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Abstract

Statistical analysis of extremes currently assumes that data arise from a stationary process, although such an
hypothesis is not easily assessable and should therefore be considered as an uncertainty. The aim of this paper is
to describe a Bayesian framework for this purpose, considering several probabilistic models (stationary, step-
change and linear trend models) and four extreme values distributions (exponential, generalized Pareto, Gumbel
and GEV). Prior distributions are specified by using regional prior knowledge about quantiles. Posterior
distributions are used to estimate parameters, quantify the probability of models and derive a realistic frequency
analysis, which takes into account estimation, distribution and stationarity uncertaintiecs. MCMC methods are
needed for this purpose, and are described in the article. Finally, an application to a POT discharge series is
presented, with an analysis of both occurrence process and peak distribution.
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1. Introduction

Since Gumbel’s precursory work (Gumbel, 1958), a great number of methods have been
developed in the statistics of extreme events studies (see Katz et al. (2002), for a recent
review). Among them, Bayesian analysis recently received attention, thanks to advances in
computational and numerical tools (Coles and Powell, 1996; Coles and Tawn, 1996; Coles
and Pericchi, 2003; Coles et al., 2003; Diebolt et al., 2003; Parent and Bernier, 2003).

In most cases, these methods assume that data are independent and stationary, which
means that the statistical properties of the studied process are invariant with respect to time.
Nevertheless, this assumption sometimes appears very doubtful. For example, with discharges
series, changes in land use can modify the floods and droughts regimes. More generally, in a
global climate change context, hydro-meteorological data could exhibit trends or step-
changes, as has been demonstrated for global temperature, as an example (IPCC, 2001).
Strupczewski et al. (2001) therefore derived a likelihood-based approach to model trends in
the distribution parameters, including a criterion for the “best” model choice. Cunderlick and
Burn (2003) used the same kind of method in order to include data from several sites and to
estimate quantiles from pooled frequency analysis. An alternative of interest was proposed by
Perreault et al. (2000a; 2000b), by quantifying the probability of each model in a Bayesian
framework, and combining their results with appropriate weightings. In this manner, model
choice uncertainty can be taken into account, which seems to be a very pragmatic approach as
it is impossible to verify what the “true” model is — and even if such a model exists. However,
Perreault et al. made an assumption of normality, which prevents this methodology from
being applied to extreme events data.

The aim of this article is to derive a Bayesian framework for extreme events analysis,
based on a comparison of models. In section 2, we describe the successive steps of the
Bayesian approach. The probabilistic models and prior distributions used in this paper are
described in sections 3 and 4. Particular attention will be paid to parameter estimation,
detection of changes and frequency analysis (section 5). The particular case of the exponential
distribution for peak over threshold (POT) or inter-arrival time data is discussed in section 6.
Finally, we present an application to hydrological data, with exponential and generalized
Pareto distributions (section 7), before drawing some conclusions and discussing potential
improvements (section 8).

2. An overview of the Bayesian approach

A complete and detailed presentation of Bayesian analysis and its applications can be
found in Berger (1985) or in Gelman et al. (1995). Figure 1 just shows the general principle of
the method. As a first step, probabilistic models for the data must be chosen. In the context of
the potential changes described here, these models consist of including trends or step changes
in the distribution parameters. Given an independent observations vector X, it is then possible
to compute the likelihood p(X]6) relating to each model, as is usually done in more standard
approaches. The fundamental difference of Bayesian analysis concerns the parameters vector
0: it is not viewed as an unknown but constant quantity, which has to be estimated, but as a
random vector, whose distribution can be computed from observations. For this purpose, a
prior distribution 7(@) is assumed for . This distribution reflects the prior knowledge about
the parameters, and must be assessed without using the observations. In some cases, the lack
of information about a phenomenon leads to the use of so-called non-informative priors. We
won’t consider this particular case in this paper, thus assuming that prior information is
available, however vague it may be. This is not a drastic restriction, as environmental
variables can often be connected with not totally unknown physical processes.



Given the likelihood and the prior distribution, Bayes theorem provides the parameters
posterior distribution:

0)p(X|0)
0 =
P(01X) [mo)p(x|0)do

The posterior distribution can be viewed as an updating of the prior information about 8,
thanks to the observations. It provides a more complete estimation than the classical point
estimates. However, as soon as the dimension of @ becomes large, the use of this distribution
is no longer straightforward, and specific computational methods are needed. The next
sections describe the successive steps to achieve a complete analysis framework.

(1)

3. Models for extreme values analysis

Table 1 summarizes the probability density functions (pdf) considered in this paper. These
distributions arise from theoretical results, thus applying to a wide range of situations
involving extreme values. Two main sampling methods are concerned. Firstly, the block
maximum consists of selecting the maximum value within a block. Normally, a one year
block is chosen, leading to the annual maxima (AM) series. Secondly, peak over threshold
(POT) data consists of selecting all the events exceeding a high threshold (see Rosbjerg and
Madsen (2004) for an up-to-date review of literature). The extreme value theorem (Fisher and
Tippett, 1928) shows that when the block size tends to infinity, the limit distribution, if it
exists, of the block maximum series computed from iid variables is a GEV distribution.
Similarly, when the threshold value increases, the limit distribution of a POT series can be
approximated with a Generalized Pareto distribution (Pickands, 1975). In real-world
problems, the data from which the extreme variables are extracted may be too complex to
meet the requirements of the above theorems. As an example, daily discharges or rainfalls are
neither independent nor identically distributed in case of non-stationarity. Moreover, the block
size is usually equal to 365 days, which might be insufficient to apply the asymptotic
arguments of theorems’ proofs. However, these distributions have been extensively applied in
studies involving extreme values (e.g. floods, heavy rainfalls, wave heights), and have
demonstrated their usefulness in most hydro-meteorological applications.

Moreover, if a Poisson process is assumed for the occurrence of POTs, it can be shown that
a Poisson + Exponential model leads to a Gumbel distribution for the annual maxima,
whereas Poisson + Generalized Pareto similarly leads to the GEV distribution (Lang et al.,
1999). Finally, the inter-arrivals time between two events can be modelled with a one-
parameter exponential distribution when a Poisson process is assumed for the occurrences
(Lang, 1999).

With our notations, ¢ is the threshold value, which is supposed to be known, and g, 4, and &
are the location, scale and shape parameters. The two-parameter distributions (Exponential
and Gumbel) can be considered as limiting cases of the corresponding three-parameter ones
(Generalized Pareto and GEV), when & 2 0.

In order to take into account non-stationary data, a step change or a linear trend can be
assumed for the parameters, as formalized in table 2. ¢ denotes time, in a discrete (AM) or
continuous (POT) way. Notice that the shape parameter ¢ is always assumed to be constant
(although the same kind of changes could theoretically be modelled), because of the difficulty
of precisely estimating this parameter. Moreover, other kinds of changes could be modelled,
such as a linear trend on the log-transformed scale parameter (Katz et al.,, 2002), non-
simultaneous step changes in the location and the scale parameters, multiple step changes or
polynomial trends. Although the methodology presented here can take into account such kind
of models, it always has to be kept in mind that complex models can improve the description



of a phenomenon, but can dramatically decrease the accuracy of the estimations or increase
the numerical difficulties.

Finally, for each of the 12 models presented in table 2, the likelihood of an observed vector
X = (xy,..., x,) can be computed as follows:

p(X10)=[] p(x; 10) 2)
i=1

4. Specifying priors

Scientists usually have to estimate some environmental characteristics at one site of
interest, without any data being available at this particular location. Standard statistical
analysis is then impossible, and alternative methods have been developed for this purpose.
Regionalization can thus be used to transfer knowledge from gauged to ungauged sites
(GREHYS, 1996; Javelle et al., 2002; Madsen et al., 2002). A more physical approach
consists of deducing some estimates from underlying physical processes. As an example, in
the hydrology field, a large number of methods have been used to relate stream flow to
explanatory variables, such as rainfall, topography of the watershed, soil properties, etc (see
Reed (1999) for an example in UK).

When specifying priors, the situation is the same, as data must not be used at this step. The
non-exhaustive above list of examples shows that regional knowledge is often available. Such
information just has to be transferred to the probabilistic model parameters. In extreme values
analysis, a variable of current concern is the p-quantile g,, that is the value which is exceeded
with probability (7-p). Coles and Tawn (1996) thus proposed a method for producing prior
distributions from these quantiles. Let p(x|@) be one of the stationary pdf (models M;), with

dimension & (§OR*). Let p, <..<p,, and q, <-<4, be the corresponding quantiles,
1 k

which can be expressed as @ and p functions. As an example, with the M;® model,
q, =0 —Alog(1-p). As a natural order exists between q, 9, thus leading to strongly
1 k

non-independent values, prior production is done using the following modified quantiles:

g, = a. = - g, = - 3
% qpl > 42 qP2 qu s i qpk qpk—l ( )

Let G(y|a, b) be the pdf of a gamma distribution with parameters a and b:

a

b -
Gyl a.6)= sy e g ) 4)

where I'(.) denotes the gamma function and 1q(y) is the indicator function of the Q set

.....

distributions:

(g, - q;) =G(q, ay,b)...G(G, | a;, ;) (5)

The gamma distribution is used because of its flexibility, but alternative choices are
possible. The hypothesis of independence is used here for convenience. Nevertheless, this is
not a drastic restriction, as the joint prior distribution must reflect diffuse knowledge, which
will be updated in the following step. Moreover, structural dependence between parameters
will be preserved when transferring prior knowledge from the quantiles space to the
parameters space.



The prior distribution is finally computed by replacing the g; by their expression in terms

of #, and multiplying by the Jacobian of the transformation 8 — (g, ,...,g, ) :

m0) =G( )] a.b)..G(§,(0) | a. b)) | T | (6)

where J is the Jacobian matrix of the above transformation, and the couples (a;,b;) are
called the hyperparameters of the model, which have to be fixed at a particular value,

.....

the g,(0) mathematical expressions in each model M, M; and M, and the corresponding
Jacobian matrixes. The determinants of these matrixes can be computed numerically with any
mathematical software.

In the case of a stationary model M, prior specification is thus related to at most three

modified quantiles (g, ,q,,q;). Prior specification can be achieved in the same manner with

non-stationary models M; and M., despite an increase in the @ dimension. In the step change
model (M), a discrete distribution 7(7) has to be assumed for the change point 7 (uniform on
1,...,n-1 for instance). Let » be an integer such as 1<r<k. Prior specifications are the
following:

Before change, (§")., . follow independent gamma distributions.
g qz i=l,..,r

After change, (%), ., follow independent gamma distributions.
i i=l,...k-r

Assuming independence between the change point 7and the g, , prior distribution is then:

m0)=G@G" @) a,b")..G(G" (@) a,b") -
xG(g>(0)|a®,6)..G(G2.0) | a2 )m(T) | T |

If no prior knowledge about the existence of a change is available, the same specifications
for quantiles with same probability before and after change can be chosen:

(@, pM) = (@®,p?),0i =1,..., min(r, k —r) (8)

If a trend is assumed in the parameters (M), let ¢;,<t, be two time points, and 1<r <k.
Prior specifications are then:

Att=1t,(q; (¢ ));=, . follow independent gamma distributions.
Att=t,,(q; (;));=1. 4-- Tollow independent gamma distributions.

The prior distribution can thus be written:

0) = G(G, (0(1,))] a”,b)..G(§, (01, ) | a”, b))

9)
xG(§, (0(,)) | a® ,b™)..G(G,-, (0(t,)) | a® b ) | T |

As previously explained in the M, case, equation (8) can be used to complete the prior
specifications.

At last, the approach proposed by Coles and Tawn (1996) was exposed here because
regional or empirical knowledge is often expressed in terms of quantiles values, rather than
parameters values. However, alternative prior distributions can be used without additional
difficulties within the presented framework.



5. Computations on posterior distributions

The methods described in sections 3 and 4 allow Bayes theorem to be used to compute the
posterior distribution p(@|X). However, the integral of the denominator of equation (1) is
generally intractable, p(8|X) is thus only known up to a constant of proportionality:

p(0| X)U p(X|60)1(0) (10)

Moreover, the high dimensionality of p(#|X) makes this function difficult to handle in
practice. Next sections present some methods to overcome this drawback. Readers interested

in further exploration of posterior distributions than those described below can refer to Tanner
(1996).

5.1. Parameters estimation via marginal densities
The p(0|X) " marginal is defined by:

P8, 1X)=[ p@,..6, | X)d6, ..d6,,db,.,..d6; (11)

Once again, this integration is often intractable. No analytical expression of the posterior
marginal is then available. An alternative is to simulate a sample from the joint posterior
distribution p(@|X). Two main methods can be used for this purpose: the Metropolis-Hastings
algorithm (Metropolis and Ulam, 1949; Metropolis et al.,, 1953; Hastings, 1970) and the
griddy Gibbs sampling (Ritter and Tanner, 1992). The latter is conceptually easier to
understand, and is thus presented in detail in Annex 1, although the former method may be
more efficient in some situations.

.....

marginal is simply obtained by considering (6’](-"))1-:1,_._,]\,. Estimation can then be made by

means of this sample: the mean or the median gives a point estimate, and a confidence
interval can be calculated by computing lower and upper empirical quantiles. Notice that the

values (6’1(-’) )i=1...n are not independent, a large sample size is thus required to avoid any bias

due to autocorrelation. A sensitivity analysis could be necessary to determine a critical sample
size, above which estimates stay stable.

5.2. Detection of changes

We applied the methodology described by Perreault at al. (2000b), based on Bayes factors
(Kass and Raftery, 1995), to detect changes in environmental series. Let us define the
marginal distribution of X as follow:

p(X|M)=] p(X,0|M)do (12)

A simple calculation shows that p(X|M) is the denominator of the Bayes theorem applied
to a particular model M:

p(X|M)=] p(X|0,M)m0|M)d0 (13)

As stated previously, this quantity can generally not be explicitly computed. Chib (1995)
proposed a simple method for estimating the marginal distribution of X, based on griddy
Gibbs sampling. A detailed description of this approach is made in Annex 2. Let

Q ={M1 ,...,Mq} =Q, 0Qf, where the exponent ¢ denotes the complement of a set, be a



partition  of the  collection of models considered. As an  example,
Q ={M® MP? M50 ME ME MY ={ M ME} O{ M ME MS®, M5} could be

a partition for POT data models. More generally, the partition Q, [JQf can take the form
“stationary vs non stationary models”, or “2 parameters vs 3 parameters models”. Assume that

n(.) is a prior probability distribution on Q, the posterior probability of a model M; can then be
computed with the Bayes theorem:

M )mM,
p(M; [ X)= X1M)m,) (14)

ZP(XIMI- )M )
i=1

The Bayes factor between models M; and A; is then defined by:

o (P00, 1)) /[ m0n)) _ pximy) s
o p(Mj|X) n(MJ) p(X|Mj)

A composite Bayes factor between Q, et Q[ can also be computed:

>, p(M|X) D, M)

MOQ MOQ
B == e (16)
Q,.9i 2 p(M | X) Z (M)

MOQS MOQS

The Bayes factor provides a measurement of the pertinence of a hypothesis compared to
another. It can thus be compared to classical likelihood ratios. However, model likelihood is
not computed by replacing the parameters by their ML estimates, but by integrating on the
prior distribution. More generally, this approach is not a classical test procedure. The Bayes
factor value depends on prior specifications in addition to sampling variance. Thus, it cannot
be interpreted as a risk in terms of limit error percentage when resampling size tends to
infinity, but rather in terms of a false decision cost (see Perreault (2000) for further
explanations). Classically, the two error types are assumed to have the same cost. The Bayes
factor is then compared to 1, with greater certainty for high or near zero values (Kass and
Raftery, 1995).

5.3. Frequency analysis.

Section 5.1 provides a way of simulating a sample for the p(8|X) distribution, which relates
to estimation uncertainty. Section 5.2 describes the computing of posterior probabilities of the
models: as a collection of models cannot be considered totally exhaustive, a part of the
modelling uncertainty is thus controlled. These two kinds of uncertainty can be taken into
account in frequency analysis, by the following procedure:

Repeat N times:
1. Random choice of a model M", with probablhtles pM,|X), ..., p(Mk|X)
2. Random choice of a pararneter vector 6 from the sample of p(0|X M).
3. Computation of g,(?), the p-quantile in model M’ with parameter 8" at time .

The quantiles collection obtained can be considered as a sample of the quantile distribution
at time ¢, including estimation and modelling uncertainties. It can thus be used to provide a
point estimate, a confidence interval or even a distribution estimate for g,(z). If data



stationarity is questionable, the function 7+ g,(r) provides a description of the possible

change in terms of quantile drift with time.

6. A particular case: the exponential distribution

Up to this point, the methods used in this paper have been described as generally as
possible. The framework is thus still applicable with other models. Nevertheless, distributions
belonging to the exponential family can be treated in a simpler way, with analytical results
being available without using MCMC methods. In the next sections, posterior marginal
distributions and the marginal distribution of observations are computed for exponential
models, leading to substantial simplifications. Notice that Parent and Bernier (2003) also
succeeded in deriving a MCMC-free method in the case of a stationary generalized Pareto
distribution.

6.1. Stationary model

The likelihood for M ;™ model is:

_n()_(—U)J (17

p(X10)= |‘| p(x |0>:Ainexp( -

Viewed as a function of A, this likelihood is proportional to an inverse gamma pdf
IG(y|a,b):

a

b
IG(y|a,b) = o
M(a) y**

This particularity is known as the conjugacy property. Thus, if 7(A) is supposed to follow
an inverse gamma distribution with parameters a and b, the posterior distribution of A is:

PAIX)OmA)p(X|A)
b1 ( b+n()_(—0)J
[ (a) A7t p)
=f(A)

Up to proportionality, A posterior distribution is still an inverse gamma distribution, with
updated parameters:

exp(—%)l{po} ») (1)

(19)

a=a+n
_ (20)
b'=b+n(X-0)
The marginal distribution of observations is finally simply obtained by integrating f(A):

PX|ME®) = f(A)dA @1

__b j —I,H exp(—b—jdﬁ

Ma)? A¢ A
_ b T(d)

M(a) b7



6.2. Step change model
Following the table 2 notations, the M ™ likelihood is:

1Y (1Y L x.—0 "ox -0
P(Xla):()l—lj [ﬂ_z] exp(—;xl)ll ]GXP(‘ZXIAZ ] (22)

i=r+1

For fixed 7, the likelihood is proportional to the product of two inverse gamma
distributions. Assuming independence between the change point and A; values, the prior
distribution is:

m0) = 1G(A | ay,b))IG(A, | ay,b,)H(T) (23),

where n(7) is any discrete distribution on 1,...,n-1. Once again, a simple calculation shows
that, for a fixed 7 the posterior distribution is still proportional to a product of inverse gamma
densities:

PO X)TIGA |a,,b)IG(A, [ay,b,)T(T) p(X | 0)

: r’Za : r’f;) IGA, |a} b YIG(, |ay b} )7(T) (24)
=f(A ,A,,7)
with:
a =a +T

I

a, =a,+*tn—-T

b =b, +i(xl. -0) (25)
=1

by, =b, + Z (x; —0)

=7+

The marginal posterior distribution can directly be computed by integration from the joint
posterior distribution:



P X)0[ fOA,A,DdA dA,
q M@)r)

(B ) (85"

P I X)O[ f(A Ay, 0)dAdr

a; +1
r@) (1) ) (26)
Tar o]

= (b))

)

>..|p_

p(h | X)0 j S Ay DA dT

ay +1
r( Ta ) ) 1 _b

Finally, the marginal distribution of observations is:

PX| M) =[ (A Ay, 1) dAydT

M@ ) (ay) (B)" (5) 27)

= M@ (ay) (B )% )™

6.3. Trend model

The likelihood can be written as:

1Y 21 1 & x -0
X|0)=| — exp| —— : 28
P [/10] !;l[l"'/‘ltiJ p( A ;1+Altij -

For fixed A;, this likelihood viewed as a Ay function is proportional to an inverse gamma
pdf. Unfortunately, no conjugacy property appears for the A; parameter. Any prior distribution
can thus be chosen for A;, for instance a normal distribution with parameters m and s. The

joint prior distribution is then:

m0) = IG(Ay |a,b)N(A, |m,s) (29),

leading to the following posterior distribution:

p(0|X) U p(X[0)7m0)

_ L nta+l b n o /1 _m) (30)
[/10] M(a) s\2m nl;l[lwit ] L [ +Zl+/1t j 257 J
=f(A,A)

The f function can be explicitly integrated with respect to Ay, thus giving the marginal
posterior distribution of A;:




P4 1 X) O £, A )dA

b M(n+a) 1 2 1 (A -m)’
_r(a) "y —g nra SJ;T!:I|£1+A12‘I.}6XP[ 2s? ] Gh
Qo

i=1 1+Al ti

=fA)

The marginal posterior distribution of Ay and the marginal distribution of observations can
be computed by 1-D numerical integration:

p(A 1 X) O .[f(/]o A )dA
(X |M3?P) :J. S (A, A)dAyd A, (32)

= [ (A)dA

7. Application

The Bayesian method was applied to a stream flow series from the Drome river at Luc en
Diois (194 km®, South East of France). Daily stream flows were available between the years
1907 and 2003. We extracted a series of independent peaks above a 23 m’.s” threshold,
leading to a sample of 93 values. Over-threshold values and inter-arrivals series were studied

figure 2). The former was studied with the six models M P M M M , M and M5,
g 0 1 2 0 i 2
the latter with M, M™ and M;™.

7.1. Prior specification

The first step consisted of specifying a discrete prior distribution on the models collection
we considered. In order to avoid any bias in the hypothesis we wished to evaluate (stationary
vs. non-stationary and Exponential vs. Generalized Pareto), the following probabilities were
chosen:

AME?) = (ME) =025
AME?) = I(MS?) = (M) = mM§) =0.125
for the over-threshold series, and

ME®)=0.5
M) = mM35P) =0.25

for the inter-arrivals series. In this manner, each hypothesis had an equal prior probability.

The second step consisted of evaluating our prior knowledge on quantiles, as explained in
section 4. We applied the methodology proposed by Galéa and Prudhomme (1997) and
Javelle et al. (1999), known as the QdF (flow-duration-frequency) models. As a first step, we
estimated the instantaneous discharge quantile with probability 0.9 by using the Crupedix
formula (CTGREF et al., 1980-1982):



2
=g08| o9 | p 33
do.9 [ 30 ] (33)

where S is the watershed area, 7y is the daily rainfall quantile with probability 0.9, and R
is a regional index. The Socose duration D (CTGREEF et al., 1980-1982), which characterizes
the flood duration, was then computed:

1ot

N2
log(D) = —0.69 +0.321log(S) + 2.2[ ! _J (34)

where 7 is the mean annual rainfall and 7 the mean annual temperature. All the parameters
needed for the calculation of ggo and D are available on maps. The QdF methodology can
then be used to deduce flood quantiles with other durations or frequencies, by comparison
with three reference data sets, representative of the three main groups of hydrological flood
regimes in France. The reference data set suitable for the Drome river had already been
chosen by Prudhomme (1995).

We thus obtained 0.9- and 0.99-quantiles of daily stream flows, leading to qﬂ and é]cz

values as defined in section 4. In order to fit a two-parameters prior distribution to each
modified quantile, an indication about their variability was also needed. In the Crupedix
method, a 90% confidence interval is [¢/2; 2q]. Because of the lack of information about the
final uncertainty in our prior specification process, we decided to use the same shape of
confidence intervals for the modified quantiles. We thus evaluated the hyperparameters a and

b of the Gamma distribution, so that the mean prior value of g, was equal to éi and the 0.95-

quantile of the gamma distribution was equal to 2><c']:l. . In the exponential case, the simplified

procedure described in section 6 was applied. The estimates A =974 and
log(1-p,)
U U_zxq:l
A :ﬁ were computed, and the hyperparameters a and b of the Inverse Gamma
ogll=p

distribution were evaluated so that the mean was equal to A and the 0.95-quantile was equal
to A, Finally, the same value of the a hyperparameter was chosen for the prior distribution

relative to inter-arrivals (leading to the same coefficient of variation), and the b
hyperparameter was computed to obtain a mean value of 1 for the A parameter (leading to one
event per year on average). Equation (8) was used in models M; and M,. Table 4 gives the
results of the prior specification process.

7.2. Results

Table 5 summarizes the models' posterior probabilities and associated Bayes factors.
According to the scale proposed by Kass and Raftery (1995), evidence for non-stationarity of
the inter-arrivals series appears to be positive, a linear trend on the exponential distribution
being the most probable model. Figure 3 shows the process mean for each of the three
models. For this purpose, parameter estimates are the means of marginal posterior

distributions (figure 4), except for the change point in model M;™ , which is the mode of the
discrete posterior distribution.



No clear evidence appears concerning the stationarity of the over-threshold series, with a
Bayes factor near to 1. Conversely, the generalized Pareto distribution seems to be most

efficient, as shown by figure 5 for models M;® and M{” . Surprisingly, the model M

appears to be the more probable, but does not provide an accurate estimate of the change-
point (Figure 6). One possible explanation could be the sensitivity of Chib approach to the
starting point: the accuracy of the method may be lower when no clear isolated mode appears
in the posterior distribution of 7. Nevertheless, the posterior distribution of the scale parameter

after change is very close to that of the scale parameter in model M§ (Figure 7).

Consequently, results of the frequency analysis should also be very close for these two
models.

Figure 8 shows the result of such an analysis. In order to take into account changes in the
inter-arrivals process ¥ (which is supposed to be independent from the over-thresholds X), the
procedure presented in section 5.3 was modified as follows:

Repeat N times:
Random choice of a model M~ for the over-thresholds, with probabilities p(M;|X), ..., p(Mi|X).
Random choice of a parameter vector 6" from the sample of p(0|X, M).
Random choice of a model M for the inter-arrivals, with probabilities p(M;|¥), ..., p(M;| Y).
Random choice of a parameter vector 8" from the sample of p(0|¥, M").
Computation of £4(?) (=1/A(t)), the mean number of events per year in model M at time ¢, with
parameter 6" .
Computation of the probability relative to a return period 7 at time : p =1-1/T u(¢).

NR W=

N

Computation of g,(?), the p-quantile in model M " with parameter 8" at time 1.

Flood quantiles have decreased by about 19% between years 1907 and 2003. Figure 9
focuses on the trajectory of the 10-year return flood. The curve shape in the early years is due
to the step-change model: once the posterior probability of a step change has become too
weak, this model assumes that the process will stay in the second state, thus behaving like a
stationary model. The curve is thus smoothed after such a date. Prediction of quantile future
values must be regarded with caution, because we neglect the uncertainty due to change
persistency in the future. Nevertheless, such a figure emphasizes the ambiguity relative to the
use of “return periods” for characterizing frequency in a non-stationary context. In such a
case, it would be better to use the 0.9-quantile, which has a 0.1 probability of being exceeded
in the next year, this value being different each year.

8. Conclusion and discussion

The aim of this article was to derive a Bayesian framework to deal with data for which
stationarity is questionable. The method presented here can take into account modelling
uncertainties, in order to obtain a more realistic quantification of the results accuracy. This
should result in wider confidence intervals, compared to methods ignoring the modelling
uncertainties. Conversely, prior specifications can be used to inject physical or regional
knowledge about a phenomenon, which may increase the accuracy of estimates. Coles and
Powell (1996) thus noted that prior spatial information can be very useful for estimating scale
and shape parameters of a GEV distribution, even with few data, whereas the location
parameter is mostly site-specific and data-dependent. More information about the advantages
and drawbacks of Bayesian methods, compared to likelihood-based ones, in extreme values
analysis are needed. More precisely, future studies could compare the accuracy of estimates,
the robustness to outliers, and investigate the influence of prior specifications (or
misspecifications).



Although we focused on 12 particular models, including two sampling methods, two kinds
of distributions and three change possibilities, the framework can easily be used in other
contexts, like polynomial changes, multiple step changes, seasonal distributions mixture, use
of covariates, etc. Some hypotheses we made could also be relaxed by means of appropriate
models. Firstly, we assumed that data arise from an independent sample, which can
sometimes be very doubtful. ARMA models are then good candidates to overcome this
difficulty (see Ray and Tsay (2002) for instance). Secondly, we assumed any change to be
final. Thus, when forecasting a future quantile value, the uncertainty due to change
persistency is not taken into account. In the step-change case, Hidden Markov Chains can be
used for this purpose (Robert et al., 2000; Perreault and Fortin, 2003). Nevertheless, most of
the published approaches assumed data normality. Some improvements are thus still
foreseeable in these topics.

Finally, one of the more promising tasks would be to derive a Bayesian multivariate
method for extreme values analysis. More precisely, in a global climate change context, at-
site analysis is not satisfactory. Unfortunately, generalization of existing methods (Perreault et
al., 2000c¢) is not straightforward for extreme values distributions. The use of copulas (Favre
et al., 2004) might be considered for a restricted number of locations. Adaptation of the flood-
duration-frequency approach (Javelle et al., 2002) in a non-stationary context is also one of
the possibilities. At last, hierarchical Bayesian models, including trends or step-changes
parameters, may be useful for regional analysis of extremes (Cooley, 2005; Cooley et al.,
2005), as well as for measurement uncertainties handling (Reis and Stedinger, 2005).
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Annex 1. Griddy Gibbs sampling

The aim of this method is to simulate a sample from the posterior distribution p(@|X). The
Gibbs sampling algorithm can be written as follow:

 Choose a starting value '° = («91(0),...,8,50)) ,and set j = 0.

* Repeat N times :
0 j=jtl;

o Sample 67 ~ p(6 [68/7....607. X)

o Sample 65/ ~ (g 169,67, .’elgj—l),X)

0 Sample H;j) p(gq 199, . 5(/ e;{rll)’ e/fj—l)’X)
o ......

0 Sample H,Ej) p(g 169,.. ,QIEQ’X)

* end

The vectors series (%) converges to the target posterior distribution as j tends to infinity.
In order to decrease the influence of the starting point, the first m iterations are usually
deleted, and inference is made with the last N-m iterations. Sensitivity analysis may be
necessary to determine acceptable values for m and N (usually, at least a few thousands of
iterations are used for m and N). More generally, this method presents the same drawbacks as
other iterative simulation techniques. Convergence thus has to be monitored, by choosing
several starting points or computing convergence indices. Gelman et al. (1995) or Tanner
(1996) provide some guidelines for improving the numerical simulations efficiency.

Unfortunately, the Gibbs sampling algorithm can usually not be used in this raw version,
because it involves being able to sample from the full conditional densities

p(ﬁq 1617, ...,H(f 9;{,11), H,fj_l),X). Ritter and Tanner (1992) proposed the use of a

discrete approximation of the cumulative density functions (cdf) of these distributions:
* Choose a grid of points yy, ..., ¥,
* Evaluate p(@i| 0;,... 0,1 0:+1 .., 04, X) on this grid, to obtain wy, ..., w,
* Compute the cumulative sums of wy, ..., w, to obtain an approximation of the CDF.
e Sample u from a uniform distribution on [0, 1].
* Transform u by the inverse of the approximate CDF.
This algorithm must be added at each step of the Gibbs iteration. If the full conditional

densities are known only up to proportionality, p(Bq 1617, ...,9(’ NN ¢ ) can

,,,,,

q

be replaced by f (Hl(j ) 9(’ ), y,00,..,8Y _1)) , the product of prior and likelihood, and

q
the cumulative sums of wy, ..., w, must then be divided by the total sum to provide the CDF
approximation. Inversion of the CDF can be made with a linear interpolation between two
grid points. The grid choice is the most important issue of this technique: it has to be broad
enough to cover the range of the distributions, and fine enough to ensure a sufficient
accuracy, keeping in mind that this supplementary step is computing-time expensive. Some
improvements of the method are described in Ritter and Tanner (1992).



Annex 2. Chib method

The aim of this method is to compute the marginal distribution of the observations,
which is the normalizing constant of the Bayes theorem:

(X |y = TOPX10) [ (O) Al
p@1X)  p@X)

This relationship being true for any vector @, let us consider a particular 8" = (6?1*,...,6?; ).
1(6°) is directly computable, which is not the case of the denominator. Consider the following
relationship:

P(@....8,1 X)= p(& | X)p(&, |6, X)..p(6, | 6.6,....6,1, X)

.xp6.16,....6,.,,X)
The first term can be evaluated thanks to the sample of the first marginal distribution, by
using a Gaussian kernel as an example. The last term can be computed by 1-D numerical
integration:

(A2)

_1@) (A3)
[7@...6.1.8.)d6,

The griddy Gibbs sampling can be wused to compute intermediary terms.
[9(6’;]k 16,6, ,...,6’;_1,X) is indeed the first marginal of the distribution

p(6; 16 ,..6,,X) =

p4., .6 .0, |6’1*,6’;,...,6’;_1,X ), evaluated at «9;. The griddy Gibbs algorithm can thus be

q° q+] 9
applied to the non-normalized posterior density with the first g-1 components being fixed, that

is £(6.65,...0,.1.6,.6,41,..6,).
Although this approach is theoretically valid for any value @ with non-zero posterior
probability, Chib recommends the use of a high-density point to increase the method

accuracy.
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