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An End-to-End Error Model for Classification
Methods Based on Temporal Change or

Polarization Ratio of SAR Intensities
Alexandre Bouvet, Member, IEEE, Thuy Le Toan, Nicolas Floury, Member, IEEE, and Trevor Macklin

Abstract—This paper aims at defining the expression of the
probability of error of classification methods using a synthetic
aperture radar (SAR) intensity ratio as a classification feature.
The two SAR intensities involved in this ratio can be mea-
surements from different dates, polarizations, or, also possibly,
frequency bands. Previous works provided a baseline expression
of the probability of error addressing the two-class problem with
equal a priori class probabilities and no calibration error. This
study brings up a novel expression of the error, providing the
possibility to assess the effect of class probabilities and calibra-
tion errors. An extended expression is described for the n-class
problem. The effect of calibration errors such as channel gain
imbalance, radiometric stability, and crosstalk is assessed in the
general case. The results indicate that, for the applications under
study, channel gain imbalance is usually not a decisive parameter,
but radiometric stability is more critical in methods based on the
temporal change. Crosstalk has a negligible effect in the case of
copolarizations. The impacts of other system parameters, such
as ambiguity ratio, time-lapse between repeat-pass orbits, spatial
resolution, and number of looks, are illustrated through a set
of assumptions on the backscattering values of the considered
classes. The model is validated by comparing some of its outputs to
experimental results calculated from the application of rice fields
mapping methods on real data. This error model constitutes a tool
for the design of future SAR missions and for the development of
robust classification methods using existing SAR instruments.

Index Terms—Calibration, image classification, polarization
ratio, synthetic aperture radar, temporal change.

I. INTRODUCTION

IN THE PAST few years, several satellites have been
launched with a fully polarimetric synthetic aperture radar

(SAR) onboard. Polarimetric data contain coherent acquisitions
of the four polarizations and thus carry much more information
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than single-polarized or incoherently dual-polarized data. To
exploit this information, polarimetric classification methods
have been developed in the end of the 1990s [1]–[5] and have
been applied to airborne polarimetric SAR data with excellent
accuracies. Nonetheless, because of constraints related to the
pulse repetition frequency (PRF), to the data rate, and to the
high spatial resolution required to enhance polarimetric fea-
tures, the classification performance in these coherent systems
is usually traded against a much smaller swath when compared
to a similar incoherent acquisition (single or dual polarization).
Effectively, the swath widths of the polarimetric imagery data
in TerraSAR-X, Radarsat-2, and PALSAR are 15, 25, and
30 km, respectively, while some single-polarization SARs pro-
vide data with a swath as wide as 500 km, with a coarser spatial
resolution though. Some remote sensing applications involve
mapping of large areas or frequent observations and therefore
require a large spatial coverage (and consequently a high revisit
frequency) rather than a high spatial resolution. For this reason,
the future SAR planned for launch by ESA in 2011 (Sentinel-1),
which aims at providing SAR data operationally with a high
temporal resolution, will be incoherently dual polarized. More-
over, all the actual SARs including a fully polarimetric mode
are also able to provide single- or dual-polarization data at
larger swaths than their fully polarimetric data, and the 18-year
satellite SAR archive data contain only incoherent imagery
data sets. For all these reasons, classification methods that are
specific to incoherent SAR data are still needed.

A number of easy-to-implement classification methods using
incoherent SAR data are based on the ratio of two intensity
(backscattering coefficient) images, used as classification fea-
ture. For example, a widely used feature in single-channel
SAR data (one frequency and one polarization) is the tem-
poral change (TC) of the intensity between two dates. This
classification feature is derived from the ratio of the backscat-
tering coefficient images at two dates, rather than from the
difference of the backscattering coefficients. Indeed, the latter
was shown to produce larger errors in high-intensity regions
than in low-intensity regions [6]. The temporal intensity ratio
method has been widely used since satellite SAR systems have
been available in the early 1990s (ERS-1 and RADARSAT-1 at
C-band and JERS at L-band), which provided data periodi-
cally. In recent years, multipolarization systems, such as ASAR
onboard ENVISAT (dual polarization and C-band), PALSAR
onboard ALOS (dual and quad polarizations and L-band),
RADARSAT-2 (dual and quad polarizations and C-band), and

0196-2892/$26.00 © 2010 IEEE
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TerraSAR-X (dual and quad polarizations and X-band), have
become available, making it possible to use classifiers based
on the polarization ratio (PR) at a single date, i.e., the ratio
of two backscattering images at the same date at two different
polarizations.

Applications of the TC of SAR intensity between two dates
in classification methods include the detection of events such as
floods with JERS [7] and ASAR [8], deforestation with ERS-1
and JERS [9] or harrowing in fields using ASAR [10], and
the mapping of rice fields with ERS-1 [11] and Radarsat-1
[12]. Classification features based on PR have been extensively
demonstrated in a wide range of applications: oil slick detection
with Ka- and C-band HH/VV [13]; discrimination of vegetated
fields from bare soil with C-band HV/HH and HV/VV [14];
discrimination of broad-leaf crops from small-stem crops with
C-band RR/RL [14], where R and L denote right and left circu-
lar polarizations; crop classification with C- or L-band HH/HV
[15]; rice or wheat fields mapping using C-band HH/VV [16],
[17]; and discrimination of multiyear sea ice from first-year sea
ice using C-band HV/HH [18].

The accuracy of such classification methods based on an
intensity ratio has been assessed in [6] for the two-class prob-
lem, taking into account the target characteristics. However,
the impacts of the system parameters on the classification
performance were not addressed. Those parameters include
spatial resolution, ambiguity, orbit repeat cycle, channel gain
imbalance, radiometric stability, and crosstalk. For the assess-
ment of the classification robustness and for the design of future
SAR missions, there is a need to extend the study in [6] by
considering the system parameters in the assessment of the
classification performance.

The objective of this paper is to provide the general formu-
lation of the error in classification methods based on a SAR
intensity ratio, in such a way that the impact of the system
parameters can be assessed. In Section II, we calculate the theo-
retical probability of error of such methods for a two-class prob-
lem, with an extension scheme to the n-class problem. In
Section III, the impact of calibration parameters (radiometric
accuracy, radiometric stability, channel gain imbalance, and
crosstalk) on the probability of error is calculated for the
general case. Section IV addresses the effect of other system
and processing parameters, such as ambiguity ratio, time-lapse
between repeat-pass orbits, number of looks, and spatial resolu-
tion, under a set of assumptions on the backscattering profiles of
the classes. The model is validated experimentally in Section V
by applying rice fields mapping methods to real SAR data.

II. THEORETICAL EXPRESSION OF THE

PROBABILITY OF ERROR

A. Description of the Classification Algorithm

We want to develop a classification method using a SAR in-
tensity ratio r = I2/I1 as a classification feature. The backscat-
ter intensity I can represent any of the following backscattering
coefficients: σ0, β0, or γ. For a homogeneous area in a SAR
image with a number of looks equal to L, the backscattering
intensity I can be modeled as a gamma distribution with the
shape parameter equal to L and the scale parameter equal to

〈I〉/L, where 〈·〉 denotes the average value over a homogeneous
area [19]. Its probability density function (pdf) is thus equal to

p (I|〈I〉) =
LLIL−1

〈I〉LΓ(L)
exp

(
−LI

〈I〉

)
(1)

where Γ(L) represents the Gamma function Γ(x) =∫ ∞
0 tx−1e−tdt.

When I1 and I2 come from uncorrelated channels, the pdf of
the intensity ratio r = I2/I1 of a homogeneous region is found
to depend only on the ratio of average intensities r̄ = 〈I2〉/〈I1〉
and not specifically on the average intensities 〈I1〉 and 〈I2〉[19]

p (r|〈I1〉, 〈I2〉) =
Γ(2L)
Γ(L)2

r̄LrL−1

(r̄ + r)2L
. (2)

In the methods based on TC, the condition of uncorrelated
channels is well met when dealing with agricultural areas at
X- or C-band, because changes occur between two repeat-pass
data. For the PR method, the correlation between channels is
low when the two polarizations involve different backscatter-
ing mechanisms. This is the case for HH and VV at X- or
C-band on crops with a vertical structure (rice and wheat) or
for HH and HV on agricultural areas at X- or C-band and on
forests at L- or P-band. In these common examples, the two
channels forming the intensity ratio are not strongly correlated.
We will first assume in our analysis that the two channels are
uncorrelated. The correlated case will be investigated at the end
of this section.

We consider two classes A and B, characterized by mean
intensity ratios rA = 〈I2,A〉/〈I1,A〉 and rB = 〈I2,B〉/〈I1,B〉,
supposing that rB > rA. We adopt here a Bayesian approach
to decide on whether to classify a pixel having a given intensity
ratio r into class A or B. Bayes’ theorem states

p(A|r) =
p(r|A)
p(r)

p(A) (3)

where p(A|r) represents the probability for a pixel with an
intensity ratio r to belong to class A; p(r|A) represents the
probability for a pixel belonging to class A to have an intensity
ratio that is equal to r, which is given in (2) with r̄ = rA; p(A)
represents the a priori probability of class A in the scene; and
p(r) represents the probability for the intensity ratio to be equal
to r in the image. The same relationship applies for class B.

The classification algorithm consists in assigning a pixel with
an intensity ratio r to class B whenever p(B|r) > p(A|r). This
inequality is rewritten using (2) and (3)

Γ(2L)
Γ(L)2

rL
BrL−1

(rB + r)2L

p(B)
p(r)

>
Γ(2L)
Γ(L)2

rL
ArL−1

(rA + r)2L

p(A)
p(r)

and it leads eventually to

r >
√

rArB ·

√
rB

rA

(
p(A)
p(B)

) 1
2L − 1√

rB

rA
−

(
p(A)
p(B)

) 1
2L

= ropt. (4)

The Bayesian approach therefore reduces to simply threshold-
ing the intensity ratio using an optimal classification threshold
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ropt given in (4). This threshold depends on the following
four parameters: rA, rB , p(B) or p(A), and L. In the case
of prior equiprobability, i.e., when p(A) = p(B) = 0.5, the
optimal classification threshold takes a particular value, noted
as r0

r0 =
√

rArB . (5)

It is also to be noted that, when the number of looks L increases,
the dependence of the optimal threshold on the a priori class
probabilities strongly decreases due to the 1/2L power. With a
high number of looks (for example L > 32), we can therefore
consider that ropt ≈ r0.

B. Calculation of the Probability of Error

Rignot and van Zyl [6] calculated the probability of error
in a classification method using a threshold on the ratio of
backscatter intensities at two dates rTC = Ip,d2/Ip,d1, where
p is the polarization and d1 and d2 are the dates, in the case
of equiprobable classes. The approach is valid for any other
backscatter intensity ratio, including PRs rPR = Ip2,d/Ip1,d,
where p1 and p2 are the polarizations and d is the date. This
section builds on this study to give an alternative formulation of
the probability of error of the method, involving a supplemen-
tary parameter, and valid for any a priori class probabilities.

We use a threshold rt to classify a pixel with intensity ratio
r in to class A or B. Ideally, rt is equal to the optimal threshold
ropt when the latter is known or can be calculated, but we
consider here the general case valid for any value of rt.

The probability of error for class A, noted as PEA, corre-
sponding to the probability of classifying a pixel belonging to
class A into class B, and the probability of error for class B,
noted as PEB , are then given by

PEA =

∞∫
rt

p(r|rA)dr (6)

PEB =

rt∫
0

p(r|rB)dr. (7)

The total probability of error is thus

PE = p(A) · PEA + p(B) · PEB. (8)

Fig. 1 shows the pdf of two classes with rA = 0 dB and rB =
6 dB for a number of looks that are equal to ten, together with
their probability of error PEA and PEB , when the classifica-
tion threshold is equal to rt = 2.5 dB.

In order to simplify the calculations, the classification thresh-
old rt is expressed relatively to the optimal threshold for equal
a priori class probabilities r0 through the use of a new param-
eter that is noted as d, so that rt = d · r0. We also introduce
parameter Δr = rB/rA, which represents the distance between
the mean intensity ratios of the two classes, and it is, therefore,
a measure of the class separability. This parameter is more con-
veniently expressed in decibels (Δr)dB = (rB)dB − (rA)dB.

Fig. 1. PDFs of the intensity ratio of (full line) class A and (dashed line)
class B with class parameters rA = 0 dB and rB = 6 dB for L = 10. The
class parameters are represented by vertical lines (full and dashed), and
the chosen classification threshold rt is represented by a vertical dotted line.
The colored areas represent the probability of error for each class (dark gray)
PEA and (light gray) PEB .

In the general case of unknown a priori probabilities, we find
that the probability of error is (see Appendix I)

PE = (1 − p(B)) · hL(d2 · Δr) + p(B) · hL

(
Δr

d2

)
(9)

where

hL(Δr)=
Γ(2L)
Γ(L)2

∞∑
k=0

(
L−1

k

)
(−1)k

L+k

1
(1+

√
Δr)L+k

(10)

with Δr = rB/rA and
(
L−1

k

)
= Γ(L)/(Γ(k + 1)Γ(L − k)),

representing the binomial coefficient.
It is to be noted that, when L is an integer,

(
L−1

k

)
is equal to

zero for k greater than or equal to L, and hL is thus easier to
compute

hL(Δr) =
Γ(2L)
Γ(L)2

×
L−1∑
k=0

(
L − 1

k

)
(−1)k

(L + k)
1

(1 +
√

Δr)L+k
.

The probability of error of the classification method therefore
depends on the following four parameters:

1) L, which is the number of looks of the intensity images;
2) Δr, which is a measurement of the distance between the

mean ratios of the two classes;
3) p(B), which is the a priori probability of class B;
4) d, which is a measurement of the distance between

the retained classification threshold rt and the thresh-
old r0 (optimal threshold when the two classes are
equiprobable).

1) Equal A Priori Probabilities: When p(A) = p(B), the
retained classification threshold rt is optimal when it is equal
to r0. Therefore, parameter d = rt/r0 is equal to one, and the
expression of the probability of error reduces to

PE = hL(Δr). (11)
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Fig. 2. Probability of error (in percent) of the ratio method as a function of the
change in intensity ratio Δr (in decibels) between the two classes for a number
of looks L varying between 1 and 128.

Fig. 2 shows the probability of error PE as a function of Δr
for different values of L when the classification threshold is r0.

The figure can be used to assess the number of looks required
to achieve a given accuracy in the classification when rA and rB

are known.
Fig. 2 can also be used to assess the accuracy that can be

expected when the system parameters (number of looks) and
class characteristics (rA and rB) are known. Unsurprisingly, the
error decreases when L and Δr increase.

2) General Case: We can derive from (4) that the optimal
threshold is found for a specific value of parameter d

d = dopt = ropt/r0 =

√
Δr

(
1−p(B)

p(B)

) 1
2L − 1

√
Δr −

(
1−p(B)

p(B)

) 1
2L

. (12)

Thus, for the general case, the optimal classification threshold
depends on r0, L, Δr, and p(B). However, when the method
is to be used in several different scenes, p(B) is not known
in most cases. It is then suggested to use r0 as a threshold
in the classification scheme. The additional classification error
compared to the optimal case needs to be assessed in order to
make sure that such a practice is acceptable.

Fig. 3 shows the additional error due to the use of r0 rather
than ropt as a function of the optimal probability of error PEopt

found for ropt, with a fixed number of looks L equal to eight
and p(B) varying from 0.5 to 0.9 [Fig. 3(a)] and with a fixed
p(B) that is equal to 0.8 and a number of looks L varying
from 1 to 128 [Fig. 3(b)]. The variations of PEopt account
for different values of Δr. The additional error for p(B) = pB

is equal to that for p(B) = 1 − pB , as it can be derived by
combining (12) and (9). Therefore, Fig. 3 can be read for the
values of p(B) from 0.1 to 0.4 as well.

Fig. 3(a) shows that, for a fixed number of looks (here,
L = 8), the additional error increases when the class propor-
tions differ from equiprobability, for any value of PEopt, i.e.,
for any value of Δr. However, among cases most likely to be
encountered (0.2 ≤ p(B) ≤ 0.8), those leading to an accept-
able accuracy (i.e., Δr values corresponding to PEopt lower
than 15%) provide only slightly suboptimal results (7% of the

Fig. 3. Additional error due to the use of r0 rather than ropt as a function of
the optimal PE (a) for different values of p(B) from 0.5 to 0.9 with L = 8
and (b) for different values of L from 1 to 128 with p(B) = 0.8.

additional error in the worst case) when r0 is used instead of
the true optimal threshold ropt. Fig. 3(b) shows that this is true
whatever is the number of looks.

In this case, when the classification threshold is taken to be
equal to r0 instead of ropt, the probability of error is the same
as that of the equal a priori probabilities case, which is given
by (11), and Fig. 2 can be used as well.

Therefore, although it is a practical necessity, the use of
r0 instead of ropt as a classification threshold has a limited
negative impact on the classification accuracy in most cases
(0.2 ≤ p(B) ≤ 0.8, PEopt < 15%), and in addition, it leads to
an expression of the error that is independent of the a priori
probabilities of the two classes.

In the rest of this paper, it is assumed that the classification
threshold is r0.

C. Estimation of r0

In order to implement this classification method based on
a SAR intensity ratio, the value of r0 =

√
rArB needs to be

estimated, which requires the estimation of the mean intensity
ratios of the two classes rA and rB . The estimation of these two
class parameters can be done in different ways. For example,
supervised methods using either the maximum likelihood cri-
terion or the histograms of the intensity ratios, such as the one
described in [16], would be suitable. An unsupervised method
has been presented in [20], and it can be used when the training
data are not available. Alternatively, a prior-knowledge scheme
can be adopted when rA and rB are known from previous
studies involving intensity images that are similar to those used
in the classification (same sensor or same image characteristics,
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namely, frequency, polarizations, and incidence angle) or from
backscattering models. The impact of the system parameters,
such as calibration imperfections, on the probability of error in
the prior-knowledge procedure will therefore be higher than in
the supervised or unsupervised methods.

D. Extension to Multitemporal Data

Two kinds of classification features based on an intensity
ratio have been defined in Section II-A, where one is based
on TC involving two dates rTC = Ip,d2/Ip,d1 and where the
other corresponds to a PR at a single date rPR = Ip2,d/Ip1,d.
When data sets containing more than two dates are available,
multitemporal features should be defined for these two kinds of
intensity ratios to improve the classification.

1) TC Method: Such classification methods are generally
based on the assumption that the SAR intensity of one class
remains relatively stable in time (r ≈ 0 dB for any pair of date)
while that of the other class would change.

If the expected change for this class is an increase in
backscattering intensity that spans over a period longer than
the satellite repeat cycle (for example, a plant growing season),
the classification accuracy should be improved by considering a
classification feature rTC,multi = maxi,j>i[Ip,dj/Ip,di], which
would maximize rB and leave rA nearly unchanged, with
class B being the “changing” class and class A being the
“stable” one. In that case, the probability of error PE is hard
to assess theoretically, but the multitemporal feature tends to
increase the Δr parameter and, thus, the accuracy.

Reversely, if the expected change is a decrease of
value, then the classification feature should be rTC,multi =
maxi,j>i[Ip,di/Ip,dj ]. If the relevant parameter is change in
general (increase or decrease), the feature should be optimal
for rTC,multi = maxi,j>i[max((Ip,dj/Ip,di), (Ip,di/Ip,dj))]. A
double-threshold approach can also be adopted to account for
increase and decrease, which would correspond to a three-class
problem.

Otherwise, if the expected change occurs at a frequency
higher than the repeat-pass frequency (such as changes due to
the effect of weather), a more relevant parameter would be the
mean change between two dates of the temporal series, which is
similar to the mean annual variation introduced for the mapping
of forested areas [21]

rTC,multi =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

max
(

Ip,dj

Ip,di
,
Ip,di

Ip,dj

)

where N is the number of images in the multitemporal data set.
2) PR Method: In the case of a classification method based

on a PR, the polarizations are generally chosen so that one of
the classes exhibits large ratio values at least at some periods,
while the other class remains relatively constant at lower values.

Therefore, the classification feature rPR,multi =
maxi[Ip2,di/Ip1,di] should be used to improve the classification
accuracy by catching the optimal (highest) value of rB in the
time series and keeping rA to low values.

E. n-Class Problem

As shown in (11), the two-class problem with equal a priori
class probabilities and the use of r0 as a classification threshold
lead to an expression of the error PE that is dependent on
two parameters, namely, one being related to the SAR data
characteristics (the number of looks L) and the other being
related to the class characteristics (the distance between the
mean intensity ratio of the two classes Δr): PE = hL(Δr) =
PE(Δr, L).

A more general expression must be brought up in order to
deal with cases when more classes are taken into account in
the classification. Let us assume that n classes are considered,
with class i characterized by a mean ratio ri, and r1 < r2 <
· · · < rn. The distance between two consecutive mean ratios is
Δri = ri+1 − ri (when expressed in decibels), with i varying
from i to n − 1. It can be shown that, for equiprobable classes,
the overall classification error is (see Appendix II)

PE =
2
n

n−1∑
i=1

PE(Δri, L) =
2(n − 1)

n
mean

i
[PE(Δri, L)] .

(13)

For example, if all Δris are equal, this implies that the error of
the n-class problem is increased by a factor kn = 2(n − 1)/n
compared to the two-class problem (kn = 1.33 for n = 3, it is
equal to 1.5 for n = 4, and it tends to reach 2 for high values of
n). For that reason, the classification method should be limited
to few classes, all the more so as dealing with more classes will
make them less likely to have high values of Δr.

F. Case of Correlated Channels

When the two channels are correlated, with a correlation
coefficient ρ, their joint distribution can be modeled by
Kibble’s bivariate gamma distribution [22], and the pdf of the
ratio is [23]

p (r|〈I1〉, 〈I2〉, ρ) =
Γ(2L)
Γ(L)2

(
1 − |ρ|2

)L
r̄L(r + r̄)rL−1

((r̄ + r)2 − 4|ρ|2r̄r)L+ 1
2

.

(14)

Fig. 4 shows the pdf of two classes with rA = 0 dB and
rB = 6 dB for a number of looks equal to ten and for
correlation coefficients ρ ranging from 0 to 0.9 [Fig 4(a)], with
a close-up on the region where the curves meet and where PE
is visualized [Fig 4(b)].

The optimal threshold is hard to express analytically using
(6), but Fig. 4(b) shows that the crossing of the pdf of the two
classes occurs at r = r0 for any value of ρ, leading to the same
optimal threshold under equal a priori class probabilities as for
the case of uncorrelated channels.

Likewise, the probability of error is too complicated to be
expressed in a satisfyingly explicit form, but it can be found
from Fig. 4(b) that the area corresponding to PE decreases
when ρ increases. The probability of error of classification
methods based on a ratio of two correlated intensity channels
is, therefore, lower than that corresponding to the case when
the channels are uncorrelated, which is shown in Fig. 2.
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Fig. 4. (a) PDFs of classes A and B with class parameters rA = 0 dB and rB = 6 dB for L = 10 and for correlation coefficients ρ between channels ranging
from 0 to 0.9. The class parameters are represented by vertical full lines, and the classification threshold r0 is represented by a vertical dashed line. (b) A close-up
on the area where the curves meet is shown.

III. IMPACT OF SAR CALIBRATION PARAMETERS

When applying classification algorithms to SAR images, one
must bear in mind the various imperfections that may affect
the image quality of SAR products and must take them into
account while evaluating the performance of such algorithms.
We specifically address here the sensitivity of the classification
methods to radiometric and polarimetric calibration imperfec-
tions. Calibration is characterized by a number of parameters,
including radiometric accuracy and radiometric stability for
the radiometric calibration, and crosstalk and channel gain
imbalance for the polarimetric calibration.

Let S represent the scattering matrix that characterizes the
backscattering properties of the target

S =
(

Shh Shv

Svh Svv

)
. (15)

When taking into account the effects of the transmitting and
receiving systems, the observed scattering matrix Y that can be
acquired by the radar system is [24](

Yhh Yhv

Yvh Yvv

)
= AejΦ

(
1 δ2

δ1 g

) (
Shh Shv

Svh Svv

) (
1 δ1

δ2 g

)
(16)

where A represents the overall absolute amplitude factor, Φ
represents an overall absolute phase, δ1 represents the crosstalk
when vertically polarized (δ2 when horizontally polarized)
electric fields are transmitted or received, and g represents the
one-way copolarized channel gain imbalance in amplitude. The
absolute phase Φ is lost during SAR processing and is not taken
into account here. In the case of an ideal system or a perfect
calibration, A = 1, δ1 = δ2 = 0, and g = 1.

The elements in the matrices are complex numbers. The
σ0 backscattering coefficients are derived from the measured
elements of the scattering matrix and are proportional to the en-
semble average of the square of the modulus of these elements

σ0
ij = K

〈
|Sij |2

〉
(17)

where K is an overall radiometric calibration constant, which
is related to A.

The impacts of crosstalk, channel gain imbalance, and ra-
diometric calibration on the performance of the classification
methods will be investigated separately.

A. Radiometric Accuracy and Radiometric Stability

Internal calibration is performed in real time in the system
to assess A and, therefore, the overall calibration constant K,
and external calibration campaigns are carried out regularly to
provide finer estimates using reference targets.

Radiometric accuracy refers to the accuracy with which the
A constant can be determined after a calibration campaign.
It accounts for a systematic offset in measured backscatter
compared to real backscatter. Typical values are below 1 dB.
It can however be deduced from (17) that the radiometric
accuracy has no impact on intensity ratios, as any systematic
backscatter offset will be cancelled out by the ratio.

Radiometric stability is an indicator of the backscatter vari-
ability between repeat passes due to intrinsic variations of A
in the system. A radiometric stability equal to s implies that A
can vary between A/s and A · s between two consecutive data
acquisitions. The backscattering coefficients can therefore be
multiplied by a factor between 1/|s|2 and |s|2. Typical values
of |s|2 range between 0.5 and 1 dB.

The PR method is not affected by radiometric stability as it
involves only ratios of same-date channels. For the TC method
using rTC = Ip,d2/Ip,d1, a backscatter offset due to radiometric
stability between d1 and d2, which is equal to |s|2, implies
that the measured ratios are equal to |s|2 multiplied by the true
ratios.

If r0 is assessed with a supervised method, the radiometric
stability has no impact on the classification error when only
one couple of images is used, as the value of the retrieved
threshold is affected by the same bias as the data and as the
distance between classes is preserved. The multitemporal case
(more than two dates), using one of the classification features
presented in Section II-D1, can be impacted by radiometric
stability as Δr can be modified. The change cannot be modeled
in the general case, but its impact on the error is lower than that
of a change from Δr to Δr/|s|2.

On the contrary, if r0 is assessed from other sources than the
data (i.e., based on prior knowledge), the performance of the
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Fig. 5. (a) Additional error due to d for several values of Δr and L when PE = 10%, d = 0 dB, and p(B) = 0.5. (b) Probability of error as a function of d
for several values of L, with Δr = 10 and p(B) = 0.5.

classification is the same as it would be with no offset (perfect
radiometric stability), and threshold rt is equal to r0/|s|2.
Therefore, PE can be assessed from (9) with d = rt/r0 =
1/|s|2, i.e., ddB = −2|s|dB. In the case of range-dependent
radiometric errors, i.e., when the value of s varies along the
range, PE can be calculated locally with the corresponding
value of d.

The present analysis is about the TC method with a single
pair of dates and with an estimation of r0 based on prior knowl-
edge. When p(B) = 0.5, the probability of error with d = T
is the same as with d = 1/T , so the effect of a radiometric
instability that is equal to s can be estimated by considering the
values of |ddB|. Fig. 5 shows the additional error due to d for
several values of Δr and with L chosen so that they provide an
error PE that is equal to 10% when d = 0 dB and p(B) = 0.5
[Fig. 5(a)], and it shows the additional error due to d for several
values of L, with Δr = 4 dB and p(B) = 0.5 [Fig. 5(b)].

Among the configurations leading to PE = 10%, two
groups can be considered. For a small number of looks (L ≤
16), corresponding to high class separability (Δr ≥ 4 dB), it
can be read from Fig. 5(a) that the additional error is lower
than 1.2% when |ddB| < 0.5 dB (5% when |ddB| < 1 dB). Re-
versely, for high number of looks (i.e., low class separability),
the sensitivity of the additional error to d is very important,
and PE can become unacceptably high. Therefore, it is rec-
ommended to consider such classification methods based on
an intensity ratio only when the class separability is high (for
instance Δr ≥ 4 dB), even though the theoretical error may be
acceptable at higher number of looks for the other cases. When
Δr = 4 dB, Fig 5(b) shows that the additional error remains
below 2% when |ddB| < 0.5 dB (6% when |ddB| < 1 dB) and
that the additional error decreases when L increases for very
high values (L > 32).

In both cases (low and high number of looks), if Δr ≥ 4 dB,
the radiometric stability should not be a decisive parameter
when its value is not too high. However, it could contribute
to a nonnegligible additional error (around 6%) under some
unfavorable conditions (|ddB| = 1 dB, L ≈ 30). Nevertheless,
when one tries to discriminate two close classes (Δr < 4 dB)
through the use of a high number of looks, a degradation of
the performance is noticeable. This can affect, for example, the

accurate classification with high-resolution SARs, for which
the requirement on radiometric stability may have to be more
stringent.

B. Channel Gain Imbalance

Channel gain imbalance is a measure of the accuracy of
the intensity in one channel (polarization) relative to another.
It expresses radiometric errors between polarization channels.
The effect of channel gain imbalance on the scattering matrix is
derived from (16) when δ1 = δ2 = 0(

Yhh Yhv

Yvh Yvv

)
=

(
Shh g · Shv

g · Svh g2 · Svv

)
. (18)

Obviously, the TC method is not affected by channel gain
imbalance as it involves only one polarization.

It can be derived from (17) and (18) that a PR between the
two copolarized channels (HH and VV) is affected by an offset
that is equal to |g|4 or 1/|g|4 and by an offset that is equal to
|g|2 or 1/|g|2 for the PR of one copolarized channel and one
cross-polarized channel (HV or VH). The typical value of |g|4
is below 0.5 dB for most systems.

When using the single-date classification feature rPR =
Ip2,d/Ip1,d with an estimation of r0 based on prior knowledge,
PE can be assessed from (9), with d = ±4|g|dB for the ratio
of the copolarizations or d = ±2|g|dB if one cross-polarization
is involved. In this case, it can be deduced from Fig. 5 that
the channel gain imbalance should not be a decisive parameter,
provided that its value remains within the usual range (|ddB| <
0.5 dB or |ddB| < 0.25 dB). However, similar to the TC, the
case of close classes discriminated through the use of a high
number of looks is very sensitive to channel gain imbalance,
and it leads to more stringent requirements, especially when
considering the ratio of two copolarizations.

If r0 is assessed with a supervised method, the channel
gain imbalance has no impact on the classification error in
the single-date case as the value of the retrieved threshold is
affected by the same gain imbalance since the data and the
distance between classes are preserved. In the multidate case,
with the feature described in Section II-D2, Δr could be, in



3528 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 48, NO. 9, SEPTEMBER 2010

theory, slightly modified by channel gain imbalance, provided
that the latter is not stable in time, depending on the temporal
behavior of the PR of the two classes. However, given the low
probability of occurrence of such unfavorable conditions and
the low impact that they would have on the error, the overall
effect is negligible.

C. Crosstalk

Crosstalk represents the channel isolation. It is a measure of
the intensity in the polarization which is orthogonal to the one
that is intended to be transmitted or received.

We simplify the model presented in (16) by considering that
the crosstalk has the same value in both vertical and horizontal
channels: δ1 = δ2 = δ. Values of |δ|dB below −30 dB (i.e.,
|δ| = 0.032 = 10−30/20) are now readily achieved with satellite
SARs. When g = 1, the measured scattering matrix is given in
(19), shown at the bottom of the page.

It is assumed that Shv = Svh.
In theory, one needs to know the values of the three polar-

izations in order to assess the impact of crosstalk on classifi-
cation methods based on TC and PR. It is, therefore, difficult
to precisely address this issue in the general case. We can
however investigate the magnitude of the perturbation caused
by crosstalk in each channel by considering the following:
1) The HH and VV backscatters are usually of the same order
of magnitude on natural targets, and they would not differ by
more than 8 dB, so |SHH| = a|SVV|, with 1/2.5 < a < 2.5,
and 2) HV is often one order of magnitude lower than the
copolarized channels (e.g., between 3 and 12 dB lower), so
|SHH| = b|SHV|, and |SVV| = c|SHV|, with 1.4 < b < 4 and
1.4 < c < 4.

The percent perturbation in amplitude caused by crosstalk in
copolarized channels is

ΔAcopol =
|2δShv + δ2Svv|

|Shh|

≤ 2|δ||Shv| + |δ|2|Svv|
|Shh|

=2
|δ|
b

+
|δ|2
a

≤ 1.43|δ| + 2.5|δ|2.

When |δ| is equal to −30 dB, ΔAcopol is lower than 4.8%,
which would lead to a maximum backscatter perturbation of
0.4 dB. A copolarized intensity ratio could be offset by a
maximum value of 0.8 dB in the worst case. The corresponding
additional error is shown in Fig. 7, with |d| = 0.8 dB, and it
is lower than 4% when Δr > 4%. The effect of crosstalk is,
therefore, relatively negligible in copolarized channels.

In cross-polarized channels, the percent perturbation in am-
plitude is

ΔAcross-pol =
|δShh + δSvv + δ2Shv|

|Shv|

≤ |δ||Shh| + |δ||Svv| + |δ|2|Shv|
|Shv|

= |δ|(b + c) + |δ|2

≤ 8|δ| + |δ|2.

When |δ| is equal to −30 dB, ΔAcross−pol can reach 26%,
which could lead to a backscatter perturbation as high as 2 dB.
The intensity ratio of one copolarized channel and one cross-
polarized channel can therefore be around 2.4 dB in unfavorable
cases and up to 4 dB for a temporal ratio of cross-polarized
intensities. The use of cross-polarizations in intensity ratios
should therefore be subject to very severe requirements on
crosstalk. For example, a crosstalk value lower than −40 dB
would guarantee that the backscatter perturbation is lower than
0.6 dB for cross-polarizations.

In conclusion, in classification methods based on an intensity
ratio, crosstalk does not seem to be an issue as long as only
copolarizations are dealt with. However, as expected, it may be
very critical when cross-polarizations are involved.

IV. IMPACT OF OTHER SYSTEM PARAMETERS

Apart from calibration parameters, other mission and system
parameters (satellite repeat cycle, spatial resolution, and am-
biguity ratio) can affect the classification accuracy, but their
effect cannot be assessed in the general case. They have to
be considered together with application- and scene-specific
parameters, e.g., the temporal backscattering profile of the two
classes when dealing with multitemporal ratios, the presence of
targets with high backscatter that would maximize error due to
ambiguity, or the typical size of patches.

A. Impact of Ambiguity

Ambiguity is a form of ghosting that happens when bright
targets are illuminated by the sidelobes of the SAR antenna and
contaminate the backscattering return attributed to neighboring
areas illuminated by the main lobe. Range ambiguity occurs
from ambiguous zones whose slant range differs from that of
the desired zone by nonzero multiples of the pulse repetition
distance and whose Doppler frequencies differ by multiples of
the PRF [25]. Azimuth ambiguity is caused by zones whose
slant ranges are the same as the desired zone, but whose
Doppler frequencies differ by multiples of the PRF [25]. The
distributed target ambiguity ratio is the ratio of the unwanted
ambiguous intensity to the wanted target intensity, taking into

(
Yhh Yhv

Yvh Yvv

)
=

(
Shh + 2δShv + δ2Svv (1 + δ2)Shv + δ(Shh + Svv)

(1 + δ2)Shv + δ(Shh + Svv) Svv + 2δShv + δ2Shh

)
(19)
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account both range and azimuth ambiguity. Typical values
range from −17 to −40 dB.

The impact of ambiguity may be expressed in the following
terms. With the ambiguity ratio noted as a, the measured
complex amplitude Sa relates to the complex amplitude of the
observed scene S0 and to the complex amplitude of the scene at
the source of the ambiguity Ss by the following relationship:

Sa = S0 +
√

aSs. (20)

The relationship that is equivalent to (20) for the backscatter
intensity is retrieved using (17)

Ia = K
〈∣∣S2

0 + aS2
s + 2

√
aS0Ss

∣∣〉 ≤ I0 + aIs + 2
√

aI0Is.
(21)

The ambiguities increase the measured backscatter, and the
effect is more important when the backscatter of the ambiguous
area is high compared to the backscatter of the observed area.
Therefore, the change in backscatter is the most critical when
the source of the ambiguity is the brightest elements in the
scene, e.g., built-up areas.

To quantify the impact of ambiguity on the classification
performance, one has to assess the changes in the class param-
eters rA and rB that are caused by the ambiguity. For that
purpose, the original backscatter values I1 and I2 composing
the intensity ratio r = I2/I1 need to be known for the two
classes. For simplicity, we suppose here that rA = 0 dB, so
I1,A = I2,A. This is quite realistic for the TC method (class A
being usually assumed stable in time) and for the PR method
in the case of a ratio of copolarized intensities (copolarizations
being of the same order of magnitude in many natural targets).

Under this assumption, the backscatter increase that is due to
ambiguity is the same in I1,A and I2,A, and rA remains to be
equal to 0 dB. The backscatter values of class B are I1,B and
I2,B = (I1,B + Δr) dB.

The effect of ambiguity on I1,B and I2,B is calculated from
(21). We simulate here the worst case when the ambiguous
source is an urban area and when the ambiguous backscatter
equals the right-hand side of the inequality in (21). The default
backscattering value taken for urban areas is Is = 0 dB at any
date and polarization. The modified values of I1,B and I2,B lead
to a modified intensity ratio rB and to a new value of the Δr
parameter, noted as Δra.

Fig. 6 shows the value of the class separability, with ambigu-
ity (Δra) as a function of the ambiguity ratio (a), for several
values of I1,B and for an initial class separability Δr = 8 dB.
As expected, the effect of ambiguities is higher when class B
has low backscatter values. When I1,B = −16 dB, Δra can
decrease below 5 dB in extreme cases (a = −17 dB).

The reduction in Δra leads to an increase of the classification
error. Fig. 7 shows the effect of the ambiguity ratio on the
additional classification error due to ambiguity for the case
when I1,B = −10 dB, Δr = 8 dB, and p(B) = 0.5 and for
several numbers of looks L. For the worst case of an ambiguity
ratio that is equal to −17 dB, the additional error is higher than
4% for a low number of looks (L < 16) and can rise up to 6%,
but it is negligible when L is above 30.

Fig. 6. Effect of the ambiguity ratio a on Δra for several values of I1,B .

Fig. 7. Effect of a on the additional error due to ambiguity.

Fig. 8. Additional classification error due to ambiguity as a function of Δr
and L for four values of I1,B .

The error also varies with Δr and I1,B . Fig. 8 shows the
additional error when a = −17 dB for four values of I1,B from
−20 to −5 dB, as a function of Δr and L. For sufficiently high
values of both Δr and L, the additional error is negligible (be-
low 2%). When the class separability is poor (Δr < 4 dB), the
additional error is high and, somehow paradoxically, increases
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with the number of looks. When the number of looks is low
(below 15), the classification performance is highly sensitive to
ambiguity, even for high class separability.

In summary, ambiguities can have a critical impact on the
performance of the classification methods when the ambiguity
ratio is high (a = −17 dB) if the class separability is low and/or
if the number of looks is low. For a given SAR system, the
methods should therefore be applied only when the classes
are highly separable. Further simulations show that, when the
ambiguity is better than −30 dB, the additional error is however
limited to 6% in the very worst case, including poorly separable
classes.

B. Impact of the Temporal Sampling

In both methods, it is generally implicitly supposed that
the class separability, measured by Δr, is due mostly to the
outstanding behavior of the intensity ratio (TC or PR) of one
class of interest, which reaches peculiar values in time, while
the intensity ratio of the other class remains relatively constant
around its typical value. We suppose here that the class of
interest is class B and that its intensity ratio is remarkable
because of its high values (rB > rA).

In some applications, the outstanding radiometric behavior of
class B is caused by a point event, and it lasts forever after the
event. In that case, the timing of the data acquisitions is not very
important, provided that one date is available after the event for
the PR method and one date before and one after for the TC
method. Events such as deforestation or urbanization would be
illustrative of this category.

In other situations, the outstanding behavior of class B is
caused by a phenomenon, which lasts for a finite period during
which the intensity ratio of class B expresses its particularity
and then stops. Applications such as crop or flood monitoring
are concerned on this approach. The Δr parameter then repre-
sents the theoretical optimal class separability obtained when
the data are acquired at the optimal dates. In the multitemporal
case introduced in Section II-D, the value of the observed class
separability will depend on the timing of the available acqui-
sitions and on the temporal backscattering profiles of the two
classes during the period when the phenomenon occurs. The
temporal sampling of the acquisitions is an important parameter
in this case, as a high observation frequency will increase the
probability to have optimal dates in the available data set.

In this section, temporal backscattering profiles are modeled
to simulate the typical behavior of the two classes that are likely
to be involved in classification schemes based on the TC or the
PR. These modeled profiles are then used to assess the effect of
the observation frequency on the classification performance.

1) Theoretical Data Model: We model here the backscat-
tering profiles of the two classes during the period when the
phenomenon occurs, which is assumed to last for c days.

a) TC method: We illustrate the case corresponding to
class B to a temporal backscattering increase, i.e., a positive in-
tensity ratio. Therefore, the multitemporal classification feature
is rTC,multi = maxi,j>i[Ip,dj/Ip,di], where p is the polarization
and (di)i=1:N represents the dates in the available time series,
as suggested in Section II-D1.

As suggested in Section IV-A, the backscatter intensity for
class A is supposed to be constant during the c days of the con-
sidered phenomenon. Therefore, rA,TC = 0 dB, and ΔrTC =
rB,TC. The backscatter of class B is modeled by a function
that increases from −10 dB to −10 + ΔrTCdB during c days.
For a day D during this period, between day 0 and day c, the
backscatter intensity of class B at the polarization p is given by

Ip,D = −10 + ΔrTC ·
(

1 + exp
(
−10D

c

)

− 2 exp
(
−5D

c

))
(22)

(all the values are expressed in decibels).
b) PR method: The multitemporal classification feature

for the PR method is rPR,multi = maxi[Ip2,di/Ip1,di], where
p1 and p2 are the two polarizations and (di)i=1:N represents
the dates in the available time series. We suppose that the PR
of class A remains stable in time at a constant value rA,PR.
Again, this value is taken to be equal to 0 dB, leading to
ΔrPR = rB,PR. The PR of class B is modeled by a function
that increases from 0 to ΔrPR dB during the first half of the
period during which the phenomenon lasts (day 0–c/2) and then
decreases back to 0 dB during the second half of the period (day
c/2–c).

The PR of class B is given by

Ip2,D

Ip1,D
= ΔrPR

[
1 + exp

(
−20D

c

)
− exp

(
−20(c − D)

c

)

− 2
(

exp
(
−10D

c

)
− exp

(
−10(c − D)

c

))]
. (23)

When rA,PR is not equal to 0 dB, ΔrPR should be replaced by
ΔrPR + rA,PR in (23).

Fig. 9 shows the temporal behavior of the backscattering
coefficient and of the PR of class B corresponding to the TC
and PR methods, respectively, when Δr = 8 dB and when the
phenomenon causing the distinctive behavior of class B lasts
for 80–120 days.

For the TC method, the backscatter of class B is shown in
Fig. 9 with a value of −10 dB for the dates outside of the event
(D < 0 and D > c). The drastic backscatter change (here, a
decrease) at the end of the event is a representative, for example,
of harvest in crop monitoring applications. However, it has no
consequence in this paper as it is supposed that the SAR data
are acquired only during the phenomenon (0 ≤ D ≤ c).

2) Model Results: The parameters ΔrTC and ΔrPR used in
(22) and (23) represent the optimal class separability in the TC
and PR methods, which is obtained when the data are acquired
at the optimal dates, i.e., one date on the first day and one on
the last day of the period for the TC method, and one date at
the mid-period for the PR method. In practice, the data can be
acquired only at a limited number of dates when the area of
interest is visible by the SAR instrument, which depends on
the satellite orbit. The observed class separability is, therefore,
lower than its theoretical value.

It is considered here that the observation frequency is equal to
the time-lapse between satellite repeat-pass orbits, which corre-
sponds to the maximum acquisition frequency that is achievable
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Fig. 9. Temporal evolution of (left) the backscattering coefficient and (right) the PR of class B when Δr = 8 dB.

Fig. 10. Δr90% parameter as a function of c for different values of f for the (left) TC and (right) PR methods, with Δr = 8 dB.

under a fixed incidence angle. More frequent observations of a
single area can be made by using multi-incidence data sets or
different subsets of overlapping images from adjacent satellite
tracks, but in both cases, the local incidence angle will change
from one image to the other, which can be a severe limitation as
the backscattering profiles vary with the incidence. Moreover,
when classifying a large area at a regional to continental scale,
multi-incidence data sets cannot be made available because of
acquisition conflicts between subsets of the area that could
be illuminated simultaneously by the instrument at different
incidence angles.

The temporal sampling of the acquisitions has a direct impact
on the observed class separability. Indeed, the more often
the acquisitions take place, the more likely it is to catch a
high value of the intensity ratio for class B and, therefore, to
maximize its classification feature rB and, consequently, the
class separability Δr.

Based on the temporal profiles of the backscattering and of
the PR given in (22) and (23), we can compute the value of the
Δr parameter for a data set of several images acquired every f
days during the c days corresponding to the full duration of the
phenomenon. The value of Δr depends on the time of the first
acquisition, which is between days 1 and f after the beginning
of the phenomenon. Therefore, the value of Δr is calculated for
all f cases that can be encountered accordingly to the date of
the first acquisition. To provide an estimation of Δr, we derive
the Δr90% parameter corresponding to the value above which
Δr is found in 90% of the possible cases. Δr90% is used as a
proxy for Δr.

Fig. 10 shows the values of Δr90% for different values of c
and f for the TC (left) and PR (right) methods when Δr=8 dB.

Particular values of f are highlighted in Fig. 10, correspond-
ing to ASAR onboard ENVISAT (f = 35 days), Sentinel-1

Fig. 11. Δr90% parameter as a function of c and f for the (left) TC and (right)
PR methods.

with one satellite only (f = 12 days), and Sentinel-1 in a
constellation of two satellites (f = 6 days).

Fig. 11 shows the values of Δr90% for a wide range of values
of c and f for both methods when Δr = 8 dB.

The impact of the temporal sampling is small in the PR
method. Δr90% remains above 7 dB for most configurations,
except when the duration of the phenomenon is close to the
temporal sampling (c < 60 days and f > 30 days). The classi-
fication accuracy corresponding to Δr = 7 dB and Δr = 8 dB
is 96.0% and 97.7%, respectively, when the number of looks is
L = 10.

On the contrary, f is a critical parameter for the TC method,
especially for short-duration phenomena. When the temporal
sampling is not high enough compared to the duration of the
phenomenon, the classes are not separable at all (Δr90% =
0 dB). For a phenomenon lasting for 100 days, Δr90% in-
creases from 2.4 to 6.6 and 7.5 dB when the temporal sam-
pling increases from every 35 to every 12 and 6 days, which
corresponds to a classification accuracy of 72.9%, 95.1%, and
97.0%, respectively, when L = 10.
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Fig. 12. Effects of the (in blue) satellite system parameters, (in green) image processing parameters, and (in red) scene parameters on the overall probability of
error in mapping performance. The intermediary parameters are in gray boxes.

C. Relationship Between the Mean Size of Significant
Elements, the Spatial Resolution, and the
Equivalent Number of Looks

Space agencies usually deliver multilooked intensity prod-
ucts to users, with an initial number of looks that is equal
to Li. If Li is too low for the considered applications, users
can perform a spatial multilooking to raise the number of
looks from Li to Le, which is the equivalent number of looks.
This consists in associating a unique pixel to any batch of
N × N Li-look pixels, where the intensity of this pixel is
the mean intensity of the pixels in the batch. Of course, the
image definition is degraded by a factor N . In SAR images, the
number of independent samples in a population of X samples
is found between X/4 and X/2 [26]. Therefore, the resulting
equivalent number of looks Le is such that

N2Li/4 < Le < N2Li/2. (24)

The spatial multilooking level should be related to the mean
dimension F of the significant elements in the observed scene
(for example, fields, forest stands, and ice floes) and to the
initial pixel spacing R at Li-look so that the multilooking step
does not involve summing over too heterogeneous areas. For
example, it can be decided that R × N < (F/2) (the same
inequality applies for most speckle filters based on N × N
neighboring windows), which leads to limitations in the final
number of looks

Le < F 2Li/8R2 (25)

or to requirements on the spatial resolution

R < F/
√

8Le/Li. (26)

Hence, for a given Li-look spatial resolution R and a given
typical size F of the observed elements, one can derive the
maximum equivalent number of looks to be used in Fig. 3 by
applying (25).

D. Summary of the Results

The following key parameters for this analysis have been
identified.

1) Satellite system parameters:

a) satellite repeat cycle f (in days);
b) pixel spacing of an Li-look product R (in meters);
c) distributed target ambiguity ratio a (in decibels);
d) channel gain imbalance g (in decibels)—for the PR

method only;
e) radiometric stability s (in decibels)—for the TC

method only.

2) Processing parameters (multilooking):

a) initial number of looks of the product Li;
b) equivalent number of looks after spatial multi-

looking Le.

3) Scene description parameters:

a) mean size of the observed elements F (in meters);
b) duration of the monitored phenomenon c (in days);
c) proportion of class B in land use p(B) (in percent).

Fig. 12 shows the relations between these parameters and
the intermediary parameters introduced in Section II (namely,
L, Δr, p(B), and d), as it has been discussed in the two last
sections.

Table I summarizes the effects of these parameters on the
probability of error of the classifications.

V. EXPERIMENTAL VALIDATION:
COMPARISON WITH REAL DATA

In order to assess the validity of the model presented in
this paper, some of its outputs should be confronted with
experimental results from real SAR data. Rice field classifi-
cation is a convenient application for this purpose as it can
illustrate both the TC and PR methods. It was shown in the
past studies that rice fields are characterized by a high temporal
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TABLE I
IMPACTS OF (TOP) SATELLITE SYSTEM PARAMETERS, (MIDDLE) IMAGE PROCESSING PARAMETERS, AND (BOTTOM) SCENE PARAMETERS

ON THE OVERALL PERFORMANCE OF THE MAPPING ALGORITHMS BASED ON INTENSITY RATIO METHODS

(TEMPORAL CHANGE AND POLARIZATION RATIO METHODS)

backscatter increase during the rice season at HH and VV
polarizations and by a PR HH/VV that reaches high values
during the season compared to other land use classes (see, for
example, the references listed in [16]). We suggest here to use
the HH backscatter TC for the TC method and the HH/VV
backscatter ratio for the PR method. In the past experiments,
it was found that, in rice growing regions, the other land
cover types are usually tree plantations, perennial crops, or
urban/man-made areas having low backscatter TC. For most of
those nonrice classes, it is also true that HH ≈ VV. Therefore,
for both TC and PR methods, class A is nonrice, and class B
is rice (rA < rB). However, some land use classes should
sometimes be masked out, e.g., using geographic information
systems (GIS) data, like water surfaces with unpredictable
changes in the TC method or urban/man-made areas, which
can also be characterized by a strong HH/VV PR, in the PR
method.

We have acquired three images from the ASAR instrument
onboard ENVISAT, under the alternating polarization acquisi-
tion mode with polarizations HH and VV, over a rice-growing
region in Vietnam. The three dates cover a whole rice growth
period and are separated by f = 35 days, which corresponds
to the satellite repeat-pass period. Short-cycle rice varieties are
grown in this area, with a growing period lasting for about
c = 80 days.

The data are ordered in single-look complex (SLC) format,
providing the complex amplitudes at each pixel in slant-range

geometry, and in precision image (PRI) format, providing
multilook intensities in ground-range geometry.

An ancillary GIS data set depicting rice and nonrice areas is
available over a small region and is used to plot the histograms
of the intensity ratio of each class for each method and to re-
trieve the corresponding class parameters, as described in [16].
The multitemporal approach is opted for. For the PR method
with rPR = maxi=1,2,3[(σ0

HH/σ0
VV)di], the class param-

eters are found to be rA,PR = 0.87 dB and rB,PR = 7.44 dB;
therefore, ΔrPR = 6.57 dB. For the TC method with rTC =
maxi=1,2,3,j>i[(σ0

HH)dj/(σ0
HH)di], the class parameters are

rA,TC = 1.43 dB and rB,TC = 2.82 dB; therefore, ΔrTC =
1.39 dB. Considering that these are the Δr90% parameters un-
der the configuration f = 35 and c = 80, this would correspond
to the optimal class separabilities ΔrPR,opt = 7.1 dB and
ΔrTC,opt = 6.0 dB in the model presented in Section IV-B1,
which is relatively consistent with the expected values accord-
ing to past studies.

The a priori probabilities of both classes are also derived
from this GIS data, and they lead to p(B) = 0.75.

The effects of SAR system parameters are simulated either
by varying the classification threshold at different values (chan-
nel gain imbalance or radiometric stability) or by explicitly de-
grading the images (ambiguity). The corresponding probability
of classification error is calculated based on the GIS data in
order to model the impact of these SAR parameters at different
values.
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Fig. 13. Effect of parameter d on (left) the overall classification accuracy and on (right) the additional error for the PR method.

Fig. 14. Effect of parameter d on (left) the overall classification accuracy and on (right) the additional error for the TC method.

The effects of crosstalk cannot be addressed here as the HV
channel is not available.

A. Sensitivity to Parameter d

In this section, we intend to test the sensitivity of the clas-
sification methods to parameter d = rt/r0, where rt is the
retained classification threshold and r0 =

√
rArB . As shown

in Sections III-A and B, parameter d represents the channel
gain imbalance for the PR method and the radiometric stabil-
ity for the TC method. Because of potential inaccuracies in
the class parameter estimations rA and rB , it seems that the
optimal classification threshold ropt can be retrieved with more
accuracy than r0 by testing a wide range of values for rt and
by identifying the value that minimizes the error. Therefore,
it seems more relevant to consider the distance d′ = rt/ropt

rather than d. This parameter can be calculated from d theoret-
ically: d′ = d/dopt, where dopt is given in (12), which depends
on Δr, L, and p(B).

The methods are applied on the PRI images after calibration,
georeferencing, and spatial filtering to reduce the effect of
speckle. The initial number of looks in the georeferenced data is
calculated to be Li = 1.8, which is consistent with the nominal
number of looks given for that product (one in range and two
in azimuth). In this area, the fields are relatively large, with
F ≈ 200 m, and the pixel size is R = 12.5 m. This allows a
7 × 7 window to be used in the low-pass box filter. The resulting
number of looks is Le = 34.3, which is in agreement with (24),
indicating that 22.0 < Le < 44.1.

The experimental results with the real data and the theoretical
outputs from the error model are compared in Fig. 13 for the PR
method and in Fig. 14 for the TC method. In both figures, the
overall classification accuracy is plotted in the left-hand side,
and the additional error due to d is shown in the right-hand side,
both as a function of d/dopt.

For the PR method, the experimental accuracy is lower than
the theoretical accuracy calculated by the model (around 12%).
This can be partly explained by the fact that the GIS database
used to assess the experimental accuracy is partially inaccurate.
In fact, a visual inspection reveals that the differences between
the rice map obtained from the SAR images and from the
GIS are spatially localized rather than randomly distributed,
indicating that the GIS may not be up to date. The additional
errors are, however, in very good agreement, with an absolute
difference lower than 0.6%. For the TC method, the classifica-
tion accuracies calculated in the two approaches compare rather
badly. The additional errors have similar trends but with dif-
ferent amplitudes, with the modeled values being around three
times as big as the experimental values. These discrepancies
can however be explained by the high value of the satellite
repeat cycle, which makes the classification accuracy highly
dependent on the timing of the acquisitions. The calculated
value of ΔrTC is, therefore, not necessarily representative of
the Δr90% parameter, and the assessment of ΔrTC,opt may be
incorrect.

Based on the results obtained in the PR method, the model
can be effectively used to assess the effects of channel gain
imbalance or radiometric stability.
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Fig. 15. (Left) Effect of the ambiguity ratio on the class separability and (right) additional error due to ambiguity for the PR method.

B. Sensitivity to the Ambiguity Ratio

The ambiguity is simulated by degrading the SLC images
according to the relationship given in (20) for each polarization
and each date and for five ambiguity ratio values: −5, −10,
−17, −20, and −25 dB. The −5 and −10 dB values are not
realistic but are nevertheless simulated to test the sensitivity of
the model. Contrary to the analysis in Section IV-A, where the
source of the ambiguity is set at a constant backscatter value
of 0 dB to simulate the worst possible case, a real scene is
selected here from another subset of the image. This is therefore
expected to produce lower additional errors than the theoretical
study.

After simulating the ambiguity in the complex amplitude
images in slant-range geometry, the backscattering coefficient
is computed, a 3 × 15 low-pass box filter is applied to re-
duce the speckle while taking into account the different pixel
spacing in range and azimuth, and the images are georef-
erenced to the GIS geometry using tie points. The number
of looks of the georeferenced images is calculated to be
L = 19.

Fig. 15 shows the variations of the Δr parameter and of the
additional error due to ambiguity as a function of the ambiguity
ratio, calculated for the five experimental values and simulated
by the error model for the PR method. The error model is run
with p(B) = 0.75, L = 19, Δr = 6.57 dB, and I1,B = −6 dB,
which is calculated from the HH and VV images.

As predicted by the model, the class separability decreases
in the experimental data set when the ambiguity ratio increases,
but its decrease is expectedly less important in the experi-
mental data than in the model. Consequently, the experimental
additional error increases with ambiguity, which is similar
to the theoretical error, but to a lower extent. The observed
experimental trends related to the error are well described by
the model.

VI. CONCLUSION

A new expression for the probability of error in classification
methods based on a SAR intensity ratio has been provided,
introducing a supplementary parameter corresponding to a bias
between measured and true ratios.

This error model has been used to assess the impact of
SAR system parameters on the classification performance for
the two-class problem. The effect of channel gain imbalance

and radiometric stability has been directly estimated in the
general case. When the two classes are fairly separable (i.e., the
difference between their mean ratios is higher than 4 dB), it was
found that the typical values of the channel gain imbalance lead
to a negligible additional error, while the impact of radiometric
instability can be significant in its upper range for some values
of the equivalent number of looks in classifications based on a
TC. The case of close classes discriminated through the use of
a high equivalent number of looks is very sensitive to channel
gain imbalance or to radiometric stability for the methods
based, respectively, on a PR or a TC, and it requires low
values of these calibration parameters. The effect of crosstalk
on the backscattering coefficient was modeled and found to
be critical when cross-polarizations are involved, unless strin-
gent requirements are met. Degradation due to ambiguity was
found to be negligible when the ambiguity ratio is lower than
−30 dB. In other cases, some configurations can lead to critical
additional errors and should be avoided (low class separability
and low number of looks). Typical temporal backscattering
profiles have been modeled to investigate the impact of ob-
servation frequency in both methods. Simulations have demon-
strated the importance of the temporal sampling, corresponding
to the time-lapse between two consecutive satellite’s repeat-
pass orbits, for methods based on a TC. This reinforces the
expectations set on the coming high-repetition SAR mission
(Sentinel-1).

The model has been validated by comparing its outputs to
experimental results obtained from real SAR data used in rice
field mapping methods. The sensitivity of the error model to
channel gain imbalance, radiometric stability, and ambiguity
is tested, and it shows a relatively good agreement between
experimental and theoretical trends.

In summary, the error model proposed in this paper is ex-
pected to provide a useful tool for SAR mission design, which
is also suitable for the development of classification methods
based on existing instruments.

APPENDIX I

The retained classification threshold is rt = d · r0

PEB =

rt∫
0

p(r|rB)dr=
Γ(2L)
Γ(L)2

d·r0∫
0

rL
BrL−1

(rB + r)2L
dr=

Γ(2L)
Γ(L)2

IB.
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The substitution s = rB + r and the use of the generalized
binomial theorem lead to

IB =

d·r0+rB∫
rB

rL
B(s − rB)L−1

s2L
ds

= rL
B ·

d·r0+rB∫
rB

∞∑
k=0

(
L−1

k

)
(−1)krk

BsL−1−k

s2L
ds.

The series Sn =
∑n

k=0

(
L−1

k

)
((−1)krk

BsL−1−k/s2L) =∑n
k=0 uk(s) converges normally on the interval

D = [rB , d · r0 + rB ] to
∞∑

k=0

‖uk‖∞ =
∞∑

k=0

sup
D

(|uk(s)|)

=
∞∑

k=0

|uk(rB)| =
(rB + rB)L−1

r2L
B

.

Sn is therefore uniformly convergent, which allows the inter-
change of the series and integral signs

IB =
∞∑

k=0

(
L − 1

k

) d·r0+rB∫
rB

(−1)krL+k
B

sL+k+1
ds

=
∞∑

k=0

(
L − 1

k

) [
(−1)k+1rL+k

B

(L + k)sL+k

]d·r0+rB

rB

=
∞∑

k=0

(
L − 1

k

)
(−1)k

(L + k)

[
1 −

(
rB

d · r0 + rB

)L+k
]

=
∞∑

k=0

(
L − 1

k

)
(−1)k

(L + k)

⎡
⎣1 −

( √
Δr

d +
√

Δr

)L+k
⎤
⎦ .

Similarly, we have

PEA =

∞∫
rt

p(r|rA)dr=
Γ(2L)
Γ(L)2

∞∫
d·r0

rL
ArL−1

(rA + r)2L
dr=

Γ(2L)
Γ(L)2

IA

and it can be found, with the substitution s = rA + r, that

IA =
∞∑

k=0

(
L − 1

k

)
(−1)k

(L + k)

(
1

1 + d
√

Δr

)L+k

leading to PE = p(A) · hL(d2 · Δr) + p(B) · (hL(0) −
hL(d2/Δr)) with

hL(Δr) =
Γ(2L)
Γ(L)2

∞∑
k=0

(
L − 1

k

)
(−1)k

(L + k)

(
1

1 +
√

Δr

)L+k

.

It can be noticed that

hL(Δr) + hL

(
1

Δr

)
= |PEA + hL(0) − PEB |d=1 .

By substituting the variable s = r2
0/r, we find that

|PEA|d=1 =

∞∫
r0

p(r|rA)dr =
Γ(2L)
Γ(L)2

∞∫
r0

rL
ArL−1

(rA + r)2L
dr

=
Γ(2L)
Γ(L)2

0∫
r0

rL
A

rL
B

· rL
B(r2

0/s)L−1

(rA + r2
0/s)2L

· −r2
0

s2
ds

=
Γ(2L)
Γ(L)2

r0∫
0

rL
BsL−1

(rB + s)2L
ds = |PEB |d=1.

Noticing that hL(0) = |PEA|d=0 =
∫ ∞
0 p(r|rA)dr = 1 leads

to hL(Δr) + hL(1/Δr) = 1 and, finally, equation (9).

APPENDIX II

Let us assume that n classes are considered, with class
i characterized by a mean ratio ri, and r1 < r2 < · · · < rn.
The distance between two consecutive mean ratios is Δri =
ri+1 − ri, with i varying from i to n − 1, and the corresponding
retained classification thresholds are rti = √

riri+1.
Considering that all classes are equiprobable (p(i) = 1/n),

the overall probability of error for n > 2 is

PE =
1
n

⎡
⎣ ∞∫

rt1

p(r|r1)dr

+
n−1∑
i=2

⎛
⎝ ∞∫

rti

p(r|ri)dr +

rt(i−1)∫
0

p(r|ri)dr

⎞
⎠

+

rt(n−1)∫
0

p(r|rn)dr

⎤
⎦

=
1
n

⎡
⎣n−1∑

i=1

⎛
⎝ ∞∫

rti

p(r|ri)dr +

rti∫
0

p(r|ri+1)dr

⎞
⎠

⎤
⎦ .

Equation (5) gives the probability of error of the two-
class problem for classes i and i + 1 with equal a priori
probabilities

PE(Δri, L) =
1
2

⎛
⎝ ∞∫

rti

p(r|ri)dr +

rti∫
0

p(r|ri+1)dr

⎞
⎠

which leads to equation (13)

PE =
2
n

n−1∑
i=1

PE(Δri, L) =
2(n − 1)

n
mean

i
[PE(Δri, L)].



BOUVET et al.: END-TO-END ERROR MODEL FOR CLASSIFICATION METHODS 3537

ACKNOWLEDGMENT

The authors would like to thank Prof. S. Quegan for his
valuable suggestions on this manuscript as part of the review
of A. Bouvet’s Ph.D. thesis.

REFERENCES

[1] S. R. Cloude and E. Pottier, “An entropy based classification scheme
for land applications of polarimetric SAR,” IEEE Trans. Geosci. Remote
Sens., vol. 35, no. 1, pp. 68–78, Jan. 1997.

[2] A. Freeman and S. L. Durden, “A three-component scattering model for
polarimetric SAR data,” IEEE Trans. Geosci. Remote Sens., vol. 36, no. 3,
pp. 963–973, May 1998.

[3] L. Ferro-Famil, E. Pottier, and J.-S. Lee, “Unsupervised classifica-
tion of multifrequency and fully polarimetric SAR images based on
the H/A/Alpha–Wishart classifier,” IEEE Trans. Geosci. Remote Sens.,
vol. 39, no. 11, pp. 2332–2342, Nov. 2001.

[4] J.-S. Lee, M. R. Grunes, T. L. Ainsworth, L.-J. Du, D. L. Schuler, and
S. R. Cloude, “Unsupervised classification using polarimetric decompo-
sition and the complex Wishart classifier,” IEEE Trans. Geosci. Remote
Sens., vol. 37, no. 5, pp. 2249–2258, Sep. 1999.

[5] J.-S. Lee, M. R. Grunes, E. Pottier, and L. Ferro-Famil, “Unsuper-
vised terrain classification preserving polarimetric scattering character-
istics,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 4, pp. 722–731,
Apr. 2004.

[6] E. Rignot and J. van Zyl, “Change detection techniques for ERS-1 SAR
data,” IEEE Trans. Geosci. Remote Sens., vol. 31, no. 4, pp. 896–906,
Jul. 1993.

[7] S. Takeuchi, T. Konishi, Y. Suga, and S. Kishi, “Comparative study
for flood detection using JERS-1 SAR and Landsat TM data,” in Proc.
IGARSS, 1999, pp. 873–875.

[8] R. Andreoli and H. Yesou, “Assessment of the change detection procedure
dedicated to flood monitoring using ENVISAT wide-swath mode data,” in
Proc. Dragon Symp., 2008, [CD-ROM].

[9] F. Ribbes, T. Le Toan, J. Bruniquel, N. Floury, N. Stussi, S. C. Liew,
and U. R. Wasrin, “Deforestation monitoring in tropical regions using
multitemporal ERS/JERS SAR and InSAR data,” in Proc. IGARSS, 1997,
pp. 1560–1562.

[10] R. Hadria, B. Duchemin, F. Baup, T. Le Toan, A. Bouvet,
G. Dedieu, and M. Le Page, “Combined use of optical and radar satellite
data for the detection of tillage and irrigation operations: Case study
in Central Morocco,” Agric. Water Manage., vol. 96, pp. 1120–1127,
2009.

[11] T. Le Toan, F. Ribbes, L.-F. Wang, N. Floury, K.-H. Ding, J. A. Kong,
M. Fujita, and T. Kurosu, “Rice crop mapping and monitoring using
ERS-1 data based on experiment and modelling results,” IEEE Trans.
Geosci. Remote Sens., vol. 35, no. 1, pp. 41–56, Jan. 1997.

[12] F. Ribbes and T. Le Toan, “Rice field mapping and monitoring with
RADARSAT data,” Int. J. Remote Sens., vol. 20, no. 4, pp. 745–765,
Mar. 1999.

[13] V. Malinovsky, S. Sandven, A. Mironov, and A. Korinenko, “Identifica-
tion of oil spills based on ratio of alternating polarization images from
ENVISAT,” in Proc. IGARSS, 2007, pp. 1326–1329.

[14] P. Ferrazzoli, L. Guerriero, and G. Schiavon, “Experimental and model
investigation on radar classification capability,” IEEE Trans. Geosci.
Remote Sens., vol. 37, no. 2, pp. 960–968, Mar. 1999.

[15] J. Paris, “Radar backscattering properties of corn and soybeans at fre-
quencies of 1.6, 4.75 and 13.3 GHz,” IEEE Trans. Geosci. Remote Sens.,
vol. GRS-21, no. 3, pp. 392–400, Jul. 1983.

[16] A. Bouvet, T. Le Toan, and N. Lam Dao, “Monitoring of the rice cropping
system in the mekong delta using ENVISAT/ASAR dual polarization
data,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 2, pp. 517–526,
Feb. 2009.

[17] G. Satalino, F. Mattia, T. Le Toan, and M. Rinaldi, “Wheat crop mapping
by using ASAR AP data,” IEEE Trans. Geosci. Remote Sens., vol. 47,
no. 2, pp. 527–530, Feb. 2009.

[18] B. Scheuchl, D. Flett, R. Caves, and I. Cumming, “Potential of
RADARSAT-2 data for operational sea ice monitoring,” Can. J. Remote
Sens., vol. 30, pp. 448–461, 2004.

[19] R. Touzi, A. Lopes, and P. Bousquet, “A statistical and geometrical edge
detector for SAR images,” IEEE Trans. Geosci. Remote Sens., vol. 26,
no. 6, pp. 764–773, Nov. 1988.

[20] G. Moser and S. B. Serpico, “Generalized minimum-error threshold-
ing for unsupervised change detection from SAR amplitude imagery,”

IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2972–2982,
Oct. 2006.

[21] S. Quegan, T. Le Toan, J. J. Yu, F. Ribbes, and N. Floury, “Multitemporal
ERS SAR analysis applied to forest monitoring,” IEEE Trans. Geosci.
Remote Sens., vol. 38, no. 2, pp. 741–753, Mar. 2000.

[22] W. F. Kibble, “A two-variate gamma type distribution,” Sankhya, Indian
J. Stat., vol. 5, no. 2, pp. 137–150, 1941.

[23] E. Xekalaki, J. Panaretos, and S. Psarakis, “A predictive model evalua-
tion and selection approach—The correlated gamma ratio distribution,”
in Stochastic Musings: Perspectives from the Pioneers of the Late 20th
Century, J. Panaretos, Ed. Mahwah, NJ: Lawrence Erlbaum, 2003,
pp. 188–202.

[24] A. Freeman, “A new system model for radar polarimeters,” IEEE Trans.
Geosci. Remote Sens., vol. 29, no. 5, pp. 761–767, Sep. 1991.

[25] CEOS, SAR data products format standards, 1989.
[26] J. Bruniquel, “Contribution de données multi-temporelles à l’amélioration

radiométrique et à l’utilisation d’images de radars à synthèse
d’ouverture,” Ph.D. dissertation, Univ. Paul Sabatier Toulouse, Toulouse,
France, 1996.

Alexandre Bouvet (M’09) received the Engineer-
ing degree from the Ecole Nationale Supérieure
d’Aéronautique et de l’Espace, Toulouse, France,
in 2004 and the Ph.D. degree from Université
Paul Sabatier–Toulouse III, Toulouse, in the Centre
d’Etudes Spatiales de la Biosphère, in 2009.

Since 2010, he has been a Postdoctoral Fellow
with the European Commission Joint Research Cen-
ter, Ispra, Italy, where he is working on the use of
SAR data for the analysis of tropical forest cover dy-
namics. His interests include SAR image processing

and the use of remote sensing data to monitor vegetated areas for environmental
applications.

Thuy Le Toan received the Ph.D. degree in atomic
and nuclear physics from the University of Toulouse,
Toulouse, France.

She has been the Head of the Remote Sens-
ing Research Team, Centre d’Etudes Spatiales de
la Biosphère, Toulouse. She has been a Project
Coordinator of European experimental campaigns
and the Principal Investigator (PI) of several ERS,
JERS, SIR-C/XSAR, RADARSAT, ENVISAT, and
ALOS-PALSAR satellite projects. She has also been
involved in numerous studies for the E.U., ESA,

NASA, JAXA, and national organizations on the use of SAR in monitoring
land surfaces. She has been the Leader of the BIOMASS satellite mission
candidate of the 2005 ESA Call for Ideas for the Next Earth Explorer Core
Mission. The mission was retained for the prefeasibility phase, in May 2006,
and for the phase A in March 2009. At present, she is the Cochair of the ESA
Phase-A Earth Explorer BIOMASS Mission Advisory Group and the
European–China Dragon project “The role of cropland and grassland in the
carbon budget of China,” the PI of the Planet Action project “The impact of
climate and human activities on the environment of the Mekong delta,” and a
member of the JAXA Kyoto and Carbon Initiatives on the use of ALOS data for
deforestation monitoring and biomass measurement, with impacts on the forest
carbon budget. Her research activity has been in the area of remote sensing for
land applications, including the experimentation and modeling of microwave
interaction with agricultural and forested media. Her current interest is on the
use of Earth Observation to characterize the land processes and their changes
under the effects of climate and human activities and to quantify their impacts
on the carbon cycle.



3538 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 48, NO. 9, SEPTEMBER 2010

Nicolas Floury (M’07) received the Diplôme
d’Ingénieur from Ecole Nationale Supérieure des
Télécommunications, Paris, France, in 1993 and the
Ph.D. degree from Université Paris 7–Denis Diderot,
Paris, in 1999.

Since 1999, he has been with the ESTEC Fa-
cility, European Space Agency, Noordwijk, The
Netherlands, where he is currently heading the Wave
Interaction and Propagation Section. The section
contributes to research and development in the fields
of electromagnetic (optical to microwave) propaga-

tion through and interaction with natural media (atmosphere, land, and sea
surface) and supports on these aspects the agency’s programs in the domains of
satellite telecommunication, navigation, and Earth observation. His technical
interests include the signal processing and electromagnetic modeling applied
to microwave interaction with natural media, and he has published on the
applications of synthetic aperture radars and of microwave radiometers to
remote sensing.

Trevor Macklin was born in Belfast, U.K., in
1956. He received the B.Sc. degree in physics from
Queen’s University, Belfast, in 1977. He continued
his postgraduate work on extragalactic radio sources
at the Mullard Radio Astronomy Observatory,
Cambridge University, Cambridge, U.K., and re-
ceived the Ph.D. degree in 1982.

He is currently with the Remote Sensing Team,
BAE SYSTEMS Advanced Technology Centre,
Chelmsford Essex, U.K., where his main research
interests are in the applications and image quality of

synthetic aperture radar.
Dr. Macklin is a Fellow of the Royal Astonomical Society.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


