Copper incorporation in foraminiferal calcite: results from culturing experiments
L. J. De Nooijer, G. J. Reichart, A. Dueñas-Bohórquez, M. Wolthers, S. R. Ernst, P. R. D. Mason, G. J. Van Der Zwaan

To cite this version:

HAL Id: hal-00297881
https://hal.archives-ouvertes.fr/hal-00297881
Submitted on 2 Apr 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Copper incorporation in foraminiferal calcite: results from culturing experiments

L. J. de Nooijer, G. J. Reichart, A. Dueñas-Bohórquez, M. Wolthers, S. R. Ernst, P. R. D. Mason, and G. J. van der Zwaan

Dept. of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands

Received: 5 March 2007 – Accepted: 6 March 2007 – Published: 2 April 2007

Correspondence to: L. J. de Nooijer (nooijer@geo.uu.nl)
Abstract

A partition coefficient for copper (D_{Cu}) in foraminiferal calcite has been determined by culturing individuals of two benthic species under controlled laboratory conditions. The partition coefficient of a trace element (TE) is an empirically determined relation between the TE/Ca ratio in seawater and the TE/Ca ratio in foraminiferal calcite and has been established for many divalent cations. Despite its potential to act as a tracer of human-induced, heavy metal pollution, data is not yet available for copper. Since partition coefficients are usually a function of multiple factors (seawater temperature, pH, salinity, metabolic activity of the organism, etc.), we chose to analyze calcite from specimens cultured under controlled laboratory conditions. They were subjected to different concentrations of Cu^{2+} (0.1–20 µmol/l) and constant temperature (10 and 20°C), seawater salinity and pH. We monitored the growth of new calcite in specimens of the temperate, shallow-water foraminifer *Ammonia tepida* and in the tropical, symbiont-bearing *Heterostegina depressa*. Newly formed chambers were analyzed for Cu/Ca ratios by laser ablation-ICP-MS. The calculated partition coefficient (0.1–0.4) was constant to within experimental error over a large range of $(Cu/Ca)_\text{seawater}$ ratios and was remarkably similar for both species. Neither did the presence or absence of symbionts affect the D_{Cu}, nor did we find a significant effect of temperature or salinity on Cu-uptake.

1 Introduction

Trace elements incorporated in foraminiferal calcite tests are widely used in paleoceanography: Mg/Ca ratios are used to reconstruct sea surface (Nürnberg et al., 1996) and deep-sea temperatures (Rathburn and DeDecker, 1997), Cd and Ba are used to estimate past seawater nutrient levels and alkalinity, respectively (Boyle, 1988; Rosenthal et al., 1997; Lea and Boyle, 1991). These proxies rely on empirically derived partition coefficients (D_{TE}) and the dependence of these coefficients on environmental variables. Temperature, salinity and the pH of sea water all potentially affect the D_{TE} in...
foraminiferal calcite (e.g. Nürnberg et al., 1996; Segev and Erez, 2006).

Although field experiments are useful to determine first order proxy relationships, reliable proxy calibrations should include the contribution of so-called vital effects and separate the effects of other possible contributing factors. The best way to unravel the contribution of separate variables is through culturing experiments, in which one variable is varied and all the others are kept constant. In the case of some divalent cations (e.g. Mg$^{2+}$ and Sr$^{2+}$: Nürnberg et al., 1996; Lea et al., 1999), culturing experiments also allow calibration of proxies out of the range of naturally occurring environmental conditions. This is important for trace elements that are associated with anthropogenic pollution with significantly raised concentrations above natural background levels.

Anthropogenic heavy metal pollution is often characterized by, amongst others, high Cu-concentrations (Borrego et al., 2004; Sáinz and Ruiz, 2006). Foraminifera have been used in several ways to investigate environmental pollution as high levels of Cu and other heavy metals potentially deform foraminiferal chamber alignment and influence foraminiferal community structure (Ellison et al., 1986; Samir and El-Din, 2001; Hallock et al., 2003; Armonyot du Châtelet et al., 2004; Ruiz et al., 2004; Ferraro et al., 2006). However, a number of studies state that test deformations under high heavy metal concentrations occur less often than under medium pollution loads (Alve and Olsgard, 1999; Geslin et al., 2002; Le Cadre and Debenay, 2006). This suggests that reconstructions based on test deformations alone are not accurate.

Cu-concentrations can also be high in the proximity of hydrothermal vents (Iizasa, 1993; Douville et al., 2002; Kadar et al., 2005). Although the low pH close to acidic vent fluids dissolves foraminiferal calcite, records of benthic foraminiferal assemblages described further away from these vents may be used to reconstruct past hydrothermal activity and the impact of high concentrations of heavy metals in its vicinity (Molina-Cruz and Ayala-López, 1988; Jonasson et al., 1995; Panieri et al., 2005).

In previous studies, Cu has been one of the most difficult elements to analyze in foraminiferal calcite (Boyle, 1981). However, recent advances in analytical methodology for trace element determination in foraminiferal calcite (Reichart et al., 2003) now
enable the calibration of foraminiferal Cu to seawater chemistry for the first time, using cultured benthic foraminifera. Two different intertidal to neritic species (one temperate and one tropical) were cultured to establish possible interspecific differences in the partition coefficient of Cu in foraminiferal calcite.

2 Methods

2.1 Collecting and culturing foraminifera

Two similar culturing experiments were conducted in series. For the first experiment, sediment was collected at an intertidal flat in the Dutch Wadden Sea and was kept in the laboratory in the dark at 15°C. Large (>150 μm), living individuals of *Ammonia* cf. molecular type T6 (Hayward et al., 2004: further referred to as *A. tepida*) were transferred to our in-house designed flow-through culture vessels (Fig. 1). Vessels consist of a 24-well culture tray, sandwiched between two Plexiglas plates and cells were connected by silicon tubes, attached with luers in the upper Plexiglas lid (Fig. 1). A small filter was placed between each cell and tube to prevent specimens from moving between cells. Trays were connected individually to a 2-liter reservoir with chemically altered sea water (see below) and a peristaltic pump was used to circulate sea water through the cells with a speed of 9 ml/h: in this way, six groups of 12 cells were formed, each connected to its own sea water reservoir. Four foraminiferal specimens were placed in each cell. Sea water was enriched with Cu from a stock solution at concentrations of 0, 0.10, 0.20, 0.50, 10 and 20 μmol/l. Calcein (C0875, Sigma-Aldrich, St Louis, USA) was added to the Cu-enriched sea water at a concentration of 5 mg/l. Calcein is incorporated into biogenic calcite, while existing calcite (i.e. earlier formed chambers) is not affected. Since (incorporated) calcein is fluorescent, foraminiferal chambers that have been built during the time when individuals were incubated can be recognized (Bernhard et al., 2004).

Cells with specimens of *Ammonia tepida*, contained a thin layer (<0.5 mm) of artificial
sediment (Silica, 52–63 µm). Natural seawater from the eastern Mediterranean Sea was adjusted with MilliQ water to a salinity of 17 to mimic average Wadden Sea salinity. Salinity levels were regularly checked during the experiment with a WTW LF330 conductivity meter. All 6*12 cells were kept at a constant temperature of 10°C for two months: before and after experiments, reservoirs were sub-sampled and sea water was analyzed by ICP-MS for Cu, Mg and Ca. At the start of the incubation period, the individuals were fed ~0.5 mg of autoclaved (20 min at 121°C) Dunaliella sp. During experiments, the set-up was subjected to the daily sunlight cycle (app. 14 h light/10 h dark).

For experiment 2, trays were replaced and lids rigorously cleaned with HCl, rinsed with MiliQ and re-used to incubate individuals of Heterostegina depressa in seawater with similar Cu-enrichments used in the first experiments. H. depressa is an epibenthic, tropical and symbiont-bearing foraminifer, that was kept in our laboratory under high light intensities (15W tropical reef lamp; Arcadia, FO15) and after transferring them into the culturing set-up, similar light conditions were maintained in a daily rhythm (14 h light/10 h dark). No sediment was added to the cells, seawater salinity was kept at 35, with a constant temperature of 20°C. Because of their large size, only two specimens were placed in each cell.

3 Temperature and salinity of culture media

For culturing Ammonia tepida, we diluted 35 PSU seawater with MiliQ water to mimic intertidal ambient conditions with seawater of 17 PSU. The dilution decreased both [Ca²⁺] and [CO₃²⁻] and the alkalinity by approximately 50%, resulting in a pronounced reduction of the carbonate saturation state (Ω). The temperature maintained during these experiments was kept at 10°C, compared to 20°C for the Heterostegina depressa experiments, allowing gas exchange with the atmosphere (ambient pCO₂) in both cases. The combined effect of these changes is a reduction in saturation state from about 5.5 for the H. depressa experiment to about 1.0 for the A. tepida experiment (calculations...
were performed in CO2sys; Lewis and Wallace, 1998). The lower seawater saturation state for the A. *tepida* cultures was most likely responsible for the fact that newly formed chambers were thinner than the pre-experiment chambers (see Results).

4 Laser ablation ICP-MS

Newly formed chambers were ablated using an Excimer laser (Lambda Physik) with GeoLas 200Q optics inside a helium atmosphere flushed ablation chamber. Pulse repetition rate was set at 6 Hz, with an energy density at the sample surface of 10 J/cm². Ablation craters were 60 µm in diameter and ablated material was analyzed with respect to time (and hence depth) using a quadrupole ICP-MS instrument (Micromass Platform ICP).

Simultaneous monitoring of Al allowed us to discard the parts of the ablation profiles contaminated by clay minerals from further calculations of elemental concentrations. Since the analytical error increases with shorter ablation time we cleaned all specimens by an incubation of 24 h in 5% NaOCl (Gaffey and Brönniman, 1993) before analysis, maximizing the amount of data that could be used for calculating (Cu/Ca)_{calcite} ratios.

5 Calibration strategy

The low calcite saturation state used in the experiment with *Ammonia tepida* resulted in formation of new chambers with thin walls. A similar correlation between test wall thickness and carbonate saturation state has been observed earlier for tests of cultured planktonic foraminifera (Bijma et al., 2002). Unfortunately, these thin chambers break easily during ablation when high laser energies are used. Therefore, we ablated *Ammonia tepida* with a laser energy of 1 J/cm², ten times less than the 10 J/cm² used to ablate newly formed chambers of *Heterostegina depressa*.

Analyses were calibrated against NIST glasses 610 and 612, using concentration data of Pearce et al. (1997). Calibrating calcites against glasses is possible because
of the relatively matrix independent ablation by the Excimer laser (Mason and Kraan, 2002). However, a fluence of \(<2\, \text{J/cm}^2\) was close to the ablation threshold for glass and calibration was performed instead against matrix matched in-house standards (i.e. pressed calcite powder tablets). Calcium was used as an internal standard because (1) the concentration is constant at 40 wt % in calcite and (2) it allows direct comparisons with trace metal to Ca ratios from wet-chemical studies. A collision and reaction cell was used to give improved results by reducing spectral interferences on the minor isotopes of Ca (^{42}Ca, ^{43}Ca and ^{44}Ca: Mason and Kraan, 2002). Good agreement was observed when using both ^{63}Cu and ^{65}Cu isotopes to calculate Cu-concentrations. Relative analytical precision for copper analyses was 15% on average, based on variability during the ablation calculated by GLITTER (New Wave Research, Fremont, CA, USA). This error includes both analytical uncertainties and internal, natural variability in test chemistry.

6 Seawater Cu-concentration

The concentration of Cu did not vary considerably in most of our experiments during the experimental period across the range of concentrations used (Table 1).

In the first experiment, all measured Cu-concentrations were lower than the target concentration and most total Cu-concentrations increased during the experiment, resulting in increased seawater Cu/Ca ratios (on average 17%). In experiment 2, most Cu-concentrations and all Cu/Ca ratios were higher at the start than at the end of the experiment. Identical procedures and techniques were used before and after subsampling the culture media, making it unlikely that sampling artifacts affected our measurements. Therefore, we used average solution Cu/Ca ratios to calculate the partition coefficient of Cu in foraminiferal calcite and incorporated differences between start and end concentrations for uncertainty calculations. Error bars plotted in the different graphs are based on these calculations and largely stem from these changes, which are an order of magnitude larger than the analytical uncertainties.
7 Cu speciation in seawater

In the absence of organic matter, Cu in sea water forms mainly Cu(OH)$_2$ and CuCO$_3$, while small amounts of Cu$^{2+}$ and CuOH$^{-}$ are also present (Zirino and Yamamoto, 1972). In natural sea water, however, usually more than 99.9% of the Cu is bound to organic compounds (Eriksen et al., 2001), mainly in the colloidal state (Mackey and Zirino, 1994). Foraminifera take up organic particles and sea water by endocytosis, likely ingesting both free Cu and Cu-ligand complexes. The internal routes that organic compounds follow are virtually uninvestigated in foraminifera and therefore, we do not know which Cu species are present at the site of calcification.

8 Modelling Cu speciation

The calcein added in our experiments is a ligand that can bind TE’s and could thus cause concentrations of free Cu to drop. Traditionally, total calcium and TE concentrations in solution are used to calculate partition coefficients for TE’s in calcite. Ideally, activities or effective concentrations, of relevant metals are used to allow application of partition coefficients in solutions of different compositions (Morse and Bender, 1990).

To correct for Cu binding to calcein, we calculated speciation of all abundant cations (Cu, Ca and Mg) in our solution. Speciation calculations were performed in PHREEQC 2.8.03 (Parkhurst and Appelo, 1999) with the llnl database and thermodynamic data for calcein listed in Table 2. For calcein complexation with calcium and magnesium, Reactions (11) and (14) are reported in the literature. These reactions will lead to competition between copper, calcium and magnesium in binding to an amine group on H$_2$L4-, thus decreasing calcein-bound Cu. It is, therefore, likely that the behavior of Ca and Mg towards calcein is similar to Cu and similar competition between the three metals occurs in binding according to Reactions (7) and (9) via carboxyl groups (Lu and Allen, 2002). Composition of the solution in the model was either the Cu-enriched sea water with a salinity of 35 or 17 for the experiment with *Ammonia tepida*, and were
both open to atmospheric CO₂.

Cu and Ca-concentrations used to calculate the partition coefficients were those corrected for Cu and Ca complexated with calcein (Table 3).

9 Results

9.1 New calcite and survival rates

Specimens that grew new calcite, were recognized by fluorescent, outer chambers (Fig. 2).

None of the individuals of *Heterostegina depressa* incubated at the target Cu-concentration of 20 µmol/l, survived the experimental period. At 10 µmol/l of added Cu, however, several survived of which 1 individual grew new calcite. At lower concentrations, generally more chambers were formed (Table 4). None of the added chambers (n=88) showed abnormal alignments or deformations.

For *Ammonia tepida*, the number of successful laser-ablation analyses was significantly lower (3) than the number of added chambers (34). The limited size (<100 µm) of newly added chambers did not allow multiple analyses of a single chamber. After an unsuccessful attempt to analyze a targeted chamber it was not possible to repeat this measurement as the largest part of the carbonate was consumed (Fig. 3).

9.2 Partition coefficient of Cu – *Ammonia tepida*

Two ablation profiles were obtained from two specimens of *Ammonia tepida* that grew new chambers at a low (0.20 µmol/l) Cu-concentration (Fig. 4). Measurements indicate that the partition coefficient lies between 0.1 and 0.4. In the right panel of Fig. 4, the same two measurements are depicted at the left end of the graph. Ratios for calcite formed at higher (Cu/Ca)seawater, indicated a partition coefficient between 0.1 and 0.4.
9.3 Partition coefficient of Cu – Heterostegina depressa

Although individuals of Heterostegina did not survive the highest Cu-levels, we obtained two ratios from specimens that added new chambers at a target concentration of 10 \(\mu \text{mol/l} \). From incubations with lower Cu-concentrations, more specimens were available that grew new chambers that could be analyzed for Cu-concentration (Fig. 5).

10 Discussion

Within the experimental and analytical error both species show an identical \((\text{Cu/Ca})_{\text{seawater}}\) to \((\text{Cu/Ca})_{\text{calcite}}\) relation, resulting in a partition coefficient \((D_{\text{Cu}})\) of 0.25±0.15. No significant difference was observed in copper incorporation between Ammonia tepida and Heterostegina depressa, despite large differences in ecology and habitat. Some inter-specimen variation in \(\text{Cu/Ca}_{\text{calcite}}\) was observed in H. depressa grown at low Cu-concentrations, in which rather large uncertainties in culture water Cu-concentration (Fig. 5) resulted from changes in \([\text{Cu}^{2+}]\) over time. Moreover, the alternative calibration method used for the thin-walled chambers of A. tepida (i.e. using a pressed calcite pellet and a lower ablation energy) increased the analytical uncertainty in the laser ablation-ICP-MS analyses (Fig. 5). Despite these errors, the calculated \(D_{\text{Cu}}\) was not significantly dependent on either temperature or salinity.

10.1 Experimental uncertainties

The seawater Cu-concentrations in most culture media increased during the incubation period (Table 1), however, there is no systematical difference in \(\text{Cu/Ca}_{\text{seawater}}\) ratios before and after the two experiments. Therefore, an analytical error during ICP-MS or during subsampling of the culture vessels is unlikely to play an important role in this offset. Sorption of Cu onto organic matter in the culture media or onto the calcite of the foraminifera would have lowered the Cu-concentrations in the media, which happened in some cases, and therefore could have contributed to the differences in \(\text{Cu/Ca}\).
Alternatively, release of Cu by the culture vessels or trays could have increased seawater Cu-concentrations, although this is unlikely since the equipment used was new or cleaned prior to the experiment. Moreover, the control media (no Cu added) did not contain considerable amounts of Cu, indicating that contamination by the materials used played a minor role. The foraminifera themselves are unlikely to have contained high concentrations of Cu at the start of the experiments since concentrations of this metal are low in natural seawater. Cu-pollution of seawater during subsampling for seawater Cu-analyses may have caused an increase in Cu-concentrations, although care was taken to avoid such contamination. The difference in seawater Cu-concentrations before and after the incubation period are likely to be the result of a combination of the processes mentioned above.

The number of new chambers formed by the cultured foraminifera was generally low, especially at high Cu-concentrations (Table 4). The limited production of new calcite may indicate that the conditions during the experiments were not optimal for the foraminifera. Consequently, the reaction of the foraminifera to these conditions may have influenced their calcification and thus the derived D_{Cu}. Improving culturing setups and optimizing laboratory conditions is important and comparison of our results with those from optimized, future experiments is necessary to establish a more precise D_{Cu} for foraminiferal calcite.

10.2 Cu in the calcite lattice

Crystalline CuCO$_3$ does not exist, because the most common coordination of Cu-carbonate complexes are distorted tetragonal pyramids or distorted octahedrons (Wells, 1984). These shapes do not allow precipitation of pure CuCO$_3$ crystals and rather $Cu_2CO_3(OH)_2$ (malachite) will form. However, sorption studies have shown that at the calcite-water interface these so-called Jahn-Teller distortions can be overcome and a solid solution $Cu_xCa_(1-x)CO_3$ forms (Schlosseler et al., 1999). It has been proposed that copper in calcite is present in clusters, based on studying the transformation of vaterite to calcite (Nassrallah-Aboukaïs et al., 1996, 1998). Recent XAFS work, how-
ever, has shown that this mechanism is not applicable to calcite surfaces (Elzinga and Reeder, 2002). This rather unusual complexation behavior would suggest that sorption and subsequent incorporation into the crystal lattice for copper is limited to part of the crystal surface only. This, in turn, would result in a lower partition coefficient for copper than expected based on its ionic radius only.

Contrary to these results, it has been shown that during inorganic coprecipitation experiments Cu is incorporated in calcite with a distribution coefficient (K_{Cu}) of 23 and constant under a range of Cu-concentrations (Kitano et al., 1980). In the initial stage of calcification, the K_{Cu} can be even higher (40) probably due to the strong affinity of Cu(OH)$_2$ for calcite surfaces (Franklin and Morse, 1982; Pickering, 1983; Papadopoulos and Rowell, 1989). This indicates that the Jahn-Teller distortions are easily overcome during calcification.

Generally, divalent cations with an ionic radius close to Ca (=1.0 Å) have a partition coefficient in calcite close to 1. Cd has an ionic radius of 0.95 (Shannon, 1976) and is incorporated in both planktonic and benthic species with a D between 1 and 4 (Boyle, 1981, 1988; Havach et al., 2001), independent of temperature (Marchitto, 2004). Sr (ionic radius = 1.31 Å) is incorporated in foraminiferal calcite with a D of 0.11–0.19, measured in several planktonic genera (Bender et al., 1975) and 0.05–0.25 in Cibicidoides (Elderfield et al., 1996). Coretop studies on Cibicides and Uvigerina show that Ba (1.47 Å) is incorporated with a partition coefficient of 0.3–0.4 at 3°C (Lea and Boyle, 1989). In the planktonic genera Globorotalia and Globobquadrina, Ba is incorporated with a D of 0.19 (Lea and Boyle, 1991). Cu has an ionic radius close to Mg (0.73 and 0.72 Å, respectively), but the partition coefficient of Mg is much lower ($0.1–1 \times 10^{-3}$; Bender et al., 1975; Delaney et al., 1985) than the measured 0.1–0.4 for Cu (Fig. 7).

The large difference between the foraminifer-mediated Cu-incorporation and the inorganic incorporation of Cu in calcite indicates that much energy is spent on removal of Cu at the site of calcification.
10.3 Biological control on D_{Cu}

Since magnesium inhibits calcite growth (Berner, 1975; Mucci and Morse, 1983) and high levels of Mg are likely to be present in foraminiferal calcifying reservoirs, it is necessary for foraminifera to remove Mg before calcification. It has been suggested that foraminifera actively pump Mg from their calcifying reservoir in order to stimulate CaCO$_3$ precipitation. Usually, Cu is present only in very low concentrations in seawater and therefore no need exists to actively remove Cu from calcifying reservoirs, despite its ability to modify the crystalline structure of calcite. Although under high Cu-concentrations it may be beneficial to remove Cu from calcifying reservoirs, apparently the foraminifera does not do so, as the D_{Cu} is similar for high and low Cu-concentrations. Alternatively, the concentrations used in our experiments may still be too low to seriously impede CaCO$_3$ precipitation.

Another reason for active removal of trace elements from calcifying reservoirs is that these elements are necessary for cellular processes. Since Cu is known to play only minor roles in eukaryotic metabolic processes (Bruland et al., 1991; Sunda and Huntsman, 1995; Chang and Reinfelder, 2000), it is unlikely that the D_{Cu} is affected by cellular needs.

Organic compounds may increase Mg contents in foraminiferal calcite (Bentov and Erez, 2006). High concentrations of Mg in the primary organic membrane (Hemleben et al., 1986) may explain the observed intra-test variability of Mg/Ca (e.g. Toyofuku and Kitazato, 2005). Cu also has a strong affinity for organic compounds (see below), so that the D_{Cu} may be partly determined by the presence of organic compounds in the calcite.

Bresler and Yanko (1995) showed that some benthic, epiphytic foraminifera have tryptofan-containing proteins that can bind Cu$^{2+}$ and prevent intracellular Cu-concentrations from becoming harmful. When a significant part of the Cu$^{2+}$ would have been immobilized by these Cu-binding proteins this would also have lowered the Cu activity in the solution and thus D_{Cu}. Since we have not observed such a de-
crease, it is unlikely that such molecules play a major role in decreasing intracellular Cu-concentrations.

Seawater pH is a potentially important modulator of trace metal uptake (Lea et al., 1999; Zeebe and Sanyal, 2002). To investigate the potential effect we compared species with and without symbionts. In the symbiont-bearing H. depressa the photosynthetic activity of the symbionts changes the local carbonate chemistry because CO₂ is taken up and pH lowered during light conditions. However, the lack of any systematic offset in Cu/Ca between the H. depressa and A. tepida suggests no significant effect of pH on Cu incorporation.

10.4 Test deformation and mortality

A number of studies over the last 20 years have attempted to correlate the number of deformed tests to environmental pollution (Alve, 1991; Elberling et al., 2003; Armynot du Châtelet et al., 2004). The empirical correlation between number of deformed tests and for instance heavy metal or hydrocarbon concentration levels was interpreted to signify a causal relationship. Although in several of our experiments Cu-concentrations were well above levels found at even the most polluted sites not a single deformed chamber alignment was observed. Although the limited number of observations does not allow a statistical evaluation, our results strongly suggest that high levels of Cu do not cause test deformities. This is also shown by Alve and Olsgard (1999), who found no test deformities in foraminifera living in seawater with high Cu-concentrations. Therefore, we think that relative abundances of deformed tests in fossil samples are not suitable to reconstruct past copper concentrations. Most likely other environmental factors, co-varying with environmental trace metal levels must have been responsible for the observed increase in test deformities. The complete absence of deformations in our experiments is in high contrast to the low but still detectable levels of natural occurring test deformities under environmental pristine conditions. This suggests that the protected environment of the culture trays may actually have shielded our foraminifera by providing them with a constant temperature, salinity and seawater chemistry in gen-
In seawater with the highest concentration of Cu (20 µmol/l), none of the *Heterostegina*’s survived and only one specimen grew new chambers when cultured at 10 µmol/l. Since the growth or survival of *Ammonia tepida* did not appear to be hampered by high concentrations of Cu, we hypothesize that either the symbionts of the tropical foraminifera are vulnerable to high Cu-concentrations (Brandt et al., 1986), or that individuals of *A. tepida* are adapted to cope with (occasional) high levels of heavy metals.

10.5 Application of Cu/Ca ratios in foraminiferal calcite

In order to quantify pollution levels, heavy metal concentrations are often analyzed using strong acid extractions and subsequent ICP-MS analyses of bulk sediment. Since heavily polluted sites are frequently characterized by high concentrations of (labile) organic matter, polluted sediments are often anoxic with high levels of sulphate reduction and associated production of free sulfide. These high sulfide-levels result in immobilization of heavy metals such as Zn, Cu, Cd and Pb, which are precipitated as the highly insoluble minerals PbS, CuS and ZnS, or as co-precipitates in pyrite. Because these metals are no longer bioavailable they do not reflect toxicity of the overlying water to, for instance, benthic biota. Actual analyses of the overlying water itself or organisms living in these waters would give a much more applicable concentration to assess pollution. This becomes even more important when at a later stage organic loads decrease and/or the oxygen level increases, (e.g. after improved wastewater treatment). Under these conditions lower sedimentary trace metal levels could result in higher actual toxicity as these metals are remobilized by progressive reoxidation of the sediment and escape to the overlying water. Monitoring foraminiferal test Cu/Ca ratios could be used to establish the bioavailable fraction of Cu and potentially also could record relatively short episodes with elevated bottom water Cu-levels.

Sludge dump sites and associated elevated concentration levels of heavy metals are mostly limited to coastal and estuarine environments. These settings experience considerably varying seasonal and even daily temperatures and salinity levels. A signif-
significant impact of either temperature or salinity on partition coefficients would, therefore, render foraminiferal trace metal records useless for any reliable reconstruction and/or monitoring of such dump sites. Since the obtained D_{Cu} is not markedly dependent on either temperature or salinity, foraminiferal Cu/Ca ratios may be a powerful proxy for the quantitative reconstruction of past heavy metal pollution, even in highly variable environments.

11 Conclusions

Copper is incorporated into foraminiferal calcite with a partition coefficient of 0.25±0.15 with respect to sea water Cu/Ca values. No effects on the D_{Cu} of species-specific control or of temperature and salinity could be observed with the experimental setup used here. Additional experiments are needed to better constrain D_{Cu} and unravel the effects of other likely important environmental factors such as temperature, salinity and seawater carbonate chemistry.

Acknowledgements. The authors thank M. Janse from Burger’s Zoo and W. Renema from Naturalis for providing specimens of *Heterostegina depressa*. P. Kleingeld is acknowledged for his help with developing the culturing set-up. The laser ablation measurements were greatly aided by G. Nobbe. E. van Vilsteren and B. van Os provided help with the ICP-MS-analyses and discussion on sea water chemistry.

References

Eriksen, R. S., Mackey, D. J., Van Dam, R., and Nowak, B.: Copper speciation and toxicity in Macquarie Harbour, Tasmania: an investigation using a copper ion selective electrode, Mare Chem., 74, 99–113, 2001.

Table 1. Target concentrations of Cu in sea water and measured \([\text{Cu}]_{\text{seawater}}\) and \((\text{Cu/Ca})_{\text{seawater}}\) at start and end of both experiments. n.a. = not available.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Target [Cu] in µmol/l</th>
<th>Measured Cu</th>
<th>Cu/Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>at the start of experiment in µmol/l + 1SD</td>
<td>at the end of experiment in µmol/l + 1SD</td>
</tr>
<tr>
<td>1. Ammonia tepida</td>
<td>0</td>
<td>0.0843</td>
<td>0.100±0.00584</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>0.0960±0.0146</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>0.197±0.00173</td>
<td>0.256±0.00206</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>0.332±0.00505</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>12.6±0.293</td>
<td>14.0±0.867</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>17.8±0.489</td>
<td>20.0±3.05</td>
</tr>
<tr>
<td>2. Heterostegina depressa</td>
<td>0</td>
<td>0.125±0.00554</td>
<td>0.208±0.0119</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>0.744±0.00217</td>
<td>0.211±0.00408</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>0.242±0.00228</td>
<td>0.368</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>1.28±0.0384</td>
<td>1.25±0.0522</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>11.2±0.0672</td>
<td>10.4±0.277</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
</tbody>
</table>
Table 2. Thermodynamic data for calcein (Ueno et al., 1992). L = calceine. \(^a\) reactions leads to negligible metal binding; \(^b\) values extrapolated by assuming chemical behavior similar to Cu\(^{2+}\) (see text for discussion).

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Functional groups</th>
<th>Log (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) (L^6^- + H^+ = HL^5^-)</td>
<td>-COOH</td>
<td>11.7</td>
</tr>
<tr>
<td>(2) (HL^5^- + H^+ = H_2L^4^-)</td>
<td>-COOH</td>
<td>10.8</td>
</tr>
<tr>
<td>(3) (H_2L^4^- + H^+ = H_3L^3^-)</td>
<td>-COOH</td>
<td>5.5</td>
</tr>
<tr>
<td>(4) (H_3L^3^- + H^+ = H_4L^2^-)</td>
<td>-OH</td>
<td>4.2</td>
</tr>
<tr>
<td>(5) (H_4L^2^- + H^+ = H_5L^-)</td>
<td>≡NH(^+)</td>
<td>2.9</td>
</tr>
<tr>
<td>(6) (H_5L^- + H^+ = H_6L)</td>
<td>≡NH(^+)</td>
<td>2.1</td>
</tr>
<tr>
<td>(7) (2Cu^{2+} + L^6^- = Cu_2L^2^-)</td>
<td>-COOH</td>
<td>28.9</td>
</tr>
<tr>
<td>(8) (Cu^{2+} + H_2L^4^- = CuH_2L^2^-)</td>
<td>≡NH(^+)</td>
<td>8.3</td>
</tr>
<tr>
<td>(9) (Cu^{2+} + H_4L^2^- + H_3L^3^- = Cu(H_4L)(H_3L)^3^-)</td>
<td>-COOH + -OH</td>
<td>10.4(^a)</td>
</tr>
<tr>
<td>(10) (2Ca^{2+} + L^6^- = Ca_2L^2^-)</td>
<td>-COOH</td>
<td>27.2(^b)</td>
</tr>
<tr>
<td>(11) (Ca^{2+} + H_2L^4^- = CaH_2L^2^-)</td>
<td>≡NH(^+)</td>
<td>6.63</td>
</tr>
<tr>
<td>(12) (Ca^{2+} + H_4L^2^- + H_3L^3^- = Ca(H_4L)(H_3L)^3^-)</td>
<td>-COOH + -OH</td>
<td>8.73(^ab)</td>
</tr>
<tr>
<td>(13) (2Mg^{2+} + L^6^- = Mg_2L^2^-)</td>
<td>-COOH</td>
<td>28.5(^b)</td>
</tr>
<tr>
<td>(14) (Mg^{2+} + H_2L^4^- = MgH_2L^2^-)</td>
<td>≡NH(^+)</td>
<td>7.9</td>
</tr>
<tr>
<td>(15) (Mg^{2+} + H_4L^2^- + H_3L^3^- = Mg(H_4L)(H_3L)^3^-)</td>
<td>-COOH + -OH</td>
<td>10.0(^ab)</td>
</tr>
</tbody>
</table>
Table 3. Added and free copper concentrations and activities in the experiments. Suffix \(t \) = total copper concentration added to the experiment; suffix \(c \) = corrected ratios (total Cu or Ca minus calceine-complexed Cu or Ca).

<table>
<thead>
<tr>
<th>Experiment</th>
<th>([\text{Cu} , t]) (µmol/l)</th>
<th>([\text{Cu} , c]) (µmol/l)</th>
<th>([\text{Cu} , t]/[\text{Ca} , t])</th>
<th>([\text{Cu} , c]/[\text{Ca} , c])</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ammonia tepida</td>
<td>0.156</td>
<td>0.133</td>
<td>2.6\times 10^{-5}</td>
<td>0.156</td>
</tr>
<tr>
<td></td>
<td>0.168</td>
<td>0.146</td>
<td>2.9\times 10^{-5}</td>
<td>0.168</td>
</tr>
<tr>
<td></td>
<td>0.384</td>
<td>0.333</td>
<td>6.6\times 10^{-5}</td>
<td>0.384</td>
</tr>
<tr>
<td></td>
<td>1.05</td>
<td>0.911</td>
<td>18\times 10^{-5}</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>18.6</td>
<td>16.1</td>
<td>320\times 10^{-5}</td>
<td>18.6</td>
</tr>
<tr>
<td></td>
<td>38.0</td>
<td>32.9</td>
<td>660\times 10^{-5}</td>
<td>38.0</td>
</tr>
<tr>
<td>2. Heterostegina depressa</td>
<td>0.167</td>
<td>0.140</td>
<td>1.6\times 10^{-5}</td>
<td>0.167</td>
</tr>
<tr>
<td></td>
<td>0.190</td>
<td>0.163</td>
<td>1.8\times 10^{-5}</td>
<td>0.190</td>
</tr>
<tr>
<td></td>
<td>0.255</td>
<td>0.218</td>
<td>2.4\times 10^{-5}</td>
<td>0.255</td>
</tr>
<tr>
<td></td>
<td>1.36</td>
<td>1.16</td>
<td>13\times 10^{-5}</td>
<td>1.36</td>
</tr>
<tr>
<td></td>
<td>12.1</td>
<td>10.3</td>
<td>110\times 10^{-5}</td>
<td>12.1</td>
</tr>
</tbody>
</table>
Table 4. Number of individuals at the start of the experiments, number of specimens that formed new calcite and total number of added chambers.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Target [Cu$^{2+}$] in μmol/l at start of experiment</th>
<th>Number of specimens at start of experiment</th>
<th>Number of individuals that grew new chambers</th>
<th>Number of new chambers added</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ammonia tepida</td>
<td>0</td>
<td>48</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>48</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>48</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>48</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>48</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>48</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2. Heterostegina depressa</td>
<td>0</td>
<td>24</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>24</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>24</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>24</td>
<td>19</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>24</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>24</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Fig. 1. Design of the experimental set-up. (A): close-up of a culture tray. (B): overview of a culture tray. (C) and (D): culture tray between plexiglass lids, with in- and outflow openings in upper lid.
Fig. 2. New chambers added by *Ammonia tepida* (A) and *Heterostegina depressa* (B), visible by fluorescence of incorporated calcein.
Fig. 3. Scanning electron microscope image of laser ablation craters in *Ammonia* (left) and *Heterostegina* (right). Insets depict the whole specimen. Scale bar is indicated in the lower right corner only for the magnified image.
Fig. 4. Cu/Ca ratios in *Ammonia tepida* test carbonate versus Cu/Ca in sea water. Left graph is an enlargement of right one: small circles indicate the separate [Cu]$_{seawater}$ measurements (replicate samples before and after the incubation period), large circles represent the average Cu/Ca$_{seawater}$ values. The two measurements in the right panel are from chambers of the same specimen. Lines represent partition coefficients of 0.1, 0.2 and 0.4.
Fig. 5. Plot of Cu/Ca ratios in foraminiferal calcite of the added chamber versus the Cu/Ca of the sea water in which they were incubated. The two Heterostegina-measurements in the center of the graph represent two chambers of the same specimen. Lines indicate partition coefficients of 0.1, 0.2 and 0.4.