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Abstract 21 

Global surface water variations are still difficult to monitor with current satellite 22 

measurements. The future Surface Water and Ocean Topography (SWOT) mission is 23 

designed to address this issue. Its main payload will be a wide swath altimeter which will 24 

provide maps of water surface elevations between 78°S and 78°N over a 120 km swath. This 25 

study aims to combine coupled hydrologic/hydraulic modeling of an Arctic river with virtual 26 

SWOT observations using a local ensemble Kalman smoother to characterize river water 27 

depth variations. We assumed that modeling errors are only due to uncertainties in 28 

atmospheric forcing fields (precipitation and air temperature) and different SWOT orbits were 29 

tested. First, we tested orbits that all have a three day repeat period but differ in terms of their 30 

spatial coverage of the study reach; these orbits correspond to the first three months of the 31 

mission, which will be dedicated to calibration and validation experiments. For these orbits, 32 

the mean spatial Root Mean Square Error (RMSE) in modeled channel water depth decreased 33 

by between 29 % and 79 % compared to the modeled RMSE with no assimilation, depending 34 

on the spatial coverage. The corresponding mean temporal RMSE decrease was between 54 35 

% and 91 %. We then tested the nominal orbit with a twenty two day repeat period which will 36 

be used during the remaining lifetime of the mission. Unlike the three day repeat orbits, this 37 

orbit will observe all continental surfaces (except Antartica and the northern part of 38 

Greenland) during one repeat period. The assimilation of SWOT observations computed with 39 

this nominal orbit into the hydraulic model leads to a decrease of 59 % and 66 % in the mean 40 

spatial and temporal RMSE in modeled channel water depth, respectively. These results show 41 

the huge potential of the future SWOT mission for land surface hydrology, especially at high 42 

latitudes which will be very well sampled during one orbit repeat period. Still, further work is 43 

needed to reduce current modeling uncertainties and to better characterize SWOT 44 

measurement errors. 45 
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 48 

1. Introduction 49 

More than 73 % of water used for human activities (for example as drinking water, for 50 

irrigation or for energy generation and industrial processes) comes from surface water 51 

(Connor et al., 2009). It is therefore crucial to observe and understand the spatial and 52 

temporal variations in surface water across the globe. Accordingly, in-situ gage networks 53 

have been intensively developed since the second part of the twentieth century. However, 54 

these networks are still sparse, especially in remote regions like in the Arctic, and in many 55 

areas the coverage is actually now declining. To overcome this issue, hydrologic models and 56 

remote sensing data have been used to complement in-situ measurements. However, current 57 

remote sensing observations of water surface elevations made by nadir altimeters, which only 58 

measure water elevations along the track of the satellite with typical track spacing of ~120 59 

km, miss many of the world’s surface water bodies, have relatively large spatial footprints (on 60 

the order of 5-10 km) and do not give any information about water extent (Alsdorf et al., 61 

2007). 62 

 In order to better characterize surface water and oceanic processes, a wide swath altimeter, 63 

the Surface Water and Ocean Topography (SWOT) mission, is currently under study by 64 

NASA (National Aeronautics and Space Administration) and CNES (Centre National 65 

d’Etudes Spatiales). SWOT will provide maps of water elevation at an unprecedented spatial 66 

resolution (on the order of 50-100m) and precision (centimetric accuracy when averaged over 67 

areas of 1 km2; Durand et al., 2010). A small number of recent studies have begun to quantify 68 

the benefits of such a mission for land surface hydrology. Biancamaria et al. (2010) focus on 69 
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the benefits of this mission at a global scale for different orbits and show that errors in 70 

instantaneous discharge estimated from SWOT measurements using rating curve should be 71 

below 25 % for rivers wider than 50m. Errors only due to the SWOT temporal sampling on 72 

monthly discharge should be below 20 % for rivers with drainage areas larger than 7000 km2. 73 

Andreadis et al. (2007) estimated the benefit of assimilating virtual wide swath 74 

measurements, using an Ensemble Kalman filter (EnKF), to reduce modeling errors due to 75 

uncertainties on lateral inflows of a mid-latitude river (a segment of the Ohio River). This 76 

study compared three different orbits with 8, 16 and 32 days repeat period. They showed that 77 

relative errors could be reduced by nearly a factor of two when the filter is used; the best 78 

results were obtained for the orbit with the smallest repeat period. Durand et al. (2008) 79 

assimilated virtual SWOT observations into the Amazon River hydraulic modeling developed 80 

by Wilson et al. (2007) for estimating bathymetric depths and slopes. They showed that 81 

bathymetric slopes can be estimated to within 0.30 cm.km-1 and depths to within 56 cm 82 

(which was 84 % less than errors without assimilation). They also highlighted that, in their 83 

modeling, model errors dominate over measurement errors and therefore estimates of channel 84 

bathymetry are relatively insensitive to measurement error characteristics.  85 

The study presented here is a continuation of these works and aims to assess how SWOT 86 

could improve the modeling of an Arctic river, where the flow regime is mainly driven by 87 

snow melt (contrary to the Ohio and Amazon rivers). In addition, here we use for the first 88 

time the actual SWOT orbits, which have recently been selected, a more realistic model 89 

boundary condition error computation, and a slightly different assimilation scheme (Local 90 

Ensemble Kalman Smoother) compared to previous work. In particular, this paper aims to test 91 

the impact of SWOT orbital coverage (depending on orbit parameters), but we do not address 92 

the improvement expected from the high spatial resolution of SWOT measurements, as the 93 
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river modeling used has a 1 km x 1 km spatial resolution (due to the current lack of a high 94 

spatial resolution digital elevation model above 60°N).  95 

 96 

2. Study domain and river modeling 97 

This study focuses on the Lower Ob River between the cities of Belogorje and 98 

Salekhard; this reach covers the downstream 1120 km of the river before the Ob estuary 99 

(Figure 1) and corresponds to a drainage area of 790 000 km2 (according to the Arctic Rapid 100 

Integrated Monitoring System, ArcticRIMS, http://rims.unh.edu). The drainage basin of the 101 

entire Ob river covers 2 990 000 km2 and it is located in Western Siberia, east of the Ural 102 

Mountains. In terms of discharge, the Ob is the world’s 12th largest river and the 3rd largest in 103 

the Arctic (Herschy and Fairbridge, 1998). The Ob is frozen from November to April and its 104 

discharge regime is mainly driven by snow melt, with a maximum in May/June during ice 105 

breakup (Pavelsky and Smith, 2004). Yang et al. (2004) reported that from 1936 to 1990 the 106 

monthly mean discharge at the river outlet varied between 500 and 1200 m3.s-1 in the cold 107 

season (from November to April), and between 3500 and 9000 m3.s-1 during the summer 108 

months. The land cover in this domain is classified as sporadic and discontinuous permafrost 109 

(Brown et al., 1998). According to Yang et al. (2004), the effects of human activities on the 110 

study domain are limited and there are no reservoirs on the lower part of the river. In this 111 

study, the modeled time period corresponds to the calendar year 1993. 112 

The river is modeled by the flood inundation model LISFLOOD-FP developed at the 113 

University of Bristol, UK (Bates and De Roo, 2000). LISFLOOD-FP is a coupled 1D/2D 114 

hydraulic model based on a raster grid. It predicts water depth in each grid cell at each time 115 

step and hence can simulate the dynamic propagation of flood waves over fluvial, coastal and 116 

estuarine floodplains. Here, the 1D channel flow is based on the kinematic approximation to 117 
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the 1D St Venant equations. Floodplain flows are similarly described in terms of continuity 118 

and momentum equations, discretized over a grid of square cells, which allows the model to 119 

represent 2-D dynamic flow fields on the floodplain. There is, however, no exchange of 120 

momentum between main channel and floodplain flows, only mass, and ice jam and break up 121 

processes are not represented. The kinematic approximation of the channel flow might also be 122 

a limitation of the modeling, as the Ob flow regime is likely diffusive, at least in the 123 

downstream part of the river. However, according to Trigg et al. (2009), for the Amazon 124 

River, this approximation leads to an additional Root Mean Square Error (RMSE) of around 1 125 

m. This error is likely to be lower for the Ob and is much smaller than errors on the floodplain 126 

topography and river bathymetry. Finally, backwater effects from inflows are not modeled, 127 

but are likely to be minor given the ratio of inflow volume to the mainstem discharge. 128 

The floodplain topography comes from the ACE (Altimeter Corrected Elevation) 129 

digital elevation model from De Montfort University, UK, and channel centreline position and 130 

width from freely available data sources (CIA World Data Bank II and Landsat imagery). The 131 

channel depth is poorly known and is estimated based on a limited number of literature 132 

sources and a model sensitivity analysis (see Biancamaria et al., 2009). The Manning 133 

coefficients for the river and for the floodplain have been assumed constant in space and time 134 

(equal to 0.015 and 0.06, respectively) and the 2D floodplain model is run at 1km resolution. 135 

The incoming flow to the study domain from the upstream river and the lateral inflows to the 136 

river in the study domain (red arrows in Figure 1) are computed by ISBA (Interactions 137 

between the Soil-Biosphere-Atmosphere; Noilhan and Mahfouf, 1996), which is a land 138 

surface scheme developed by the CNRM (Centre National de Recherche Meteorologique) in 139 

France. Total precipitation (rain and snow) and temperature uncertainties are a main source of 140 

errors on the modeled discharge in the coupled ISBA/LISFLOOD-FP scheme (Biancamaria et 141 

al., 2009). More details on the Lower Ob modeling can be found in Biancamaria et al. (2009). 142 
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 143 

3. Satellite observations 144 

The main purpose of this work is to estimate the benefits to the accurate estimation of water 145 

depths on an Arctic River of combining measurements from the future SWOT mission and 146 

hydrologic modeling. This section presents this future satellite mission and how virtual 147 

SWOT observations have been generated. 148 

3.1. The SWOT mission 149 

This mission is intended to be launched between 2018 and 2020. SWOT will provide high-150 

resolution images of water surface elevations over oceanic and continental surface water 151 

bodies. The core satellite payload is the Ka-band Radar Interferometer (KaRIN), a wide swath 152 

radar interferometer. KaRIN has two antennas separated by a 10 m boom which observe two 153 

ground swaths of 60 km on each side of the satellite nadir, separated by a 20 km gap. The 154 

intrinsic pixel resolution will vary from 60 m (near range) to 10 m (far range) across-track and 155 

will be at best around 2 m along-track (however, this value is also dependent upon 156 

decorrelation time). The chosen orbits have a 971 km altitude and 78° inclination, in order to 157 

observe almost all the continental surfaces (Rodríguez, 2009). The nominal lifetime of the 158 

mission is three years. 159 

The first three months of the mission will be a calibration/validation period (called the ‘fast 160 

sampling period’) with a 3 day repeat orbit, allowing a more frequent revisit time but with 161 

incomplete spatial coverage. As the satellite has not yet been launched, the orbit phase (i.e. 162 

the longitude of the orbit where it first crosses the equator eastward of 0°E) is not known; 163 

therefore, three different phases, which observe different parts of the study domain, for this 164 

fast sampling orbit have been selected (Figure 2a, b and c). The first orbit (orbit 1, Figure 2a) 165 

does not observe the most upstream part of the Lower Ob. In contrast, the second orbit (orbit 166 
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2, Figure 2b) does not observe the downstream part of the river. The third orbit (orbit 3, 167 

Figure 2c) corresponds to an optimal coverage, as almost all the river inside the study domain 168 

is seen. These three orbits thus represent the likely envelope of sampling scenarios possible 169 

for a given Arctic river basin during the fast sampling period. 170 

After the initial three months, the remaining time during the mission will be undertaken with 171 

an orbit that meets the nominal science requirement to obtain a global coverage of the earth 172 

and that has a 22 day repeat. Figure 2d presents the number of observations of the study 173 

domain per repeat period (22 days) for this orbit. As the coverage is global, it is not necessary 174 

to test different orbit phases. 175 

3.2. Generation of virtual satellite observations 176 

Virtual SWOT observations were generated by first computing the swath coverage over the 177 

study domain for both the nominal and fast sampling orbits for each day during the year 1993. 178 

The initial modeling of the Lower Ob (see Biancamaria et al., 2009) was taken as the “true” 179 

state and was used to compute SWOT measurements. As an example of model outputs, water 180 

elevations computed with this modeling for June 28th 1993 is shown in Figure 3. First, 181 

modeled water elevations from the nominal LISFLOOD-FP model inside the SWOT swath 182 

were selected and then observation errors were added. For the moment, only the instrumental 183 

error is taken into account (the errors due to satellite position uncertainties, atmospheric 184 

effects such as wet troposphere delays, etc are not considered). Instrument error was modeled 185 

by a white noise of 2 cm standard deviation, which corresponds to the expected error of 186 

KaRIN (Enjolras et al., 2006; Rodríguez, 2009) at the 1 km2 resolution of the Lower Ob 187 

model. 188 

 189 

4. Methodology 190 
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To estimate the benefit of SWOT observations for the study of Arctic rivers, an Observing 191 

System Simulation Experiment (OSSE) was implemented. First, virtual SWOT measurements 192 

were computed as explained in section 3.2. Then, they were assimilated into the LISFLOOD-193 

FP model of the lower Ob to determine their ability to reduce modeling errors. This section 194 

presents the assimilation schemes used (section 4.1) and the estimation of the modeling errors 195 

(section 4.2). 196 

4.1. Assimilation schemes 197 

4.1.1. Ensemble Kalman Filter 198 

The assimilation process combines model outputs (called forecast or background) and 199 

observations to obtain a better estimate (called analysis) of the river state. A popular 200 

assimilation scheme is the Kalman Filter (Kalman, 1960; Kalman and Bucy, 1961). For the 201 

Kalman filter the analysis is obtained using the following equations: 202 

)()( 1 fTfTffa xHyRHPHHPxx −++= −                 eq. 1 203 

fTfTffa PHRHPHHPPP 1)( −+−=       eq. 2 204 

Here xf, xa and y represent the forecast, analysis and observation, respectively. In this study, 205 

the state vector corresponds to water heights along the river. Pf, Pa and R are respectively the 206 

error covariances for the forecast, analysis and measurements. H is the measurement operator, 207 

which projects the model state into the observation space. The superscript T corresponds to the 208 

matrix transpose. 209 

The analysis computed using the Kalman filter is thus a weighted average of the forecast and 210 

the observation. The weight optimally takes into account the error in the forecast and in the 211 

observation. The Kalman Filter is a sequential filter, which means that the analysis is 212 

computed only at times when an observation is available. It is then used as an updated initial 213 
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condition for the model, which is subsequently run forward from this updated initial condition 214 

until a new observation is available. If the observation operator and model equations are linear 215 

and if the forecast and observation errors are zero mean Gaussian random vectors, then the 216 

analysis obtained with the Kalman Filter is the best linear unbiased estimate of the model state 217 

and its error covariance matrix. In this study, SWOT observations correspond to water height 218 

measurements along the river, therefore the observation operator is simply a mask of the 219 

swath coverage and is a linear operator. However, the model equations are not linear, as is the 220 

case for many fluid flow problems. 221 

The covariances for model forecast, analysis and observations are given by the equations 3, 4 222 

and 5, for which xt corresponds to the true model state and the overline corresponds to an 223 

expectation value. 224 

Ttftff xxxxP )()( −−=         eq. 3 225 

Ttataa xxxxP )()( −−=         eq. 4 226 

Ttt xHyxHyR )()( −−=         eq. 5 227 

Since the true model state is never known, the covariance matrices can only be approximated. 228 

A widely used Monte Carlo approximation of the covariance matrices was proposed by 229 

Evensen (1994), and the resulting filter is commonly called the Ensemble Kalman Filter 230 

(EnKF). The EnKF is implemented here. An ensemble of “corrupted” model states is 231 

generated, which sample all the possible model errors. Then the error covariance matrices are 232 

approximated by the covariance matrices of the ensemble (equations 6 and 7). Of course, 233 

increasing the size of the ensemble generally decreases the errors in the Monte Carlo 234 

sampling. 235 
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Tfffff
e

f xxxxPP )()( −−=≈        eq. 6 236 

Taaaaa
e

a xxxxPP )()( −−=≈        eq. 7 237 

The EnKF used in this study has been implemented following the square root analysis 238 

algorithm described in Evensen (2004). 239 

4.1.2. Local Ensemble Kalman Filter 240 

In some cases, when the size of the ensemble is small, some spurious long range correlations 241 

can appear in the forecast error covariance matrix, leading to large errors in the analysis 242 

model state. A solution to this issue consists of limiting the influence of an observation during 243 

the analysis step to a localized region near the observation. Hamill et al. (2001) suggested 244 

replacing equation 1 with equation 8, which includes a correlation matrix, denoted S, 245 

representing the region of influence of an observation (the symbol “×” in equation 8 246 

corresponds to the Schur product, i.e. element by element multiplication). From now on, this 247 

version of the filter will be referred to as the Local Ensemble Kalman Filter (LEnKF). 248 

)(])([])([ 1}{ fTf
e

Tf
e

fa xHyRHPSHHPSxx −+××+= −    eq. 8 249 

Like Hamill et al. (2001), in this study a fifth order function of Gaspari and Cohn (1999) has 250 

been used to define the correlation matrix S. This correlation function has a shape close to a 251 

Gaussian function but it decreases to zero at a finite radius. The length scale of this function 252 

has been set to 10 km, which means that the correlation is equal to 0.5 at a distance of 12 km 253 

from the observation and is below 0.1 at distance above 22 km. This value was chosen to be 254 

one order of magnitude less than the mean distance between two lateral inflows to the river in 255 

the Ob modeling, which is equal to 140 km. For the time steps where the EnKF performs 256 

well, it is expected that the LEnKF will be slightly less efficient as the influence of 257 



 12

observation is reduced. However, this length scale will prevent any spurious long range 258 

correlations and thus avoid unrealistic water depth computations.  259 

4.1.3. Local Ensemble Kalman Smoother 260 

As previously stated, the EnKF and LEnKF are sequential filters. For all time steps during 261 

which there is no observation, the model is not corrected and thus the spread of the ensemble 262 

of model states tends to increase. For the Lower Ob, it takes around 10 days for water to flow 263 

from the upstream to the downstream part of the modeled river (Biancamaria et al., 2009). 264 

Therefore, after 10 days the benefits from the assimilation are completely lost. Fortunately, 265 

for the 22 day SWOT orbit, the study domain is observed every 3 days. Nonetheless, it is 266 

important to propagate the benefit of observations to other time steps. This is done by 267 

applying the Local Ensemble Kalman Smoother (LEnKS). The LEnKS assumes that 268 

differences between observations and model state at a time step i, for which an observation is 269 

available, are statistically correlated to errors at previous time steps. The equations of the 270 

analysis for the time step j (j<i) is the following (Moore, 1973): 271 

)(])([])([ 1}{ f
iii

Tf
eii

Tf
eij

f
j

a
j xHyRHPSHHPSxx −+××+= −    eq. 9 272 

Tf
j

f
j

f
i

f
i

f
eij xxxxP )()( −−=         eq. 10 273 

The smoother has been applied over a constant time frame, i.e. for all time steps included in 274 

the interval [i-timelag; i], where timelag is constant for all the analysis steps. Sensitivity of the 275 

analysis results to different values of the time lag was explored. It is worth noting that the 276 

filter leads to sharp discontinuities in model mass and momentum before and after the update, 277 

and that the smoother tends to mitigate these effects. 278 

4.2. Ensemble member generation 279 
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The ensemble used in the LEnKF and LEnKS should be representative of all model errors. 280 

Possible sources of errors include initial conditions, forcing data, model parameters and 281 

model equations used. In this study, only errors from ISBA forcing data (precipitation and 282 

temperature) were considered, as these are the primary source of errors in the modeling 283 

(Biancamaria et al., 2009). These forcing data come from NCEP-DOE AMIP II reanalysis 284 

(National Centers for Environmental Prediction - Department Of Energy, Atmospheric Model 285 

Intercomparison Project; Kanamitsu et al., 2002). Errors in reanalysis products are always 286 

difficult to estimate, as very few high quality global products exist for comparison, especially 287 

at high latitudes. However, Serreze et al. (2005) show that for the Ob basin correlations 288 

between NCEP monthly total precipitation over the river basin and in-situ measurements vary 289 

from 0.60 to 0.86 depending on the month, for the time span 1979/1993. Biancamaria et al. 290 

(2009) found that downstream Ob discharge modeled using NCEP precipitation has an error 291 

of 14 % compared to in-situ discharge time series. In addition, Voisin et al. (2008) found that 292 

precipitation from another reanalysis (ERA-40 from the European Centre for Medium-Range 293 

Weather Forecasts) has errors between 0.7 % and 34.5 % on Eastern Siberian Rivers. 294 

Therefore, we have assumed that errors on precipitation are 20 %. The standard deviation 295 

between daily air temperature from NCEP and in-situ measurement at Belogorje for 1993 is 296 

equal to 0.18. Thus, the error on air temperature has also been set to 20 %. 297 

4.2.1. Methodology 298 

Members of the ensemble correspond to a “corrupted” version of the nominal forcing data 299 

(considered to be the truth). The methodology used has been previously developed by Auclair 300 

et al. (2003) and consists of perturbing the most statistically significant modes of the 301 

atmospheric fields. To do so Empirical Orthogonal Functions (EOF) of the atmospheric field 302 

temporal anomaly were computed, and the corrupted field (Pcorrupt) was obtained by 303 
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recombining the first EOF modes which explained 95 % of the variance and the temporal 304 

atmospheric field mean, multiplied by white noise (equation 11). 305 

∑
=

+=
N

k
kkkm

corrupt ltlPtlP
1

)().(.).(),( φαεε      eq. 11 306 

In equation 11, l is the spatial index, t the temporal index, P is the temporal mean, k is the 307 

EOF mode, N is the highest EOF mode used, αk is the temporal component and φk is the 308 

spatial component of the EOF for the mode k, εm is the noise on the mean and εk is the noise 309 

on the EOF recombination for the mode k. εm and εk are both white noise with a 0.2 standard 310 

deviation. It should be noted that εm and εk are not a function of l or t (i.e. they are constant in 311 

space and time). The last mode N was chosen so that the cumulative explained variance for 312 

modes 1 to N is equal to 95 %. 313 

4.2.2. Corrupted precipitation and air temperature 314 

The EOF modes were computed using the algorithm developed by Toumazou and Crétaux 315 

(2001), for the total precipitation field (rain rate + snow rate) and air temperature. Table 1 316 

presents the explained variance for the first 10 EOF modes of these two atmospheric forcings. 317 

As there is no seasonal cycle in the total precipitation (the mean life time of a depression is 318 

roughly around a week, with no strong seasonality), 187 EOF modes are required to explain 319 

95 % of the variance. On the contrary, for air temperature, most of the energy is included in 320 

the first 8 modes (which explain 95 % of the variance). The first mode itself (corresponding to 321 

the seasonal cycle) explains 84 % of the variance. For these two ISBA inputs, EOFs were 322 

computed from August 1991 to July 1995, using the methodology presented in section 4.2.1. 323 

For computational reasons, the size of the ensemble was set to 20 (thus 20 corrupted 324 

precipitation and temperature fields have been computed). 325 
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While LISFLOOD-FP produces a 1km resolution grid of water depths at each modeled time 326 

step, for simplicity, we only consider water depths along the channel centre line. Figure 4 327 

presents water depths (in m) along the channel for the truth and all members of the ensemble 328 

for a given date, June 28th 1993. Figure 5 shows the time series of water depths along the river 329 

channel obtained after running ISBA and LISFLOOD-FP for the “truth” (a.) and the ensemble 330 

mean (b.). The ensemble mean water height is greater than the true depth; this is because 331 

snow melt occurs earlier in the ISBA ensemble compared to the true ISBA simulation. 332 

In LISFLOOD-FP, the river bathymetry has been set only at the location of lateral inflows. 333 

The model does a linear interpolation of the bathymetry between these locations. Therefore, 334 

between two lateral inflows the slope is constant, which explains gaps in water depths at 335 

lateral inflow locations in Figure 4 and the vertical banding effect in Figure 5. To avoid these 336 

effects, future work based on the Ob modeling will use a polynomial interpolation of the 337 

bathymetry. 338 

 339 

5. Results 340 

The EnKF, LEnKF and the LEnKS were applied to reduce modeling error using virtual 341 

SWOT water height observations. The following sections present the results obtained when 342 

SWOT observations are computed using the three selected fast sampling orbits (section 5.1) 343 

and the nominal orbit (section 5.2). The LEnKS was tested with different time lags (2 days, 3 344 

days, 5 days and 10 days).  345 

5.1. Fast sampling orbits 346 

Table 2 presents the mean spatial and temporal RMSE between the truth and the ensemble 347 

mean with and without assimilating SWOT observations for these three orbits. For these 348 
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orbits, there is an observation every one or two days, depending on the location. Therefore the 349 

best results are obtained using a 2 day lag time LEnKS. The percentage of error reduction 350 

compared to no assimilation (equation 12) is also indicated in Table 2. 351 

onassimilatino

onassimilationassimilatino

RMSE

RMSERMSE −
⋅=100ε     eq. 12 352 

Model errors after assimilation are highly dependent on the location of the observations and 353 

are, therefore, quite different for each orbit phase. The mean spatial RMSE was decreased 354 

from between 29 % to 79 % and the mean temporal RMSE was decreased by between 54 % 355 

and 91 % for the 2 day time lag LEnKS. In particular, fast sampling orbit 2 (Figure 2b) 356 

observes a smaller portion of the river than orbit 1 (Figure 2a); however the mean spatial and 357 

temporal RMSE after assimilating SWOT observations generated using orbit 2 are smaller 358 

than after assimilating SWOT orbit 1 observations (Table 2). This is due to the location of the 359 

ground track: orbit 2 observes the upstream part of the river, near Belogorje, where the 360 

incoming flow to the study domain is located. The incoming streamflow is one order of 361 

magnitude higher than the lateral inflows to the river from the study domain, as computed by 362 

the ISBA model. When orbit 2 is used, the part of the river with the highest error (the 363 

upstream) is well observed and thus well corrected; this correction propogates dowstream, 364 

even to unobserved river locations. Orbit 1, on the other hand, observes the downstream part 365 

of the river; therefore the upstream part of the river, which is not seen, is not corrected. This 366 

leads to higher errors than those obtained with orbit 2. This effect is obvious in Figures 5c, 5d 367 

and 5e, which show water depths along the river channel versus time for the ensemble mean 368 

after assimilating SWOT observations for the three fast sampling orbits using a 2 day time lag 369 

LEnKS. Orbit 3 corresponds to the optimum orbit, as almost the entire river is observed every 370 

three days. Consequently, the spatial and temporal RMSE for this orbit decrease by 79 % and 371 

91 %, respectively, compared to the RMSE with no assimilation. It is important to note that 372 
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the main Arctic rivers (Mackenzie, Ob, Yenisey and Lena) are oriented South to North. 373 

Therefore, if the SWOT fast sampling orbit is correctly chosen, at least some of these rivers 374 

should be very well (if not entirely) observed. 375 

For all three fast sampling orbits in Table 2, the EnKF updates degraded the LISFLOOD-FP 376 

model run, e.g., the river bed became dry in certain parts of the study area. These degradations 377 

are apparently due to spurious, long-distance correlations. In the fast sampling phase, the 378 

updates occur very frequently, such that the model does not have adequate time to self-correct 379 

after a spurious update. These results highlight the importance of suppressing long-distance 380 

correlations when working with modest ensemble sizes, especially when working with 381 

frequent updates.  382 

When the time lag is above the mean time between two observations, some parts of the river 383 

channel can be updated twice. However, for the second update the hypothesis that the 384 

correction computed during the observation time can be used for previous time steps no 385 

longer holds because the error has already been decreased. Thus an unrealistic update is 386 

performed, and error increases; this is similar to the issue raised in section 4.1.2 about the 387 

need for a local filter. For this reason, errors for the LEnKS in Table 2 have a tendency to 388 

increase for time lags above the mean time between two observations. 389 

5.2. Nominal orbit 390 

Table 3 presents the mean spatial and temporal RMSE between the truth and the ensemble 391 

mean after assimilating SWOT observations for the nominal orbit. For this orbit, on average, 392 

the study domain is observed every three days. For this reason, the best results are obtained 393 

with a 3 day time lag LEnKS (in this case the mean spatial and temporal RMSE are reduced 394 

by 59 % and 66 %, respectively). The results obtained using a 10-day time lag LEnKS are 395 

also indicated in Table 3 (the mean spatial and temporal RMSE are only reduced by 34 % and 396 
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28 %, respectively). They clearly show the LEnKS efficiency decreases when the time lag is 397 

much higher than the mean number of observations per repeat period. This Table also shows 398 

that, for this specific orbit, the EnKF yields comparable results to the LEnKF; this result is 399 

quite different than for the fast sampling phase, where the EnKF led to significant model 400 

degradation. The difference is due to the fact that for the nominal orbit, there are fewer 401 

observations, leading to less-frequent updates. Thus, the analysis scheme effectively puts less 402 

weight on the observations and more weight on the model. This, in turn, decreases the effect 403 

of the spurious, long-distance correlations on the EnKF. Thus, in this study, the localization is 404 

more important for the fast sampling period than for the nominal orbit. Water depths along the 405 

river channel versus time for the corrected ensemble mean obtained after using this 406 

assimilation scheme are presented in Figure 5f. 407 

As the Ob River is located in the boreal region at high latitudes, there are many observations 408 

within the 22 days repeat cycle (Biancamaria et al., 2010); since the whole study domain is 409 

observed, both the downstream and upstream part of the river are corrected. Therefore the 410 

mean spatial and temporal RMSE are better than those obtained with fast sampling orbits 1 411 

and 2. However, it is worth noticing that the downstream part is more frequently observed 412 

than the upstream part (Figure 2d). This explains why: 1) the variability in the water depth in 413 

June and July near Belogorje after assimilating observations from the nominal orbit (Figure 414 

5f) is higher than after assimilating observations from the fast sampling orbits (Figures 5c, 5d 415 

and 5e) and 2), the RMSE is higher when using observations from the nominal orbit than ones 416 

from the fast sampling orbit 3, as the upstream part of the river is observed less often by the 417 

nominal orbit. These results tend to show that, for Arctic rivers, the SWOT nominal orbit has 418 

sufficiently good temporal and spatial coverage to significantly decrease modeled water depth 419 

errors. Thus, this suggests that, at this basin scale and latitude, spatial coverage is more 420 

important for correcting the model than temporal frequency of observations. 421 
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 422 

6. Conclusion 423 

In this study, we investigated the potential of future wide swath altimetry data to decrease 424 

errors in water depths in a coupled 1D/2D hydraulic model. In particular, virtual observations 425 

of the future SWOT mission were computed and assimilated in an Arctic river hydrodynamic 426 

model using a local Ensemble Kalman Smoother. The results are very promising. For the fast 427 

sampling phase (first three months) of the mission the virtual SWOT observations decrease 428 

the mean spatial RMSE on modeled channel water depth by between 29 % and 79 % and the 429 

mean temporal RMSE by between 54 % and 91 % depending on the orbit phase compared to 430 

the RMSE with no assimilation. For the nominal phase of the mission, the mean spatial and 431 

temporal RMSE in modeled channel water depth are reduced by 59 % and 66 %, respectively. 432 

These results depend highly on the temporal and spatial coverage and thus are expected to be 433 

different at lower latitudes, where there will be fewer observations per repeat cycle for the 434 

nominal orbit. For example, low latitudes rivers like the Amazon, Brahmaputra and Ganges 435 

rivers, which flow more perpendicularly to the orbit, will only be seen two or three times per 436 

repeat period. Therefore, lower error reduction after the assimilation process is expected. Of 437 

course, huge rivers, like the Amazon, will be less impacted than smaller watersheds because 438 

the temporal persistence of corrections should last longer due to lower sensitivity to small-439 

scale meteorological events. 440 

This study has only considered modeling errors due to uncertainties in precipitation and 441 

temperature. Even if meteorological forcing is a main source of error, other sources should be 442 

considered in future studies. These could include uncertainty in the river bathymetry and 443 

errors in the model parameters, such as Manning’s roughness coefficient for LISFLOOD-FP, 444 

snow on vegetation and drainage parameters for ISBA; see Biancamaria et al. (2009) for a 445 
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discussion of model parameter error. The generation of virtual SWOT observations could also 446 

be improved by adding errors that have not yet been considered in this study, such as errors 447 

due to satellite shifts (especially uncorrected rolling) and impact of environmental effects, 448 

such as delays due to the wet troposphere. Nevertheless, this study shows the potential utility 449 

of SWOT observations to improve our understanding of spatial and temporal variations of 450 

surface runoff in sparsely gauged Arctic regions. 451 
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Table captions 540 

 541 

Table 1. Explained variance for the first ten EOF modes of the total precipitation (rain + 542 

snow) and air temperature 543 

Table 2. Mean spatial and temporal RMSE in channel water depth between the truth and the 544 

ensemble mean with and without assimilating SWOT observations for the fast sampling 545 

orbits. When there is assimilation, the percentage of error reduction compared to no 546 

assimilation (see equation 12) is indicated in parentheses. Dashes in the table represent 547 

assimilation runs when the updates have so much degraded the LISFLOOD-FP model that the 548 

model was forced to stop running (e.g., if the river bed became dry). 549 

Table 3. Mean spatial and temporal RMSE in channel water depth between the truth and the 550 

ensemble mean with and without assimilating SWOT observations for the nominal orbit. 551 

When there is assimilation, the percentage of error reduction compared to no assimilation (see 552 

equation 12) is indicated in parentheses.553 
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Figure captions 554 

 555 

Figure 1. Study domain (Lower Ob). Red arrows represent the boundary conditions (lateral 556 

inflows and incoming flow). 557 

Figure 2. Number of observations for the three selected fast sampling orbits (a., b. and c.) and 558 

for the nominal orbit (d.) during one repeat cycle (3 days for the fast sampling orbits and 22 559 

days for the nominal orbits).  560 

Figure 3. Lower Ob water elevations (above OSU91A geoid) for June 28th 1993 from the 561 

initial modeling (the “truth”).  562 

Figure 4. Water depth along the Lower Ob versus channel distance from Belogorje for the 563 

truth (blue line) and all members of the ensemble with no assimilation (red lines) for June 28th 564 

1993.  565 

Figure 5. Water height (in m) along the river channel (y-axis) versus time (x-axis) for the truth 566 

(a.), the ensemble mean with no assimilation (b.), the ensemble mean after assimilation using 567 

the LEnKS, with a 2 day time lag, for the SWOT fast sampling orbits number 1 (c.), number 2 568 

(d.) and number 3 (e.), and the ensemble mean after assimilation using the LenKS, with a 3 569 

day time lag, for the SWOT nominal orbit (f.).  570 
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Tables 571 

 572 

Table 1.  573 

EOF Modes 1 2 3 4 5 6 7 8 9 10 

Total precipitation explained 
variance (%) 8.9 4.8 4.7 3.9 3.2 2.9 2.6 2.4 2.2 2.1 

Air temperature explained variance 
(%) 84.1 3.6 2.5 1.5 1.3 1.2 0.6 0.5 0.4 0.4 

  574 

Table 2. 575 

  Mean spatial RMSE (m) Mean temporal RMSE (m) 

No assimilation  0.80 1.11 

Orbit 1 - - 

Orbit 2 - - EnKF 

Orbit 3 - - 

Orbit 1 0.61 (24 %) 0.62 (44 %) 

Orbit 2 0.43 (46 %) 0.50 (55 %) LEnKF 

Orbit 3 0.24 (70 %) 0.21 (81 %) 

Orbit 1 0.57 (29 %) 0.51 (54 %) 

Orbit 2 0.40 (50 %) 0.44 (60 %) 
LEnKS 
(time lag = 2 days) 

Orbit 3 0.17 (79 %) 0.10 (91 %) 

Orbit 1 0.59 (26 %) 0.57 (49 %) 

Orbit 2 0.43 (46 %) 0.49 (56 %) 
LEnKS 
(time lag = 3days) 

Orbit 3 0.19 (76 %) 0.15 (87 %) 

Orbit 1 0.58 (28 %) 0.55 (51 %) 

Orbit 2 0.44 (45 %) 0.51 (54 %) 
LEnKS 
(time lag = 5 days) 

Orbit 3 0.21 (74 %) 0.18 (84 %) 

 576 

 577 

 578 
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Table 3.  579 

 Mean spatial RMSE (m) Mean temporal RMSE (m) 

No assimilation 0.80 1.11 

EnKF 0.39 (51 %) 0.39 (65 %) 

LEnKF 0.45 (44 %) 0.55 (51 %) 

LEnKS (time lag = 2 days) 0.36 (55 %) 0.42 (62 %) 

LEnKS (time lag = 3 days) 0.33 (59 %) 0.38 (66 %) 

LEnKS (time lag = 5 days) 0.37 (54 %) 0.45 (60 %) 

LEnKS (time lag = 10 days) 0.53 (34 %) 0.80 (28 %) 

 580 
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Figures 581 
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Figure 2 585 

 586 



 31

Figure 3 587 

 588 
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Figure 4 589 
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