Hydrogen isotope fractionation in the photolysis of formaldehyde
T. S. Rhee, C. A. M. Brenninkmeijer, T. Röckmann

To cite this version:

HAL Id: hal-00296478
https://hal.archives-ouvertes.fr/hal-00296478
Submitted on 7 Mar 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
Hydrogen isotope fractionation in the photolysis of formaldehyde

T. S. Rhee¹, C. A. M. Brenninkmeijer², and T. Röckmann³

¹Korea Polar Research Institute, Incheon, Korea
²Atmospheric Chemistry Division, Max Planck Institute for Chemistry, Mainz, Germany
³Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, The Netherlands

Abstract. Experiments investigating the isotopic fractionation in the formation of H₂ by the photolysis of CH₂O under tropospheric conditions are reported and discussed. The deuterium (D) depletion in the H₂ produced is 500(±20)% with respect to the parent CH₂O. We also observed that complete photolysis of CH₂O under atmospheric conditions produces H₂ that has virtually the same isotope ratio as that of the parent CH₂O. These findings imply that there must be a very strong concomitant isotopic enrichment in the radical channel (CH₂O+hν→CHO+H) as compared to the molecular channel (CH₂O+hν→H₂+CO) of the photolysis of CH₂O in order to balance the relatively small isotopic fractionation in the competing reaction of CH₂O with OH. Using a 1-box photochemistry model we calculated the isotopic fractionation factor for the radical channel to be 0.22(±0.08), which is equivalent to a 780(±80)% enrichment in D of the remaining CH₂O. When CH₂O is in photochemical steady state, the isotope ratio of the H₂ produced is determined not only by the isotopic fractionation occurring during the photolytical production of H₂ (αₘ) but also by overall fractionation for the removal processes of CH₂O (α₇), and is represented by the ratio of αₘ/α₇. Applying the isotopic fractionation factors relevant to CH₂O photolysis obtained in the present study to the troposphere, the ratio of αₘ/α₇ varies from ~0.8 to ~1.2 depending on the fraction of CH₂O that reacts with OH and that produces H₂. This range of αₘ/α₇ can render the H₂ produced from the photochemical oxidation of CH₄ to be enriched in D (with respect to the original CH₄) by the factor of 1.2–1.3 as anticipated in the literature.

1 Introduction

Formaldehyde (CH₂O) is a key carbonyl compound in the atmosphere. Its abundance varies over a wide range from sub-ppb levels to ~100 ppb depending largely on local sources (Warneck, 1999). Its turnover is large in the atmosphere and it is a source of molecular hydrogen (H₂), carbon monoxide (CO), and of the hydroperoxyl radical (HO₂), yet limited measurements are available in various atmospheric regions. Recent satellite observations of CH₂O make it possible to investigate its distribution on regional and global scales (e.g., Martin et al., 2004; Wittrock et al., 2006). While direct emissions from fossil fuel combustion, biomass burning, and also automotive exhaust contribute significantly to the burden of atmospheric CH₂O (Carlier et al., 1986; Garcia et al., 2005), in situ production of CH₂O by photochemical oxidation of volatile organic compounds appears to be the dominant source on a global scale (Carlier et al., 1986; Warneck, 1999). In remote oceanic areas (Wagner et al., 2002; Weller et al., 2000), in the free troposphere (Frost et al., 2002), and in the stratosphere, only the photochemical oxidation of CH₄ serves as the major source. Apart from the importance of the rather simple CH₂O molecule in the Earth’s atmosphere and far beyond, it is also subject to fundamental research regarding for instance the exact processes during its photolysis (e.g., Moore and Weisshaar, 1983; Townsend et al., 2004; Troe, 2007).

CH₂O is broken down by photolysis (R1 and R2) and by photochemical oxidation (R3) in the troposphere (Calvert, 1980):

CH₂O + hν → CHO + H

CH₂O + hν → CO + H₂

CH₂O + OH → CHO + H₂O

(Calvert, 1980)

© Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License.
Reaction (R1) produces the HO₂ radical by the rapid reaction of hydrogen (H) and formyl (CHO) radicals with atmospheric oxygen (O₂), which can lead to the formation of the hydroxyl radical (OH) via the reaction with NO or O₃ in the atmosphere. This is an important propagation of the radical chain. Only reaction (R2) yields H₂. All photochemical reactions of CH₂O do produce CO, while solely reaction (R2) forms H₂, which is the topic of our research. In fact, this photochemically produced H₂ constitutes ~50 to ~60% of the total source of tropospheric H₂ (Novelli et al., 1999; Rhee et al., 2006b).

In the stratosphere, H₂ originates both from this in situ photolysis process (R2), albeit under photochemically very different conditions, and from tropospheric import. Recently it has been established that stratospheric H₂ is enriched in deuterium (D) along with the decrease of CH₄ mixing ratios whilst the H₂ mixing ratios remain almost constant (Rahn et al., 2003; Rhee et al., 2006a; Röckmann et al., 2003). It appears that the D enrichment of H₂ is much stronger than the concomitant enrichment for CH₄ accompanying its destruction by OH, O(tD), and Cl radicals. This means that the D enrichment of H₂ occurs not only by the fractionation in the reaction of H₂ with oxidizing radicals (OH, Cl, O(tD)) but is also due to the chain reactions leading from CH₄ to H₂ (Rhee et al., 2006a). Gerst and Quay (2001) discussed potential reactions that may lead to the D enrichment along the photochemical chain reactions of CH₄. However, the detailed mechanism by which the D content of H₂ is accumulated has not yet been elucidated due to the lack of measurements for isotopic fractionation factors at each reaction step and branching, all of which are fundamentally difficult to determine.

To address this question, as a first step we have investigated the isotopic fractionation occurring during the photolysis of CH₂O by which H₂ is produced for the conditions at Earth's surface. In spite of its crucial role in the isotope budget of H₂, as well as CO, in the atmosphere, the isotopic fractionation occurring during photolysis of CH₂O has been rarely investigated in the past (Crounse et al., 2003; Feilberg et al., 2005; Feilberg et al., 2007b). Since CH₂O is a relatively "long-lived" intermediate in the photochemical chain reactions between CH₄ and H₂, the results will provide essential insight into understanding the accumulation of D in H₂ produced.

2 Experiments

Formaldehyde (CH₂O) was prepared by purifying paraformaldehyde (Merck) in a vacuum system following the method of Spence and Wild (1935). Solid paraformaldehyde was heated at ~420 K under vacuum. For purification the evaporating CH₂O and impurities were forced through a set of glass U-tubes which were partly immersed in an ethanol sludge (~160 K) made with liquid nitrogen. Purified formaldehyde was then collected in a U-tube dipped in liquid nitrogen (77 K). A given amount of pure CH₂O (~3 mbar) was released to a 3-L glass bulb and several 0.1-L glass flasks simultaneously, all of which were connected to the same manifold. The pure CH₂O in the 0.1-L glass flasks were used to determine the D/H ratio of the CH₂O (see below). Afterwards pressure inside the manifold was read by a capacitance manometer (MKS10, Baratron). CH₂O-free synthetic air was then introduced into the 3-L glass bulb to reach ambient pressure and the final pressure was read by another capacitance manometer (MKS1000, Baratron) to determine the CH₂O mixing ratio. Since these pressure readings are essential for determining the CH₂O mixing ratio in the reactors used for the photolysis experiments, the capacitance manometers were calibrated accurately by an absolute manometer (Digiquartz 740, Paroscientific) whenever necessary. The CH₂O-air mixture was used as a stock for a series of CH₂O photolysis experiments. The CH₂O mixing ratios in the stock air were usually around 0.3%.

Aliquots of the CH₂O stock air were transferred to quartz or glass flasks, diluted to the target mixing ratio with CH₂O-free synthetic air, and photolyzed for a few hours to ~17 days (Table 1). The CH₂O mixing ratios in the reactors were less than ~2 ppm except in the experiments running for few hours, for which ~50 ppm of CH₂O was used. After photolysis we measured the H₂ mixing ratio and D/H ratio. The δD values and mixing ratios of the H₂ produced were determined by a recently developed technique involving continuous-flow isotope ratio mass spectrometry (Rhee et al., 2004).

In order to test stability of CH₂O in the reactor, we had once monitored the pressure inside the 3-L glass bulb for 2 days after injecting pure CH₂O at ~3 mbar. No change in pressure inside was found, indicating no absorption or loss of CH₂O by polymerization or heterogeneous reactions. The same results even at higher pressure of pure CH₂O air have been reported (e.g., Horowitz and Calvert, 1978).

All glass used was Duran glass (Schott), thoroughly evacuated and heated prior to use. Glass bulbs were kept in the dark by wrapping them with aluminum foil or with black cloth to avoid any photochemical reactions prior to commencing CH₂O photolysis experiments. CH₂O photolysis experiments in sunlight were carried out on the roof of a 3-story building of the Max Planck Institute for Chemistry, Mainz (50° N, 8.16° E), in August and September of 2003 and in March, May and June of 2004 (Table 1). We also conducted CH₂O photolysis experiments using a xenon (Xe) short arc lamp (XBO 75W/2). A characteristic intensity spectrum of the light sources and the transmission of the reactor materials are shown in Fig. 1 together with photolytic properties of CH₂O.

The D/H ratio of the original CH₂O in the stock air was determined by analyzing the isotopic composition of the pure CH₂O in the 0.1-L glass flasks, which originated from the same source of CH₂O as that in the stock air (see above). The pure CH₂O sample was photolyzed using a mercury
Table 1. Summary of CH$_2$O photolysis experiments.

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>*Duration (h)</th>
<th>**[CH$_2$O]$_0$ (ppm)</th>
<th>Light source</th>
<th>Reactor material</th>
<th>Ψ(H$_2$)</th>
<th>δD-H$_2$ (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Sep-03</td>
<td>10-Sep-03</td>
<td>91</td>
<td>2.3</td>
<td>Daylight</td>
<td>Glass</td>
<td>0.47</td>
<td>−247</td>
</tr>
<tr>
<td>4-Sep-03</td>
<td>10-Sep-03</td>
<td>91</td>
<td>2.5</td>
<td>Daylight</td>
<td>Glass</td>
<td>0.52</td>
<td>−190</td>
</tr>
<tr>
<td>4-Sep-03</td>
<td>10-Sep-03</td>
<td>91</td>
<td>2.6</td>
<td>Daylight</td>
<td>Glass</td>
<td>0.49</td>
<td>−252</td>
</tr>
<tr>
<td>14-Sep-03</td>
<td>17-Sep-03</td>
<td>51</td>
<td>0.43</td>
<td>Daylight</td>
<td>Glass</td>
<td>0.52</td>
<td>−214</td>
</tr>
<tr>
<td>14-Sep-03</td>
<td>17-Sep-03</td>
<td>51</td>
<td>0.46</td>
<td>Daylight</td>
<td>Glass</td>
<td>0.66</td>
<td>−46</td>
</tr>
<tr>
<td>14-Sep-03</td>
<td>17-Sep-03</td>
<td>51</td>
<td>0.48</td>
<td>Daylight</td>
<td>Glass</td>
<td>0.56</td>
<td>−205</td>
</tr>
<tr>
<td>29-Mar-04</td>
<td>29-Mar-04</td>
<td>1</td>
<td>53</td>
<td>Daylight</td>
<td>Quartz</td>
<td>0.09</td>
<td>−449</td>
</tr>
<tr>
<td>29-Mar-04</td>
<td>29-Mar-04</td>
<td>2</td>
<td>50</td>
<td>Daylight</td>
<td>Quartz</td>
<td>0.18</td>
<td>−459</td>
</tr>
<tr>
<td>29-Mar-04</td>
<td>29-Mar-04</td>
<td>3</td>
<td>34</td>
<td>Daylight</td>
<td>Quartz</td>
<td>0.21</td>
<td>−415</td>
</tr>
<tr>
<td>29-Mar-04</td>
<td>29-Mar-04</td>
<td>7</td>
<td>63</td>
<td>Daylight</td>
<td>Quartz</td>
<td>0.31</td>
<td>−366</td>
</tr>
<tr>
<td>29-Mar-04</td>
<td>29-Mar-04</td>
<td>7</td>
<td>36</td>
<td>Daylight</td>
<td>Quartz</td>
<td>0.26</td>
<td>−413</td>
</tr>
<tr>
<td>17-May-04</td>
<td>25-May-04</td>
<td>130</td>
<td>2.1</td>
<td>Daylight</td>
<td>Quartz</td>
<td>0.67</td>
<td>3</td>
</tr>
<tr>
<td>17-May-04</td>
<td>31-May-04</td>
<td>230</td>
<td>2.0</td>
<td>Daylight</td>
<td>Quartz</td>
<td>0.68</td>
<td>−4</td>
</tr>
<tr>
<td>14-Jun-04</td>
<td>18-Jun-04</td>
<td>67</td>
<td>1.4</td>
<td>Daylight</td>
<td>Quartz</td>
<td>0.50</td>
<td>−205</td>
</tr>
<tr>
<td>14-Jun-04</td>
<td>18-Jun-04</td>
<td>67</td>
<td>1.8</td>
<td>Daylight</td>
<td>Quartz</td>
<td>0.61</td>
<td>−38</td>
</tr>
<tr>
<td>14-Jun-04</td>
<td>18-Jun-04</td>
<td>67</td>
<td>1.8</td>
<td>Daylight</td>
<td>Quartz</td>
<td>0.61</td>
<td>−77</td>
</tr>
<tr>
<td>14-Jun-04</td>
<td>18-Jun-04</td>
<td>67</td>
<td>1.1</td>
<td>Daylight</td>
<td>Quartz</td>
<td>0.39</td>
<td>−256</td>
</tr>
<tr>
<td>14-Jun-04</td>
<td>30-Jun-04</td>
<td>277</td>
<td>2.1</td>
<td>Daylight</td>
<td>Quartz</td>
<td>0.71</td>
<td>15</td>
</tr>
<tr>
<td>14-Jun-04</td>
<td>30-Jun-04</td>
<td>277</td>
<td>1.9</td>
<td>Daylight</td>
<td>Quartz</td>
<td>0.66</td>
<td>−65</td>
</tr>
<tr>
<td>30-May-04</td>
<td>4-Jun-04</td>
<td>80</td>
<td>1.6</td>
<td>Daylight</td>
<td>Glass</td>
<td>0.56</td>
<td>−137</td>
</tr>
<tr>
<td>30-May-04</td>
<td>4-Jun-04</td>
<td>80</td>
<td>1.6</td>
<td>Daylight</td>
<td>Glass</td>
<td>0.60</td>
<td>−113</td>
</tr>
<tr>
<td>5-Jun-04</td>
<td>11-Jun-04</td>
<td>94</td>
<td>1.6</td>
<td>Daylight</td>
<td>Glass</td>
<td>0.54</td>
<td>−132</td>
</tr>
<tr>
<td>5-Jun-04</td>
<td>11-Jun-04</td>
<td>94</td>
<td>1.5</td>
<td>Daylight</td>
<td>Glass</td>
<td>0.59</td>
<td>−78</td>
</tr>
<tr>
<td>92</td>
<td>1.5</td>
<td>244</td>
<td>1.4</td>
<td>Xe arc lamp</td>
<td>Quartz</td>
<td>0.44</td>
<td>−12</td>
</tr>
<tr>
<td>10 3 mbar</td>
<td>Hg arc Lamp</td>
<td>0.98</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 3 mbar</td>
<td>Hg arc Lamp</td>
<td>0.97</td>
<td>−8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 3 mbar</td>
<td>Hg arc Lamp</td>
<td>1.00</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 3.3 mbar</td>
<td>Hg arc Lamp</td>
<td>0.95</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 3.3 mbar</td>
<td>Hg arc Lamp</td>
<td>0.99</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This is simply a sum of daylight hours calculated using astronomical parameters from the internet (http://aa.usno.navy.mil/data/docs/RS_OneDay.html).

** Initial mixing ratios of CH$_2$O in a reactor prior to photolysis. For the photolysis of pure CH$_2$O, unit of pressure is used.

(Hg) short arc lamp (HBO 103W/2, OSRAM). The photolysis of pure CH$_2$O produces not only CO and H$_2$ but also H and CHO radicals which further undergo self reactions and reaction with CH$_2$O, ending up with the production of CO and H$_2$ (e.g., Calvert, 1980). Thus, the final products of the photolysis are only CO and H$_2$. Isotopic mass balance requires that for complete conversion the product H$_2$ has the same isotopic composition as the parent CH$_2$O. Complete conversion of the CH$_2$O to CO and H$_2$ was confirmed by measuring the amount of H$_2$ produced and its isotopic composition. The deuterium content is as usual expressed as δD=($R_{SPL}/R_{STD}−1)$×1000 (‰), where R_{SPL} and R_{STD} represent the D/H of H$_2$ for sample and a reference material, respectively. For convenience, we express the δD values relative to the isotopic composition of the parent CH$_2$O.

3 Results

3.1 The yield of H$_2$ in the photolysis of CH$_2$O

As mentioned earlier, photolysis of CH$_2$O has one channel that produces CHO and H radicals (R1) and the other that produces CO and H$_2$ molecules (R2). The CHO radical reacts rapidly with O$_2$ in the air, also forming CO. Thus, the amount of CO produced should always be the same as that of CH$_2$O photolyzed, while the amount of H$_2$ produced represents the fraction of CH$_2$O that follows the molecular channel (R2). Thereby, the yield of the molecular channel in the photolysis of CH$_2$O, given as Φ(H$_2$), can be defined by the ratio of H$_2$ to CO.

However, a portion of the CH$_2$O in the reactor may react with the radicals, H, OH, and HO$_2$, as they are produced in the reactor during the photolysis. These reactions produce CO and formic acid (HCOOH). The reaction of
CH$_2$O with HO$_2$ produces the hydroxymethylperoxy radical (HOCH_{2}OO). This radical is so unstable that it immediately dissociates back to CH$_2$O. However, a fraction reacts with HO$_2$ or itself producing HCOOH (Burrows et al., 1989; Su et al., 1979; Veyret et al., 1989) (see Sect. 3.2 for details). In addition, CO and any HCOOH produced can react further with OH to form their oxidized products. These reactions may result in a deficit in the mass balance of CO if only photolysis of CH$_2$O is considered. Because of such a non-conservation of CO in the reactor, we did not attempt to measure the ratio of the mixing ratios of H$_2$ to CO for each photolysis run to obtain the value of Φ(H$_2$). But, we tracked the actual fraction of H$_2$ produced by photolysis of CH$_2$O, given as Ψ(H$_2$), which represents the ratio of the H$_2$ mixing ratio in the reactor to the initial CH$_2$O mixing ratio.

Figure 2 shows the evolution of Ψ(H$_2$) throughout the periods of photolysis for experiments conducted with different reactor materials or light sources. The period of photolysis is given as number of daylight hours disregarding any parameters that might influence the actual photolysis rates of CH$_2$O. For the short periods experiments (<12 h), Ψ(H$_2$) increases rapidly with the increase of photolysis time. At long periods of photolysis (>130 h), Ψ(H$_2$) converges toward an asymptotic value. By virtue of negligible production of H$_2$ (<10$^{-5}$ per CH$_2$O according to the model described below) through reactions other than the CH$_2$O photolysis and of little reactivity of H$_2$ in the reactor for the periods of the CH$_2$O photolysis, Ψ(H$_2$) approaches an asymptotic value as a function of time. This asymptotic value of Ψ(H$_2$) is equivalent to Φ(H$_2$) when CH$_2$O is destroyed only by photolysis.

For the photolysis periods from 50 to 100 h, the measurements are scattered. We suspect that this is due mostly to photolitical effects rather than analytical errors. In particular, changes in radiation occurring over the course of the experiments on the roof (e.g., cloudiness, albedo, solar zenith angle (SZA), light scattering due to aerosol content, etc.) may result in such different values. In addition, since the quantum yield of the molecular channel peaks at longer wavelengths compared to the radical channel (Moortgat et al., 1983), Ψ(H$_2$) increases with the increase of SZA. As an indirect support for this speculation, photolysis of CH$_2$O performed in the laboratory using Hg and Xe short arc lamps shows that the uncertainty of replicate runs is merely about 2% for the yield of H$_2$. Provided that the scatter is due to variabilities of the parameters that influence photolysis rate of CH$_2$O, we did not average the values of Ψ(H$_2$) for the same period of photolysis, but the individual values were used to determine the isotopic fractionation factors for the CH$_2$O photolysis.

The CH$_2$O photolysis experiments conducted with a Xe short arc lamp give an opportunity to qualitatively examine a relation between Φ(H$_2$) and the range of wavelengths by which CH$_2$O is photolysed. As a Xe short arc lamp emits photons within a broad range of wavelengths, the effective wavelength for the photolysis of CH$_2$O depends on the cut-off wavelength for transmission through quartz which extends down to \sim200 nm (see Fig. 1). This is shorter than the lower limit of solar wavelengths at the Earth’s surface.
3.2 A box model simulation of CH$_2$O photolysis

To examine the actual photochemistry in the reactor, we constructed a 1-box model composed of 33 photochemical reactions, including photolysis of CH$_2$O and H$_2$O$_2$ as well as formation of HCOOH (see Appendix A). The model was run under conditions of standard ambient temperature (25°C) and pressure (105 Pa) with the other boundary conditions from the results from the Tropospheric Ultraviolet and Visible (TUV) radiation model (http://cprm.acd.ucar.edu/Models/TUV). As shown in Fig. 3, the TUV radiation model predicts that the values of Φ(H$_2$) range from 0.6 to 0.76 in Mainz. Since SZA at local noon during the experiments were between 27° and 48°, daily averaged photolysis-weighted mean values of Φ(H$_2$) would be 0.64 to 0.66, which correspond to total CH$_2$O photolysis rates for both channels ($J_{\text{CH}_2\text{O}}$) of 2.4×10$^{-5}$ to 3.8×10$^{-5}$ s$^{-1}$. For the same range of SZA, the ratio of the photolysis rates of H$_2$O$_2$
The time evolutions of $\Psi(H_2)$ were predicted by applying the values of $\Phi(H_2)$, J_{CH_2O}, and J_{H_2O} from the TUV radiation model described above to the 1-box model (Fig. 2). The results appear comparable to the measurements for photolysis periods of <12 h. However, there are substantial differences between the measurements and the model predictions at longer photolysis periods. In particular, the asymptotic value of the measurements differs from the model predictions when the most likely values of parameters under photochemical conditions in Mainz, Germany, are applied (solid and dashed lines in Fig. 2). As shown in Fig. 4b, ~10% of CH$_2$O is destroyed by the reactions with radicals. This leads to the lower asymptote of $\Psi(H_2)$ than the value of $\Phi(H_2)$ obtained from the TUV radiation model because this asymptotic value of $\Psi(H_2)$ is smaller than $\Phi(H_2)$ by a factor corresponding to the fraction of CH$_2$O photolyzed. In order to reproduce the asymptote of $\Psi(H_2)$ from the measurements in the model, a value of $\Phi(H_2)<0.74$ is necessary, the value that the TUV radiation model predicts when SZA is near 85° in the location of Mainz. This SZA is larger than the weighted-mean value of 63° predicted by the model. This discrepancy could be associated with feeding the parameters relevant to photochemical reactions in the model without accounting for their variation along the change in radiation as mentioned above.

3.3 Isotope effect of the CH$_2$O photolysis to the molecular channel

Figure 5 shows the variation of the δD value of H$_2$ (δD-H$_2$) as a function of $\Psi(H_2)$. As the isotope ratios are normalized with respect to the δD value of the initial CH$_2$O, a δD-H$_2$ value of zero means that the isotope ratio of the H$_2$ in sample air is the same as that for the initial CH$_2$O. The air samples whose values of $\Psi(H_2)$ approach the asymptotic values at long photolysis times for both the sunlight and Xe short arc lamp experiments show near-zero values of δD-H$_2$. This indicates that complete photochemical decomposition of CH$_2$O yields H$_2$ that has the same isotope ratios as the initial CH$_2$O. This observation and the evolution of δD-H$_2$ as a function of $\Psi(H_2)$ give us crucial information to aid in determining the hydrogen isotopic fractionation processes occurring in (R1) and (R2) as follows.

According to the results from the 1-box model described in Sect. 3.2, most of the CH$_2$O in the reactor is broken down by photolysis (>90%) with the remainder being destroyed mostly by reaction with OH (<8%) while HO$_2$ and H radicals play only a minor role (<2%) (see Fig. 4b). The rate of change of the CH$_2$O mixing ratio in the reactor can thus be described as:

$$\frac{d [CH_2O]}{dt} = -(J + K) [CH_2O] \quad (1)$$

where J is the sum of photolysis rates of (R1) (i.e., j_j) and (R2) (i.e., j_m) and K is the sum of the products of the relevant

![Fig. 5. Evolution of δD-H$_2$ as a function of the fraction of H$_2$ produced by photolysis of CH$_2$O. Symbol keys are the same as in Fig. 2 except the gray circle designating the mean value for photolysis of pure CH$_2$O using a Hg short arc lamp. Several model sensitivity runs are shown with solid lines. Yellow shading indicates potential isotopic fractionation events for various ranges of $\Phi(H_2)$ for the location of Mainz, and cyan shading represents the isotopic fractionation evolutions using the daily-mean value of $\Phi(H_2)$ during the experiments according to the TUV radiation model described in Fig. 3. For the short duration experiments, we assumed that the initial mixing ratio of CH$_2$O in the 1-box model was 50 ppm, represented by magenta shading. When calculating the evolution of δD-H$_2$ using the 1-box model, we constrain the model such that the values of α_m and α_K (see text) are always 0.50 and 0.78, respectively, and that the complete photolysis of CH$_2$O yields H$_2$ with a δD value that is the same as that of the initial CH$_2$O. For comparison, the evolutions of δD-H$_2$ using the isotopic fractionation factors determined by Feilberg et al. (2007b) is shown as red solid line on the premise that the values of other parameters are the same as those in the present study (see Appendix A).](image-url)
photochemical reaction rate coefficients \((k_i) \) and radical concentrations \((X_i) \) as follows.

\[
J = j_m + j_r
\]
\[
K = \sum_i k_i [X_i]
\]

In the same way, for the next abundant isotopologue, CHDO, one obtains:

\[
d\frac{[\text{CHDO}]}{dt} = -(J' + K') [\text{CHDO}]
\]

where \(J' \) and \(K' \) indicate the sums of the photolysis rates and the photochemical reaction rates for CHDO, respectively.

In terms of non-equilibrium kinetics, the isotopic fractionation factor is represented as the kinetic isotope effect (or simply isotope effect), which is expressed by the ratio of reaction rates for the different isotopologues, one of which has a rare isotope substituted for the common one (Melander and Saunders, 1980). We define here the isotopic fractionation factor as the ratio of photolysis rates or photolysis rates of an isotopologue which has a single deuterium substituent for the common one (Melander and Saunders, 1980). We define here the isotopic fractionation factor for CHDO, \(\alpha_m \), as:

\[
\alpha_m = \frac{j_m}{j_i}
\]

Hence, \(J' \) and \(K' \) in Eq. (4) have the following relationship with the corresponding rates for CH2O by means of isotopic fractionation factor, \(\alpha_i \).

\[
J' = j_r' + j_m' = \alpha_r j_r + \alpha_m j_m
\]

\[
K' = \sum_i k_i' [X_i]
\]

\[
= \sum_i \alpha_i k_i [X_i]
\]

\[
= \alpha_K K
\]

By definition, the isotopic fractionation factor for CH2O, \(\alpha_f \), is

\[
\alpha_f = \frac{J' + K'}{J + K}
\]

\[
= \alpha_r + \frac{j_r}{J + K} + \alpha_m \frac{j_m}{J + K} + \alpha_K \frac{K}{J + K}
\]

(8a)

In Eq. (8a), the ratio of \(j_m \) to \(J \) represents the yield of \(H_2 \) from photolysis of CH2O (\(\Phi(H_2) \)), and the ratio \(J/(J+K) \) is the fraction of CH2O that is photolyzed. Designating the latter as \(\Gamma \), \(\alpha_f \) can be rewritten as

\[
\alpha_f = \alpha_r (1 - \Phi) + \alpha_m \Phi \Gamma + \alpha_K (1 - \Gamma)
\]

(8b)

Or simply,

\[
\alpha_f = \alpha_{hv} \Gamma + \alpha_K (1 - \Gamma)
\]

(8c)

where \(\alpha_{hv} \) represents the isotopic fractionation factor for photolysis of CH2O. Since the amount of radicals produced along the experiments is not constant, \(\Gamma \) is not a constant but varies as a function of time. In addition, strictly speaking, \(\Phi(H_2) \) varied during the sunlight experiments as did SZA (Fig. 3b). Accordingly \(\alpha_f \) is changing along with the CH2O photolysis and photochemical reactions. Nevertheless, assuming that \(\alpha_f \) is constant gives a convenient way to determine the isotopic fractionation factor for the production of \(H_2, \alpha_m \).

Integrating Eqs. (1) and (4) and then dividing [CHDO] by [CH2O] leads to the well-known Rayleigh equation (Rayleigh, 1902):

\[
\frac{R_Q}{R_o} = f^{\alpha_f - 1}
\]

(9)

where \(R_o \) is the isotope ratio of the initial CH2O, \(R_Q \) is that for the remaining CH2O along the course of experiment, and \(f \) the fraction of the remaining CH2O. Thus, the isotope ratio of the products \((R_p) \) as a function of CH2O photochemical destruction can be obtained by mass balance:

\[
\frac{R_p}{R_o} = \frac{1 - f^{\alpha_f}}{1 - f}
\]

(10)

Actually \(R_p \) is the sum of the isotope ratios of the products formed by CH2O photolysis and its photochemical reactions with radicals. The isotope ratio of the \(H_2, \alpha_m \), which is produced from CH2O photolysis to the molecular channel, can be derived from the following derivatives:

\[
\frac{d [H_2]}{dt} = j_m [CH_2O]
\]

(11)

and

\[
\frac{d [HD]}{dt} = j_m' [CHDO]
\]

(12)

Solving Eqs. (11) and (12) with inserting the solutions of Eqs. (1) and (4), respectively, and the definition of \(\alpha_m \) in Eq. (5), \(R_m \) has the following relation with \(R_o \):

\[
\frac{R_m}{R_o} = \frac{\alpha_m}{\alpha_f} \times \frac{1 - f^{\alpha_f}}{1 - f}
\]

(13)

By dividing (13) by (10), the ratio of the isotope ratios of \(H_2 (R_m) \) and all products from CH2O photochemistry \((R_p) \) is the same as the ratios of their isotopic fractionation factors:

\[
\frac{R_m}{R_p} = \frac{\alpha_m}{\alpha_f}
\]

(14)

Similar expressions can be derived for the radical channel of CH2O photolysis (15) and for the photochemical reactions (16):

\[
\frac{R_r}{R_p} = \frac{\alpha_r}{\alpha_f}
\]

(15)
Table 2. Sensitivity test of the α_f at a given range of the parameters.

<table>
<thead>
<tr>
<th></th>
<th>Prescribed value (Z_i)</th>
<th>Uncertainty of parameter (ΔZ_i)</th>
<th>Sensitivity $(\Delta m/\Delta Z_i)$</th>
<th>Uncertainty of α_f $(\Delta \alpha_f)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>($[\text{CH}_2\text{O}]_0$ (ppm))</td>
<td>1</td>
<td>±1</td>
<td>0.0027*</td>
<td>±0.003</td>
</tr>
<tr>
<td>$J_{\text{CH}_2\text{O}}$ (s⁻¹)</td>
<td>3.143×10^{-5}</td>
<td>$+4.53 \times 10^{-5}$</td>
<td>0.0026*</td>
<td>±0.004</td>
</tr>
<tr>
<td>Φ(H₂)</td>
<td>0.647</td>
<td>±0.039</td>
<td>-0.476</td>
<td>±0.019</td>
</tr>
<tr>
<td>$J_{\text{H}_2\text{O}2}/J{\text{CH}_2\text{O}}$</td>
<td>0.0896</td>
<td>±0.0036</td>
<td>-2.48</td>
<td>±0.009</td>
</tr>
<tr>
<td>α_{OH} for CH₂O+H</td>
<td>0.781</td>
<td>±0.25</td>
<td>~0</td>
<td>~0</td>
</tr>
<tr>
<td>α_{OH} for CH₂O+OH</td>
<td>0.781</td>
<td>±0.0061</td>
<td>-0.45</td>
<td>±0.003</td>
</tr>
<tr>
<td>α_{HO_2}, for CH₂O+HO₂</td>
<td>0.781</td>
<td>±0.25</td>
<td>-0.036</td>
<td>±0.009</td>
</tr>
<tr>
<td>δD-H₂ of final product (‰)</td>
<td>0</td>
<td>±40</td>
<td>-0.0019</td>
<td>±0.076</td>
</tr>
<tr>
<td>Sum**</td>
<td></td>
<td></td>
<td>0.079</td>
<td></td>
</tr>
</tbody>
</table>

* Sensitivity is calculated by the ratio of a parameter to the prescribed value.
** Quadratic sum of errors.

\[
\frac{R_K}{R_p} = \frac{\alpha_K}{\alpha_f} \quad (16)
\]

From the relations of Eqs. (14), (15), and (16), it is immediately recognized that R_p is the weighted sum of the isotope ratios of the products from two channels of CH₂O photolysis and its photochemical reactions, similar to the isotopic fractionation factor of CH₂O in Eq. (8b).

\[
R_p = R_f (1 - \Phi) \Gamma + R_m \Phi \Gamma + R_K (1 - \Gamma) \quad (17)
\]

Since we measured the evolution of R_m with Ψ(H₂), α_m can be determined from Eq. (13). As f approaches 1 (thus, Ψ(H₂) goes to zero), R_m/R_p in Eq. (13) becomes the value of α_m, which is in turn represented by the value of δD-H₂ as follows:

\[
\delta$D-H₂ = (\alpha_m - 1) \times 1000 \text{ (‰)} \quad (18)
\]

Accordingly, the intercept in Fig. 5 (Ψ(H₂)=0) represents the value of α_m (=0.50(±0.02)) and indicates that H₂ produced by photolysis of CH₂O is 500(±20)% depleted with respect to the initial CH₂O. Since the experiments for the photolysis of CH₂O for short periods were conducted with high CH₂O mixing ratios of 50 ppm, a similar amount of initial CH₂O, was applied in the 1-box model to determine the value of α_m. Its uncertainty, 0.02, was determined such that all measurements for the short periods experiments are predicted by the 1-box model within the range of errors (see Fig. 5). The assumption that α_f is constant should be valid during the initial stage of photolysis of CH₂O because the amounts of radicals, in particular the OH radical, produced are too small to affect α_f (see Fig. 4b). Even if α_f were not constant, it would not interfere with the determination of α_m because the α_f’s in Eq. (13) cancel for f approaching 1.

3.4 Isotope effect of CH₂O photolysis to the radical channel

Provided that complete photolysis of CH₂O yields H₂ that has the same isotope ratio as that of the initial CH₂O (Fig. 5), we can also determine the isotopic fractionation factor, α_f, which governs the isotopic fractionation occurring in (R1). However, in this case the Rayleigh model cannot be applied because the value of α_f varies with time due to changes in the amounts of radicals (see below). We ran a photochemical 1-box model instead, which consists of the 33 reactions mentioned in Sect. 3.2 as well as critical reactions of CHDO and HD to determine α_f as follows:

- CHDO + $h\nu$ → products \hspace{1cm} (R1a)
- CHDO + $h\nu$ → CO + HD \hspace{1cm} (R2a)
- CHDO + OH → products \hspace{1cm} (R3a)
- CHDO + H → products \hspace{1cm} (R4a)
- CHDO + HO₂ → HOCHDOO \hspace{1cm} (R5a)
- HD + OH → products \hspace{1cm} (R6a)
- HOCHDOO → CHDO + HO₂ \hspace{1cm} (R27a)
- HOCHDOO + HO₂ → products \hspace{1cm} (R28a)

In Fig. 5 several model runs under different conditions are plotted. As an ideal case, we assume that CH₂O is destroyed exclusively by photolysis. Since in this scenario α_f is constant as the reaction proceeds, the Rayleigh model can be applied to determine α_f. In Eq. (13), as f approaches 0, the ratio of R_m to R_p becomes the ratio of α_m to α_f, which is represented by the value of δD-H₂ at the end of photolysis. As the values of δD-H₂ converge at zero, $\alpha_f=\alpha_m$ and thus $\alpha_m=\alpha_f$.
Table 3. Comparison of the isotope effects determined from CH$_2$O photolysis experiments.

<table>
<thead>
<tr>
<th>Source</th>
<th>Minor isotoologue</th>
<th>α_m</th>
<th>α_f</th>
<th>α_{OH}</th>
<th>Φ(H$_2$)</th>
<th>Φ(H)</th>
<th>α_{H_2}</th>
<th>α_f</th>
<th>α_{H_2}/α_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>This study</td>
<td>[CHDO]</td>
<td>0.96 (±0.02)</td>
<td>0.22 (±0.08)</td>
<td>0.79 (±0.006)</td>
<td>0.65 (±0.04)</td>
<td>0.69 (±0.28)</td>
<td>0.40 (±0.03)</td>
<td>0.51 (±0.11)</td>
<td>0.97 (±0.21)</td>
</tr>
<tr>
<td>Feilberg et al. (2007b)</td>
<td>[CHDO]</td>
<td>0.55 (±0.02)</td>
<td>0.91 (±0.05)</td>
<td>0.78 (±0.006)</td>
<td>0.77 (±0.06)</td>
<td>0.69 (±0.28)</td>
<td>0.63 (±0.01)</td>
<td>0.68 (±0.04)</td>
<td>0.81 (±0.06)</td>
</tr>
<tr>
<td>Crounse et al. (2003)</td>
<td>[CHDO]</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feilberg et al. (2007a)</td>
<td>[CD$_2$O]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.333 (±0.056)</td>
</tr>
</tbody>
</table>

* Kinetic isotope effect for CH$_2$O + OH from Feilberg et al. (2004).
** The value is calculated for the Mainz conditions for the periods of experiments.
*** The value was calculated by the relation $\alpha_m = \alpha_{OH} \times \Phi(H_2) + \alpha_f \times (1 - \Phi(H_2))$.

according to the relation in Eq. (8b) since $\Gamma=1$. This scenario is, however, unlikely considering the substantial production of radicals via the radical channel (R1), which may in turn react with CH$_2$O in the reactor as described above. Introduction of the reactions of H and/or HO$_2$ with both CH$_2$O and CHDO with and without kinetic isotope effect do not significantly change the evolution of δD-H$_2$ compared to the ideal scenario that only accounts for CH$_2$O photolysis. However, it is apparent that the reaction of OH and CH$_2$O is critical for determination of α_f, as the δD-H$_2$ value for the final product of H$_2$ reaches only \sim−170‰. Taking the kinetic isotope effect for the reaction of CH$_2$O with OH radicals into account increases the δD-H$_2$ value for the final product a little to \sim−130‰. Applying the kinetic isotope effect for the reaction of HD with OH does not improve the model to simulate the measurements because of too slow reaction rate of H$_2$+OH. However, decreasing the value of α_f from 0.50 to 0.22 (thus larger isotope effect) makes it possible to reach the δD-H$_2$ value of the final H$_2$ to zero and significantly improves the predicted evolution of δD-H$_2$ compared to the measurements. Therefore, provided that the TUV radiation model and the reaction rates applied in the 1-box model are correct, our best estimate of α_f is 0.22 and the total isotopic fractionation factor of CH$_2$O due to photolysis (α_{H_2}) results in 0.40 for $\Phi(H_2)$=0.647, the yield of H$_2$ which is the best estimate from the TUV radiation model for the average conditions of Mainz at the times of the experiments (see Fig. 3).

As the value of α_f in the present study is not determined directly by measurement, but is based on model calculations, we conducted sensitivity runs to estimate the uncertainty of α_f by varying the values of the various parameters used in the 1-box model. These parameters are the mixing ratio of CH$_2$O in the reactor, Φ(H$_2$), photolysis rates of CH$_2$O and H$_2$O$_2$, kinetic isotope effects for the reaction of CHDO with the radicals, and the uncertainty of δD-H$_2$ for the final product (Table 2). Among them α_f is the most sensitive to the ratio of the photolysis rate of H$_2$O$_2$ to that for CH$_2$O because large production of OH by photolysis of H$_2$O$_2$ leads to the increase of the fraction of CH$_2$O that reacts with OH in the reactor, which in turn lowers the value of α_f to compensate for it (see Eq. 8b). The same effect can be caused by the variation of α_{OH} for CH$_2$O+OH and by Φ(H$_2$). Sensitivity runs for the potential error in the δD-H$_2$ value of the final product shows the largest impact to α_f, among the parameters because of its large potential error of 40‰, which includes the uncertainty of the δD value of the original CH$_2$O (=4‰). Overall most of the uncertainty for α_f originates from the uncertainties in Φ(H$_2$) and the δD-H$_2$ of the final products. The quadratic sum of the errors incurred by these parameters amounts to 0.08.

4 Discussions

4.1 Comparison with previous research

To our knowledge three experiments have been done in sunlight to determine the isotopic fractionation factor for formaldehyde photolysis (Table 3): One experiment investigated the isotopic fractionation of CH$_2$O itself by measuring time evolution of the amount of isotopologues, CH$_2$O and CD$_2$O using an optical method (Feilberg et al., 2007a; Feilberg et al., 2005), another experiment examined the same isotopic fractionation but for CH$_2$O and CHDO using the same technique and the D/H ratio of H$_2$ produced by mass spectrometry (Feilberg et al., 2007b), and the other measured the D/H ratio of H$_2$ produced from the photolysis of CH$_2$O which is reported in a conference proceeding abstract (Crounse et al., 2003). In the latter study a similar procedure as in the present study was apparently applied. However, the lack of details of the experiment, in particular the fraction of H$_2$ (Ψ(H$_2$)) and the δD value of the original CH$_2$O used for the photolysis experiments, both of which are critical to determine α_m, makes it difficult to infer α_m from this single value of δD. The authors reported that the photolysis of CH$_2$O produces isotopically light H$_2$, the δD value of which is \sim−200‰. If the authors meant the value to be the degree of enrichment of the H$_2$ produced, α_m is \sim0.8, which is far larger (so less isotopically fractionated) than what we obtained in this study.

In the case of Feilberg et al. (2005)’s experiments, the ratio of photolysis rate of the two isotopologues, J_{CD_2O}/J_{CH_2O}, was determined as 0.333 (±0.056) (Feilberg et al., 2007a) using an optical technique. This value is smaller than the value for J_{CHDO}/J_{CH_2O} (=0.40±0.03) determined in the present study as expected from the assumption.
that double-deuterated formaldehyde is more stable than the single-deuterated one due to zero point energy difference.

Recent work reported by the same group (Feilberg et al., 2007b) has a particular interest as the goal of the experiment is the same as the present study, but approaches it in a different way. In this experiment, the authors determined the values of \(\alpha_m \) and \(\alpha_{hv} \) as 0.55(±0.02) and 0.63(±0.01), respectively. The value of \(\alpha_m \) is similar to, while that for \(\alpha_{hv} \) is far larger than, the values determined in the present study. Actually the large discrepancy of \(\alpha_{hv} \) points to a much larger difference in the value of \(\alpha_r \) between Feilberg et al. (2007b) and the present study: 0.91(±0.05) versus 0.22(±0.08). Unlike the previous work (Feilberg et al., 2005), Feilberg et al. (2007b) took into account the CH\(_2\)O production in the chamber of the facility in determination of \(\alpha_{hv} \) in addition to leakage of the experimental chamber. Notwithstanding, there is still such a large discrepancy in the isotopic fractionation factors of CH\(_2\)O between the two studies. Besides the discrepancy in the magnitude of \(\alpha_r \), an interesting result of Feilberg et al. (2007b) is that the degree of the isotopic fractionation in CH\(_2\)O photolysis is larger than that for the radical channel, being opposite to the experimental results that the isotopic compositions of the product of several factors that are associated with photochemical chain reactions from CH\(_4\) to H\(_2\). These factors include: (1) isotopic fractionation occurring during the reaction of CH\(_4\) with OH (\(\alpha_{CH4} \)), the rate-determining step of the photochemical chain reactions of CH\(_4\), as well as the subsequent isotopic fractionation processes occurring along the way to CH\(_2\)O (\(\alpha_{CH2} \)), (2) the branching ratios in the reactions of deuterated species, e.g., CH\(_3\)D, CH\(_2\)DOOH, and CH\(_2\)DO, (3) the factor of 2 brought up by the reduction of the number of hydrogen atoms from CH\(_4\) to CH\(_2\)O, and finally (4) isotopic fractionation occurring during the photolytical production of H\(_2\) from CH\(_2\)O. Assuming that CH\(_2\)O is in a photochemical steady state, as it has a far shorter chemical lifetime than CH\(_4\) and H\(_2\), point (4) is represented by the ratio of the isotopic fractionation factor of the H\(_2\) produced (\(\alpha_m \)) to that for CH\(_2\)O (\(\alpha_f \)), which determines the degree of D enrichment of H\(_2\) (Rhee et al., 2006a). Note that \(\alpha_f \) differs from \(\alpha_{hv} \) by the effect of isotopic fractionation arising from reaction with OH radical (\(\alpha_{OH} \)) in the troposphere. Combining all these factors yields:

\[
\alpha_{CH4-H2} = 2 \times \alpha_{CH4} \times \beta_{CH4} \times \alpha_{CH2} \times \beta_{p} \times \frac{\alpha_{m}}{\alpha_{f}}
\]

(20)

where \(\beta_{CH4} \) is the branching ratio for the deuterated product, CH\(_3\)D, in the reaction of CH\(_3\)D and OH, and \(\beta_{p} \) is a combined branching ratio for other short-lived intermediates, CH\(_2\)DOOH, and CH\(_2\)DO.

Regarding the right-hand side of Eq. (20), the value of \(\alpha_{CH4} \) is 0.78(±0.07) at 298 K (Gierczak et al., 1997) and decreases with the decrease of temperature, that for \(\beta_{CH4} \) is at most unity but most likely is less than unity as Gerst and Quay (2001) speculated, and the same is expected for \(\beta_{p} \). In the subsequent reactions, there is no compelling rationale that the more deuterated isotopologues react faster than the lighter ones considering the theoretical view of lower
zero point energy for the isotopically heavier isopropylene. Thus, the value of σ_f may not be larger than unity. The last two parameters in Eq. (20), α_f and α_m, are what we are concerned with here: since α_f is a combined isotopic fractionation factor due to photolysis and photochemical reactions of CH$_2$O by the fraction of the reaction routes as shown in Eqs. (8), the value is the weighted mean of the isotopic fractionation factors involved in the reactions. As listed in Table 3 under the radiation conditions of Mainz, the best values of α_m and α_f were estimated as 0.50(\pm0.02) and 0.22(\pm0.08), respectively, from the present study. Feilberg et al. (2004) determined the value of α_{OH} as 0.781(\pm0.006). The optimal values of Φ(H$_2$) and Γ in Mainz were calculated as 0.647(\pm0.039) and 0.69(\pm0.28), respectively, for the periods of experiments using the TUV radiation model at a weighted mean SZA of 62.7° (see Fig. 3). In order to determine Γ, we calculated OH radical concentrations and their uncertainties from the relationship between the photolysis rate of O$_3$ (J(O1D)) and OH concentration by Rohrer and Berresheim (2006) (i.e., $[OH]=2.4 \times J$(O1D)+0.13 and $\sigma=0.07 \times 10^6+0.33 \times [OH]$). By inserting these values into Eq. (8b) the resulting value for α_f is 0.51(\pm0.11). Most of its uncertainty is carried over from the uncertainty of OH. The resulting ratio of α_m/α_f (≈0.97(\pm0.21)) is slightly lower than unity, but because of its large uncertainty, arising from the uncertainty of the OH concentration, it is not possible to predict with certainty whether the CH$_2$O photolysis leads to a depletion or enrichment of D in the H$_2$ produced with respect to the parent CH$_2$O. When using the values of isotopic fractionation factors determined by Feilberg et al. (2007b), the CH$_2$O photolysis leads to the depletion of D in the H$_2$, however, even taking into account the uncertainty of α_m/α_f (see Table 3).

We extend the calculation of the ratio of α_m/α_f to a range of values of Φ(H$_2$) and Γ, assuming that the values of α_m, α_f, and α_{OH} determined from the present study and Feilberg et al. (2004) are applicable to the entire troposphere. The potential ranges of Φ(H$_2$) for the troposphere were estimated using the TUV radiation model with varying SZA at the altitudes of the US standard atmosphere. In order to estimate Γ for the troposphere, it is necessary to know the reaction rate of CH$_2$O+OH at a given time and place. The reaction rate coefficient varies by \sim15% in the troposphere due to change in temperature, while the OH concentration varies in the order of magnitude with its peak occurring at local noon. The peak values are well above 107 molecules cm$^{-3}$ (e.g., Berresheim et al., 2003), leading to Γ \sim0.45. Thus, the range of Γ is likely to be between 0.4 and 1 in the troposphere. As shown in Fig. 6, the ratios of α_m/α_f vary from \sim0.8 to \sim1.2, which suggests that, depending on the values of Φ and Γ(H$_2$) in the troposphere, the H$_2$ produced from the CH$_2$O photolysis could be either enriched or depleted in D. For instance, at the Earth’s surface the values of α_m/α_f along the track of the sun are likely to be lower than unity, thus yielding the depleted H$_2$ in D with respect to the parent CH$_2$O.

Finally, we examine the range of α_m/α_f that can be recognized with the values of α_{CH_4} inferred for tropospheric conditions. In the literature it is reported that α_{CH_4} would be between 1.2 and 1.3 in the troposphere (Gerst and Quay, 2001; Price et al., 2007; Rhee et al., 2006a). According to Gierczak et al. (1997), the value of α_{CH_4} at the tropospheric mean temperature of 272 K is 0.77(\pm0.08). Inserting these values into Eq. (20), the lower bound for α_m/α_f will be \sim0.8 when the branching ratio for deuterated compounds (β_{CH_4} and β_p) and σ_f are unity. When the values proposed by Gerst and Quay (2001) are applied (i.e., $\beta_{CH_4}\times\alpha_{CH_4}\times\beta_p=0.96\times0.77\times0.96$, α_m/α_f is 1.15. These two values of α_m/α_f bound the range which was estimated for the typical values of Γ and Φ(H$_2$) in the troposphere (Fig. 6). This suggests that even if α_m/α_f is smaller than unity it is still possible that H$_2$ formed from the photochemical oxidation of CH$_4$ is enriched in D with respect to the original CH$_4$ due to the factor of 2 that arises from the reduction of the number of hydrogen atom. Recent laboratory experiment (Nilsson et al., 2007) reports the branching ratio for CH$_2$DO reacting with O$_2$ to be 0.88(\pm0.01), suggesting β_p to be lower than unity and that α_m/α_f is likely to be larger than unity.

5 Conclusions

CH$_2$O photolysis experiments conducted in sunlight under ambient conditions allowed us to determine the isotopic fractionation factors for both the radical (R1) and molecular (R2) channels. The H$_2$ produced is depleted in D by 500(\pm20)$\%_{oo}$ with respect to the initial CH$_2$O. The radical channel (R1)
appears to have a much stronger isotopic fractionation than the molecular channel (R2), resulting in D enrichment of the remaining CH₂O by 780(±80)‰. This isotope effect is significantly larger than the result obtained from the experiments in the EUPHORE reaction chamber by Feilberg et al. (2007b), a difference we do not understand at present.

Applying the isotopic fractionation factors obtained from the present study to the conditions of Mainz, CH₂O photolysis may produce the H₂ that is slightly depleted in D. However, the large uncertainty in the combined isotope effects of the photochemical reactions of CH₂O, which primarily originates from the uncertainty of OH concentration, makes it impossible to precisely define the role of CH₂O photolysis in the D enrichment of H₂. In the troposphere, CH₂O photolysis may produce the H₂ either enriched or depleted in D with respect to the parent CH₂O depending on the fraction of CH₂O that reacts with OH or that is photolyzed to H₂. Nonetheless, our estimated range of α CH₂O/CH₃OH (~0.8 to ~1.2) in the troposphere can be reconciled with the production of H₂ enriched in D with respect to the original CH₄ by the factor reported in the literature.

Appendix A

1-box photochemistry model

The 1-box model is composed of 33 reactions (Table A1) running at 25°C and 10⁵ Pa of air which is composed of 78% of N₂ and 22% of O₂. Unless otherwise mentioned, the yield of H₂ in the photolysis of CH₂O and the ratio of J_H₂O/J_CH₂O are assumed to be 0.647 and 0.0896, respectively, following the result from the TUV radiation model in Mainz.

Acknowledgements

We gratefully acknowledge support of this research from the Max Planck Society. We thank J. Crowley for advice concerning photochemistry and his suggestion to conduct a simple experiment and K. Boering for useful comments to the earlier version. T. S. R. thanks Korea Meteorological Administration Research and Development Program under Grant CATER 2007-4405 and Korea Polar Research Program under Grant PE08030 for research support.

Edited by: J. N. Crowley

Table A1. Photochemical reactions in the model.

<table>
<thead>
<tr>
<th>No.*</th>
<th>Reaction</th>
<th>Rate coefficient**</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R1)</td>
<td>CH₂O + hv → CHO + H</td>
<td>1.109E-5</td>
<td>1</td>
</tr>
<tr>
<td>(R2)</td>
<td>CH₂O + hv → CO + H₂</td>
<td>2.033E-5</td>
<td>1</td>
</tr>
<tr>
<td>(R3)</td>
<td>CH₂O + OH → CHO + H₂O</td>
<td>8.6E-12×exp(166/RT)</td>
<td>2</td>
</tr>
<tr>
<td>(R3')</td>
<td>CH₂O + OH → HCOOH + H</td>
<td>2.01E-13</td>
<td>9</td>
</tr>
<tr>
<td>(R4)</td>
<td>CH₂O + H → CHO + H₂</td>
<td>2.14E-12×exp(-9063/RT)×(T/298)¹</td>
<td>62</td>
</tr>
<tr>
<td>(R5)</td>
<td>CH₂O + HO₂ → HCO₂OO</td>
<td>6.71E-15×exp(4989/RT)</td>
<td>3</td>
</tr>
<tr>
<td>(R6)</td>
<td>H₂ + OH → H₂O + H</td>
<td>5.5E-12×exp(-16629/RT)</td>
<td>3</td>
</tr>
<tr>
<td>(R7)</td>
<td>H₂O₂ + hv → 2OH</td>
<td>2.816E-6</td>
<td>1</td>
</tr>
<tr>
<td>(R8)</td>
<td>O₂ + CHO → CO + HO₂</td>
<td>3.5E-12×exp(1164/RT)</td>
<td>3</td>
</tr>
<tr>
<td>(R9)</td>
<td>CHO + CHO → CH₂O + CO</td>
<td>5.0E-11</td>
<td>4</td>
</tr>
<tr>
<td>(R9')</td>
<td>CHO + CHO → (CHO)₂</td>
<td>5.0E-11</td>
<td>5</td>
</tr>
<tr>
<td>(R10)</td>
<td>CHO + H → CO + H₂</td>
<td>1.13E-10</td>
<td>6</td>
</tr>
<tr>
<td>(R11)</td>
<td>CHO + OH → CO + H₂O</td>
<td>1.69E-10</td>
<td>4</td>
</tr>
<tr>
<td>(R12)</td>
<td>CHO + HO₂ → product</td>
<td>5.0E-11</td>
<td>4</td>
</tr>
<tr>
<td>(R13)</td>
<td>H₂O + CHO → CH₃O + OH</td>
<td>8.54E-13×exp(-108920/RT)</td>
<td>7</td>
</tr>
<tr>
<td>(R14)</td>
<td>H₂O₂ + CHO → CH₂O + HO₂</td>
<td>1.69E-13×exp(-29018/RT)</td>
<td>7</td>
</tr>
<tr>
<td>(R15)</td>
<td>O₂ + H → HO₂</td>
<td>M×5.71E-32×(T/298)⁻¹</td>
<td>16</td>
</tr>
<tr>
<td>(R16)</td>
<td>H + H → H₂</td>
<td>M×8.85E-33×(T/298)⁻⁰.⁶</td>
<td>4</td>
</tr>
<tr>
<td>(R17)</td>
<td>OH + H₂O → H₂O₂</td>
<td>M×4.38E-30×(T/298)⁻²</td>
<td>4</td>
</tr>
<tr>
<td>(R18)</td>
<td>(CHO)₂ + OH → product</td>
<td>1.1E-11</td>
<td>2</td>
</tr>
<tr>
<td>(R19)</td>
<td>HCOOH + OH → product</td>
<td>4.0E-13</td>
<td>3</td>
</tr>
<tr>
<td>(R20)</td>
<td>CO + OH → CO₂ + H</td>
<td>1.5E-13×(1+0.6×P/1013.25)</td>
<td>3</td>
</tr>
<tr>
<td>(R21)</td>
<td>CO + HO₂ → CO₂ + OH</td>
<td>5.96E-11×exp(-95616/RT)×(T/298)⁰.⁵</td>
<td>10</td>
</tr>
<tr>
<td>(R22)</td>
<td>OH + OH → H₂O₂</td>
<td>M×6.20E-31×(T/298)⁻¹</td>
<td>3</td>
</tr>
<tr>
<td>(R23)</td>
<td>HO₂ + H → product</td>
<td>8.10E⁻¹¹</td>
<td>3</td>
</tr>
<tr>
<td>(R24)</td>
<td>HO₂ + OH → H₂O₂ + O₂</td>
<td>4.8E⁻¹¹×exp(2079/RT)</td>
<td>3</td>
</tr>
<tr>
<td>(R25)</td>
<td>HO₂ + HO₂ → H₂O₂ + O₂</td>
<td>M×1.7E⁻³³×exp(8314/RT)</td>
<td>3</td>
</tr>
<tr>
<td>(R26)</td>
<td>H₂O + HO₂ → H₂O₂ + H₂O</td>
<td>2.91E⁻¹²×exp(-1330/RT)</td>
<td>3</td>
</tr>
<tr>
<td>(R27)</td>
<td>HOCH₂OO → HO₂ + CH₂O</td>
<td>2.4E⁻¹²×exp(-58201/RT)</td>
<td>2</td>
</tr>
<tr>
<td>(R28)</td>
<td>HOCH₂OO + HO₂ → HCOOH + H₂O + O₂</td>
<td>5.6E⁻¹⁵×exp(19123/RT)</td>
<td>2</td>
</tr>
<tr>
<td>(R29)</td>
<td>2HOCH₂OO → 2HOCH₂O + O₂</td>
<td>5.5E⁻¹²</td>
<td>11</td>
</tr>
<tr>
<td>(R29')</td>
<td>2HOCH₂OO → HCOOH + CH₃(OH)₂ + O₂</td>
<td>5.71E⁻¹⁴×exp(6236/RT)</td>
<td>11</td>
</tr>
<tr>
<td>(R30)</td>
<td>O₃ + HOCH₂OO → HCOOH + HO₂</td>
<td>3.5E⁻¹⁴</td>
<td>12</td>
</tr>
</tbody>
</table>

* Prime (') designates the second reaction.
** R and T in rate constant designate gas constant and absolute temperature, respectively. M indicates air concentration in termolecular reaction. The units of the rate coefficients for first-, second-, and third-order reactions are s⁻¹, cm³ molecule⁻¹ s⁻¹, and cm⁶ molecule⁻² s⁻¹, respectively.
References

Novelli, P. C., Lang, P. M., Masarie, K. A., Hurst, D. F., Myers, R., and Elkins, J. W.: Molecular hydrogen in the troposphere: