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Abstract

Global surface water variations are still diffictdtmonitor with current satellite
measurements. The future Surface Water and Ocegaogfaphy (SWOT) mission is

designed to address this issue. Its main payloddbeva wide swath altimeter which will
provide maps of water surface elevations betweé8 a8d 78°N over a 120 km swath. This
study aims to combine coupled hydrologic/hydramimdeling of an Arctic river with virtual
SWOT observations using a local ensemble Kalmarotimoto characterize river water
depth variations. We assumed that modeling ermrers@y due to uncertainties in
atmospheric forcing fields (precipitation and aimperature) and different SWOT orbits were
tested. First, we tested orbits that all have egliay repeat period but differ in terms of their
spatial coverage of the study reach; these orbit®spond to the first three months of the
mission, which will be dedicated to calibration aradidation experiments. For these orbits,
the mean spatial Root Mean Square Error (RMSE)adeted channel water depth decreased
by between 29 % and 79 % compared to the modele8ERMth no assimilation, depending
on the spatial coverage. The corresponding meapdeshRMSE decrease was between 54
% and 91 %. We then tested the nominal orbit witlwventy two day repeat period which will
be used during the remaining lifetime of the missidnlike the three day repeat orbits, this
orbit will observe all continental surfaces (excA@ptartica and the northern part of
Greenland) during one repeat period. The assimiaif SWOT observations computed with
this nominal orbit into the hydraulic model leadsatdecrease of 59 % and 66 % in the mean
spatial and temporal RMSE in modeled channel wagpth, respectively. These results show
the huge potential of the future SWOT mission &ord surface hydrology, especially at high
latitudes which will be very well sampled duringeoorbit repeat period. Still, further work is
needed to reduce current modeling uncertainties@bdtter characterize SWOT

measurement errors.
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1. Introduction

More than 73 % of water used for human activities €xample as drinking water, for
irrigation or for energy generation and industr@bcesses) comes from surface water
(Connor et al., 2009). It is therefore crucial to observe and ersthnd the spatial and
temporal variations in surface water across théealdccordingly, in-situ gage networks
have been intensively developed since the secortdopdhe twentieth century. However,
these networks are still sparse, especially in temegions like in the Arctic, and in many
areas the coverage is actually now declining. Tera¥me this issue, hydrologic models and
remote sensing data have been used to complemsiitiimeasurements. However, current
remote sensing observations of water surface etesmade by nadir altimeters, which only
measure water elevations along the track of thellgsatwith typical track spacing of ~120
km, miss many of the world’s surface water bodnesje relatively large spatial footprints (on
the order of 5-10 km) and do not give any informatabout water extent (Alsdoe al.,

2007).

In order to better characterize surface waterag@nic processes, a wide swath altimeter,
the Surface Water and Ocean Topography (SWOT) omss currently under study by

NASA (National Aeronautics and Space Administratiand CNES (Centre National
d’Etudes Spatiales). SWOT will provide maps of watevation at an unprecedented spatial
resolution (on the order of 50-100m) and precigmemtimetric accuracy when averaged over
areas of 1 ki) Durandet al., 2010). A small number of recent studies have beguuantify

the benefits of such a mission for land surfacedlpgy. Biancamaria&t al. (2010) focus on
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the benefits of this mission at a global scaledifferent orbits and show that errors in
instantaneous discharge estimated from SWOT measumts using rating curve should be
below 25 % for rivers wider than 50m. Errors onliedo the SWOT temporal sampling on
monthly discharge should be below 20 % for riveith\drainage areas larger than 7000°km
Andreadiset al. (2007) estimated the benefit of assimilating \atwide swath

measurements, using an Ensemble Kalman filter (Ent€Freduce modeling errors due to
uncertainties on lateral inflows of a mid-latituiler (a segment of the Ohio River). This
study compared three different orbits with 8, 18 88 days repeat period. They showed that
relative errors could be reduced by nearly a fastawo when the filter is used; the best
results were obtained for the orbit with the snstltepeat period. Duraretl al. (2008)
assimilated virtual SWOT observations into the AoraRiver hydraulic modeling developed
by Wilsonet al. (2007) for estimating bathymetric depths and dopéey showed that
bathymetric slopes can be estimated to within @r8tkm® and depths to within 56 cm

(which was 84 % less than errors without assinoitgti They also highlighted that, in their
modeling, model errors dominate over measuremeotseand therefore estimates of channel

bathymetry are relatively insensitive to measurereeror characteristics.

The study presented here is a continuation of thvesks and aims to assess how SWOT
could improve the modeling of an Arctic river, waéhe flow regime is mainly driven by
snow melt (contrary to the Ohio and Amazon rivelrsladdition, here we use for the first
time the actual SWOT orbits, which have recentlgrbselected, a more realistic model
boundary condition error computation, and a sligbifferent assimilation scheme (Local
Ensemble Kalman Smoother) compared to previous wWorngarticular, this paper aims to test
the impact of SWOT orbital coverage (depending it parameters), but we do not address

the improvement expected from the high spatiallttiem of SWOT measurements, as the



94  river modeling used has a 1 km x 1 km spatial reggwi (due to the current lack of a high

95 spatial resolution digital elevation model abovéN)0

96

97 2. Study domain and river modeling

98 This study focuses on the Lower Ob River betweerctties of Belogorje and

99  Salekhard; this reach covers the downstream 11206fkhre river before the Ob estuary
100  (Figure 1) and corresponds to a drainage area®b®@0 knf (according to the Arctic Rapid
101 Integrated Monitoring System, ArcticRIMS, http#s.unh.edu). The drainage basin of the
102 entire Ob river covers 2 990 000 kand it is located in Western Siberia, east ofiha
103 Mountains. In terms of discharge, the Ob is theldi®r 2" largest river and thé®argest in
104  the Arctic (Herschy and Fairbridge, 1998). The ®bazen from November to April and its
105 discharge regime is mainly driven by snow melthvéitmaximum in May/June during ice
106  breakup (Pavelsky and Smith, 2004). Yahgl. (2004) reported that from 1936 to 1990 the
107 monthly mean discharge at the river outlet variethvieen 500 and 1200°ms* in the cold
108  season (from November to April), and between 35@D3000 m.s* during the summer
109  months. The land cover in this domain is classiiegporadic and discontinuous permafrost
110 (Brownet al., 1998). According to Yang al. (2004), the effects of human activities on the
111 study domain are limited and there are no reses\amirthe lower part of the river. In this

112 study, the modeled time period corresponds to élendar year 1993.

113 The river is modeled by the flood inundation madFLOOD-FP developed at the
114  University of Bristol, UK (Bates and De Roo, 200D)SFLOOD-FP is a coupled 1D/2D

115  hydraulic model based on a raster grid. It predictter depth in each grid cell at each time
116  step and hence can simulate the dynamic propagattibmod waves over fluvial, coastal and

117  estuarine floodplains. Here, the 1D channel flowased on the kinematic approximation to
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the 1D St Venant equations. Floodplain flows angilarly described in terms of continuity
and momentum equations, discretized over a grgtjoare cells, which allows the model to
represent 2-D dynamic flow fields on the floodplaiinere is, however, no exchange of
momentum between main channel and floodplain flamsy mass, and ice jam and break up
processes are not represented. The kinematic appatan of the channel flow might also be
a limitation of the modeling, as the Ob flow regimdikely diffusive, at least in the
downstream part of the river. However, accordin@rigg et al. (2009), for the Amazon

River, this approximation leads to an additionabRdean Square Error (RMSE) of around 1
m. This error is likely to be lower for the Ob asdnuch smaller than errors on the floodplain
topography and river bathymetry. Finally, backwatkects from inflows are not modeled,

but are likely to be minor given the ratio of inflovolume to the mainstem discharge.

The floodplain topography comes from the ACE (Akter Corrected Elevation)
digital elevation model from De Montfort UniversityK, and channel centreline position and
width from freely available data sources (CIA Wollldta Bank Il and Landsat imagery). The
channel depth is poorly known and is estimateddasea limited number of literature
sources and a model sensitivity analysis (see Biraadaet al., 2009). The Manning
coefficients for the river and for the floodplaiaye been assumed constant in space and time
(equal to 0.015 and 0.06, respectively) and thél@@plain model is run at 1km resolution.
The incoming flow to the study domain from the w@ain river and the lateral inflows to the
river in the study domain (red arrows in Figureafig computed by ISBA (Interactions
between the Soil-Biosphere-Atmosphere; NoilhanMatifouf, 1996), which is a land
surface scheme developed by the CNRM (Centre Naltaba Recherche Meteorologique) in
France. Total precipitation (rain and snow) andderature uncertainties are a main source of
errors on the modeled discharge in the coupled IBEBALOOD-FP scheme (Biancamasia

al., 2009). More details on the Lower Ob modeling barfound in Biancamarigt al. (2009).
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144 3. Satellite observations

145  The main purpose of this work is to estimate theefies to the accurate estimation of water
146  depths on an Arctic River of combining measureméots the future SWOT mission and
147  hydrologic modeling. This section presents thisifeitsatellite mission and how virtual

148  SWOT observations have been generated.

149 3.1. The SWOT mission

150  This mission is intended to be launched betwee® 20 2020. SWOT will provide high-

151  resolution images of water surface elevations ogeanic and continental surface water

152  bodies. The core satellite payload is the Ka-baadaR Interferometer (KaRIN), a wide swath
153  radar interferometer. KaRIN has two antennas séggakay a 10 m boom which observe two
154  ground swaths of 60 km on each side of the saeladir, separated by a 20 km gap. The

155 intrinsic pixel resolution will vary from 60 m (neeange) to 10 m (far range) across-track and
156  will be at best around 2 m along-track (howeves #alue is also dependent upon

157  decorrelation time). The chosen orbits have a 9Bakitude and 78° inclination, in order to
158  observe almost all the continental surfaces (Roédg2009). The nominal lifetime of the

159  mission is three years.

160  The first three months of the mission will be alwation/validation period (called the ‘fast
161  sampling period’) with a 3 day repeat orbit, allagiia more frequent revisit time but with
162  incomplete spatial coverage. As the satellite /et been launched, the orbit phase (i.e.
163  the longitude of the orbit where it first crosses equator eastward of 0°E) is not known;
164  therefore, three different phases, which obserfferdnt parts of the study domain, for this
165 fast sampling orbit have been selected (Figurdo 2and c). The first orbit (orbit 1, Figure 2a)

166  does not observe the most upstream part of the L@Weln contrast, the second orbit (orbit
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2, Figure 2b) does not observe the downstreamopéne river. The third orbit (orbit 3,
Figure 2c) corresponds to an optimal coveragelnagsa all the river inside the study domain
is seen. These three orbits thus represent thg Bkerelope of sampling scenarios possible

for a given Arctic river basin during the fast sdimg period.

After the initial three months, the remaining tich&ring the mission will be undertaken with
an orbit that meets the nominal science requirenteobtain a global coverage of the earth
and that has a 22 day repeat. Figure 2d presentaithber of observations of the study
domain per repeat period (22 days) for this odstthe coverage is global, it is not necessary

to test different orbit phases.
3.2. Generation of virtual satellite observations

Virtual SWOT observations were generated by fioshputing the swath coverage over the
study domain for both the nominal and fast sampdirigts for each day during the year 1993.
The initial modeling of the Lower Ob (see Biancamat al., 2009) was taken as the “true”
state and was used to compute SWOT measuremenas. &sample of model outputs, water
elevations computed with this modeling for Jun® 2893 is shown in Figure 3. First,
modeled water elevations from the nominal LISFLOBBP-model inside the SWOT swath
were selected and then observation errors weredaéide the moment, only the instrumental
error is taken into account (the errors due tollgatposition uncertainties, atmospheric
effects such as wet troposphere delays, etc areomsidered). Instrument error was modeled
by a white noise of 2 cm standard deviation, witiciresponds to the expected error of
KaRIN (Enjolraset al., 2006; Rodriguez, 2009) at the 1%rasolution of the Lower Ob

model.

4. Methodology
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To estimate the benefit of SWOT observations ferdtudy of Arctic rivers, an Observing
System Simulation Experiment (OSSE) was implemeriesdt, virtual SWOT measurements
were computed as explained in section 3.2. Thay, were assimilated into the LISFLOOD-
FP model of the lower Ob to determine their abilityeduce modeling errors. This section
presents the assimilation schemes used (sectipaddlthe estimation of the modeling errors

(section 4.2).
4.1. Assimilation schemes
4.1.1. Ensemble Kalman Filter

The assimilation process combines model outputke¢ctorecast or background) and
observations to obtain a better estimate (calledyars) of the river state. A popular
assimilation scheme is the Kalman Filter (Kalm&86d, Kalman and Bucy, 1961). For the

Kalman filter the analysis is obtained using thikofeing equations:
x*=x"+P'HT(HP'HT +R)*(y-Hx") eq. 1
P*=P'-P'"HT(HP'HT +R)™H P' eq. 2

Herex, x* andy represent the forecast, analysis and observatispectively. In this study,
the state vector corresponds to water heights almmgver.P', P* andR are respectively the
error covariances for the forecast, analysis anasomementdH is the measurement operator,
which projects the model state into the observatipace. The superscriptorresponds to the

matrix transpose.

The analysis computed using the Kalman filter issth weighted average of the forecast and
the observation. The weight optimally takes intocamt the error in the forecast and in the
observation. The Kalman Filter is a sequentiagfjltvhich means that the analysis is

computed only at times when an observation is alokal It is then used as an updated initial

9
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condition for the model, which is subsequently fomvard from this updated initial condition
until a new observation is available. If the obs¢ion operator and model equations are linear
and if the forecast and observation errors are m&an Gaussian random vectors, then the
analysis obtained with the Kalman Filter is thetth@gar unbiased estimate of the model state
and its error covariance matrix. In this study, SYM@bservations correspond to water height
measurements along the river, therefore the obsenvaperator is simply a mask of the

swath coverage and is a linear operator. Howekernrtodel equations are not linear, as is the

case for many fluid flow problems.

The covariances for model forecast, analysis as@miations are given by the equations 3, 4
and 5, for which( corresponds to the true model state and the aeectirresponds to an

expectation value.

P! =(x"=x) (x' =x)' 6. 3
Pa — (Xa _ Xt) (Xa _ Xt)T eq. 4
R=(y-Hx)(y-Hx)’ eq. 5

Since the true model state is never known, therc@vee matrices can only be approximated.
A widely used Monte Carlo approximation of the caaace matrices was proposed by
Evensen (1994), and the resulting filter is commaallled the Ensemble Kalman Filter
(EnKF). The EnKF is implemented here. An ensemblearrupted” model states is
generated, which sample all the possible modet®riichen the error covariance matrices are
approximated by the covariance matrices of therabhke(equations 6 and 7). Of course,
increasing the size of the ensemble generally dsesethe errors in the Monte Carlo

sampling.

10
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P =P  =(x"-x") (x" -x") eq. 6

P2 =P = (x* - x*) (x* - x)" eq. 7

The EnKF used in this study has been implementiéalfimg the square root analysis

algorithm described in Evensen (2004).
4.1.2. Local Ensemble Kalman Filter

In some cases, when the size of the ensemble i§ sorae spurious long range correlations
can appear in the forecast error covariance madaxiing to large errors in the analysis
model state. A solution to this issue consistsnoiting the influence of an observation during
the analysis step to a localized region near tlsemation. Hamilkt al. (2001) suggested
replacing equation 1 with equation 8, which incidecorrelation matrix, denoted S,
representing the region of influence of an obs@mmaithe symbol “x” in equation 8
corresponds to the Schur product, i.e. elementdment multiplication). From now on, this

version of the filter will be referred to as thedab Ensemble Kalman Filter (LEnKF).
x* =x' +[Sx(PHN){H[Sx(R/HT)]+ R *(y-H x") eq. 8

Like Hamill et al. (2001), in this study a fifth order function of §pari and Cohn (1999) has

been used to define the correlation matrix S. Tarselation function has a shape close to a
Gaussian function but it decreases to zero atite fiadius. The length scale of this function

has been set to 10 km, which means that the cbarlis equal to 0.5 at a distance of 12 km
from the observation and is below 0.1 at distarome/a 22 km. This value was chosen to be
one order of magnitude less than the mean distaetveeen two lateral inflows to the river in
the Ob modeling, which is equal to 140 km. Forttiree steps where the EnKF performs

well, it is expected that the LEnKF will be slightess efficient as the influence of

11
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observation is reduced. However, this length sadllgorevent any spurious long range

correlations and thus avoid unrealistic water deptinputations.
4.1.3. Local Ensemble Kalman Smoother

As previously stated, the EnKF and LEnKF are setjaiefiiters. For all time steps during
which there is no observation, the model is noteztied and thus the spread of the ensemble
of model states tends to increase. For the Lowelit@dkes around 10 days for water to flow
from the upstream to the downstream part of theeteadriver (Biancamariet al., 2009).
Therefore, after 10 days the benefits from thenaigstion are completely lost. Fortunately,

for the 22 day SWOT orbit, the study domain is obsé every 3 days. Nonetheless, it is
important to propagate the benefit of observationsther time steps. This is done by
applying the Local Ensemble Kalman Smoother (LEnK®E LENKS assumes that
differences between observations and model staeime step, for which an observation is
available, are statistically correlated to errdrpravious time steps. The equations of the

analysis for the time stgj<i) is the following (Moore, 1973):

x2=x! +[Sx (P, HNI{H[Sx (P HD]+ R} (y, -H x') eq. 9

Peifj = (Xif B Xif) (Xjf - Xjf )T eq. 10

The smoother has been applied over a constanttamme, i.e. for all time steps included in
the interval [-timelag;i], where timelag is constant for all the analy$eps. Sensitivity of the
analysis results to different values of the tingewaas explored. It is worth noting that the
filter leads to sharp discontinuities in model masd momentum before and after the update,

and that the smoother tends to mitigate thesetsffec

4.2. Ensemble member generation

12
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The ensemble used in the LEnKF and LEnKS shoulepeesentative of all model errors.
Possible sources of errors include initial condiicforcing data, model parameters and
model equations used. In this study, only erraasfiSBA forcing data (precipitation and
temperature) were considered, as these are thamrsource of errors in the modeling
(Biancamariaet al., 2009). These forcing data come from NCEP-DOE AMIanalysis
(National Centers for Environmental Prediction pBegment Of Energy, Atmospheric Model
Intercomparison Project; Kanamitsual., 2002). Errors in reanalysis products are always
difficult to estimate, as very few high quality bl products exist for comparison, especially
at high latitudes. However, Serregel. (2005) show that for the Ob basin correlations
between NCEP monthly total precipitation over tiverrbasin and in-situ measurements vary
from 0.60 to 0.86 depending on the month, for time tspan 1979/1993. Biancamasiaal.
(2009) found that downstream Ob discharge modedethyUINCEP precipitation has an error
of 14 % compared to in-situ discharge time setreaddition, Voisinet al. (2008) found that
precipitation from another reanalysis (ERA-40 frtira European Centre for Medium-Range
Weather Forecasts) has errors between 0.7 % abd@4n Eastern Siberian Rivers.
Therefore, we have assumed that errors on pretgoitare 20 %. The standard deviation
between daily air temperature from NCEP and in4gsisasurement at Belogorje for 1993 is

equal to 0.18. Thus, the error on air temperatasediso been set to 20 %.
4.2.1. Methodology

Members of the ensemble correspond to a “corruptedsSion of the nominal forcing data
(considered to be the truth). The methodology Umsedbeen previously developed by Auclair
et al. (2003) and consists of perturbing the most stediby significant modes of the
atmospheric fields. To do so Empirical Orthogonahé&tions (EOF) of the atmospheric field

temporal anomaly were computed, and the corrupédd ™) was obtained by

13
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recombining the first EOF modes which explained®®6f the variance and the temporal

atmospheric field mean, multiplied by white noisguation 11).
. _ N
PO 1) =P(1).£, + Y& .ay (). (1) eq. 11
k=1

In equation 11| is the spatial index,the temporal indexP is the temporal meak,is the

EOF modeN is the highest EOF mode used,s the temporal component apdis the

spatial component of the EOF for the mode.kis the noise on the mean afds the noise
on the EOF recombination for the mdde, andey are both white noise with a 0.2 standard
deviation. It should be noted thgt ande, are not a function dfort (i.e. they are constant in
space and time). The last mode N was chosen sthi#natimulative explained variance for

modes 1 to N is equal to 95 %.
4.2.2. Corrupted precipitation and air temperature

The EOF modes were computed using the algorithneldped by Toumazou and Crétaux
(2001), for the total precipitation field (rain eat snow rate) and air temperature. Table 1
presents the explained variance for the first 1 B@des of these two atmospheric forcings.
As there is no seasonal cycle in the total preatijoih (the mean life time of a depression is
roughly around a week, with no strong seasonalit@y, EOF modes are required to explain
95 % of the variance. On the contrary, for air temapure, most of the energy is included in
the first 8 modes (which explain 95 % of the vac@n The first mode itself (corresponding to
the seasonal cycle) explains 84 % of the variaRoe.these two ISBA inputs, EOFs were
computed from August 1991 to July 1995, using tlethmdology presented in section 4.2.1.
For computational reasons, the size of the ensemble set to 20 (thus 20 corrupted

precipitation and temperature fields have been caet).

14
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While LISFLOOD-FP produces a 1km resolution gridhaiter depths at each modeled time
step, for simplicity, we only consider water depdiheng the channel centre line. Figure 4
presents water depths (in m) along the channeh#truth and all members of the ensemble
for a given date, June $@993. Figure 5 shows the time series of watertgeplong the river
channel obtained after running ISBA and LISFLOODf#B&Pthe “truth” (a.) and the ensemble
mean (b.). The ensemble mean water height is grérte the true depth; this is because

snow melt occurs earlier in the ISBA ensemble caegb#o the true ISBA simulation.

In LISFLOOD-FP, the river bathymetry has been sdy at the location of lateral inflows.
The model does a linear interpolation of the batbtyynbetween these locations. Therefore,
between two lateral inflows the slope is constatiich explains gaps in water depths at
lateral inflow locations in Figure 4 and the veatibanding effect in Figure 5. To avoid these
effects, future work based on the Ob modeling usk a polynomial interpolation of the

bathymetry.

5. Results

The EnKF, LEnKF and the LEnKS were applied to redonodeling error using virtual
SWOT water height observations. The following smtipresent the results obtained when
SWOT observations are computed using the threetsdiéast sampling orbits (section 5.1)
and the nominal orbit (section 5.2). The LEnKS wesded with different time lags (2 days, 3

days, 5 days and 10 days).
5.1. Fast sampling orbits

Table 2 presents the mean spatial and temporal Rid&Bkeen the truth and the ensemble

mean with and without assimilating SWOT observaitor these three orbits. For these
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orbits, there is an observation every one or twesddepending on the location. Therefore the
best results are obtained using a 2 day lag tim&ISE The percentage of error reduction

compared to no assimilation (equation 12) is atsticated in Table 2.

£ ZlOODRMSEnO assimilation ~ RMSEassimilation

eq. 12
RMSEno assimilation

Model errors after assimilation are highly dependenthe location of the observations and
are, therefore, quite different for each orbit ghdshe mean spatial RMSE was decreased
from between 29 % to 79 % and the mean temporal RM&s decreased by between 54 %
and 91 % for the 2 day time lag LEnKS. In particufast sampling orbit 2 (Figure 2b)
observes a smaller portion of the river than atl{iEigure 2a); however the mean spatial and
temporal RMSE after assimilating SWOT observatigeiserated using orbit 2 are smaller
than after assimilating SWOT orbit 1 observatiofable 2). This is due to the location of the
ground track: orbit 2 observes the upstream pattiefiver, near Belogorje, where the
incoming flow to the study domain is located. Theaming streamflow is one order of
magnitude higher than the lateral inflows to tlverifrom the study domain, as computed by
the ISBA model. When orbit 2 is used, the parthef tiver with the highest error (the
upstream) is well observed and thus well corredtad;correction propogates dowstream,
even to unobserved river locations. Orbit 1, ondtieer hand, observes the downstream part
of the river; therefore the upstream part of tlvemjiwhich is not seen, is not corrected. This
leads to higher errors than those obtained witlt @cbrhis effect is obvious in Figures 5c¢, 5d
and 5e, which show water depths along the rivenigblaversus time for the ensemble mean
after assimilating SWOT observations for the tHeet sampling orbits using a 2 day time lag
LENnKS. Orbit 3 corresponds to the optimum orbitabsost the entire river is observed every
three days. Consequently, the spatial and temBRMSE for this orbit decrease by 79 % and

91 %, respectively, compared to the RMSE with repnagation. It is important to note that
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373  the main Arctic rivers (Mackenzie, Ob, Yenisey &mtha) are oriented South to North.
374  Therefore, if the SWOT fast sampling orbit is cathechosen, at least some of these rivers

375  should be very well (if not entirely) observed.

376  For all three fast sampling orbits in Table 2, Bré&KF updates degraded the LISFLOOD-FP
377 model run, e.g., the river bed became dry in cepparts of the study area. These degradations
378 are apparently due to spurious, long-distance lagioes. In the fast sampling phase, the

379 updates occur very frequently, such that the mddes not have adequate time to self-correct
380 after a spurious update. These results highlightrtiportance of suppressing long-distance
381 correlations when working with modest ensemblessiespecially when working with

382 frequent updates.

383 When the time lag is above the mean time betweerobgervations, some parts of the river
384 channel can be updated twice. However, for therskopdate the hypothesis that the

385  correction computed during the observation timelmansed for previous time steps no

386 longer holds because the error has already beeaadsd. Thus an unrealistic update is

387 performed, and error increases; this is simildh#issue raised in section 4.1.2 about the
388 need for a local filter. For this reason, erronstfee LEnKS in Table 2 have a tendency to

389 increase for time lags above the mean time betweembservations.

390 5.2. Nominal orbit

391 Table 3 presents the mean spatial and temporal Rib&8keen the truth and the ensemble
392 mean after assimilating SWOT observations for thminal orbit. For this orbit, on average,
393 the study domain is observed every three daysthHi®reason, the best results are obtained
394 with a 3 day time lag LEnKS (in this case the mgpatial and temporal RMSE are reduced
395 by 59 % and 66 %, respectively). The results okethusing a 10-day time lag LEnKS are

396 also indicated in Table 3 (the mean spatial angtgal RMSE are only reduced by 34 % and
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28 %, respectively). They clearly show the LEnKficadfncy decreases when the time lag is
much higher than the mean number of observationsepeat period. This Table also shows
that, for this specific orbit, the EnKF yields coangble results to the LEnKF; this result is
quite different than for the fast sampling phasleere the EnKF led to significant model
degradation. The difference is due to the fact fitvathe nominal orbit, there are fewer
observations, leading to less-frequent updatess,Tthe analysis scheme effectively puts less
weight on the observations and more weight on thdah This, in turn, decreases the effect
of the spurious, long-distance correlations onBhKF. Thus, in this study, the localization is
more important for the fast sampling period thantii@ nominal orbit. Water depths along the
river channel versus time for the corrected ensemid#an obtained after using this

assimilation scheme are presented in Figure 5f.

As the Ob River is located in the boreal regiohigh latitudes, there are many observations
within the 22 days repeat cycle (Biancamatial., 2010); since the whole study domain is
observed, both the downstream and upstream p#reaiver are corrected. Therefore the
mean spatial and temporal RMSE are better tharetbb&ined with fast sampling orbits 1
and 2. However, it is worth noticing that the dotweam part is more frequently observed
than the upstream part (Figure 2d). This explaing: &) the variability in the water depth in
June and July near Belogorje after assimilatingeolaions from the nominal orbit (Figure
5f) is higher than after assimilating observatifmosn the fast sampling orbits (Figures 5c, 5d
and 5e) and 2), the RMSE is higher when using ebsiens from the nominal orbit than ones
from the fast sampling orbit 3, as the upstrean qfathe river is observed less often by the
nominal orbit. These results tend to show thatAi@tic rivers, the SWOT nominal orbit has
sufficiently good temporal and spatial coveragsitmificantly decrease modeled water depth
errors. Thus, this suggests that, at this basile scal latitude, spatial coverage is more

important for correcting the model than temporatifrency of observations.
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6. Conclusion

In this study, we investigated the potential otifetwide swath altimetry data to decrease
errors in water depths in a coupled 1D/2D hydramadel. In particular, virtual observations
of the future SWOT mission were computed and assied in an Arctic river hydrodynamic
model using a local Ensemble Kalman Smoother. €kelts are very promising. For the fast
sampling phase (first three months) of the mistienvirtual SWOT observations decrease
the mean spatial RMSE on modeled channel watehdgpbetween 29 % and 79 % and the
mean temporal RMSE by between 54 % and 91 % depgah the orbit phase compared to
the RMSE with no assimilation. For the nominal ghasthe mission, the mean spatial and
temporal RMSE in modeled channel water depth ateaed by 59 % and 66 %, respectively.
These results depend highly on the temporal aniib$paverage and thus are expected to be
different at lower latitudes, where there will lmavier observations per repeat cycle for the
nominal orbit. For example, low latitudes riveteelthe Amazon, Brahmaputra and Ganges
rivers, which flow more perpendicularly to the drhwvill only be seen two or three times per
repeat period. Therefore, lower error reductiopratie assimilation process is expected. Of
course, huge rivers, like the Amazon, will be liespacted than smaller watersheds because
the temporal persistence of corrections shoulddagter due to lower sensitivity to small-

scale meteorological events.

This study has only considered modeling errorstduecertainties in precipitation and
temperature. Even if meteorological forcing is amsource of error, other sources should be
considered in future studies. These could inclutertainty in the river bathymetry and
errors in the model parameters, such as Manniogighness coefficient for LISFLOOD-FP,

snow on vegetation and drainage parameters for JSBA Biancamariet al. (2009) for a
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446  discussion of model parameter error. The generatiamrtual SWOT observations could also
447  be improved by adding errors that have not yet lweasidered in this study, such as errors
448  due to satellite shifts (especially uncorrecteding) and impact of environmental effects,
449  such as delays due to the wet troposphere. NeVest)ehis study shows the potential utility
450 of SWOT observations to improve our understandingpatial and temporal variations of

451  surface runoff in sparsely gauged Arctic regions.
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Table captions

Table 1. Explained variance for the first ten EOddes of the total precipitation (rain +

snow) and air temperature

Table 2. Mean spatial and temporal RMSE in chamwagéér depth between the truth and the
ensemble mean with and without assimilating SWO3eolations for the fast sampling
orbits. When there is assimilation, the percentagegror reduction compared to no
assimilation (see equation 12) is indicated in péreses. Dashes in the table represent
assimilation runs when the updates have so muataded the LISFLOOD-FP model that the

model was forced to stop running (e.qg., if the rived became dry).

Table 3. Mean spatial and temporal RMSE in chawag¢ér depth between the truth and the
ensemble mean with and without assimilating SWO3Jeolations for the nominal orbit.
When there is assimilation, the percentage of eaduction compared to no assimilation (see

equation 12) is indicated in parentheses.
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Figure captions

Figure 1. Study domain (Lower Ob). Red arrows regnéthe boundary conditions (lateral

inflows and incoming flow).

Figure 2. Number of observations for the threectetefast sampling orbits (a., b. and c.) and
for the nominal orbit (d.) during one repeat cy@alays for the fast sampling orbits and 22

days for the nominal orbits).

Figure 3. Lower Ob water elevations (above OSU9&gid) for June 281993 from the

initial modeling (the “truth”).

Figure 4. Water depth along the Lower Ob versusicbidistance from Belogorje for the
truth (blue line) and all members of the ensembth no assimilation (red lines) for June™8

1993.

Figure 5. Water height (in m) along the river char(y-axis) versus time (x-axis) for the truth
(a.), the ensemble mean with no assimilation {he ensemble mean after assimilation using
the LEnKS, with a 2 day time lag, for the SWOT fsainpling orbits number 1 (c.), number 2
(d.) and number 3 (e.), and the ensemble meanasamilation using the LenKS, with a 3

day time lag, for the SWOT nominal orbit (f.).
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Tables

Table 1.

EOF Modes

10

Total precipitation explained

variance (%)

89 48 47 39 32 29 26 24 22 21

Air temperature explained variance

(%)

841 36 25 15 13 12 06 05 04 04

Table 2.

Mean spatial RMSE (m)

Mean temporal RMSE (m)

No assimilation

0.80

1.11

EnKF

Orbit 1
Orbit 2
Orbit 3

LEnKF

Orbit 1
Orbit 2
Orbit 3

0.61 (24 %)
0.43 (46 %)
0.24 (70 %)

0.62 (44 %)
0.50 (55 %)
0.21 (81 %)

LEnKS
(time lag = 2 days)

Orbit 1
Orbit 2
Orbit 3

0.57 (29 %)
0.40 (50 %)
0.17 (79 %)

0.51 (54 %)
0.44 (60 %)
0.10 (91 %)

LEnKS
(time lag = 3days)

Orbit 1
Orbit 2
Orbit 3

0.59 (26 %)
0.43 (46 %)
0.19 (76 %)

0.57 (49 %)
0.49 (56 %)
0.15 (87 %)

LEnKS
(time lag = 5 days)

Orbit 1
Orbit 2
Orbit 3

0.58 (28 %)
0.44 (45 %)
0.21 (74 %)

0.55 (51 %)
0.51 (54 %)
0.18 (84 %)
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579 Table 3.

Mean spatial RMSE (m) Mean temporal RMSE (m)

No assimilation 0.80 1.11

EnKF 0.39 (51 %) 0.39 (65 %)
LEnKF 0.45 (44 %) 0.55 (51 %)
LEnKS (time lag = 2 days) 0.36 (55 %) 0.42 (62 %)
LENnKS (time lag = 3 days) 0.33 (59 %) 0.38 (66 %)
LEnKS (time lag = 5 days) 0.37 (54 %) 0.45 (60 %)
LENnKS (time lag = 10 days) 0.53 (34 %) 0.80 (28 %)
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Figures
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Figure 2

b. Fast sampling orbit 2
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Figure 3

June 28th, 1993
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589  Figure 4

June 28th, 1993
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591  Figure 5

a. Water depth (m) - Truth b. Water depth (m) - no assimilation
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