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Abstract 

During the past two decades, the use of ambient vibrations for modal analysis of structures 

has increased as compared to the traditional techniques (forced vibrations). The Frequency 

Domain Decomposition method is nowadays widely used in modal analysis because of its 

accuracy and simplicity. In this paper, we first present the physical meaning of the FDD 

method to estimate the modal parameters. We discuss then the process used for the evaluation 

of the building stiffness deduced from the modal shapes. The models considered here are 1D 

lumped-mass beams and especially the shear beam. The analytical solution of the equations of 

motion makes it possible to simulate the motion due to a weak to moderate earthquake and 

then the inter-storey drift knowing only the modal parameters (modal model). This process is 

finally applied to a 9-storey reinforced concrete (RC) dwelling in Grenoble (France). We 

successfully compared the building motion for an artificial ground motion deduced from the 

model estimated using ambient vibrations and recorded in the building. The stiffness of each 

storey and the inter-storey drift were also calculated. 

 

Keywords: Ambient vibrations; FDD method; existing buildings; modal model; seismic 

vulnerability; Grenoble 
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1. Introduction 

Knowing the dynamic parameters of a structure (e.g. a building or a bridge) may be useful: 

(1) to calibrate its elastic properties for numerical modelling, (2) to detect the modification of 

its behaviour after retrofitting or damage, (3) and, finally, to predict its behaviour under 

earthquakes. The linear dynamic behaviour can be fully described by the modal parameters: 

resonance frequencies, modal shapes and damping ratios. These parameters mainly depend on 

the storey masses, which remain unchanged whatever the state of the structure, and the storey 

stiffnesses, which are influenced by the structural modifications such as reinforcing and 

damage. It can also be representative of the quality of the material (e.g. the equivalent 

Young's modulus of the cracked or undamaged concrete) and of the structural design (e.g. 

irregularity of the shear resistance or soft storey). All large-scale vulnerability assessment 

methods (e.g. [1, 2, 3]) identify the stiffness regularity of buildings as one of the main 

parameters controlling their seismic resistance. The stiffness is also the basic parameter 

needed to draw the capacity curve of buildings, which is the basis of recent large-scale 

vulnerability assessment methods (e.g. [1, 3, 4]). One of the greatest difficulties within such 

methods is the lack of information on existing buildings. Within vulnerability assessment, we 

have to deal with questions on, for example, ageing, structural design, quality of materials and 

the building state. 

 

Assessing the stiffness of each storey, and therefore the modal shapes of the structure, is then 

a critical point for the evaluation of the dynamic properties of existing buildings and hence to 

predict their seismic response and vulnerability. The ratio between transverse and longitudinal 

frequencies can, for example, provide information on the relative stiffness in perpendicular 

directions that may expose a lack of stiffness and may help in structural design understanding. 
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Comparing the frequencies and mode shape before and after the shaking [5, 6, 7] allows the 

evaluation of damage. This method requires knowledge of the initial state of the structure in 

such a way that the modification due to damage can be observed. For example, comparisons 

of frequencies among a group of identical buildings can quantify the damage level of each 

building [8]. Based on the integrity threshold concept [9], and with only limited structural 

information, the integrity of the building under seismic shaking can be estimated using the 

experimental modal shape deduced from forced or ambient vibrations. 

 

Ambient vibrations provide information about the modal parameters of a structure that we can 

extract using Modal Analysis methods. There are many different techniques to identify the 

“natural” modes of a structure, which can be divided into parametric and non-parametric 

methods. In the first category, the parameters of the considered model are updated to fit the 

recorded data in frequency or in time domain (see [10] for details). In the second category, the 

methods use only signal processing tools so that they are more user-friendly and easier to 

implement. Moreover, existing civil engineering structures are often difficult to model 

relevantly so that it is necessary to test these approaches before any more complicated 

method. For example, the Peak Picking (PP) method consists in taking the frequency peaks of 

average spectra for each sensors placed at different points. The Frequency Domain 

Decomposition (FDD [11]) is an improvement of the PP method. It consists of decomposing 

the power spectral density matrices into single-degrees-of-freedom systems by singular value 

decomposition. 

 

The main goal of this paper is to demonstrate the utility of techniques using ambient vibration 

recordings to complement and improve seismic vulnerability investigations of existing 

buildings. Ambient vibrations recorded in buildings are processed for estimating the dynamic 
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parameters of the building based on modal parameter estimates (Fig. 1). Because of its low 

cost and the efficiency of operational modal analysis, the ambient vibration method is well 

adapted to large-scale analysis for which a large set of buildings has to be analyzed. We first 

describe the FDD method we used in this study, one method among a large set of others 

existing methods. Then we propose the shear beam model, adapted to our recording layout to 

approximate the motion of a building. An analytical solution is proposed to estimate the 

stiffness at each story as a function of the modal shapes. We apply this theoretical work to a 

building located in Grenoble (France). We estimate its modal properties using ambient 

vibration tests and recordings of a ground motion induced by a bridge demolition in the same 

area. We then validate the modal model derived using modal parameters estimated from 

ambient vibrations by comparing the simulation results of the bridge collapse with real data. 

Finally we estimate the stiffness at each story of this building and the inter-story drift during 

the seismic motion and deduce some information about its seismic behaviour. 

 

2. Modal parameters from ambient vibration recordings 

 

In the 1930s, US Coast and Geodetic Survey first undertook ambient vibration recordings in 

high-rise buildings and bridges to determine their fundamental periods [12, 13]. Until the late 

1990s engineers preferred forced vibration tests (Traditional Modal Analysis) because of the 

accuracy of the corresponding system identification techniques. However, during the last two 

decades ambient vibration recordings have become to be preferred because of their low cost. 

They are used to determine the behaviour of structures (frequencies and modal shapes) [14, 

15], to quantify the damage after earthquakes [16, 17, 8] and to assess the benefit of 

retrofitting [18, 19]. They also allow the calibration of numerical and analytical modelling 

(model updating) [15, 20, 21]. Ambient vibrations are produced by natural sources such as 
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local atmospheric conditions (e.g. the wind and the sea) or by human activities (e.g. traffic 

and factories). The expected range of acceleration values for ambient vibration tests is 10-7 to 

10-4 g. Therefore, there is no doubt that the low level of the shaking only gives relevant 

information on the elastic behaviour of the structure. Many authors [e.g., 17, 18, 19, 20, 23, 

24, 25, 26] showed that non-linearity affects resonance frequencies when the level of loading 

increases. This non-linearity is due to the opening of micro-cracks in the concrete during 

vibrations, which may decrease temporarily, or permanently the stiffness, and then the 

resonance frequencies, of the structure. Nevertheless, recent studies showed this decrease may 

be low for weak to moderate motions [17] and is usually less than 20%, which confirms the 

interest of conducting ambient vibration recordings within buildings. 

 

Recording ambient vibrations at different points of a civil engineering structure (e.g. a bridge, 

a building or a chimney) allows the determination of its modes of vibration through 

Operational Modal Analysis techniques [27]. The efficiency of the Output-only Modal 

Analysis algorithms, the low cost of ambient vibration tests and the wide range of potential 

applications are the main reasons why their use is widespread today. 

 

Practical issues for vibration recordings are, on one hand, the layout of measurement arrays 

and, on the other hand, the frequency and time length of recordings. The number of recorded 

points depends on the height, complexity and accessibility of the building. For example, in 

dwellings, only the stairs are usually available so that motions can only be recorded at one 

point per floor. The drawback is that it is impossible to discriminate torsion modes in that 

case. The frequency of sampling depends on the greatest frequency we want to estimate, 

practically never more than 30 Hz for usual buildings. Moreover, Brincker [27] showed that 
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in practice the time length of the recorded window should be at least equivalent to 1000 

periods of the structure in order to calculate an accurate spectral estimate. 

 

Contrary to forced vibrations and earthquakes, the excitation is transmitted by external forces 

spread along the structure (wind), by the ground (seismic ambient noise) and by internal 

forces (human occupancy). Hence, it is impossible to determine the input load. The 

techniques used to determine the modal parameters of the considered system are called 

Output-Only or Operational Modal Analysis [10]. Many different techniques exist, the most 

widely used and easiest one being the Peak Picking method (PP). It consists of calculating the 

Fourier transforms of short time windows (several seconds) and picking the value of the 

frequency peaks of the average spectrum. The amplitude of the peak for each simultaneous 

recording gives a point of the modal shape. The normalised shape is obtained by dividing it 

by the value at the reference sensor. Theoretically, it only gives the operational deflection 

shapes, which are not characteristics of the system but depends on the input. Practically, PP 

can give accurate estimates of the modal shapes if the modes are well separated, that is often 

the case for regular tall buildings. 

 

Many other methods in time or frequency domains have been developed under the theory of 

System Analysis. The easiest one is called Frequency Domain Decomposition (FDD) [11]  

and consists of decomposing the power spectral density matrices into single-degrees-of-

freedom systems by singular value decomposition. The initial description of the FDD method 

can be found in [11]. The Power Spectral Density (PSD) matrices are the Fourier transforms 

of the correlation matrices between all the simultaneously recorded signals so that no a priori 

model is supposed. The PSD matrices of the input (unknown) and the output (recorded) 
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signals, functions of the angular frequency ω, can be respectively noted [X](ω) and [Y](ω). 

They are linked to the frequency response function matrix [H](ω) through the equation: 

 

[Y ](ω) = [H](ω)[X](ω)[H](ω)T         (1) 

 

where T denotes transpose and H  is complex conjugate. If r is the number of inputs and m the 

number of simultaneous recordings, at each angular frequency ω, the sizes of [X], [Y] and [H] 

are rr × , mm ×  and rm × , respectively. In Operational Modal Analysis, the usual 

assumption is that the input is white noise, which means:  

[X](ω) = C           (2) 

which is a constant matrix. The [H] matrix can be written in a pole (λk) / residue ([Rk]) form 

as: 

[H](ω) =
[Rk ]

jω − λk

+
k=1

n

∑ [Rk ]
jω − λk

      (3) 

where j2=-1. 

Using Eq. 2 and 3 and for low values of damping, it can be shown that the term [Rk ][C][Rk ] 

dominates the expression of [Y] (Eq. 1). In this case, this term becomes also proportional to 

the mode shape vector {φk}: 

[Rk ][C][Rk ] = dk{Φk}{Φk}
T        (4) 

where dk is a constant. Only a limited number of modes (typically no more than two) noted 

Sub(ω) has energy at one particular angular frequency ω. The PSD matrices of the outputs 

(Eq. 1) then has the following form: 

[Y ](ω) =
dk{Φk}{Φk}

T

jω − λk

+
k ∈Sub(ω )
∑ dk{Φk}{Φk}

T

jω − λk

 (5) 
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In practice (see Fig. 2 for an illustrated case for synthetic data), the ambient vibrations 

recordings allow the estimation of the PSD matrices of the outputs [ ˆ Y ](ω i)  at each known 

frequency ω i , i.e. the Fourier Transforms of the cross-correlation matrices. We used Welch's 

method [28] for this estimation, which means we took the average square spectrum of moving 

Hamming windows in the signal. The length of the windows is directly linked to the precision 

in the frequency we require. The common number of points in the Fourier Transform we used 

was 8192, which means windows of 20 s for a 200 Hz sampling frequency, corresponding to a 

frequency step of 0.024 Hz. 

The PSD matrices cannot usually be diagonalised because at one frequency, only few (p) 

modes have energy so that the rank of the matrix is p, the other "eigenvalues" are close to 

zero (noise). That is why we have to perform a singular value decomposition of these 

matrices, such as: 

[ ˆ Y ](ω i) = [Ui][Si][Ui]
T       (6) 

where [Ui] is the matrix of the singular vectors and [Si] is the diagonal matrix of the singular 

values. Close to a peak, if only one mode is dominating so that there is only one term in Eq. 5, 

the first singular vector is an estimate of the modal shape. If two modes are dominating at this 

frequency peak, which means two modes are close in frequency, and if they are geometrically 

orthogonal, the estimates of the corresponding modal shapes are the two first singular vectors. 

Moreover, the estimate of the two close mode shapes is still unbiased. In conclusion, the FDD 

method allows the accurate extraction of the mode shapes from ambient vibrations recorded 

simultaneously at several points of the structure. Several sets of recordings can give the mode 

shapes of the whole structure since a reference sensor allows the normalisation of the shape. 

 

Many peaks may appear in the first singular value computed from ambient vibrations, not 

only those corresponding to structural modes. The Modal Assurance Criterion (MAC) [29] 
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gives a quantitative value to compare two modal shapes Φ1 and Φ2 through the following 

expression: 

MAC(Φ1,Φ2) =
Φ1

HΦ2

2

Φ1
HΦ1 Φ2

HΦ2

      (7) 

where H denotes complex conjugate and transpose. The MAC has been used in order to 

evaluate the damage by comparing the initial and the final mode shapes [5, 6] as well as to 

compare modes obtained by different ways (e.g. different methods or recordings). Moreover, 

comparing the modal shape at a given frequency peak with the modal shape at the 

surrounding frequencies can give the extent of the "bell" representing the corresponding 

single degree of freedom (Fig. 3). In practice, as long as the MAC value between the shape at 

one frequency and the shape at the peak is greater than 80%, we consider that the frequency 

belongs to the mode. By this way, it is possible to determine the frequency bandwidth where 

each mode is dominating and to discriminate peaks that do not correspond to a structural 

mode. 

 

3. Stiffness deduced from modal parameters 

3.1 Modelling of the system 

 

As the mass per story can be considered as constant, the main parameter controlling the mode 

shape is the stiffness. The mode shapes of the system (building) are `unscaled' parameters, 

which are linked to the `scaled' physical parameters used in earthquake engineering (e.g. 

forces, acceleration, Young's modulus and inertia). For that reason, in order to derive the 

physical parameters of the structure from the modal parameters, a model is necessary. Based 

on the knowledge of the structural parameters of the building, the modal parameters and the 

output parameters (i.e. stress and strain in the building) are deduced from forward modelling. 
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On the other hand, the a priori structural parameters of the model have to be updated by 

solving the inverse problem [21], based on the knowledge of the modal parameters.  

 

Modelling techniques using the Finite Element Method (e.g. [15, 30]) and homogenization [9] 

can be found in literature. The updating procedure can use only the first frequency to check if 

the others are well represented by the model or all the measured modal parameters. In this 

paper, we use simple elastic lumped-mass modelling because of its low-cost for a large set of 

buildings. Moreover, it does not require detailed information on the building (e.g. the plan, 

structural design and quality of materials), which is usually not available for existing 

buildings. Since the modal parameters are deduced using, at most, a few ambient vibration 

recordings per floor, the elastic lumped-mass modelling is accurate enough. It amounts to 

neglecting the internal deformation of the floors and in considering the deformation between 

two stories as linear. 

Considering displacement in only one direction, Newton's second law for the displacement of 

the considered degrees of freedom (DOF) {V(t)} can be written as follows: 

[M]{V ' '(t)} + [C]{V '(t)} + [K]{V (t)} = {S(t)}     (8) 

where [M] is the mass matrix (it is diagonal with the mass mi of each DOF i), [C] is the 

damping matrix, [K] is the stiffness matrix and {S(t)} is the applied force. 

To solve this linear system, we simultaneously diagonalize matrices [K] and [M] and assume 

that [C] is also diagonal with the N damping ratios ξj on the diagonal. The N eigenvalues ωj
2, 

the corresponding eigenvectors Φj and damping ratios ξj are the modal parameters of the 

system. Considering a building forced into vibration by an earthquake, the displacement Vi(t) 

of each DOF i is the sum of the displacement of the ground US and the relative unknown 

displacement of the structure Ui. The solution of Eq. 8 is of the form {U(t)} = [Φ]{y(t)}. 

The equation of motion can be rewritten: 
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y j ' '(t) + 2ξ jω j y j '(t) + ω j
2y j (t) = −p jUS ' '(t)     (9) 

where 
{Φ j}

T [K]{Φ j}
{Φ j}

T [M]{Φ j}
= ω j

2  are the eigenvalues, 
{Φ j}

T [C]{Φ j}
{Φ j}

T [M]{Φ j}
= 2ξ jω j  and 

{Φ j}
T [M]{1}

{Φ j}
T [M]{Φ j}

= p j  is the participation factor of mode j. 

The analytical solution of these N independent equations for yj(0)=0 and y'j(0)=0 is known as 

Duhamel integral, given by: 

∀j ∈ [1,N] y j (t) =
−p j

ω '
Us ' '(τ)e−ξ jω j ( t−τ ) sin(ω '(t − τ ))dτ

0

t

∫     (10) 

with ω j
' 2 = ω j

2(1−ξ j
2). 

Assuming a constant mass per floor equal to 1000 kg/m2 and knowing the geometry of 

recording array, it is possible to determine the elastic motion of the system under moderate 

earthquakes from the knowledge of the modal parameters determined using ambient 

vibrations, without any assumptions having to be made on the structural design. 

 

In order to evaluate the stiffness matrix from the modal parameters, an assumption on the 

behaviour of the system must be made. Two models are generally employed for the 

description of building behaviour [31]: a cantilever beam representing shear-wall RC 

buildings and a shear beam for RC-frame buildings.  

 

3.2 Stiffness matrix form 

The shear beam model assumes that the motion at one story depends only on the motion of 

the stories above and below. The underlying hypothesis is that the floors are much stiffer than 

the walls. The stiffness matrix [K] can be written as follows: 
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[K] =

k1 + k2 −k2 0 L L 0
−k2 k2 + k3 −k3 O M

0 −k3 O O O M

M O O O O 0
M O −kn−1 kn−1 + kn −kn

0 L L 0 −kn kn

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

  (11) 

where ki is the stiffness of the story i. 

For the shear beam assumption, the characteristic ratio between the harmonics and the 

fundamental frequency is [31] :  

∀k ∈ [1,N] fk

f1

= 2k −1      (12) 

The equation of the eigenvalues [K]{Φi}=ωi
2[M]{Φi} for the shear beam model can be then 

inverted in order to evaluate the stiffness matrix [K]. 

The corresponding linear system can be solved into the analytical formula: 

∀j ∈ [1,N] k j = ω i
2

mlΦli
l= j

n

∑
Φ ji − Φ( j−1)i

     (13) 

with Φ0i=0. 

 

This analytical formula (Eq. 13) allows the extraction of the stiffness values at each floor 

from the modal shapes. Theoretically, only one mode is necessary to calculate the stiffness 

matrix under the shear hypothesis. Nevertheless, this formula shows that when two close-

together stories have approximately the same deflection for one particular mode, i.e., Φji ≈Φ(j-

1)i, the stiffness values are highly sensitive to uncertainties in the modal shape determination. 

Therefore, considering two modes reduce these uncertainties.  

  

4. Example of stiffness estimation using experimental data 
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To illustrate the use of ambient vibration for the stiffness evaluation of the building, two 

experiments have been carried out in a dwelling located in the centre of Grenoble (France). 

The ambient vibrations (AV) and the vibrations induced in this structure by the demolition of 

a close-by bridge allowed the extraction of the modal parameters of the building using the 

FDD method. We compared the modal parameters found in both experiments and used them:  

 

- to build a modal model that can be validated by recordings of the bridge's collapse; 

- to estimate the stiffness of the building at each story in each direction. 

 

The building is a nine-story reinforced concrete (RC) structure with both frames and shear 

walls (Fig. 4). It was built in 1939 and it is one of the most important classes of buildings 

found in the urban area of Grenoble. The concrete is poorly reinforced and it has been built 

without using a seismic building code. It is located within an urban block, with two walls in 

contact with the surrounding buildings, which are only separated by filled joints. Following 

the European Macroseismic Scale (EMS98) [32], it corresponds to the type `Reinforced 

Concrete Frame Building' which is one of the most vulnerable RC classes. In this study, we 

used the Cityshark II acquisition system [33], a user-friendly seismological station dedicated 

to ambient vibrations experiments. It allows the simultaneous recording of 18 channels. Six 

Lennartz Le3D-5s velocimeters with a flat response in the 0.2-50 Hz frequency band were 

used.  

 

4.1 First experiment: Ambient Vibrations (AV) 

 

For the first experiment, ambient vibrations were recorded for 15 minutes (Fig. 4), at a sample 

rate of 200 Hz, which is long enough with respect to the Brincker criterion (1000 periods) 
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[27]. The sensors were oriented along the longitudinal direction of the building. Two series of 

recordings were performed in order to record one point per floor (Fig. 4). The sensors at the 

top of the building (8th and 9th floors) were kept as references since they have the greatest 

amplitudes while the others were roving sensors. 

 

Using the FDD method, the two first bending modes in each direction have been extracted 

(Fig. 5, Tab. 1): at 2.73 Hz and 7.71 Hz in the longitudinal direction and at 2.28 Hz and 8.69 

Hz in the transverse direction. Moreover, despite the low level of energy it is possible to 

identify the frequency of the third bending mode in each direction but not the modal shapes. 

That may be the same reason for the second transverse mode showing a curious modal shape. 

For the longitudinal direction, the ratio between harmonics and fundamental frequencies fit 

the theoretically-assumed sequence 1, 3, 5 for the shear beam model. In the transverse 

direction, the ratios are 1, 3.8 and 6.8. 

 

This ratio is a characteristic of the model and helps to choose which model provides a closer 

fit to the building. Our building (Tab. 1) behaves therefore more in bending in the transverse 

direction than in the longitudinal one. This can also be seen in the experimental modal shapes 

(Fig. 5) where the first transverse modal shape looks like a cantilever beam. Nonetheless, we 

used the shear beam model for the two directions of the building, knowing this model 

represents only roughly the longitudinal direction. 

Since the stiffness is proportional to the square of the frequency, the first frequencies tell us 

that the longitudinal direction is 40% stiffer than the transverse one. 

The FDD method shows other modes that may correspond to torsional behaviour Tab. 1. The 

irregular position of the shear walls and beams induces undoubtedly this kind of torsional 

motion, that could be confirmed using several recording points at the same floor. 
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4.2 Second experiment: Bridge Demolition (BD) 

 

 In order to check the relevancy of the ambient vibrations for the evaluation of the 

modal parameters, the second experiment was focused on building motion evaluation for 

ground excitation. This motion was induced by the controlled demolition of a bridge located 

40 m away from the building (Fig. 6). The same instrument was employed for this second 

experiment. Because only six Lennartz Le3D-5s sensors could be plugged into the CityShark 

II, we installed them in six of the nine stories of the building (Fig. 9). 200 s of signal were 

kept and the sampling rate chosen for these recordings was 100 Hz. 

 

The instantaneous collapse of the deck (source time duration of about 5 ms) generated a 

vertical seismic motion with a frequency peak around 11 Hz (Fig. 8). The horizontal peak 

ground acceleration (PGA) recorded in the ground floor of the building was 0.025 m/s2 (Tab. 

2). This value is greater than the PGA recorded during recent Alpine earthquakes by the 

French Accelerometric Network (http://www-rap.obs.ujf-grenoble.fr) in the Grenoble basin. 

Nevertheless, it is sixty times lower than the design acceleration values enforced in the 

present code [33] for the Grenoble area (1.5 m/s2). The maximum horizontal acceleration at 

the top of the building was 0.061 m/s2.  

 

Although the basic assumption of white noise is required, the FDD method was also used to 

determine the modes of the structure for these explosion recordings. The following results 

show that neglecting the white noise assumption does not greatly affect the modal parameter 

determination, as already showed by Ventura [35]. Only the first bending mode in each 
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direction (Fig. 9) and the first supposed torsion mode can be found. The transverse mode 

exhibits a non-negligible torsion part in its modal shape that was not seen in the AV 

recordings. This explains the low correlation observed between the two experiments (Fig. 9). 

The first bending and torsion modes closely match for the two recordings with a difference of 

less than 1% in frequency (Tab. 3). The MAC values show a very high similarity between the 

mode shapes obtained in the two experiments (Tab. 3). Some points of the modal shape were 

linearly interpolated for the bridge demolition because only six points could be 

simultaneously recorded. 

 The modal parameters extracted from ambient vibrations and the induced ground motion 

match so well that we can conclude on one hand that the building responded totally elastically 

to the ground motion and on the other hand that both modal identifications were reliable, even 

if in the second case the assumption of white noise input is not valid and the length of the 

signal limited. 

 

4.3 Simulation of the building's response to earthquakes and the calculation of stiffness 

 

In order to validate the aforementioned methodology, we first verified if the motion of the 

building when forced into vibration by the bridge demolition would be well predicted by AV 

modal modelling. Once the experimental mode shapes are defined, and by following the 

section 3.1, the building motion and its behaviour under earthquakes are simulated using Eq. 

10 and the experimental modal parameters extracted from the ambient vibrations. In this 

study, only the two first bending modes in each direction were used. We estimated the 

corresponding damping ratio using the random decrement method [36] as 4% for all modes 

except for the first longitudinal mode (where 2% is found). 
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The displacements computed and recorded at the top of the building are displayed on Figure 

10. We observe a good fit between the data and the modelling. Even if the complexity of the 

building behaviour is not integrated in the model, the simulation reproduces the level of 

amplitudes as well as the duration, the frequency and the phase of the building motion. It is 

also possible to compute the inter-story drift by difference between the time history 

displacements at consecutive floors. The maximum drift Fig. 11 has been calculated in this 

way using the modal model and the recordings for the bridge demolition. An average of the 

model in non-recorded stories has been performed to compare the same quantities. The model 

reproduces the magnitude of the maximum drift but in the longitudinal direction, the drift at 

the upper stories and especially the fourth is under-estimated. 

 

Nevertheless, these comparisons confirm the relevancy of the modal parameters of buildings 

extracted from ambient vibrations. Hence, once the modal parameters are known, it is 

possible to evaluate the ability of the building to resist (or not) the seismic loading 

corresponding to any a priori ground motion scenario. If we suppose that the maximum drift 

sustained by concrete shear walls controlled by shear without any damage is 4x10-3 [37], we 

are able to determine for a chosen ground motion if the building reaches this threshold or not. 

As expected, in the case of the bridge demolition experiment Fig. 11, the maximum drift 

remains very low (around 6x10-6). It is quite similar in the longitudinal and transverse 

directions. The model outlines that the third floor is subjected to a greater drift in the 

transverse direction but does not show similar behaviour in the fourth story in the longitudinal 

direction. 

Assuming a shear model for this building, as suggested by the ratio f2

f1

≈ 3, we can deduce 

the stiffness at each floor following the Eq. 13. The results are displayed on Fig. 12. The 

stiffness at each story is between 20 and 50% larger for the longitudinal direction than for the 
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transverse one. In the longitudinal direction, because of the quality of the modes extracted 

from the ambient vibrations, two modes were available to determine the stiffness. In this 

direction, the only difference between the 2 modes appears for the third story. As mentioned 

in section 3.2, this difference reflects the sensitivity to the error at the anti-node of the second 

mode, when the deflection is lower. For the last floor, considering the first mode shows the 

same imprecision in the stiffness evaluation. This illustrates the necessity to simultaneously 

consider more than one mode in order to increase the quality of the stiffness evaluation. It 

shows also the necessity in estimating the uncertainty of the extracted modal shapes. It should 

be noticed that even if the amplitudes vary slightly, these three independent stiffness shapes 

show the same variations along all the stories. This assures that these stiffnesses are valid, for 

example the third story is softer than the second and the fourth. This can be the reason for the 

greater strain recorded (and modelled) for this story (Fig. 11). 

 

From these results, a linear trend of stiffness, decreasing with height, in both directions is 

evident for this building. It is not a very irregular configuration regarding seismic 

vulnerability. However, the third story has been identified as a “soft” story. In case of an 

earthquake, the building must resist a larger drift at this story making it more vulnerable than 

other buildings of the same RC class. 

 

5. Conclusions 

 

Herein we demonstrated the utility of a set of simple techniques using ambient vibration 

recordings to complement seismic vulnerability assessment investigations of existing 

buildings. Decomposing the motion of a building into simple modes (bending and torsion) is 

the first step in the assessment of its behaviour under an earthquake. We computed, therefore, 
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the modal parameters using the FDD method, which is easy to perform and reliable even in 

case of close modes. The experiments showed that the FDD is able to extract reliable 

information (frequency, modal shapes and eventually damping) even if the basic assumption 

of white noise is not fulfilled. The values of the measured frequencies are directly linked to 

the stiffness of the building so that we can assess the average stiffness ratio between the 

longitudinal and the transverse directions. For vulnerability assessment this is not sufficient so 

we used a simple lumped-mass model with an assumption on the stiffness matrix (shear 

beam) in order to calculate the stiffness at each story. The choice of this stiffness model is 

based on the sequence of the resonance frequencies of the studied building. The inversion of 

the stiffness matrix is analytical in this case and two modes are practically needed for a 

reliable stiffness determination. Having the stiffness at each story, we can identify soft stories 

or bad structural configurations, which increase the vulnerability of the building to 

earthquakes. We showed, for example, that the studied building displayed an irregularity in 

the third story, which makes it more vulnerable to earthquakes than other buildings of the 

same type. The presented method is therefore able to identify the most vulnerable buildings 

within a building class. The modal model, free of any assumptions on the stiffness behaviour 

of the building, allows the computation of its elastic motion subjected to weak to moderate 

earthquakes and then the inter-story drift. Using directly this drift or by applying the integrity 

threshold concept developed by Boutin et al. [9] for reinforced concrete, one can decide 

whether the building reaches the inelastic range, i.e. the beginning of permanent damage. 

Several earthquake scenarios can also be applied in order to identify for what acceleration 

levels the building stays within its elastic domain. 
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List of tables 

Table 1. Frequencies of the building modes extracted from AV using the FDD technique.  

Mode  Frequency (Hz) fk /f1 

Transverse 1 2.28 1 

Longitudinal 1 2.73 1 

Torsion 1 4.74  

Torsion 2  5.64  

Transverse 2  8.69 3.8 

Longitudinal 3 12-13 4.5 

Transverse 3 15.5 6.8 

 

Table 2. Maximum accelerations recorded for the bridge demolition (m/s2).  

Direction  Ground Floor Top floor 

Longitudinal  0.025 0.051 

Transverse  0.019 0.062 

Vertical  0.046 0.094 

 
 
Table 3. Comparison of frequencies and modal shapes (MAC value) extracted from Ambient 
Vibrations (AV) and Bridge Demolition (BD) experiments.  
Mode AV BD Comparison 

f (Hz) f (Hz) Freq. Var. MAC value 

Transverse 1 2.28 2.27 -0.4% 85% 

Longitudinal 1 2.73 2.75 0.7% 99% 

Torsion 1 4.74 4.77 0.6% 97% 

Transverse 2 8.69 8.46 -2.6% 20% 
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List of figures 

 

Figure 1. Overview of this study's scope. We relate, in a simple way, experimental modal 

parameters of a building (frequencies, modal shapes and damping) to ground-motion 

parameters (earthquake scenario) and structural parameters (stiffness) for seismic 

vulnerability assessment 

 

Figure 2. Practical use of the Frequency Domain Decomposition (FDD) method on synthetic 

data of a Gaussian random signal convolved with a sine function of frequency 0.1 (simulation 

of a 2-story building) (a). The singular value decomposition (c) extracts redundant 

information in the Power Spectral Density (PSD) matrices (b). The obtained modal shape is 

exactly the preassigned one (d). 

 

Figure 3. Validity range of the building mode extracted by FDD method using a MAC value 

greater than 80%. The solid line is the normalised first singular value of PSD matrices of 

ambient vibration recordings in a building. The bold line (first singular vectors with a MAC 

value greater than 80% except for two unused points) is one of the estimated mode of the 

structure. The crosses display the MAC values associated with this mode. 

 

Figure 4. Left: The studied building ; Centre: The experimental scheme for the first and 

second Ambient Vibration (AV) datasets ; Right: Time history acceleration deduced from AV 

velocity recorded at the eighth floor. 

 

Figure 5. Building frequencies selected in the first singular values of the power spectral 

density matrices computed from AV recordings (left) and corresponding modal shapes (right) 
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extracted by the FDD method (bending modes only). For each identified mode, the bold bell 

corresponds to a MAC value greater than 80%. 

 

Figure 6. Aerial location of the bridge demolished in July 2004 (A) and the study-building 

(B). 

 

Figure 7. Accelerations produced by the bridge demolition in the structure: time-histories in 

Longitudinal (left) and Transverse (right) directions at the ground and top floors. 

 

Figure 8. Fourier amplitude spectra of the recordings of the bridge demolition at the ground 

floor of the structure. The spectra are smoothed using the function described in [37]. The 

modal frequencies of the structure deduced from ambient vibrations are labelled X1 and Y1. 

   

Figure 9. Comparison of the first modal shapes extracted from AV and BD (left) and 

experimental scheme during the BD (right). The stories that were not measured are linearly 

interpolated. 

 

Figure 10. Comparison of time histories (left) and spectra (right) at roof level between the 

observations and the modelling of the building response to the bridge demolition. 

 

Figure 11. Comparison of the drift envelope at each available story modelled and recorded in 

the structure during the bridge demolition. Solid and dashed lines are the longitudinal and 

transverse motion, respectively. Thin and bold lines are for recordings and modelling, 

respectively. 
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Figure 12. Stiffness of the building calculated from the AV modal shapes. The second 

transverse mode gives non-physical results. 
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