H,h )T K

h
− (ε e

n− 1
2

H,h , e
n− 1

2
H,h )T K

h
+ (µhnH,h,h

n+1
H,h )T K

h
− (µhn−1

H,h ,h
n
H,h)T K

h

ò
= ∆t

∑
K∈TH

ï
(fn, e

n+ 1
2

H,h + e
n− 1

2
H,h )T K

h
−∆t(λnH , e

n+ 1
2

H,h + e
n− 1

2
H,h )EK

h

ò
.

From (50) and using definition (52), it holds

(55) E
n+ 1

2
H,h − E

n− 1
2

H,h =
1

2
∆t(fn, e

n+ 1
2

H,h + e
n− 1

2
H,h )TH .

Furthermore, under the CFL condition ∆t ≤ C h (see [21]) the fully discrete energy E
n+ 1

2
H,h

is a quadratic form in terms of the unknowns. Indeed, the term
1

2
(µhnH,h,h

n+1
H,h )TH can be

rewritten as
1

2
(µhnH,h,h

n
H,h)TH +

1

2
(µhnH,h,h

n+1
H,h −hnH,h)TH . Using the third equation in (54),

and integrating it by parts, it holds

1

2
(µhnH,h,h

n+1
H,h − hnH,h)TH =

∆t

2

∑
K∈TH

ï
(∇× en+ 1

2
H,h ,h

n
H,h)T K

h
+
Å
Jen+ 1

2
H,h K,

¶
hnH,h

©ã
EK
h

ò
.(56)

The result follows using inverse inequalities for both of the terms on the right-hand side of

(56), and absorbing the negative contributions of the L2-norm of hnH,h and e
n+ 1

2
H,h into the

corresponding positive terms that define the energy function (under the CFL condition). �

Now, in preparation for the practical algorithm induced by the MHM method (50)-(51),

we remark that the system (50)-(51) may be decoupled once we bring out their dependency

on the solutions from the previous time-step. Indeed, owing to the linearity of problem (51),

the electric field e
n+ 1

2
H,h decomposes as

e
n+ 1

2
H,h := e

λ,n+ 1
2

H,h + e
f ,n+ 1

2
h ,(57)

where the functions (e
λ,n+ 1

2
H,h , e

f ,n+ 1
2

h ) satisfy



1
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Ä
ε e
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2

H,h ,vh
ä
K

= −(λnH ,vh)∂K ,

1

∆t

Ä
ε e
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2

h ,vh
ä
K

= (fn,vh)K +
Ä
hnH,h,∇× vh

ä
T K
h

− (
¶
hnH,h

©
, JvhK)EK0 +

1

∆t

Ä
ε e
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2

H,h ,vh
ä
K
,

(58)
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and we chose (e
λ, 1

2
H,h, e

f , 1
2

h ) as a (convergent) approximation of their continuous counterpart.

Regarding hnH,h, it appears (again) from (51) using the following post-processing

1

∆t

Ä
µhnH,h,wh

ä
K

=
1

∆t

Ä
µhn−1

H,h ,wh

ä
K
−
Ä
e
n− 1

2
H,h ,∇×wh

ä
T K
h

+
1

∆t

Ä
ε e

n− 1
2

H,h ,wh

ä
K

+ (
ß
e
n− 1

2
H,h

™
, JwhK)EK

h
,

(59)

where h0
H,h = h0. Finally, substituting (57) in (50) yields the following global problem

formulation: Find λnH ∈ ΛH , for n ∈ {1, ..., N}, such that

(µH , e
λ,n+ 1

2
H,h )∂TH = −(µH , e

f ,n+ 1
2

h )∂TH for all µH ∈ ΛH .(60)

6. Numerical results

This section starts with a description of the algorithm underlying the two-level MHM

method presented in Section 5. Then, an extensive validation of the MHM method through

two numerical tests in two-dimensional domains (see the Transverse Magnetic model in

Appendix B for details) is presented. Theoretical aspects of the MHM method are highlighted

in the first test, for which an analytical solution is available. We focus on convergence aspects

of the MHM method, conservation properties, and comparison with the standard DG method

proposed in [31]. The second test assesses the capacity of the MHM method to deal with

heterogenous media on coarse meshes, and with interfaces which are not-aligned with the

faces of the partition.

6.1. The staggered MHM algorithm. We outline the steps involved in the practical al-

gorithm behind the MHM method (58)-(60). To this end, we need some additional notations.

Define the integer numbers

mH := dim ΛH and mK
h := dim Vh(K) .
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Let {ψ1, ψ2, . . . , ψmH
} and {φ1, φ2, . . . , φmK

h
} be a basis for ΛH and Vh(K), respec-

tively. There exist real numbers βn1 , β
n
2 , . . . , β

n
mH

and cKi,1, c
K
i,2, . . . , c

K
i,mK

h
, and γ

n+1/2,K
1 , γ

n+1/2,K
2 ,

. . . , γ
n+1/2,K

mK
h

, with n ∈ {1, ..., N} and i ∈ {1, ...,mH}, such that

λH =
mH∑
i=1

βni ψi and ηei,h |K =
mK

h∑
l=1

cKi,l φ
K
l and e

f ,n+1/2
h |K =

mK
h∑

l=1

γ
n+1/2,K
l φKl .

As a result of (58), the functions ηei,h |K satisfyÄ
εηei,h,φ

K
k

ä
K

= −∆t (ψi,φ
K
k )∂K for all φKk ∈ Vh(K) .(61)

The problem (60) is equivalent to the following positive-definite linear system

(62) A ~β
n

= Fn+1/2 ,

for all n ∈ {1, ..., N}, where (~β
n
)T = (βn1 , β

n
2 , . . . , β

n
mH

) ∈ RmH . Note that A is a mH ×mH-

matrix with entries given by

A = (aij) ∈ RmH×mH with aij := −(ψi,η
e
j,h)∂TH , 1 ≤ i, j ≤ mH ,

and Fn+1/2 is a mH-vector whose entries are

Fn+1/2 = (fi) ∈ RmH with fi := (ψi, e
f ,n+1/2
h )∂TH , 1 ≤ i ≤ mH .

In what follows, we denote by ~Cj,K , ~Hn−1
K , ~E

n− 1
2

K , ~E
f ,n+ 1

2
K and ~Fn

K the local vectors com-

posed by the degrees of freedom of ηej,h |K , hn−1
H,h |K , e

n− 1
2

H,h |K , e
f ,n+ 1

2
h |K , and fnh |K , respec-

tively. The three first vectors are unknowns and computed using the following MHM algo-

rithm:
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Algorithm 1 The MHM algorithm

1: Set e
1
2
H,h and h0

H,h from the initial conditions e0 and h0

2: for n = 1 to N do

3: for K ∈ TH do

4: Compute the local matrices, with k, l ∈
¶
1, ...,mK

h

©
and j ∈ {1, ...,mH}

Mδ
K := (mK

lk), mK
lk :=

Ä
δφKl ,φ

K
k

ä
T K
h

, δ = 1, ε, µ

and

KK := (kKkl ), kKkl =
Ä
φKl ,∇× φKk

ä
T K
h

− (
¶
φKl
©
, JφKk K)EK

h

and

Sj,K := (sKjk), sKjk = (ψj,φ
K
k )∂K

5: Compute ~Cj,K =
¶
cKj,l
©

from

Mε
K
~Cj,K = −∆tSj,K

6: Compute ~Hn
K =

¶
dn,Kl

©
from

Mµ
K
~Hn
K = Mµ

K
~Hn−1
K −∆tKK

~E
n− 1

2
K

and update hnH,h

hnH,h |K =
mK

h∑
l=1

dn,Kl φKl

7: Compute ~E
f ,n+ 1

2
K =

{
γ
n+1/2,K
l

}
from

Mε
K
~E
f ,n+ 1

2
K = Mε

K
~E
n− 1

2
K + ∆tKK

~Hn
K + ∆tM1

K
~Fn
K

8: Assemble Mε
K , ~Cj,K , Sj,K and ~E

f ,n+ 1
2

K into Mε, C, S and ~Ef ,n+ 1
2

9: end for

10: Solve the global system

ST (Mε)−1 S︸ ︷︷ ︸
C

~β
n

= − 1

∆t
ST ~Ef ,n+ 1

2

11: Update e
n+ 1

2
H,h

e
n+ 1

2
H,h =

mH∑
j=1

βnj

ï ∑
K∈TH

mK
h∑

l=1

cKj,l φ
K
l

ò
+

∑
K∈TH

mK
h∑

l=1

γ
n+1/2,K
l φKl

12: end for
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Remark 13. Since Step 5 in the algorithm is independent of the time-step n, the vector ~Cj,K

can be computed once and for all at n = 1. Thanks to the structure of the DG method, the

matrices involved in steps 5-7 are block diagonal. As such, they can be factored ahead of time

resulting in explicit local solvers. Also interesting is that the local matrices used to build up

the global system in Step 10 have already been obtained in the previous steps. Thereby, the

global matrices involved in Step 10 can be assembled “on the fly”. Particularly, the “action”

of the inverse of the block diagonal matrix Mε has already been taken in account in Step

5 through completely independent local problems. This feature makes the MHM method

suitable to be implemented in parallel architectures. Finally, we observe that the left-hand

side of the linear system in Step 10 (Schur complement) corresponds to a symmetric positive

definite matrix.

6.2. An analytical solution. We now asses the theoretical aspects of the MHM method

presented in the previous sections for the two-dimensional Maxwell equations (see Appendix

B). To this end, we consider the analytical solution given by

hx(t, x, y) = −
√

2

2
sin(2

√
2 π t) sin(2π x) cos(2π y) ,

hy(t, x, y) =

√
2

2
sin(2

√
2π t) cos(2π x) sin(2π y) ,

ez(t, x, y) = cos(2
√

2 π t) sin(2π x) sin(2π y) .

From this choice, we prescribe the dielectric boundary condition ez(t, x, y) = 0 on ∂Ω, initial

conditions hx(0, x, y) = hy(0, x, y) = 0 and ez(0, x, y) = sin(2π x) sin(2π y) in Ω, and the

right-hand side jz(t, x, y) = 0 in Ω. The MHM method (60) is solved with linear (ΛH = Λ1)

and quadratic (ΛH = Λ2) polynomial interpolation on faces. Regarding the second level, we

adopt a one-element sub-mesh with a Pl+2(K) interpolation. The convergence is measured

using the following discrete norms:

‖(h− hH , e− eH)‖∞ := max
n=0,...,N−1

Å
‖hx,n − hx,nH,h‖2

0,Ω + ‖hy,n − hy,nH,h‖2
0,Ω + ‖ez,n − ez,nH,h‖2

0,Ω

ã1/2

,

‖(h− hH , e− eH)‖curl,∞ := max
n=0,...,N−1

Å
‖hx,n − hx,nH,h‖2

W + ‖hy,n − hy,nH,h‖2
W + ‖ez,n − ez,nH,h‖2

W

ã1/2

.

First, we look at the linear interpolation case on faces (ΛH = Λ1). In Figures 1 and

2, we verify that the MHM method achieves error optimality with respect to H and ∆t.

Specifically, we find that the numerical solutions converge as O(H2) and O(∆t2) in the

‖ · ‖∞-norm and O(H) in the ‖ · ‖curl,∞-norm.
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Figure 1. Optimal convergence history with respect to H (left) and ∆t

(right) in ‖(h− hH , e− eH)‖∞ norm. Here ΛH = Λ1.
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Figure 2. Optimal convergence history with respect to H in the ‖(h −
hH , e− eH)‖curl,∞ norm. Here ΛH = Λ1.

We perform the same analysis with ΛH = Λ2. The expected optimal convergence rates

are again recovered (e.g. O(H3) and O(∆t2), and O(H2) in the ‖ · ‖∞ and ‖ · ‖curl,∞,

respectively). This is depicted in Figures 3 and 4 (on the left). Interestingly, we found that

the error associated to the electric field is super-convergent (see Figure 4 on the right).
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Figure 3. Optimal convergence history with respect to H (left) and ∆t

(right) in the ‖(h− hH , e− eH)‖∞ norm. Here ΛH = Λ2.
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Figure 4. Optimal convergence history with respect to H in the ‖(h−hH , e−
eH)‖curl,∞ norm with ΛH = Λ2 (left). Super-convergence with respect to H

for the ‖e− eH‖curl,∞ norm (right) using ΛH = Λ1 and ΛH = Λ2.

Next, we compare the MHM method using linear interpolation on faces (ΛH = Λ1) with

the DG method [31] using quadratic interpolation. To this end, we measure the error in the

‖ · ‖∞ and the ‖ · ‖curl,∞ norms. We observe in Figure 5 that the MHM method outperforms

the DG method. Indeed, the MHM method is optimally convergent in both norms whereas

the DG method is sub-optimal (e.g. non convergent) in the ‖ ·‖∞ norm (e.g. ‖ ·‖curl,∞ norm)

in some cases. It is worth of recalling that the MHM method achieves such an efficiency

despite using the DG method as a second level solver, which validates the robustness of the

approach.
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Figure 5. Comparison between the MHM method and the DG method with

respect to the ‖(h−hH , e−eH)‖∞ (left) and ‖(h−hH , e−eH)‖curl,∞ (right)

norms.

Also, we verify in Figure 6 (left) that the discrete energy is fully preserved in accordance

with the theory. The local magnetic field conservation is investigated in Figure 6 (right)

although the method has not imposed such a constraint. Surprisingly, we observe that

maxK∈TH |
∫
K ∇ · hH,h dx| stays bounded and close to zero as time increases.
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Figure 6. History of the discrete energy conservation (left) and history of

the local magnetic field conservation (right). Here ΛH = Λ1.

6.3. A nano-waveguide problem. This is a prototype problem of a photonic crystal struc-

ture in the emerging nano-photonics area [30]. The idea here is to simulate an idealized

waveguide device before it has undertaken an optimization procedure to maximize perfor-

mance of directional transmission (see [40] for an example). The photonic-crystal-type rep-

resents a nano-structuring device encapsulated in a 10× 10 square which is composed of 15

cylindrical holes of radius 0.3125 apart 0.005 and enclosed inside a unit square domain (see
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Figure 7). Here µ = 1 and the value of the permittivity ε corresponds to silicium within

the holes (ε = 3.14), silica (ε = 1.5) in the device enclosing the holes, and surrounding air

(ε = 1). We use absorbing boundary conditions with an incident plane wave of frequency

0.5 (see Remark 5).

We solve the problem for a time period equal T = 5/
√

2 and set ∆t = 10−2. First, we

adopt the DG method [31] on top of a quadrilateral mesh composed of 65, 536 elements using

quadratic interpolations to compute a reference solution. This leads to 589, 824 degrees of

freedom. We set a first coarse mesh with 256 quadrilateral elements (see Figure 7 on the

right). On top of this mesh, we use the MHM method with ΛH = Λ8
1, and arrive at 8, 704

degrees of freedom total. Sub-meshes account for 64 elements with quadratic interpolation.

As such, the total number of degrees of freedom associated with the approximation of the

basis functions is 147, 456. We recall that such a basis computation is completely independent

to one another. A comparison between the reference electric field computed on the fine mesh

and the one obtained from the MHM method with its overlying mesh is depicted in Figure

8. Observe that both electric fields coincide and that the MHM method is able to precisely

account for the impact of crossing-face interfaces on the solutions.

Figure 7. Coarse meshes.

Next, using a much coarser mesh of 64 elements (see Figure 8 on the left) with ΛH = Λ16
1 ,

we observe in Figure 9 that the solution remains fairly close to the reference. Although,

this corresponds to only 4, 608 degrees of freedom, the approximate electric field shows good

agreement with the reference solution (see Figure 9 on right). Also on Figure 9 (left), we

present the approximate electric field using the DG method [31] on a mesh of 1024 elements

with quadratic interpolation (corresponding to 9, 216 degrees of freedom). As expected, the

solution from the DG method is less precise since the mesh is not-aligned with the material
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interfaces. As a conclusion, the MHM method provides an accurate framework to simulate

wave propagation phenomena on coarse meshes when faces are non-aligned with interfaces.

The upshot is that the shortcomings found in standard finite element methods are overcome

when they are used as two-level solvers within the MHM method.

Figure 8. The electric field using the DG method with 589, 824 d.o.f. (left)

and using the MHM method with 156, 160 d.o.f. (right) at time t = 5√
2
.

Figure 9. Comparison between the electric field on a mesh of 9, 216 d.o.f.

from the DG method (left), and on a mesh of 4, 608 d.o.f. from the MHM

method (right). Here t = 5√
2
.

7. Conclusion

This work introduced the foundation of the MHM method for the Maxwell equations in

the time-domain with heterogeneous coefficients. It relied on independent local Maxwell
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problems to devise basis functions which are brought together by a one-field face-based

global problem. As a result, the approximate electric and magnetic fields are driven by

face-based degrees of freedom as they are obtained from a simple processing of the Lagrange

multipliers. A discontinuous Galerkin method combined with a leap-frog scheme was used

as a second-level solver to approximate the local Maxwell problems, which made the MHM

method practical. With such a choice, the present method is shown to be optimally conver-

gent and achieve high-order accuracy in space (and second-order in time), with the upshot of

preserving a discrete energy principle. In addition, the approximated electric field was found

to be superconvergent. The MHM method naturally embeds an upscaling procedure which

turns out to be suitable to simulate wave propagation problems in highly heterogenous media

on coarse meshes. We conclude that the MHM method, which is particularly adapted to

parallel computing environments, emerges as a realistic option to handle three-dimensional

wave propagation problems in highly heterogeneous media as found in the nano-photonic

field. Nevertheless, some open questions still remain, such as the cost-effectiveness of the

MHM method on modern parallel environments when compared to other domain decompo-

sition approaches, and its numerical analysis. These important subjects will be addressed in

forthcoming works.

8. Appendix A

This section outlines the proof of the main lemma used throughout the manuscript.

Lemma 14. Let L be a linear continuous form on W. Hence, L vanishes on H0(curl; Ω) if

and only if there exists a unique µ ∈ Λ such that

L(v) = b(µ,v) for all v ∈ V ,

where b is the continuous bilinear form on Λ×V defined by

b(µ,v) := (µ,v)∂TH .

Furthermore, b can be uniquely extended to continuous bilinear form b̃ on Λ×W such that

L(v) = b̃(µ,v) for all v ∈W .

Moreover,

(63) H0(curl; Ω) =
¶
v ∈W : b̃(µ,v) = 0 for all µ ∈ Λ

©
.
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Proof. Denote by W∗ the space of continuous linear forms on W for the norm induced by

the scalar product (·, ·)W. Since L belongs to W∗, then from the Riesz-Fréchet Theorem, it

holds that there exists f ∈W such that L(v) = (f ,v)W. This can be rewritten as

(64) L(v) =
∑
K∈TH

(f ,v)K +
∑
K∈TH

(p,∇× v)K

with f ∈ L2(Ω), and p = ∇× f ∈ L2(K) for all K ∈ TH . Since L vanishes on H0(curl; Ω),

we get ∑
K∈TH

(f ,v)K +
∑
K∈TH

(p,∇× v)K = 0 for all v ∈H0(curl; Ω) ,

and then, it holds

(f ,v)Ω + (p,∇× v)Ω = 0 for all v ∈H0(curl; Ω) .

As a result, we have f = −∇ × p which implies that ∇ × p ∈ L2(Ω) (in a distributional

sense) and then p ∈H(curl; Ω). Also, from (64) and the characterization of f , it holds

(65) L(v) = −
∑
K∈TH

(∇× p,v)K +
∑
K∈TH

(p,∇× v)K ,

and then using Green formula, and p ∈H(curl; Ω), we arrive at

(66) L(v) =
∑
K∈TH

(p× nK ,v)∂K for all v ∈ V .

We conclude there exists µ ∈ Λ (e.g. µ := p× nK on ∂K, for all K ∈ TH), such that

(67) L(v) = (µ,v)∂TH for all v ∈ V .

Let us prove that µ is unique. Suppose that

(68) (µ,v)∂TH = 0 for all v ∈ V .

From the surjectivity of the trace application from H1(K) to H
1
2 (∂K), we deduce that

µ = 0 in H−
1
2 (∂K), for all K ∈ TH , and then uniqueness follows.

Now, since V is dense in W and b(µ, ·) is uniformly continuous on V with respect to the

norm ‖ · ‖W, b(µ, ·) can be extended in a unique manner to W by density. Let us denote by

b̃(µ, ·) such an extension, for all given µ ∈ Λ. By the uniqueness of this extension, b̃(·, ·) is

also a bilinear form, which is also continuous on Λ×W as it is an extension (by density) of

a continuous bilinear form. Furthermore, since L and b̃ are continuous on W and coincide

on a dense subspace, we get

L(v) = b̃(µ,v) for all (µ,v) ∈ Λ×W .
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Let B̃ ∈ L(W,Λ′) be the linear operator associated to b̃, and B̃′ ∈ L(Λ,W′) its adjoint.

We recall that the polar space of a set X ⊂W is defined by

(69) X◦ := {l ∈W′ : l(v) = 0 for all v ∈ X} .

We proved above that B̃ is an isomorphism from Λ onto H0(curl; Ω)◦, and then the range

of B̃′ coincides with H0(curl; Ω)◦. Denoting by Ker(B̃) the null-space of operator B̃, and

using that B̃ is a continuous operator between Banach spaces, we get (see [13] for instance)

(70) Ker(B̃) = (H0(curl; Ω)◦)◦ = H0(curl; Ω) = H0(curl; Ω) ,

where we used that H0(curl; Ω) is closed in W with respect to ‖ · ‖W, and then (63) follows.

�

We are ready to prove Lemma 4.

Lemma 15. The function (e,h,λ) is the solution of (17) if and only if (e,h) solves (15)

in the sense of Theorem 1. Furthermore, it holds

λ = −nK × h on (0, T )× ∂K .

Proof. Assume that (e,h,λ) ∈ C0(0, T ; W) × C0(0, T ; W) × C0(0, T ; Λ) solves (17), and

take In ∈ T∆t. Using Lemma 14 and the third equation in (17), the electric field en ∈
C0(In;H0(curl; Ω)). Next, we choose v and w in H0(curl; Ω) in (17), and integrate the

second equation in (17) by parts. Using en ∈ C0(In;H0(curl; Ω)), the second equation in

(15) holds. Now, integrating the first equation in (17) by parts yields

(λn,v)∂TH = −
∑
K∈TH

(nK × hn,v)∂K ,(71)

and, thus, the first equation in (15) is satisfied in the L2 sense in each K ∈ TH and for

all t ∈ In. Observe that equation (71) implies that λn = −nK × hn |∂K for all K in TH
and In ∈ T∆t, and then hn ∈ C0(In;H(curl; Ω)). Now, collecting the previous results, we

conclude problem (15) holds for all In ∈ T∆t, and

(72) (en, ∂te
n) ∈ C0(In;H0(curl; Ω))× C0(In;L2(Ω)) ,

and

(73) (hn, ∂th
n) ∈ C0(In;H0(curl; Ω))× C0(In;L2(Ω)) .

Since the fourth equation in (17) imposes continuity at tn ∈ [0, T ], n ∈ {1, ..., N − 1}, we get

(74) e ∈ C0(0, T ;H0(curl; Ω)) and h ∈ C0(0, T ;H0(curl; Ω)) .
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The fields also belong to C1(0, T ;L2(Ω)) from (17) and the regularity result in (74), namely,

(75) ∂te ∈ C0(0, T ;L2(Ω)) and ∂th ∈ C0(0, T ;L2(Ω)) .

We next verify that the divergence constraints in (1) are satisfied in [0, T ]. We begin

proving the result in the time interval I1 := [t0, t1] by testing problem (17) with ∇β, ∇η,

where (β, η) are infinitely differentiable functions with compact support in Ω. As a result,

for all t ∈ I1, it holds

(76)


(ε ∂t e

1,∇β)TH + (λ1,∇β)∂TH = (f , ∇β)TH ,

(µ ∂t h
1,∇η)TH + (∇× e1,∇η)TH = 0 .

Using that ∇β ∈H0(curl; Ω), it turns out that (λ1,∇β)∂TH = 0 since λ(t) ∈ Λ for all t ∈ I1.

It results that (in a distributional sense)

(77) ∂t∇ · (ε e1) = ∇ · f and ∂t∇ · (µh1) = 0 in I1 × Ω ,

and then from (2) and (13), we get

(78) ∇ · (ε e1) = ρ and ∇ · (µh1) = 0 on I1 .

Following the same reasoning, we prove that if

(79) ∇ · (ε en)(tn−1) = ρ(tn−1) and ∇ · (µhn)(tn−1) = 0 ,

for all n ∈ {1, ..., N}, then it holds

(80) ∇ · (ε en) = ρ and ∇ · (µhn) = 0 on In ,

and the result follows.

Now, assume that (e, ∂te) ∈ C0(0, T ;H0(curl; Ω) ∩H(div, ε; Ω)) × C0(0, T ;L2(Ω)) and

(h, ∂th) ∈ C0(0, T ;H(curl; Ω) ∩H0(div, µ; Ω)) × C0(0, T ;L2(Ω)) solves (15). We define for

each t ∈ (0, T ), the following continuous linear form

Lt : W 3 v 7→ (ε ∂t e,v)TH − (h,∇× v)TH − (f , v)TH .(81)

Noticing that Lt vanishes on H0(curl; Ω), from Lemma 14 there exists a unique λ(t) ∈ Λ

such that

Lt(v) = −(λ(t),v)∂TH for all v ∈W .(82)

Here (·, ·)∂TH stands for the unique density extension to Λ ×W of (·, ·)∂TH defined on

Λ ×V (corresponding to the operator b̃(·, ·) in Lemma 14). Thereby, (e,h,λ) satisfies the

first equation in (17) on each In ∈ T∆t and respect the continuity condition at tn for each

n ∈ {0, N − 1}. Also, owing to the characterization of H0(curl; Ω) in (63), the function e
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satisfies the third equation in (17). Also, the second equation in (15) implies immediately

that the second equation in (17) holds. Next, from the definition of Lt in (81), we arrive at

(83) Lt(v) = (ε∂te,v)TH − (h,∇× v)TH − (f ,v)TH for all v ∈W,

and then, we get

Lt(v) =
∑
K∈TH

(nK × h,v)∂K for all v ∈W,

where (·, ·)∂K is the extension to Λ ×W of the natural scalar product on ∂K defined on

Λ×V. On the other hand, we have that (82) holds, and then∑
K∈TH

(λ+ nK × h,v)∂K = 0 for all v ∈ V ,

which leads to λ = −nK × h on ∂K, for all K ∈ TH . As a result, the assumed regularity

for h implies the claimed regularity for λ (and thus for λn). �

Next, we address the well-posedness of the local Maxwell problems.

Lemma 16. Assume, for all K ∈ TH , that

(i) f ∈ C0(In;L2(K)), h0 ∈ L2(K), e0 ∈H(curl;K);

(ii) For any λ ∈ Λ, there exists ηK ∈ C2(In;L2(K)) such that ∇×ηK ∈ C0(In;H(curl;K))

and nK × ηK = −λn on ∂K.

Hence, for all In ∈ T∆t, the problems to find (en,λ,hn,λ) such that

(84)



ε ∂te
n,λ −∇× hn,λ = 0 in In ×K ,

µ ∂th
n,λ +∇× en,λ = 0 in In ×K ,

nK × hn,λ = −λn on In × ∂K ,

en,Λ(tn−1, ·) = 0, hn,λ(tn−1, ·) = 0 ,

e0,λ = 0 and h0,λ = 0 in K at t = 0 ,

and find (en,f ,hn,f ) such that

(85)



ε ∂te
n,f −∇× hn,f = f in In ×K ,

µ ∂th
n,f +∇× en,f = 0 in In ×K ,

nK × hn,f = 0 on In × ∂K ,

en,f (tn−1, ·) = en−1(tn−1, ·), hn,f (tn−1, ·) = hn−1(tn−1, ·) ,

e0,f = e0 and h0,f = h0 in K at t = 0 ,

are well-posed.
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Proof. We follow closely the strategy proposed in [14, Theorem 2.4.4. page 56]. For the sake

of clarity, we skip the upper-scripts in the proof, and we consider the local problems in In

with given initial conditions (en−1,hn−1). First, we write problem (11) in its second-order

formulation with respect to h, i.e.,

(86) µ ∂2
th+∇× ε−1∇× h = −f in In ×K ,

with the boundary condition

(87) nK × h = 0 on In × ∂K ,

and the initial conditions

(88) h(tn−1, ·) = hn−1 and ∂th(tn−1, ·) = −ε−1∇× en−1 in K .

The existence and uniqueness for (86)-(88) is proved in [14], provided that f ∈ C0(0, T ;L2(K)),

hn−1 ∈ L2(K) and en−1 ∈ H(curl;K). As for problem (10), take ηK ∈ H(curl; Ω) such

that the hypothesis (ii) holds. Define h̃ := h− ηK , and observe that it verifies

ε ∂te−∇× h̃ = ∇× ηK in (0, T )×K ,

µ ∂th̃+∇× e = −∂tηK in (0, T )×K ,

nK × h̃ = 0 on (0, T )× ∂K .

The proof for problem (84) uses a strategy which is analogous to that used for problem (85).

That is, we rewrite the system above in terms of a second-order formulation for h̃, and use

the regularity hypotheses on ηK to further apply the result from [14]. �

Remark 17. Condition (ii) appears to be a restrictive assumption, and a regularization

strategy can be adopt to weaken it. Nevertheless, such a technique brings complexity to the

proofs, and then, we decide not to present such a refinement in this work. Also, hypothesis

(ii) in Lemma 16 can be replaced by the following

(ii) There exists ηK ∈ C2(In;H(curl;K)) such that ∂tηK ∈H1(In;H(curl;K)) ,

∇× (∂tηK) ≡ 0 and nK × ηK = λn on ∂K ,

and the proof in Lemma 16 follows from the strategy proposed in [10].

9. Appendix B

For sake of completeness, the MHM method is presented for the two-dimensional Maxwell

equations (the TM model) in this section. First, we recall that the TM problem consists of
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finding the electric field ez : (0, T )×Ω→ R and the magnetic fields hx : (0, T )×Ω→ R and

hy : (0, T )× Ω→ R such that

(89)



ε ∂tez − ∂xhy + ∂yhx = jz in (0, T )× Ω ,

µ ∂thx + ∂yez = 0 in (0, T )× Ω ,

µ ∂thy − ∂xez = 0 in (0, T )× Ω ,

ez = 0 on (0, T )× ∂Ω ,

ez = e0 , hx = hx0 , hy = hy0 at t = 0, on Ω ,

where jz is the electric current density, and e0, hx0 and hy0 are given regular functions with

values in R2.

Here, the space for the Lagrange multipliers reduces to

(90) Λ :=
¶
v · s |∂K ∈ H−1/2(∂K) for all K ∈ TH : v ∈H(curl; Ω)

©
,

where s stands for the tangential unit vector on ∂K. Next, denote by V the space of

functions in L2(Ω) such that their restriction to K belong to H1(K), for all K ∈ TH . We

skip the intermediate steps leading to the fully discrete version of the MHM method as they

follow closely the three-dimensional case. The notations adopted below are those used in

the three-dimensional case, if not mentioned otherwise. We select ΛH ⊂ Λ as the following

polynomial space

ΛH = Λm
l := {µH ∈ Λ : µH |F ∈ Pml (F ) for all F ∈ EH} ,(91)

where we recall that Pml (F ) is the space of discontinuous polynomial functions on F of degree

less than or equal to l ≥ 0, and defined on an equally spaced partition of F composed of m

elements (m ≥ 1). The two-dimensional version the MHM method using the leap-frog time

scheme and the DG method proposed in [31] adopts the non-conforming finite dimensional

spaces Vh =
⊕
K∈TH Vh(K) 6⊂ V where

Vh(K) :=
¶
v ∈ L2(K) : v |τ ∈ Pk(τ) for all τ ∈ T Kh

©
.
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The fully discrete MHM method reads: Find (e
n+ 1

2
H,h , h

x,n
H,h, h

y,n
H,h, λ

n
H) ∈ Vh × Vh × Vh × ΛH ,

for all n ∈ {1, ..., N}, such that

(µH , e
n+ 1

2
H,h )∂TH = 0 for all µH ∈ ΛH ,(92) 

Ä
ε
e
n+ 1

2
H,h − e

n− 1
2

H,h

∆t
, vh
ä
K

+
Ä
hy,nH,h, ∂xvh

ä
K
−
Ä
hx,nH,h, ∂yvh

ä
K
− (
¶
hnH,h

©
, JvhK)EK

h
=

(jnz , vh)K − (λnH , vh)∂K ,Ä
µ
hx,nH,h − h

x,n−1
H,h

∆t
, wh
ä
K

+
Ä
e
n− 1

2
H,h , ∂ywh

ä
K

+ (
ß
e
n− 1

2
H,h

™
, JwhK)EK

h
= 0 ,Ä

µ
hy,nH,h − h

y,n−1
H,h

∆t
, zh
ä
K
−
Ä
e
n− 1

2
H,h , ∂xzh

ä
K

+ (
ß
e
n− 1

2
H,h

™
, JzhK)EK

h
= 0 ,

(93)

for all (vh, wh, zh) ∈ Vh(K)×Vh(K)×Vh(K). Here e
1
2
H,h = e0 +ε−1∆t (∂xh

y
0−∂yhx0), hx,0H,h = hx0

and hy,0H,h = hy0 . The exact electric and magnetic fields obtained from (89) and evaluated at

time-steps n+ 1/2 and n, respectively, are approximated as follows:

e(tn+ 1
2
) ≈ e

n+ 1
2

H,h , hx(tn) ≈ hx,nH,h and hy(tn) ≈ hy,nH,h .

The system (92)-(93) may now be decoupled in view of its implementation. To this end,

we first decompose the discrete electric field e
n+ 1

2
H,h := e

λ,n+ 1
2

H,h + e
jz ,n+ 1

2
h , and use it in (92) to

get

(µH , e
λ,n+ 1

2
H,h )∂TH = −(µH , e

jz ,n+ 1
2

h )∂TH for all µH ∈ ΛH .(94)

Observe that (93) implies that the functions (e
λ,n+ 1

2
H,h , e

jz ,n+ 1
2

H,h ) satisfy, in each K ∈ TH , the

following local problems, respectively,

1

∆t

Ä
ε e

λ,n+ 1
2

H,h , vh
ä
K

= −(λnH , vh)∂K ,

1

∆t

Ä
ε e

jz ,n+ 1
2

h , vh
ä
K

= (jz, vh)K −
Ä
hy,nH,h, ∂xvh

ä
K

+
Ä
hx,nH,h, ∂yvh

ä
K

− (
¶
hnH,h

©
, JvhK)EK

h
− 1

∆t

Ä
ε e

n− 1
2

H,h , vh
ä
K
,

(95)

and 
1

∆t

Ä
µhx,nH,h, wh

ä
K

=
1

∆t

Ä
µhx,n−1

H,h , wh
ä
K
−
Ä
e
n− 1

2
H,h , ∂ywh

ä
K

+ (
ß
e
n− 1

2
H,h

™
, JwhK)EK

h
,

1

∆t

Ä
µhy,nH,h, zh

ä
K

=
1

∆t

Ä
µhy,n−1

H,h , zh
ä
K

+
Ä
e
n− 1

2
H,h , ∂xzh

ä
K

+ (
ß
e
n− 1

2
H,h

™
, JzhK)EK

h
,

(96)
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with (e
λ, 1

2
H,h, e

jz ,
1
2

h ) = (0, e0 + ε−1∆t (∂xh
y
0 − ∂yh

x
0)), hx,0H,h = hx0 and hy,0H,h = hy0. The two-

dimensional version of the MHM method corresponds to (94)-(96). The staggered algorithm

associated with (94)-(96) follows similarly to the one presented in Section 6.1.
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