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I. CONTEXT AND OBJECTIVES

The angular variation of land surface measurements, characterized by the BRDF (Bi-

directional Reflectance Distribution Function) in the solar domain and by the BTDF (Bi-

directional Temperature Distribution Function) in the thermal domain provides additional 

information on the structure and properties of the observed landscape (Chen et al., 2000; 

Widlowski et al., 2003).  Thus, for instance, multi-directional measurements are potentially 

useful for: (1) improving surface albedo estimates through the integration of multi-

directional samples of surface BRDF (Vogt et al., 2000); (2) achieving better estimates of 

aerosol properties and consequently obtain more accurate atmospheric corrections of 

remotely sensed data (Moreno, 2003); (3) retrieving the surface temperature of illuminated 

and shadowed areas of soil and vegetation using concurrently measurements in both solar 

and thermal domains (Jia et al., 2003); improving the accuracy in the retrieval of biophysical 

variables such as  leaf area index (ESA, 2001a). 

Recognizing that airborne campaigns provide an efficient way to realistically simulate a 

collection of measurement and test the retrieval algorithms proposed for future space-borne 
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missions, ESA has supported three DAISEX (Digital Airborne Imaging Spectrometer 

Experiment) campaigns to acquire high spectral resolution data over an agricultural test-site 

in Spain.  The goals of DAISEX, which supported the collection of multi-annual data from 

several airborne imaging spectrometers (Moreno, 2001), were to develop retrieval techniques 

for biophysical variables and to establish performance requirements for future space-borne 

missions. POLDER data were analysed in this study.  

This research seeks to analyse the estimation of crop biophysical variables using high-

resolution mono and multi-directional data. More precisely, the objective is to compare 

quantitatively the accuracy of a physically-based retrieval algorithms using, or not, the 

multidirectional features acquired by the airborne sensor POLDER (POLarization and 

Directionality of Earth Reflectances) (Leroy et al., 1997).  POLDER sensor is capable of 

acquiring multi-spectral (with bands in the visible and near-infrared spectral regions) and 

multi-directional data at increments of approximately 10° in zenith angle. Retrieval involved 

two artificial neural networks designed to invert the 1D radiative transfer model PROSAIL 

(Jacquemoud et al., 2000; Verhoef, 1985).  One neural network (A) uses as input data only 

the isotropic component of a BRDF (Bi-directional Reflectance Distribution Function) 

parametric model fitted to POLDER data.  The second neural network (B) requires as input 

variables all components, isotropic and anisotropic, of the BRDF parametric model, thereby 

including anisotropic information in the retrieval process. 

As PROSAIL is modelling vegetation with a relatively simple architecture and model 

parameters vary within large ranges, methods A and B are, in principle, applicable to any 

vegetative land cover, independently of its structure, as this method is ideally aimed not to be 

site-specific but applicable to any vegetated landscape. This is the main justification for 

selecting a 1D radiative transfer model, i.e. a model simulating light propagation in a 

horizontally homogeneous landscape. The retrieval procedures use all available directional 

measurements and, because of using BRDF parametric model parameters instead of using 

directly BRF (Bi-directional Reflectance Factor) measurements, the approach do not require 

the retraining of the neural network when view or illumination directions change. Thus, they 

are not site-specific (or crop-specific) but general approaches based on an architecturally 

simple radiative transfer model.  

Results obtained with Methods A and B were compared in order to gauge the impact on the 

retrieval accuracy of a mono-directional sampling of view direction space (Method A) 

against that of a more extensive view direction sampling (Method B).  Comparisons between 
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the results obtained using each method were established for in situ locations for which 

ground reference data of the Leaf Area Index (LAI) was available.

II. SITE AND AVAILABLE DATA

The Barrax test site is a flat, 3km by 3km agricultural area centred at (39°3'N, 2°5'W) and 

located 28km from Albacete (Spain, EU) (Moreno, 2003).  In order to obtain ground 

reference data, 4 crop types (corn, sugar beet, alfalfa and barley) were measured in situ at 

104 locations (Figure 1). Each field sample measurement is representative of an area of 

around 1 m2. 

Figure 1

Series of airborne POLDER image data were collected at different moments of the day on 

June 3, 4 and 5, 1999 during the DAISEX-99 campaign (ESA, 2001b). In order to have a 

dense sampling of the observation directional space the study combines the data of the 3 

days. The number of view directions for each ground truth location is between 51 and 62. 

The airborne POLDER instrument comprises nine spectral bands centred at 443, 500, 550, 

590, 670, 700, 720, 800 and 864 nm. POLDER image data were calibrated and both 

geometrically and atmospherically corrected (Level 1c) by CESBIO/Noveltis (Ponchaut, 

2000).  The spatial resolution of the POLDER imagery, 20m, was degraded to 60m through a 

moving 3×3 pixel 'boxcar' average, thereby minimizing any geolocation errors between 

POLDER imagery and ground reference data.  POLDER data at a pixel location were 

excluded from analysis if saturated in any band or if either a small scratch on the outer lens 

of POLDER or sun glint was apparent in the pixel response (Gascon et al., 2003). The 

POLDER outer lens exhibits a small scratch that is visible on some images but fortunately it 

falls outside the study area of many scenes. The sun glint that appears on some frames 

concerns viewing angles between [40°, 50°] and has roughly a 5° width over the nine 

spectral bands.  Finally, 17 of the 104 in situ measurement points were discarded, as some of 

the new 60m × 60m pixels corresponded to locations that were deemed too close to a field 

border.  Thus, the number of ground reference locations was reduced from 104 to 87.  One of 

the question that rises when comparing remote sensing data with ground measurements is 

how compare the areas associated to each measurement. In this study the ground truth 

sample area is significantly smaller (of the order of 1m2) than the re-sampled image pixel 

size (3600m2). This causes a higher variability of the ground truth measurements compared 

to the radiometric data as is presented in Figure 2 by the NDVI (Normalized Difference 

Vegetation Index) (Tucker, 1979). This graph clearly shows that the variability, for a given 
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vegetation type, is significantly lower in the direction of the ordinate axis than in the one of 

the abscissa axis. Referring to Figure 2, it is also important to point out the low correlation 

between NDVI and LAI measurements due mainly to the presence of dry barley that has a 

low NDVI while having a high LAI, as the ground measured LAI includes the green and 

senescent fractions. This fact clearly illustrates the difficulty for retrieving LAI using a semi-

empirical approach and is thus a good test site for a more sophisticated approach like the 

method presented in this article. 

Figure 2

Comparisons between in situ reflectance measurements and POLDER data show an 

agreement within 1% relative error for two of the three soil units but up to 12% for the third 

unit. The larger difference is explained by the relatively small size of the soil unit compared 

to POLDER spatial resolution (Ponchaut, 2000). The relative noise in each band of the 

sensor, determined using data collected over homogeneous surfaces, was largest in the blue

channels in which aerosol effects are stronger and land surface reflectance values tend to be 

small (Moreno, 2003). Due to these high noise levels, the blue band centred at 443nm was 

excluded from the following steps.

The last image pre-processing step was to fit the Li-Ross kernel-driven BRDF model, 

Equation 1, to the measurements of each pixel of the image (Wanner et al., 1995). This 

model was chosen because of the good performances showed for fitting airborne POLDER 

data (Weiss et al., 2000) with a reduced number of parameters (3).
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Equation 1: Li-Ross formulation. Adjustable parameters are p1, p2 and p3. ξ is the phase 

angle between sun and view directions. θs is the sun zenith angle. θv is the view zenith angle. 

φ is the azimuth angle between sun and view directions. 

The “p1” parameter corresponds to the nadir reflectance when sun zenith angle is zero. The 

“p2” parameter represents the bowl/bell shape of the BRDF (positive values correspond to a 

bell shape and negative to a bowl shape). The “p3” parameter represents the 

backscattering/forwardscattering shape of the BRDF (positive values are associated to a 

BRDF with predominant backscattering shape and negative values correspond to a BRDF 

with predominant forwardscattering effect).

Estimation of the fit of each of the 3 Li-Ross BRDF model parameters to the POLDER 

directional measurements of each 60×60m pixel was performed through the minimization of 

the error function ( )
2_

1

),,(),,(∑
=

−=
measnb

i
svmeasuredsvsimulated φθθρφθθρε  using the quasi-

Newton algorithm (Geradin et al., 1980). Li-Ross fitting has a RMSE (Root Mean Square 

Error) of 1.8% in average for all test locations and spectral bands. Figure 3 presents for one 

of the sugar beet test points, the fit of the Li-Ross model with the BRF measurements in the 

principal plane. This example, with a fitting RMSE of 1.6%, clearly illustrates the difficulty 

for accurately fitting the narrow hot-spot feature (linked to the inter-leaves shadowing 

compared to the broad hot-spot related to the canopy architecture). However, the fact of not 

catching this narrow feature is not a major problem, as these features will not be caught 

neither for the airborne nor the simulated data and consequently the retrieval will be still 

possible. 

Figure 3

III. RETRIEVAL ALGORITHM

The LAI was retrieved with the aid of an artificial neural network that was trained on a 

lookup table (LUT) generated by the PROSAIL soil-vegetation reflectance model 

(Jacquemoud et al., 2000).  PROSAIL couples three models: the SAIL canopy reflectance 

model (Verhoef, 1985), the PROSPECT leaf reflectance model (Jacquemoud & Baret, 1990) 

and SOILSPECT, a parametric soil reflectance model (Jacquemoud et al., 1992).

SAIL (Scattering from Arbitrarily Inclined Leaves) (Verhoef, 1985) simulates vegetation 

reflectance through the simulation of within vegetation radiative transfer. For that, vegetation 
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canopy is simulated as a homogeneous layer composed of randomly distributed leaves of 

infinitesimal size. Radiation interception within the vegetation cover is modelled using the 

Beer-Lambert law. The hot-spot phenomenon is simulated with Kuusk’s approach (Kuusk, 

1985) and its single parameter (“Hs”). The amount of leaves is represented by the LAI, or 

square meters of leaf surface per square meter of soil. Leaf orientation distribution is 

represented by an average leaf angle ALA (Average Leaf Angle). The model also allows one 

to deal simultaneously with two kinds of leaf, which is useful in this study to distinguish 

between green and senescent component (parameter “fsen”).

PROSPECT (leaf optical PROperties SPECTra) (Jacquemoud & Baret, 1990) model 

simulates leaf optical properties for wavelengths from 0.4µm up to 2.4µm, according to the 

leaf chemical composition and a structural index (N). The leaf is supposed to be a pile of N 

layers separated by thin air layers. If N is not an integer, for instance N=2.3, the fractional 

part (0.3) acts as a weight for the thickness of the third layer. For a young monocotyledonous 

leaf, N usually varies between 1 and 1.5. For dicotyledonous, N can reach 2.5 and even 5 for 

some senescent leafs (Jacquemoud, 1992). The chemical concentrations used by PROSPECT 

are: chlorophyll a+b Cab (in general Cab < 90µg.cm-2), water Cw (cm), dry matter Cdm (g.cm-2) 

and brown pigments Cb (µg.cm-2). The interaction of a ray with the leaf surface is simulated 

with the Fresnel laws (refraction index n(λ)). Volume interactions are described by the Beer-

Lambert law using an absorption coefficient K(λ) which is a function of the chemical 

concentrations: K(λ) = 
Σ
  i Ci.ki(λ) . Where ki(λ) is the absorption coefficient specific and Ci

the concentration per leaf surface unit of the biochemical component “i”.

SOILSPECT (SOIL optical properties SPECTra) (Jacquemoud et al., 1992) is a parametric 

soil BRDF model representing reflectance with Equation 2.

( ) ( )
( )vx

xv
xvSOILSPECT phasephaseBBRF

θθ
ϕ

ϕω
coscos4

1

2

1)(cos3
2)cos(111

2

+⋅
⋅
















 −⋅
⋅+⋅+⋅+⋅=

with       ( )( )svh
B

ϕtan1

1

⋅+
=

Equation 2:  SOILSPECT formulation. Parameters are ω, h, phase1 and phase2. ϕsv  is the 

phase angle between sun and view directions. ϕxv is the phase angle between specular and 

view directions. θx is the zenith angle of the specular direction. 
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PROSAIL model uses input parameters shown in Table 1.

Table 1

All SOILSPECT model parameters showed a spectral variability but in order to simplify the 

LUT generation procedure, the structure-related parameters were considered as spectral 

constants (h = 1.5246, phase1=0.0155 and phase2=-1.2683) and derived for the intermediate 

band (670nm). Only albedo (w) was considered variable applying a multiplicative factor (sp) 

to a fixed spectral profile of reflectance values (w500=0.551, w550=0.637, w590=0.717, 

w670=0.770, w700=0.786, w720=0.796, w800=0.825, w864=0.840).  A further modification to 

PROSAIL was made in the hotspot model (Kuusk, 1985) that is embedded within the SAIL 

model (and which is an integral part of PROSAIL); the formula for the correlation length in 

the hotspot model was multiplied by a correction factor (2/(cos(θv)+cos(θs)) in order to 

account for the increased shadow length associated with large zenith angles.  This correction 

factor improves modelling results for canopies with a spherical leaf angle distribution.  (Such 

a lengthening of shadows does not occur for canopies with horizontal leaves, which could 

explain why this effect has been overlooked).

The LUT was generated with input parameters that varied by constant increments between 

minimum and maximum values (Table 2).  Total number of simulations was 524000, having 

between 2 and 6 sampled values for each variable. The viewing angular geometries 

simulated for each configuration of parameters are the combination of the zenith angles 0, 

10, 20, 30, 40, 50 and 60° and the azimuth incremental angles (with respect to the principal 

plane) of 0, 18, 36, 54, 72, 90, 108, 126, 144, 162 and 180° which combined represent a total 

number of 62 directions. Only half of the directional space hemisphere is simulated, as the 

simulated BRFs using a 1D model are symmetrical with respect to the BRDF principal plane. 

Table 2

The four soil parameters (phase1, phase2, h and ω) were derived by fitting the soil BRDF 

parametric model SOILSPECT to ground measurements. The multi-directional BRF ground 

measurements were acquired using the FIGOS (FIeld GOniometer System) instrument 

(Sandmeier and Itten, 1999) on the S10 bare soil parcel of the Barrax site. While all 

SOILSPECT model parameters did display some spectral variability, in order to simplify the 

LUT generation procedure, the three parameters (h, phase1 and phase2) related to structure 

were assumed to be constants, spectrally invariant. Only albedo (ω) was considered variable 
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and spectrally dependent. The specific values of phase1 and phase2 of the intermediate band 

(670nm) were applied to all bands. The fitting algorithm minimises the error function 

( )
2_

1

),,(),,(∑
=

−=
measnb

i
xvxvmeasuredxvxvSOILSPECTBRF ϕθθρϕθθε  using quasi-Newton method 

(Geradin et al., 1980).

Inversion of the LUT was accomplished with the aid of a three layer perceptron, an artificial 

neural network architecture previously used for inverting vegetation radiative transfer 

models (Kimes et al., 2002; Weiss et al., 2000).  The first two layers have M and O neurons 

and a log-sigmoid transfer function, while in the third and last layer the single output neuron 

has a linear transfer function (Gurney, 1997) for estimating just one variable.  The algorithm 

pre-processes the network training set by normalizing inputs and outputs to the interval [-

1,1]. Thus, every spectral band is weighted identically and independently of the range of 

BRF values. 

Three data sets were used in the training and testing of the artificial neural network: (1) 

Training data: These are the data on which the gradient descent is performed. 70% of the 

input-output values were used for training. (2) Validation data: This dataset is not used for 

training. It is used to determine when the training must stop. 20% of the input-ouput values 

were used for validation. (3) Test data: This is the dataset used to assess the generalized 

performance of the network. 10% of the input-ouput values were used for testing.

For Method A, the inputs of the network are the 8 p1 parameters of the Li-Ross model (p 1
500

, 

p 1
550

, p 1
590

, p 1
670

, p 1
700

, p 1
720

, p 1
800

, p 1
864

), which correspond to the nadir reflectance when the 

sun zenith angle is equal to 0. As said before, these parameters were derived from the fitting 

of the Li-Ross model with the available multi-directional measurements. For Method B, the 

network has 24 inputs, which correspond to the 3 Li-Ross model parameters for each of the 8 

spectral bands (p 1
500

, p 2
500

, p 3
500

, p 1
550

, p 2
550

, p 3
550

, etc.). A specific neural network was defined for 

each of the retrieved variables. When defining neural network architecture, it must be taken 

into account that an overly simplified architecture does not reproduce accurately the non-

linearity of the inverse radiative transfer function, which tends to lead to inaccurate results. 

Conversely, an overly complex network provides a perfect fitting of the training samples but 

a more erroneous estimation of values away from the training data. Hence, the sizing of the 

neural network is driven by this trade-off.  In this study, to solve this issue the architectural 

parameters, i.e. M and O, were defined by minimizing the RMSE between estimated and 

ground-measured parameters. 
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IV. RESULTS

To analyse the quality of the results obtained using the two retrieval methods, we identified 

five possible sources of error: (a) erroneous or inaccurate remote sensing data; (b) inaccurate 

ground measurements; (c) spatial mismatch between airborne and field measurements; (d) an 

erroneous or inaccurate retrieval algorithm; and (e) inaccurate or not realistic BRF physical 

modelling.  Sources (a) and (e) are analysed in this study with the aid of histograms of the 

Li-Ross model parameters (p1, p2, p3) (Figure 4).  The domain of each histogram was divided 

into 20 bins.  The shape of each histogram of the measurements aided identification of 

artefacts or a poor fit between simulations and measurements.  

Figure 4

For Method A, the neural network architecture was defined by M=4 and O=4, using the 

strategy described previously at the end of chapter III. The network was trained with 35 

epochs (or iterations). LAI coefficient of determination using the training data is r2=89%. 

Estimated and in situ measurements have a coefficient of determination of 68% (Figure 5). 

This coefficient is larger than the 44% obtained using a semi-empirical method based on 

NDVI (Figure 2). The RMSE between measured and in situ measurements is 0.87 (Table 3). 

Sugar and corn have a low RMSE (0.5). In the case of the corn, a crop with low LAI, 

retrieval algorithm corrects the strong soil component of the radiometric measurements. For 

“barley” the RMSE is higher (1.22) and retrieval slightly underestimates LAI compared to 

ground measurements. “Alfalfa” leads to larger RMSE (1.36) with LAI overestimated. These 

results clearly show the advantage of using a physically-based method compared to the use 

of a NDVI-based semi-empirical approach (Figure 2). This is clearly illustrated by the fact 

that “corn” and “barley” have similar NDVI levels while having significantly different LAI. 

Thus this advantage is not only in terms of adaptability, i.e. use of the algorithm in other 

experimental conditions, but also in terms of accuracy of the estimates. A final remark is that 

this mono-directional retrieval algorithm was not employed in the case of high LAI values 

(i.e. higher than 4) in which case, generally, retrieval methods have more difficulties in 

accurately retrieving LAI. 

Figure 5

Table 3

For Method B, the neural network architecture is defined by M=6 and O=3, and was trained 

with 25 epochs (or iterations). LAI coefficient of determination using the training data is 
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r2=94%, i.e. this is the theoretically better performance of the retrieval algorithm. Although 

this coefficient is larger than using Method A, estimated and in situ LAI measurements are 

less well correlated than method A (52%) when is tested using real measurements. 

Furthermore, RMSE is larger (3.29) than using Method A (0.87). For each crop type, LAI 

values are overestimated (Figure 7) and RMSE is always larger than those obtained with 

Method A (Table 4). To understand this degradation of the results when using 

multidirectional information, the histograms of the Li-Ross parameters “p1”, “p2” and “p3” 

were analysed.

For “alfalfa”, “sugar” and “corn”, measured “p3” parameters for the visible band centred at 

500nm have larger values than the mean of PROSAIL simulated “p3” values (Figure 4). For 

“barley” this phenomenon is also present but less accentuated, which translates into a more 

accurate retrieval compared to other crops. For the near infrared band at 864nm measured 

“p3” values are close to the means of PROSAIL simulated values. However, there is still 

incoherence between measured and simulated BRF values. In the example of Figure 6, we 

state that the p3 parameter is clearly divergent, being 0.47 for the measurements and 0.31 in 

averages for the simulations with LAI within the range defined by the ground measured LAI 

value plus/minus 1. Hence, we can conclude that modelled and measured data are not 

coherent for the backscattering component of the reflectance and this degrades the retrieval 

using the anisotropic parameter “p3”.

Figure 6

Figure 7

Table 4

V. CONCLUDING REMARKS

The goal of this study was to analyse the performance of a biophysical variables retrieval 

algorithm using mono-directional or multi-directional airborne multi-spectral measurements. 

The retrieval algorithm is based on inverting a 1D soil-vegetation radiative transfer model 

(PROSAIL) using a neural network. Retrieval method shows good performance for 

retrieving LAI when using mono-directional data. The coefficient of determination is 68% 

and RMSE is 0.87. Compared with classical regression techniques, the physically based 

approach significantly improves the accuracy of the estimates. However, these results are not 

improved when using multi-directional data. In this case, the coefficient of determination is 

lower (52%) and RMSE is significantly larger (3.2). These results are deceiving when 
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compared to the theoretical improvement that is expected when using simulated data. The 

study showed that one of the main sources of error is the incoherence between POLDER 

sensor measurements and model-simulated BRFs (Figure 6). Measurements of p3 outside the 

range of the training values of the neural network induce large estimation errors.  

Atmospheric correction could be an additional source of error, as the atmospheric corrections 

were made assuming a simple BRDF lambertian model for the target reflectance and 

considering an identical BRDF for neighbouring pixels. The significant degradation of the 

results when using multi-directional data can also be due to the used retrieval algorithm 

which offers good performance when p1 measurements match but completely erroneous 

when p3 (i.e. multidirectional information) is putted in play. 

Three recommendations are proposed for improving this situation:

� Improve the modelling of soil-vegetation radiative transfer, if necessary going from 1D to 

3D architectures, to more accurately reproduce the BRDF of different crop types. In 

particular, backscattering (which is linked to architectural features of the crop) should be 

improved, as strong mismatches between simulations and measurements were reported. A 

detailed comparison between 1D and 3D modelling is described in (Gascon, 2005).

� When using multi-directional data, apply more accurate atmospheric correction 

algorithms, which take into account the anisotropy of the ground target and the 

heterogeneity of the surrounding area. 

� When using neural networks, ensure that the network is trained for all possible input 

combinations. Otherwise, an input outside the range of the training values will produce 

aberrant output results.

Finally, point out that the results obtained in this study have been compared to those obtained by 

two other teams from INRA (Institut National de la Recherche Agronomique) and the UV 

(Universitat de València) (García-Haro et al., 2004) and results will be published as well 

(Gascon et al., 2005). 
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Figures

1km

Figure 1:  Location of the in situ measurement points on a POLDER image (band centred at 550 
nm). The image is centred at (39°3'N, 2°5'W).
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Figure 2: Comparison between NDVI (Normalized Differential Vegetation Index) and in situ
data.
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Figure 3: Comparison of the BRF values (band 864nm) in the principal plane for a sugar beet 
sample point (UTME = 577647m, UTMN = 4324723m). The RMSE between measured BRF 
values (x) and Li-Ross model values (o) is 1.6%.
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Figure 4:  Histograms of simulated and measured Li-Ross parameters p1 (upper histograms), p2 
(middle histograms) and p3 (lower histograms). Bands cantered at 500 nm (left) and 864 nm
(right). PDF (Probability Distribution Function) = number of counts/total number of counts 
considering 20 sampling intervals. Simulated data used for generating the histograms correspond 
to the whole dataset used for the training of the neural network and measurements correspond to 
the radiometric data associated to the test locations.
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Figure 5:  Comparison between retrieved values and in situ measurements using Method A.
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Figure 6: Comparison of the BRF values (band 864nm) within an acquisition track over a barley 
test location (UTME = 579037m, UTMN = 4322827m, LAI measured in situ = 4.2 ). Measured 
BRF values (x) are fitted with the Li-Ross model (o) and compared to PROSAIL simulations (*) 
with their associated range when varying LAI between 3.2 and 5.2 .
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Figure 7: LAI retrieved values and in situ measurements using Method B.
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Tables

Abbreviation Parameter Name Unit 
Ng Structure index no unit 
Cab,g Chlorophyll concentration µgr.cm-2 
Cdmg Dry mater content gr.cm-2

Cw,g Water content cm-1 
Green leafs properties 

Cb,g Brown pigments content µgr.cm-2 
Ns Structure index no unit 
Cab,s Chlorophyll concentration µgr.cm-2

Cdm,s Dry mater content gr.cm-2 
Cw,s Water thickness cm-1

Senescent leafs properties 

Cb,s Brown pigments content µgr.cm-2 
LAI Leaf Area Index no unit 
fsen Fraction of senescent vegetation % 
ALA Average Leaf Angle ° Canopy Structure 

Hs Hot spot parameter no unit 
sp Soil albedo factor no unit 
ω SOILSPECT albedo no unit 
phase1 SOILSPECT parameter phase1 no unit 
phase2 SOILSPECT parameter phase2 no unit 

Soil BRDF 

h SOILSPECT hot spot parameter no unit 
θs Sun zenith angle °
∆ϕ Delta between sun and view 

azimuth angles 
°Angular geometry 

θv View zenith angle °

Table 1: Input parameters of the PROSAIL model. 

 

Parameter Min. value Max. value 
Ng 1 2.5 
Cab,g 5 70 
Cdmg 0.002 0.02 
Cb,g 0 3 
Ns 1.5 3 
Cab,s 0 0 
Cdm,s 0.002 0.02 
Cb,s 0 3 
LAI 0 8 
fsen 0 1 
ALA 35 80 
Hs 0.01 0.5 
sp 0.25 1.5 

Table 2:  Variation range of input parameters of the PROSAIL model used to generate the 
training LUT. 

 
Crop RMSE 
Sugar 0.50 
Corn 0.52 
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Alfalfa 1.36 
Barley 1.22 
Total 0.87 

Table 3: RMSE between LAI retrieved values and in situ measurements using Method A. 
 

Crop RMSE 
Sugar 2.98 
Corn 2.95 
Alfalfa 4.70 
Barley 1.63 
Total 3.29 

Table 4: RMSE between LAI retrieved values and in situ measurements using Method B. 
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