Metadata, citation and similar papers at core.ac.uk

Provided by HAL-INSU

HAL

archives-ouvertes

Statistical analysis of rockfall volume distributions:
implications for rockfall dynamics.
C. Dussauge, Jean-Robert Grasso, Agnes Helmstetter

» To cite this version:

C. Dussauge, Jean-Robert Grasso, Agnes Helmstetter. Statistical analysis of rockfall volume
distributions: implications for rockfall dynamics.. Journal of Geophysical Research B, 2003,
108 (B6), pp.2286. <10.1029/2001JB000650>. <hal-00109913>

HAL Id: hal-00109913
https://hal.archives-ouvertes.fr/hal-00109913
Submitted on 6 Dec 2007

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francgais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/52765261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00109913

Statistical Analysis of Rock Fall Volume Distributions: Implications
for Rock Fall Dynamics

Carine Dussauge
Laboratoire Interdisciplinaire de Géologie et de Mécanique, Université Joseph Fourier, France

Jean-Robert Grasso

Laboratoire de Géophysique Interne et Tectonophysique, Observatoire de Grenoble, Université Joseph Fourier,
France

Agnes Helmstetter

Laboratoire de Géophysique Interne et Tectonophysique, Observatoire de Grenoble, Université Joseph Fourier,
France

Abstract

We analyse the volume distribution of natural rock falls on different geological settings, i.e.,
calcareous cliffs in the French Alps, Grenoble area, and granite Yosemite cliffs, California sierra,
and different volume ranges, i.e., regional and world wide catalogs. Contrary to previous studies
that included several types of landslides, we restrict our analysis to rock fall sources which
originated on sub vertical cliffs. For the three data sets, we find that the rock fall volumes follow
a power law distribution with a similar exponent value, within error bars. This power-law
distribution was also proposed for rock fall volumes that occurred along road cuts. All these
results argue for a recurrent power law distribution of rock fall volumes on sub vertical cliffs, for
a large range of rock fall sizes (102 — 10'° m3), regardless of the geological settings and of the
pre- existing geometry of fracture patterns that are drastically different on the three studied
areas. The power law distribution for rock fall volumes could emerge from two types of
processes. First, the observed power law distribution of rock fall volumes is similar to the one
reported for both fragmentation experiments and fragmentation models. This argues for the
geometry of rock mass fragment sizes to possibly control the rock fall volumes. This way neither
cascade nor avalanche processes would influence the rock fall volume distribution. Second,
without any requirement of scale invariant quenched heterogeneity patterns, the rock mass
dynamics can arise from avalanche processes driven by fluctuations of the rock mass properties,
e.g. cohesion or friction angle. This model may also explain the power-law distribution reported
for landslides involving unconsolidated materials. We find that the exponent values of rock fall
volume on sub vertical cliffs, 0.5 £0.2, is significantly smaller than the 1.2 £+ 0.3 value reported
for mixed landslide types. This change of exponents can be driven by the material strength, that
controls the in-situ topographic slope values, as simulated in numerical models of landslides
[Densmore et al., 1998; Champel et al., 2002].



1. Introduction

Rock falls, rockslides and rock avalanches are de-
fined as rapid movements of rocks driven by global
gravity forces, having their origin on steep rock slopes,
including sub vertical cliffs. These phenomena are
a subset of the more general landslide phenomena,
which can include falls, slumps and slides in all kind
of ground material from stiff rock mass to unconsol-
idated or poorly cemented materials [Varnes, 1978;
Keefer, 1999]. The word rock fall is usually used
to describe small phenomena, ranging in size from
block falls of a few dm® up to 10* m® events. Rock-
slides sometimes involve more than 10° m? and rock
avalanches can reach several million cubic meters
[Varnes, 1978; Keefer, 1984; 1999]. In this study we
will use the rock fall label without any volume dis-
tinction, nor distinction in the failure mechanism.

As for floods, earthquakes or volcanic eruptions,
evaluating rock fall dynamics means analysing the
location, size and time patterns of rock fall events.
Here we focus on the distribution of rock fall vol-
umes. For some natural phenomena, including floods
and earthquakes, statistical analysis are used to de-
rive the recurrence rate of an event of a given size.
The flood sizes are proposed to follow an exponen-
tial distribution [e.g.Guillot and Duband, 1967; U.S.
Water Resources Council, 1982], whereas the earth-
quake sizes are best fitted by a power law distribution
[Gutenberg and Richter, 1949]. On the first hand, the
size distribution can be used for hazard assessment, if
we hypothesize the distribution to be stationary over
time. On the other hand, the type of distribution can
provide routes to further investigate the underlying
physical processes.

Power law distributions have been suggested to
characterize rock fall distributions triggered along
road-cuts [Noever, 1993; Hungr et al., 1999], or nat-
ural cliffs [Gardner, 1970; Wieczorek et al., 1995].
In this study we analyse the volume distributions of
rock falls from natural cliffs, in different geological
settings, different volume ranges and different time
scales. Contrary to earthquakes, rainfalls, or floods,
few if any natural slopes or cliffs are continuously
monitored in order to provide the exact time of oc-
currence, location and size of rock fall events. Due
to the lack of instrumental monitoring of rock falls,
the available inventories are weak compared to some
other natural phenomena, with several possible bi-
ases induced by non homogeneous sampling in time,
space and size domains. We test how reports of rock
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fall activity can be used to investigate rock fall vol-
ume distribution, the way other scientists used histor-
ical catalogs to further constrain contemporary, short
time, instrumental catalogs e.g. [Wesnousky et al.,
1983; 1984].

We compare volume distributions of natural rock
falls that occurred on Grenoble cliffs, French Alps
[RTM, 1996], Yosemite cliffs, Sierra Nevada, Califor-
nia [ Wieczorek et al., 1992] and a worldwide inventory
of large rockslides [Couture, 1998]. The first two case
studies investigate the same temporal scale, about one
century, and the same spatial scale, roughly 100 km of
cliff length. The main difference between these 2 case
studies is the involved rock masses, layered calcareous
cliffs and massive granite rock cliffs, for Grenoble and
Yosemite catalogs respectively. For each area, we val-
idate statistically the power law distribution function
as an estimate for the observed rock fall volume dis-
tribution. Exponent values are similar, within error
bars, for the three data sets. This suggests that the
distribution law for rock fall volume does not depend
on either the geological setting or the scale of observa-
tion. These results are similar to analysis of rock falls
that occurred along road cuts [Noever, 1993; Hungr
et al., 1999]. We show how this distribution law can
be used for rock fall hazard assessment, by analysing
the validity domains and limits of this approach. We
investigate the possible mechanical models that can
reproduce this power law distribution of rock fall vol-
umes.

2. Data

2.1. The Grenoble rock fall inventory,
French Alps

The first data set reports rock fall volume that oc-
curred on subvertical cliffs surrounding the urban area
of Grenoble city, French Alps [RTM, 1996]. In order
to characterize the geological setting of the cliff, we
need to identify the forces acting on this system. Such
forces are the long term tectonic forces due to plate
tectonic dynamics. Intermediate term and short term
forces that act on the cliffs are climatic forcing, i.e.,
glacial unloading, fluvial incision, temperature, rain,
snow and winds and earthquake waves, as sorting by
increasing time frequency of applied forces. To cast
the cliff geological settings, the rate of base level fall
(which can be due to any combination of differential
rock uplift rate between cliff and valley and fluvial
or glacial incision), is the more relevant parameter to
characterize the hill slope. Because this parameter is



not estimated for the cliff we studied, we use a local
differential displacement or a local deformation rate
as a proxy to characterize the cliff deformation rate.

These Grenoble cliffs are part of the Chartreuse
and Vercors subalpine massifs, made of sedimentary
rocks from upper Jurassic and lower Cretaceous age
(limestone and marls). Initial bedding is folded and
faulted due to alpine horizontal compressive stresses,
resulting mostly in subvertical fractures across gently
inward dipping stratification (Figure 1). The cliffs
dimensions are 50 m to 400 m in height, 120 km in
length, as cumulative values on two successive rocky
walls (Figure 1). The cliffs elevation ranges from 800
m to 2000 m. For such an altitude, in the French Alps,
the climatic conditions correspond to wet springs and
falls seasons and frozen conditions in wintertime. The
Chartreuse-Vercors massif is suggested to have a weak
local deformation rate, i.e., less than a few mm/yr ei-
ther for horizontal or for vertical displacements [Mar-
tinod et al., 1996]. These values are differential dis-
placement we used as a proxy of cliff deformation
rates. They come from GPS surveys on Chartreuse
Vercors sites. The benchmarks are located 10-20 km
apart from each others all above the cliff edges that
extend over 70 km in length in the Grenoble area
[Martinod et al., 1996]. Historical and instrumen-
tal seismicity rates are low, with a few M=4 earth-
quakes reported in the area during the last 5 centuries
[Fréchet, 1978; Grasso et al., 1992]. There is no report
on rock falls possibly triggered by earthquakes. One
possible change in loading conditions is the last glacial
unloading (Wiirm, dated 10* yrs before present). Un-
loading the cliff faces from the ice pressure induces a
visco-elastic rebound of the cliffs. The phenomena, is
mechanically not well quantified on the cliffs because
of the difficulty to evaluate the long term rheology of
the cliff.

Rock fall activity that occurred in the Grenoble
calcareous Alps from 1248 to 1995 was reported by
the Restauration des Terrains de Montagnes Office
(RTM), a forestry office in charge of natural risks in
the French Alps, since 1870 [RTM, 1996]. As the RTM
office was created in 1870, the 1870-1890 period is the
threshold between archive reports for rock fall events
and the specific survey of mountain slopes. For each
event the available data from the Grenoble catalog
are (i) the location of the rock fall, (ii) the date of
occurrence, (iii) the volume and the induced damages.
Most of this information has been reported by forest
guards as described in the previous section, with a
sampling rate of once every a few weeks. For some
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roughly estimated volumes, we provide new volume
estimates on the basis of in-situ observation and re-
analysis of reports. Reported volumes range from 3 x
1072 m?3, i.e., typical of a slight damage on a single
house, to 5x10% m3. The largest event of this data set
is the 1248 Mt Granier rock avalanche, 40 km north
of Grenoble, with a volume of 5 x 10® m? [Goguel and
Pachoud, 1972].

For this data set, threshold values are estimated by
RTM forest guards. They report they never missed a
500 m? event size, because of it impact on either in-
frastructures or on forest structures involving forests,
meadows, trails, roads, housing [RTM pers. commu-
nication]. They induce changes in the cliff pattern
(scars, change in color, geometry) as well. Alterna-
tively, they report they missed a large number of small
events, which are to small to induce a significant and
visible damage. Up to events close to 10 m?, they re-
port they can miss events. We thus assume the Greno-
ble inventory to be complete for volumes greater than
500 m3. Because of the non-uniform temporal sam-
pling (Figure 2), one large event in 1248 and just a
few ones reported in the 17th - 19th centuries period,
we select events within the 1935-1995 time window
only. This period is a trade off between a minimum
number of available events and a period for which the
sampling can be considered as uniform. On such a ba-
sis, the Grenoble catalog we used involves 87 events.

2.2. The Yosemite Valley rock fall
inventory, California

The second data set gathers rock falls that oc-
curred in the Yosemite Valley, Sierra Nevada, Cali-
fornia [ Wieczorek, 1992]. It concerns cliffs of massive
granite from Cretaceous age. The total area covers
almost 100 km of cliff length. Cliffs have a maximum
height of 1000 m, with a mean value of 300 m, and
an elevation ranging from 1000 to 2300 m (Figure 3).
The climatic setting is roughly a dry and warm spring
and summer, and cold wet falls and winter. Rock falls
result partly from exfoliation and sheeting processes
that are induced by the release of pressure of previ-
ously buried rocks (Figure 3). The resulting sheets
tend to be mainly parallel to the topography [Huber,
1987].

This area is part of the Sierra Nevada ”block”
which is moving with respect to the stable North
American plate. Local differential displacement rates
deduced from a GPS survey of less than a mm/yr if
any, is related to San Andreas tectonics plus shear
strain associated with Owens Valley and associated



faults” [Dizon et al., 2000]. The US Sierra uplift rate
is less than a mm/yr, the uplift rate being not resolved
by a 5 years GPS survey [Dizon et al., 2000]. Only
about, 5% of the rock falls are reported as triggered by
earthquakes [ Wieczorek, 1992]. Last glacial unload-
ing corresponds to the end of the Tioga epoch, 15000
years BP at relatively low elevation [Huber, 1987].

The historical Yosemite rock fall inventory reports
395 events in the 1850-1992 period [ Wieczorek, 1992].
Most of them are reported by either National Park
Rangers or USGS geologists. As for the Grenoble in-
ventory, there are large uncertainties on reported vol-
umes, and a non-uniform sampling of small volume
rock falls over time. The sampling rate is globally
shorter than one month, observed data being collected
in the Superintendent Monthly report. This sampling
rate has been much shorter in the last ten years [ Wiec-
zorek, personal communication]. The threshold for
the inventory completeness for the small events is not
estimated.

There are two classes of volume estimates in the
Yosemite inventory. For one class of rock falls, roughly
one quarter of the inventory, the reports allow a quan-
titative estimate of volumes. For the second class,
only qualitative estimates are given. Following the
same criterion as for the Grenoble catalog, we se-
lect events with quantitative volume estimates in the
1915-1992 period (Figure 4). We obtain 101 events,
with volumes ranging from 1 to 6 x 10° m3. Because
qualitative volume estimates exist in the inventory for
volumes as large as a few thousands cubic meters, this
volume catalog is not complete up to large volumes.
We will consider this volume inventory as a subset of
the genuine volumes of the Yosemite rock fall popu-
lation, for the 1915-1992 period.

2.3. A worldwide rock falls inventory

The last data set we use is a worldwide collec-
tion of large rockslides and rock avalanches, as old
as the last glacial epoch [Couture, 1998]. Contrary to
the two previous data sets of rock falls that occurred
within homogeneous geological setting, e.g. calcare-
ous and granite cliffs respectively, Couture [1998] is
an overview of the phenomenology of rock avalanches
on Earth and other planets. Therefore the geologi-
cal setting of these events is obviously heterogeneous,
and the sampling method just comes out from a bib-
liographic study.

From the Couture inventory, we selected 142 Earth
events. Estimated volumes are provided by historical
reports, based on observations of cliff scars and de-
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posits or on geomorphological patterns for the oldest
events. The collection is not supposed to be exhaus-
tive [Couture, 1998]. The sampling is neither uniform
in time, recent events being more often reported than
older ones, nor in space domain. Also, the sampling is
not uniform in size, the largest events being preferen-
tially reported in historical reports. Like the Yosemite
inventory, this data set is one subset of the complete
worldwide catalog.

2.4. Measurement techniques for rock fall
inventories

Concerning the study of earthquakes, rainfalls or
floods, instrumental monitoring provides direct or in-
direct estimates of events occurrence in size, time,
and space domains. Few instrumental measurements
exist for the study of the rock fall activity, especially
concerning natural cliffs. One study uses a continu-
ous seismic monitoring to detect rock fall events and
to size up rock fall volumes on a single, well defined
cliff [Rousseau, 1999]. Rousseau [1999] uses a seismic
model to derive the volume of a rock fall event from
the amplitude of the recorded seismic signals. Gen-
erally, data about rock falls are mainly reported by
forest guards or road surveyors without the help of
any quantifying tool.

Due to this lack of instrumental monitoring, the
rock fall volumes inventories we used suffer several
possible biases. First, the sampling in time domain is
driven by the visit rate of the field survey observer,
this survey being usually part of a forestry or road sur-
vey (not specific to rock fall observation). For some
events, the field evidences can disappear within the
laps time of two visits. For other events, the visit
rate can induce a cumulative effect on rock fall vol-
umes estimates, i.e., all the rock falls which occurred
at the same place are estimated as one single event at
the sampling rate resolution.

Second, in size domain, rock fall events are re-
ported mainly when they induce damages to natural
or anthropic entities. Impacts on forest trees, trails,
roads and housing are the main criteria to report the
occurrence of a rock fall event. Therefore the rock
falls which did not induce damages are seldom re-
ported. This induces a censoring effect for the so-
called small events. Small volumes are also under
sampled because of the screening effect due to man
made protective structures, such as rock fences or
forests. As a consequence, non-instrumental inven-
tories are obviously incomplete for the small events.

Another possible bias emerges from the inaccuracy



of volume estimates, which are based on the obser-
vation of the volume of deposits, sometimes coupled
with the observation of the visible scar on the slope.
Error bars for volumes are thus large and difficult to
quantify. For large rock fall volumes, i.e., volumes
greater than a few hundreds of cubic meters, the vol-
ume estimate comes from the area covered with new
rock material and its thickness values along the slope.
For smaller rock falls the sum of the volumes of the
largest blocks is usually used as a volume estimate.
When visible, the surface of the cliff scar that is in-
duced by the rock fall is further used, its thickness
being more difficult to assess.

3. Statistical analysis of volume
distribution

For the three data sets, we test which distribution
function best describes the rock fall volume data. For
each catalog, the selected events correspond to the
time window for which the catalog is supposed to be
homogeneous in the time domain. Because of the cen-
soring effect, there is an under sampling of small vol-
ume events. For the largest observed volumes, with
a size comparable to the cliff height, the distribution
may be truncated because of finite size effects. Ac-
cordingly, we select only rock fall events above a given
volume. This minimum volume is a-priori unknown,
and will be estimated from the adjustment of distri-
bution laws to the data. First we search which dis-
tribution functions may describe our data. Second,
using the x? criterion, we test if the rock fall volume
distribution is consistent with the hypothesized dis-
tribution functions.

3.1. Grenoble inventory

The observed cumulative distribution for the Greno-
ble cliffs is evaluated for the 87 rock fall events in the
1935-1995 period (Figure 5). The distribution is al-
most linear in a log-log plot for volumes larger than
40 m3. For volumes smaller than 40 m3, we observe a
downward departure from the linear behavior that is
typical of a censoring effect. Accordingly, we test how
the observed cumulative volume distribution may be
adjusted by a power-law distribution for the 55 events
of volume above 40 m?, i. e.,

NV)~V?, 1)

with V' the rock fall volume, N (V) the number of
events greater than V and b a constant parameter.
To estimate the exponent value, b-value, we used the
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maximum likelihood and linear regression methods
because there are the two methods classically sug-
gested in the literature [e.g. Pickering et al., 1995].
Maximum likelihood and linear regression estimates
are not independent estimates.

Following [Aki, 1965], the maximum likelihood es-
timate for b is

1
>= 1n(10) (< log(V) > —log(Va)) ’

(2)

in the case of a pure power law distribution, with a
standard deviation determined by,

b
VN’

where Vj is the minimum volume used in the power
law fit, < log(V') > is the average of log(V) for events
larger than V5 and N; the number of events with vol-
ume larger than V5. A more complex equation is nec-
essary when the distribution is bounded to a given
Vimae value. This is not the case of the data we fit,
i.e., we have no a-priori bound on the maximum vol-
ume size.

(3)

o=

For the Grenoble inventory, these two techniques
provide similar values, b ~ 0.40 (Table 1). The stan-
dard deviation of b given by (3) is 0.06, as estimated
from the maximum likelihood method. These values
are not sensitive to either a Vj value increase above
40 m? or a change in the analysed time period. Sec-
ond, we use the x? test to validate the hypothesis that
the observed volume distribution follows a power law
distribution for volumes larger than 40 m®. The x?
test compares an observed histogram to a histogram
obtained by sampling the hypothesized distribution
function [e.g. Press et al., 1992; Taylor, 1997]. The
x? value measures a distance between these two his-
tograms, as defined by,

k *\2
X2 _ Z (ni ;*"z) ’ (4)

i=1 i

where n; is the observed number of events in the jt*
bin, and n} is the expected number for the hypothe-
sized distribution function. Equation (4) follows a so-
called x? probability law, that allows evaluating the
probability to overpass the x2 value when the tested
hypothesis is true. We use the reduced x? value [Press
et al., 1992; Taylor, 1997], obtained by dividing the
x? value by the number of degrees of freedom of the
system, ny defined by,

ng = (number of bins) —c¢, (5)



where ¢ is the number of constraints applied for the 2
test. For our application, ¢ = 2, with one constrain for
the parameter of the law in the case of the power law,
and one for the binning of the data in equiprobable
classes [Press et al., 1992; Taylor, 1997]. A reduced
x? >> 1 rejects the tested distribution as a possible
description of the data.

Because the x? test requires Gaussian-distributed
numbers of objects per bin, we have a trade off be-
tween the appropriate number of bins and the number
of objects within each class. Using 11 bins, corre-
sponding to 5 events per bin, we obtain a reduced x?2
value of 0.58. The power-law distribution is thus ac-
cepted by the test with a 95% confidence value. We
have tested different values of bin numbers between
5 and 18. The reduced x? value is always close to 1,
so that the power-law distribution is always accepted
at the 95% confidence level. With the same type of
analysis, we reject other distribution functions, such
as the exponential, Weillbull and Gumbel distribu-
tions, to fit the Grenoble rock fall volume distribution
in the same volume range.

3.2. Yosemite inventory

The rock fall volume distribution from the Yosemite
inventory is built with 101 events that occurred in
the 1915-1992 period (Figure 5). As for the Grenoble
data set, we recover (i) a roughly linear pattern on a
log-log plot for volumes larger 50 m?, (ii) a downward
departure from the linear pattern for small volumes.
For the 56 events of volume above 50 m®, we obtain
b=0.45 from the maximum likelihood estimate of the
cumulative volume distribution, with a standard de-
viation of 0.06. Using the linear regression method
we recover a similar b-value (Table 1). The b-value is
not sensitive to changes in either the time period or
the minimum volume above 50 m3.

Using 11 bins, corresponding to 5 events per bin,
we obtain a reduced x? value of 0.72. Therefore, the
hypothesis that the rock fall volumes follow a power
law is accepted at the 90% confidence level.

3.3. World wide inventory

The 142 events of the worldwide inventory range
in size from 10* to 10'° m®. The cumulative volume
distribution shown in Figure 5 mimics the 2 previ-
ously analysed data sets. For the 54 events with a
volume greater than 3 107 m?, the observed distribu-
tion is well fitted by a power law distribution with
b=0.51, in agreement with the other data sets ( Table
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1). Using 10 bins, corresponding to 5 events per bin,
we obtain a reduced x? value of 1.07. Therefore, the
hypothesis that the rock fall volumes follow a power
law distribution above 107 m? is accepted at the 90%
confidence level. Similar results are obtained when
testing different bin numbers between 5 and 10.

4. Discussion

4.1. Synthesis of observed rock fall volume
distributions

The three originally analysed data sets display
power law distributions of rock fall volumes,with sim-
ilar power law exponents, i.e., in the range 0.4 — 0.6
+0.06. The Yosemite and Grenoble cliffs are both
steep cliffs made of strong rock, with the same cliff
length. The geometries of the discontinuity patterns
are different for the two cliffs. Sub-vertical frac-
tures across gently dipping stratification characterize
the Grenoble sedimentary cliffs, while exfoliation and
sheeting of granitic domes are reported for Yosemite
cliffs. This suggests that the geometry of the frac-
turing pattern does not influence the exponent of the
power law distribution of rock fall volumes.

When taking together the three catalogs studied
here, and the other results for rock falls on sub verti-
cal cliffs, including natural rock slopes and road-cuts
(Table 2), it suggests that rock fall volume distribu-
tions follow a power law distribution, with an average
exponent of 0.54+0.2 on a 1072 m® to 10'® m® volume
range. For the data sets listed on Table 2, even the
largest events fit the power law distribution, without
any cut-off. No finite size effect is thus observable.
However, a possible finite size effect would come from
the finite geometry of the rock slopes or cliffs. In
particular, the height of cliff is a saturation length for
the maximum available rock fall volumes on any given
site.

Except for the seismically instrumented cliff on the
Reunion island [Rousseau, 1999], all the reported rock
fall volumes come from field evaluation (Table 2). As
events are reported mainly when they induce damage
to man-build or natural structures, the sampling is
not uniform in the size domain. This sampling bias
results in an underestimation of the number of small
events. This bias is the best candidate to account for
the re-currently observed deficit of small events rela-
tively to the power law distribution for large volumes
(Figure 5). There is no evidence that this bias may
induce spurious power law behavior. However, it may
lead to underestimate the exponent of the power law



[e.g. Stark and Hovius, 2001; for tests on landslides].

As noted above, one study uses a continuous seis-
mic monitoring to detect rock fall events and to
size up rock fall volumes on a single, well defined
cliff [Rousseau, 1999]. This sampling method and
the measurement technique provide a catalog that
is not affected by the same biases as the data pre-
viously described. The volume distribution derived
from Rousseau’s catalog also follows a power law dis-
tribution (Table 2). First, this result supports the
hypothesis that the power-law derived from volumes
estimated by field evaluations is not a measurement
artifact. Second, it shows that a single cliff displays
a power law volume distribution. It argues against
the power law distribution to result from a geomet-
rical effect, i.e., the power law does not result from
an integration process over cliffs of different heights.
Using the seismic monitoring technique, the exponent
value of the power law is the largest reported value
in the available catalogs for rock falls on sub-vertical
cliffs (Table 2). It may be due to the assumption
made to derive the rock fall volume from the seis-
mic amplitude. Seismological volume estimates are
supposed to scale with the amplitude of seismic sig-
nals [Rousseau, 1999], but this relation may be in-
correct. Assuming that seismic amplitude scales with
the square root of the rock fall volume, as also pro-
posed by Aki [personal communication, 2002], the ex-
ponent of rock fall volume distribution would be 0.5
instead of 1, in agreement with other studies reported
on Table 2. Comparisons of both seismological signals
and rock falls volumes are necessary to validate the
relation between volumes and amplitudes of seismic
signals.

The power-law distribution has also been reported
for mixed landslides (Table 3 and references therein).
From our study, which focus on the rock fall volumes
that occurred on sub vertical cliffs of stiff rock mass,
we derive a b-value that is significantly smaller than
the average exponent value, 1.2 £ 0.3, estimated from
studies that mixed different types of landslides (Table
3). The exponents are volume exponents or surface
exponents that were converted to volume using the
rule of Hovius et al. [1997] when exponent value for
volume are not available (Table 3). We use this con-
version rule on the same type of catalogs (Table 3)
than Hovius et al. study. This study hypothesizes
that landslide length is proportional to thickness and
width. Accordingly in absence of others tools, and
for the robustness of comparison between catalogs,
we choose to use the rule of[ Hovius et al., 1997] de-
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tailed on Table (3). For all the cases listed on Table 3,
reported landslides occur either on less steep topog-
raphy or involve softer unconsolidated material than
rockfalls reported in Table (2).

4.2. Implication for rock fall hazard

From the examples analysed in the previous sec-
tions, the hypothesis that the volume distributions of
natural rock falls follow a power law distribution is
accepted at a 90% confidence level. This distribution
law provides the probability of occurrence of a given
volume in a given time period on a given area, and
has been used for hazard assessment by Hungr et al.
[1999] for rock falls on man made slopes. Using the
Grenoble data set as a test example, we can derive
the occurrence rate of a given volume range by using
the power law,

Nw) = (%)b , )

N(V) being the number of events per unit time with
a volume larger than V for a catalog of duration T'.
Ny is the number of events with a volume larger than
Vo. For the Grenoble inventory, Vy = 40 m3, Ny = 55,
the catalog duration we analysed is T' = 60 yrs.

The return period of a rock fall of volume larger
than or equal to V is given by,

1
Using (6) and (7) we obtain a 10 years return pe-
riod for a 10* m? event, or an average of four 10°> m3
events within a century. The largest historical event
reported in the last thousand years in the Grenoble
area is the 1248 Mt Granier rock avalanche of 5 x 102
m?3. From the power law distribution based on the
1935-1995 data, we derive a return period of 870 yrs
for a Mt Granier size event. Therefore the largest ob-
served event on a thousand-year period agrees with
the return period for this volume. For this region
the saturation volume for which the scaling law could
change is roughly (Amaz)?, hmae being the maximum
cliff height, with (hnq2)3 ~ 10° m? for Grenoble cliffs.
This value is a first order estimate which includes the
two levels of the Grenoble cliffs (Figure 1). Accord-
ingly, the distribution must not be extrapolated to
volumes larger than 10° m3. Regarding the space do-
main, the presently limited number of data does not
allow us to investigate spatial variations of rock fall
occurrence rate. We can just provide the probability



of occurrence for the whole studied area [ Vengeon et
al., 2001].

4.3. Possible models for power law
distributions of rockfall volumes

There has not been yet any model which simulates
specifically rock fall dynamics. One class of numerical
models examines erosion; it can also apply to rock fall
or landslide simulations [Hergarten and Neugebauer,
1998; Densmore et al., 1998]. The second class of
models includes generic models that can apply to a
large range of phenomena that exhibit scale invariant
behavior, i.e., fragmentation and sand piles models.

4.3.1. Erosion type model. Densmore et al.
[1998] proposed a numerical model that uses a slope
stability criterion to simulate mechanics of hill slope
failures. They obtain a power law distribution of vol-
umes of mass movements. The exponent value of the
simulated cumulative distribution varies as a func-
tion of the mechanical properties of the rock mass
(cohesion and friction angle), from 1.2 for soft rock
to 0.8 for hard rock. The authors suggest in their
numerical simulation that a higher strength leads to
steeper critical hill slope heights. Because in this
model [Densmore et al., 1998; Champel et al., 2002]
a higher strength corresponds to a steeper topogra-
phy, simulations with stiff rock parameters may be
related to rock fall circumstances on a sub vertical
cliffs. Alternatively, we propose that other landslide
types, which occurred on gentler slopes could be re-
lated to simulations with low strength materials that
induce a lower exponent value for the power law dis-
tribution of volumes.

For mixed landslide types, the observed b-values
(the exponents of the cumulative volume distribu-
tions), are in the range 0.7-1.3, with an average value
b = 1.2 £ 0.3 (Table 3). These values are signifi-
cantly larger than those reported for rock falls on sub
vertical cliffs. For rock fall settings (Table 2), i.e.,
stiff rock on sub vertical cliffs characterized by a fric-
tion angle close to 35-45°[Hoek and Brown, 1980], the
corresponding b-values range from 0.2 to 1, with an
average value of 0.5 £ 0.2. Therefore, the models of
[Densmore et al., 1998; Champel et al., 2002] qual-
itatively predict the observed changes in exponents
between mixed landslide types that occurred on gen-
tle slope topography (Table 3) and rock falls on sub
vertical cliffs (Table 2). According to this model, the
change in exponent values is driven by changes in the
mechanical properties (e.g. internal friction angle or
cohesion) of the involved rock mass. Stiff rocks, with
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a higher friction angle, generate steeper topographic
slopes and lower exponent values than softer rocks.

4.3.2. Fragmentation model. From a generic
point of view, the power law distribution observed
for rock fall volumes (Table 2) is also similar to the
fragment size distribution reported during fragmen-
tation experiments (e.g. Turcotte [1986] and refer-
ence therein). A power law distribution is admitted
to characterize the distribution of fragments for a va-
riety of rocks in laboratory experiments [e.g. Turcotte,
1986, and references therein]. Observed exponent val-
ues for cumulative volume distributions of fragments
range from 0.5 to 1.2, with 0.8 as an average value.
A generic model of fragmentation generates a power
distribution of fragments, with a b exponent of the
cumulative volume distribution defined by,

p= 086 (8)
log(8)

where p is the probability of a given cell of size [ to
break in 8 fragments of size I/2. This breaking rule
is scale invariant, i.e., each sub cell whatever its size
has the same probability p to break in 8 smaller cells
[ Turcotte, 1986]. Tuning of p values allows recovering
observed exponent values for rock fragmentation with
b < 1 for p ranging from 0 to 1. In this way, the power
law distribution of rock fall volumes, with an expo-
nent value ranging from 0.2 to 1 (Table 2), can be re-
produced by this generic fragmentation model. Note
that the observed exponents for rock falls, 0.5 + 0.2,
are in the same ranges of those reported for fragmen-
tation.

It argues for the rock fall sizes to be possibly driven
by the fragmentation process of the cliff, i.e., the pre-
existing discontinuity pattern. Accordingly, the rock
mass fragment size should control the rock fall vol-
ume size, while neither cascade nor avalanche pro-
cess should influence the rock fall volume distribution.
This model can reproduce the observed distribution
of rock fall volumes if the largest fragments are larger
than the largest observed rock fall. Although the pre-
existing discontinuity pattern that controls the frag-
ment size distribution is not extensively known for
the studied cliffs, we observe that the number of rock
blocks cut by discontinuities decreases rapidly when
their size increases. It argues for possible large frag-
ment sizes on our studied cliff.

4.3.3. Sand-pile type model. Another alter-
native to generate power law distributions is the con-
ceptual sand-pile model of Bak et al. [1987]. For rock
fall dynamics, the scale invariant rock fall distribu-



tion could arise solely from the dynamic of mechani-
cal processes without requiring any pre-existing scale
invariant heterogeneity. Cellular automaton models
simulate avalanches on a sand-pile. 3D numerical sim-
ulations yield an exponent value of 0.37 [Bak et al.,
1987; 1989], close to those we report for natural rock
falls. However this 3D model generates avalanches
which take place in the bulk of a volume. Accordingly
the mapping on the whole rock avalanches is difficult
because most rock falls occur on the surface of cliff.
The model that is usually interpreted in terms of sand
pile is the 2D version of the model which yields a
power law distribution with an exponent close to zero
[Bak et al., 1987; 1989]. This later exponent value
is further away from the observed rock fall size dis-
tribution. However, a variety of cellular automaton
models can account for a change in exponent value
when modifying the interaction rules or the loading
rules of the generic sand pile model from Bak et al.
[1987], e.g. Olami et al. [1992], Amaral and Lau-
ritsen [1997]. Therefore these models could explain
the b-value observed for the distribution of rock fall
volumes. Without any other observational constrains
on rockfall dynamics, we cannot decide which of the
interactions rules or loading conditions of these differ-
ent models are the more prone to capture the genuine
rock falls dynamics.

Contrary to the fragmentation model, the sand-
pile model simulates a power law distribution of vol-
umes that emerges solely from the dynamics without
any input of quenched heterogeneity [e.g. Bak et al.,
1987]. This model can be applied to any dynamic
system characterized by a threshold dynamic, a sta-
tionary state, a slow exogeneous driving when com-
pared to the energy released, and a power law dis-
tribution of energy released. Within this context, the
driven forces for a rock fall dynamical system are both
the slow tectonic uplift rate, the fluvial down cutting
and the constant gravity force. They have character-
istic time scales, which are well separated from the
time life of one single rock fall event. On such a ba-
sis, the dynamics of rock fall process share the same
properties as the one proposed for earthquakes, i.e., a
slow driving relatively to the relaxation process and a
power distribution of relaxed energy [Bak et al., 1989;
Sornette and Sornette, 1989; Main, 1996; Grasso and
Sornette, 1998, Vespignani and Zapperi, 1998]. As
suggested for landslides of unconsolidated material on
moderate slope by Hergarten and Neugebauer [1998],
it argues for rock fall dynamics to be another example
of out of equilibrium, scale free phenomena that could

be generic to earth crust deformation processes.

As a tentative mapping of each class of models on
rock fall dynamics from sub vertical cliffs and other
landslide types respectively, we summarize the ad-
vantages and drawbacks of each model (Table (4))
. Possible applications of these models to reproduce
landslide or rockfall cannot be sorted by using the
exponent values of distribution. They come out from
the specific hypothesis relevant to each model, i.e.,
erosion model, a sand-pile cellular automaton, frag-
mentation. Erosion models that introduce realistic
mechanical properties of the cliff in the generic sand-
pile model appear to capture the basic patterns of
the landslide and rock fall distributions [e.g. Dens-
more et al., 1998; Hergarten and Neugebauer, 1998].
If a fragmentation model is generically acceptable for
rock falls on sub-vertical cliffs, including simulated
exponent values, it is rejected as a model for the
soft unconsolidated material involved in other land-
slide types. Similarly, the soil erosion model of Her-
garten and Neugebauer [1998] is well suited to sim-
ulate landslides of layered soft material, but the ex-
ponent value and the layered model assumption it-
self reject the possibility for this model to reproduce
rock falls dynamics of sub vertical cliffs. The erosion
model from Densmore et al. [1998] is able to repro-
duce a change in exponent values that is observed
when switching from events which originate on sub
vertical cliffs of stiff rock to event occurring on gen-
tle slopes of softer materials [Densmore et al., 1998;
Champel et al., 2002].

5. Conclusion

We have analysed three rock fall data sets on sub
vertical cliffs and we have shown that the rock fall
volume distribution follows a power-law distribution
for volumes ranging from 10% to 10'° m3, with the
exponents b in the range [0.4-0.6] for the three cata-
logs. This exponent is also in agreement with previous
studies of rock falls along road-cuts. We suggest two
classes of models than can reproduce the power-law
distribution of rock fall volumes.

First, the conceptual sand-pile model of [Bak et al.,
1987; 1989] can reproduce the avalanche-like behavior
of the rock fall activity. Accordingly the power-law
distribution of rock fall volumes is the avalanche like
response to a slow loading rate, as driven by tectonic
deformation and fluvial incision rates, when compared
to the time scales of rock avalanches. This argues for
the rock fall dynamics to be another class of out of



equilibrium, scale free phenomena as suggested for a
large variety of earth crust deformation processes. In
this context, the power-law distribution of rock fall
volumes would arise solely from the dynamic of the
system, and would not be affected by the pre-existing
heterogeneity pattern.

Second, the observed power law distribution of
rock fall volumes is similar to the one reported for
both fragmentation experiments and fragmentation
models. This argues for the in-situ rock mass frag-
ment sizes to possibly control the rock fall volumes. In
this context, the rock fall volume distribution should
be similar to the fragment size distribution, and nei-
ther cascade nor avalanche processes would influence
the rock fall volume distribution.

When comparing our observations of rock falls on
sub-vertical cliffs with different types of landslides,
the exponent of the volume distribution is smaller for
rock falls than for landslides involving unconsolidated
material occurring on less steep slopes. It argues for
the rock mass properties, which constrain the topog-
raphy slope in numerical simulation [Densmore et al.,
1998; Champel et al., 2002], to drive the change in
exponent, values for different landslide types and ge-
omechanical settings.
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Figure 1. East face of the Chartreuse massif, Grenoble, France. (a) Subvertical calcareous cliffs are separated
into two levels; the intermediate, less steep, slope is associated to marly levels. The maximum height of each
level is 350-400 m and the total length of cliffs is 120 km. Note the sub-urban area of Grenoble at the bottom of
the cliffs. The photograph, by J.M. Vengeon, is roughly 5% of the total area covered by the Grenoble rock fall
inventory [RTM, 1996]. (b) Geometry of the fracture pattern, as detailled from top of the cliff on (a). It is roughly
characterized by a subhorizontal bedding and subvertical orthogonal joints; the small vertical joint are not visible
at the scale of figure 1b.
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Figure 2. Occurrence rate for rock falls for Grenoble area, RTM inventory [1996]. a) volumes and time of
occurrence in the 1200-1995 period. b) Occurrence rate in the 1935-1995 period for volume larger than 50 m?®.
Due to the non uniform temporal and volume samplings, the studied catalog is restricted to the 1935-1995 period,
involving 87 events with volumes ranging from 10~2 to 10% m?.
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Figure 3. Cliffs surrounding the Yosemite Valley, California Sierra. (a) Subvertical granitic cliffs, maximum
height 800-1000 m, total length 100 km; photograph by G. Wieczorek. (b) Detailed view of the Fairview dome: the
fracture pattern is roughly characterized by a sheeting process giving joints parallel to the topography, and spaced
subvertical joints; photograph by J.R. Grasso.
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Figure 4. Occurrence rate for rock falls from the Yosemite Valley data set [Wieczorek, 1992]. a) Volume and
occurrence for the 1850-1992 period. b) Occurrence rate in the the 1915-1992 period for volume larger than 50 m?®.
Due to the non uniform temporal sampling shown on the 1850-1992 period, the time window selected for the study
is 1915-1995, involving 101 events with volumes ranging from 1 to 10% m? .
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Figure 5. Cumulative volume distributions for rock falls. For each plot, the straight line is a fit by a power law
for volumes larger than Vj, estimated by linear regression. The exponent values and the x? values are given in
Table (1), see text for details. (a) Grenoble area; (b) Yosemite Valley; (¢) World wide inventory.
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Table 1. Characteristics of Rock Fall Volume Distributions for the Three Studied Data Sets: b;,. is the linear
regression estimate of b-value; b,,,;, the maximum likelihood estimate of b-value; V5, the range of observed volume
values; Vp, the value of minimum volume used for power law fit; x2, the reduced x? value

Site Time Window  Neyents Vops m° Vo m? Npie by boni X2
Grenoble, France 1935-1995 87 10—2 — 108 40 55  0.40 0.41 £0.06 0.58
Yosemite, USA 1915-1992 101 1—10° 50 55 0.46 0.45 +£0.06 0.72

Worldwide 10 000 yrs 142 103 -2 x 109 3.1 x 107 54 0.58 0.51 +£0.07 1.07




Table 2. Characteristics of Rock Fall Volume Distributions on subvertical cliffs
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Site Geological Setting Duration N Vops m° Vo m? be Ref
Grenoble, Calcareous 1935-1995 87 10~2-108 40 0.41 6!
French Alps Cliffs
Yosemite, Granitic 1915-1992 101 1-10° 50 0.45 62
California Cliffs
Worldwide Undifferentiated 10 000 yrs 142 10%-2x10'° 3x10” 0.51 63

Cliffs
Reunion Island,  Basaltic May—Aug. 370 <9x108 b1 0.5—1* 1,5
Indian Ocean Cliffs 1998
Himalaya, Road cuts . 200 1076-10° 10 0.19 4
India
Himalaya, Road cuts 200 1072-107 10 0.23 4
India
Alberta, Calcareous and 2 summers 409 10-6—-10 10—2 0.72 2
Canada quartzitic Cliffs
B. Columbia, Massive felsic rock, 30 yrs 389  1072-107 102 0.43 3ct
Canada road cuts®!
B.Columbia, Massive felsic rock, 13 yrs 123 1072-107 1 0.40 32
Canada road cuts®?
B.Columbia, Jointed metamorphic, 64 10~2-107 1 0.70 33
Canada rock, road cuts®®
B.Columbia, Jointed metamorphic, 22 yrs 122 1072-107 1 0.65 3¢
Canada, rock, road cuts®*

Reference: 1, Aki personal communication [2002]; 2, Gardner [1970]; 3, Hungr et al. [1999]; 4, Noever [1993]; 5,
Rousseau [1999]; 6, (This study), data from ' RTM [1996]; * Wiezoreck [1992]; ® Couture [1998].

¢ Exponent for cumulative volume distribution.

® Exponent deduced from amplitude of seismic signals using different models, see text for details; *! accordingly the absolute
volumes are dependent of the exponent values for each of the seismic model.
¢ Studies on different locations in the same area: °'Highway 99, bands A and B, ®BCR, “®Highway 1, **CP.



Table 3. Characteristics of Volume Distributions for mixed landslide types
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Site Geological Setting N V m? b Ref
Southern Alps, 35°mean slope 4984 106 —-3x107 0.8 4
New Zealand
Japan, 650 3 x 10*=3x107 0.66 4
Akaishi Mountains, non vertical 3243 10* — 108 0.64 4
Japan slope
Akaishi Mountains, non vertical 3243 10*—-108 1.25¢ 5,7
Japan slope
Challana Valley, non vertical 1130 1.07¢ 5,7
Bolivian Andes slope
Challana Valley, non vertical 1130 1.25¢ 5
Bolivian Andes slope
Northridge, California, uncons. earth 11000 0.86°¢ 5
earthquake triggered & debris materials
Northridge, California uncons. earth 11000 1.07¢ 7
earthquake triggered & debris materials
Eden Canyon 10-35°slope, uncons. 709 1.4¢ 5

USA

materials

Reference: 1, Blodgett et al., [1996]; 2, Fuyii, [1969]; 3, Harp and Jibson,[1995]; 4, Hovius et al., [1997]; 5, Malamud
and Turcotte, [1999]; 6, Nielsen et al., [1975]; 7, Pelletier et al., [1997]; 8, Sugai et al, [1994];

All the exponent values are for the cumulative volume distributions. ¢ The last five rows correspond to catalogs of
landslides on medium slope that provide only surface estimate mesured by aerila photography. Accordingly, the range
of volume used for these studies is not given in the forth column For these catalogs, volume exponents are derived from
surface size distributions according to the Hovius et al., [1997] conversion rule, assuming landslide length is proportional
to thickness and width. It implies Area~V olume?/3. Then starting with, N(V)~V =%, N(V)) being the number of events

with a volume larger than V, implies N(A)~A~2/? for cumulative areas.
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Table 4. Possible Conceptual Models for Rock Fall and Landslide Distributions

Generic type Ref Loading Breaking rules b-value® Application
Landslide Model 2 Tectonic uplift, Slope stability = 0.8 rock fall
of Rock erosion 2 gravity, fluvial cut f(friction, cohesion) 1.2 landslide
Landslide Model 3 Tectonic uplift Slope Gradient = 0.70 landslide

of layered Soil gravity, fluvial cut. f(layer thickness)

Sand-pile 1 Additional sand Critical slope ~ 0, (2D) landslide
Cellular-Automata grains angle 0.4, (3D) and rockf all
Fragmentation 4 no loading Fragmentation <1 rock fall

probability law (p) f(p)

References: 1, Bak et al., [1987]; 2, Densmore et al., [1998]; 3, Hergarten and Neugebauer [1998]; 4, Turcotte., [1986].

@ All the exponent values are exponents of cumulative volume distributions.



