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Classification of hyperspectral data using a classifier ensemble that is based on
support vector machines (SVMs) are addressed. First, the hyperspectral data set is
decomposed into a few data sources according to the similarity of the spectral
bands. Then, each source is processed separately by performing classification
based on SVM. Finally, all outputs are used as input for final decision fusion
performed by an additional SVM classifier. Results of the experiments underline
how the proposed SVM fusion ensemble outperforms a standard SVM classifier
in terms of overall and class accuracies, the improvement being irrespective of the
size of the training sample set. The definition of the data sources resulting from
the original data set is also studied.
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1. Introduction

Hyperspectral data cover a wide spectral range from the visible to the short-wave infrared,

resulting in hundreds of data channels. Thanks to this volume of information, it is feasible

to deal with applications that require a precise discrimination in the spectral domain.

Nevertheless, a large number of features can become a curse in terms of classification

accuracy if enough training samples are not available, i.e. the Hughes phenomenon

(Hughes 1968). In this context, the use of conventional statistical methods may not be

adequate for classifying high-dimensional data and therefore more sophisticated classifiers

need to be considered.

In this article, classification of hyperspectral remote sensing data with a classifier

ensemble based on support vector machines (SVMs) are investigated. SVMs have been

used for the classification of hyperspectral data. Camps-Valls and Bruzzone (2005)

demonstrated that SVMs perform equal or better than other classifiers in terms of

accuracy. Furthermore, SVMs have shown to be relatively unaffected by the Hughes

phenomenon (Pal and Mather 2004). Multiple classifier systems (MCSs), or classifier

ensembles, are another machine learning concept, which have been applied to remote

sensing data sets latterly (Benediktsson et al. 2007). By combining different classification
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algorithms or variants of the same classifier, MCS can improve classification accuracy in

comparison to a single classifier. For example, Ham et al. (2005) successfully applied

ensemble strategies to hyperspectral data.

Both machine learning concepts can be used together in a reasonable manner.

In Waske and Benediktsson (2007), SVMs are used for classifying multisensor imagery

using a separately trained SVM classifier for each source followed by a final SVM-based

decision fusion. The proposed technique in Waske and Benediktsson (2007) outperforms

other classifier ensembles and a conventional SVM, which is applied on the whole data set,

in terms of accuracy.

Considering the previously obtained results, it may be desirable to employ this concept

for classifying hyperspectral data. In order to define the multiple sources for every

classifier, the original hyperspectral data can be split into several smaller data sources,

based on the similarity between data channels as it was done in Benediktsson and

Kanellopoulos (1999). Afterwards, each individual source undergoes a preliminary

classification using a separately trained SVM classifier. The outputs of the individual

classifiers are then combined by decision fusion, which is performed by an additional

SVM. In order to investigate the capabilities of the proposed method, classification results

on two hyperspectral images are compared to those achieved by an ordinary SVM

classifier, using the whole data set. Moreover, different decompositions of the

hyperspectral data set are probed to study the criteria for an optimal definition of the

data sources.

This article is organised as follows. SVM and MCS are reviewed in Sections 2 and 3,

respectively. Then, the SVM fusion approach is presented in Section 4, along with an

introduction to the data sets in Section 5. Experimental results are given in Section 6, and

conclusions are finally drawn in Section 7.

2. Support vector machines

SVM refers to a set of supervised learning methods aiming at discriminating two classes by

fitting an optimal separating hyperplane to the training data within a multidimensional

feature space (Vapnik 1998).

Although SVMs were originally proposed to solve linear classification problems, they

can be generalised to non-linear decision functions by using the so-called kernel trick

(Scholkopf and Smola 2002). Using kernels, the data may be mapped onto a higher

dimensional space F, thus allowing to work implicitly in F while all the computation is

done in the input space. A widely used kernel in remote sensing is the Gaussian radial basis

function (RBF) (Scholkopf and Smola 2002).

Nonetheless, a disadvantage of SVM classifiers is related to their sensitivity to the

choice of the kernel and regularisation parameters. The latter is classically overcome by

cross-validation techniques using training data.

Despite the fact that SVMs deal with binary classification problems, several strategies

have been developed to overcome multiclass problems as in remote sensing applications

(Roli et al. 2001). In general, a c-class problem is split into multiple binary problems to

finally combine the individual binary SVM classifiers in an ensemble. In the one-against-

one (OAO) approach, a set of c(cÿ 1)/2 individual SVM is trained, one for each pairwise

class discrimination. The output of the classifier for each pairwise classes results in an

image, that is hereafter referred as rule image (Waske and Benediktsson 2007), containing
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the distance of each pixel to the decision boundary of the SVM. A score function is

computed for each class by adding all positive and negative votes for a specific class.

The final class membership for an unknown sample is eventually determined by the

simple majority. Although the OAO strategy requires more SVM classifiers than

other techniques, it is more appropriate for remote sensing applications because the

classification problem is partitioned into several simpler sub-problems. An exhaustive

introduction to linear, non-linear and multiclass SVM can be found in Scholkopf

and Smola (2002).

One of the main advantages of SVM regarding remote sensing classification is that the

approach only considers samples that are close to the class boundaries, the so-called

support vectors. Using this, SVM works satisfactorily even with small training sets, when

classifying high-dimensional hyperspectral imagery (Pal and Mather 2006). SVMs were

applied to hyperspectral airborne visible/infrared imaging spectrometer (AVIRIS) data by

Melgani and Bruzzone (2004). In that study, results underlined that SVMs are an adequate

and effective alternative to traditional approaches for the classification of hyperspectral

remote sensing data regardless of the adopted multiclass strategy. The good performances

of SVMs are further demonstrated in Dalponte et al. (2008) and Koetz et al. (2008).

In those studies, hyperspectral imagery and light detection and ranging (LIDAR) data are

successfully combined using SVM classifiers.

3. Multiple classifier systems

MCS aim a more accurate classification decision at the expense of an increased complexity

by combining classifiers. Many researchers have investigated the strategy of combining the

predictions of several classifiers to supply a single classification result (Roli et al. 2001,

Banfield et al. 2007, Benediktsson et al. 2007). The resulting classifier (hereafter referred to

as an ensemble) is generally more accurate than any of the individual classifiers that make

up the ensemble. Both theoretical and empirical research has demonstrated that a good

ensemble is one where the individual classifiers in the ensemble are accurate as well as they

make mistakes on different parts of the input space (Krogh and Vedelsby 1995, Kittler

1998). Two popular methods for creating accurate ensembles are Bagging (Breiman 1996)

and Boosting (Schapire 1990).

Figure 1 illustrates the basic framework for a classifier ensemble. First, each classifier is

trained using the same training set. Then, for each example, the predicted output of each

classifier is combined to produce the output of the ensemble.

Several studies have demonstrated that simple averaging (i.e. majority vote) of the

classifier predictions is an effective scheme (Hansen and Salamon 1990, Kittler 1998). With

this schema, a given pixel is classified to the class that was chosen by the majority of

classifiers. Combining the output of several classifiers is useful only if there is disagreement

among them (i.e. their variations are not correlated). Obviously, combining several

identical classifiers produces no gain. Hansen and Salamon (1990) proved that if the

average error rate is less than 50% and the component classifiers in the ensemble are

independent in the production of their errors, the expected error for that example can be

reduced to zero as the number of classifiers combined goes to infinity. However, such

assumptions rarely hold in practice. Krogh and Vedelsby (1995) later proved that an

ideal ensemble consists of highly correct classifiers that disagree as much as possible.

Opitz and Shavlik (1996) empirically verified that such ensembles generalise well.
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As a result, methods for creating ensembles centre around producing classifiers that

disagree on their predictions and therefore they are as independent as possible. Generally,

these methods focus on either different types of classifiers or variations of the same

classifier are used in the hope that the resulting classifiers will produce different

predictions.

In context of remote sensing, ensemble techniques were used in particular for

multisource data sets and hyperdimensional imagery. Briem et al. (2002) applied various

classifiers on multisource data containing multispectral imagery, synthetic-aperture radar

(SAR) data and topographical information. The results clearly demonstrated that

ensemble techniques outperform single classifiers in terms of overall accuracy. In Ham

et al. (2005), a decision-tree-based ensemble method (i.e. random forests) was used for

classifying hyperspectral imagery using a limited training sample set. In Waske and

Benediktsson (2007), multispectral imagery and multitemporal SAR data were combined

by an SVM ensemble. Two SVM classifiers were applied separately on the two data

sources. The preliminary outputs were combined by another SVM. The presented

approach outperformed all other techniques, including a standard SVM, a boosted

decision tree and a majority vote. The concept introduced in Waske and Benediktsson

(2007) was modified by a multilevel component, fusing different scales of segmentation,

using SVM and a classifier ensemble based on decision trees (DT) (Waske and Van der

Linden 2008). In contrast to classifier ensembles, which combine variants of the

same classifier, other approaches are based on the combination of different

algorithms. Benediktsson and Kanellopoulos (1999), for example, combined neural

networks and statistical methods for classifying multisensor and hyperspectral data,

respectively. The different data sources underwent a separate classification and the

outputs of the individual classifiers were combined by decision fusion to create final

classification map.

4. Methods

A SVM-based classifier ensemble for the classification of hyperspecral remote sensing data

is introduced. The proposed classification algorithm aims at benefiting from the

Figure 1. MCS schema.
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capabilities of both SVM and MCS concepts. An overview of the classification approach

is shown in Figure 2. First, the hyperspectral data set is split into n data sources,

i.e. hyperspectral subsets, in a similar way to what was done in Benediktsson

and Kanellopoulos (1999). Afterwards, a standard SVM classifier is separately

applied to each data source. Finally, the rule images resulting from every SVM are

fused (i.e. combined and classified) by an additional SVM in accordance to Waske and

Benediktsson (2007). The same training and test sets are used throughout the classification

process.

In contrast to Waske and Benediktsson (2007), a single hyperspectral source is now

available instead of the multi-source data. Nonetheless, the proposed method aims at

exploiting the spectral heterogeneity of a hyperspectral data set by splitting the original

input into several similar subsets. As a matter of fact, the usual targets of interest in remote

sensing classification problems usually present unique discriminative spectral features

along the visible and short-wave infrared spectrum, thus introducing diversity in the

hyperspectral data. Hence, it seems reasonable to define a series of subsets of data

channels, which encompass the different homogeneous portions along the hyperspectral

spectrum, according to the spectral bands similarity. In doing so, the individual SVM

classifiers might be suitable for satisfactorily classifying their corresponding hyperspectral

subspace. In fact, the kernel of each individual classifier is adjusted according to the

corresponding data source properties. Finally, the MCS-inspired fusion step aims for a

better classification accuracy by maximising the discriminative information of each subset,

while minimising the individual misclassifications. Another reason to motivate the use of

classifier ensembles is that individual classifiers may produce diversity if each of them is

trained in different input space regions.

The absolute correlation is proposed as a measure of the spectral bands similitude as it

was done by Benediktsson and Kanellopoulos (1999). The correlation matrix R is then

Figure 2. Schematic diagram of the SVM fusion method.

International Journal of Image and Data Fusion 297

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
1
6
 
2
2
 
M
a
r
c
h
 
2
0
1
1



computed to identify potential data sources. The elements of R are defined by the absolute

correlation r between bands xi and xj in an n-dimensional space:

rxixj ¼
n
Pn

1 xixj ÿ
Pn

1 xi
Pn

1 xj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
Pn

1 x
2
i ÿ

Pn
1 xi

ÿ �2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
Pn

1 x
2
j ÿ

Pn
1 xj

ÿ �2
q

�

�

�

�

�

�

�

�

�

�

�

�

�

�

: ð1Þ

The aim of computing R is to identify ranges of strongly correlated adjacent

hyperspectral channels manually.

5. Data sets used

Experiments are conducted on two hyperspectral AVIRIS data sets.

First of all, experiment 1 is carried out on data from Indiana, USA.

The AVIRIS Indian Pine data were made available by D.A. Landgrebe at http://

cobweb.ecn.purdue.edu/�biehl/MultiSpec. The scene corresponds to the Indian Pine test

site in the northwest of Indiana and has 220 data channels and 145� 145 pixels. The

AVIRIS sensor operates in the visible and mid-infrared wavelength range (i.e. from 0.4 to

2.4 mm) and has 220 data channels coming from four spectrometers. About two-thirds of

the scene is agriculture, while the remaining third contains forest or other natural perennial

vegetation (see the information classes in Table 1). Data were collected in June 1992 when

most of the crops in the test site had not reached their maximum ground cover. The

classification of the crops is challenging since the spectral information comes from crop

mixtures, soil variations and previous crop residues.

As shown in Table 1, the study site contains very heterogeneous classes in terms of their

sizes. Hence, a stratified random sampling is performed to generate a training set.

To investigate the performances of the SVM ensemble based on the number of training

Table 1. Indian Pine land cover classes and available reference samples.

Class # Land cover class Labelled samples

1 Alfalfa 54
2 Corn-no till 1434
3 Corn-minimum till 834
4 Corn 234
5 Grass/pasture 497
6 Grass/trees 747
7 Grass/pasture-mowed 26
8 Hay-windrowed 489
9 Oats 20
10 Soybeans-no till 968
11 Soybeans-minimum till 2468
12 Soybeans-clean till 614
13 Wheat 212
14 Woods 1294
15 Building–grass–trees–drives 380
16 Stone–steel towers 95

Total 10,366

298 X. Ceamanos et al.
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samples, three different training sample sets are generated with 1/16, 1/8 and 1/4 of all

samples for each class. The remaining reference samples are used as independent test sets.

To decrease variations in the classification process, all experiments are repeated 10 times

on random selected training and testing sets.

The area used in experiment 2 is a 2048� 614 pixel region surrounding the Hekla

volcano in Iceland. Hekla is one of the most active volcanoes in Iceland. AVIRIS data

from the area were collected on 17 June 1991, which was a cloud-free day. During the

data collection, AVIRIS spectrometer no. 4 was not working properly and thus, once all

data from that spectrometer were deleted, 157 data channels were left.

Twenty-four land cover classes were defined in the area, and 34,158 reference samples

were selected. Training and test sets were defined by experts who collected the data.

Approximately 50% of the reference samples were used for training, while the rest were

used to test the classifiers (Table 2).

Due to the large number of training samples, some other cases were also considered.

Similar to the method adopted in experiment 1, training sets containing 25, 50 and 100

samples per class are defined in order to test the SVM fusion when classifying using a small

number of training samples. These three last experiments are repeated 10 times on

randomly selected training and testing sets in order to decrease variations in the results due

to training choice.

Table 2. Hekla land cover classes and available reference samples.

Class no. Land cover class Training samples Testing samples

1 Andesite lava 1991 1413 1349
2 Andesite lava 1980 434 414
3 Andesite lava 1970 978 922
4 Lichen-covered basalt lava 1878 1674 1023
5 Andesite lava with sparse moss cover 528 495
6 Andesite Lava with sparse thick cover 2057 1958
7 Andesite Lava with birch bushes 806 775
8 Hyaloclastite formation I 728 676
9 Hyaloclastite formation II 342 342
10 Hyaloclastite formation III 651 620
11 Volcanic tephra 1654 1608
12 Lava-covered with tephra and scoria 350 350
13 Scoria 275 275
14 Firn and glacier ice 242 216
15 Snow 528 484
16 Lava with sparse moss cover 1008 1008
17 Old unvegetated lava 1a 1102 1064
18 Old unvegetated lava 1b 816 782
19 Old unvegetated lava 1c 368 345
20 Andesite lava 1991b 246 164
21 Andesite lava 1980b 748 748
22 Rhyolite 202 202
23 Unvegetated andesite lava 276 253
24 Hyaloclastite formation IV 341 341

Total 17,491 16,667
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6. Experiments

6.1 Data sets pre-processing

Figure 3 shows R as it is introduced in Section 4 for the Indian Pine data set. Values range

from 0 to 1, corresponding to low (dark blue) or high (dark red) correlation values,

respectively. Very poor correlated channels (channels 104–108, 149–163 and 220) are

eliminated due to water absorption, resulting in a final 200-channel data set (Tadjudin and

Landgrebe 1999) that is used in all experiments.

By analysing Figure 3, several strongly correlated subsets of adjacent bands are

observed. Various decompositions are thus considered with n¼ 4, 5 and 6 data sources.

We refer to each decomposition case as n-SVM, since an individual SVM is used to classify

each of the n sources that are defined. Figure 3 highlights the 5-SVM case, defining sources

#1 (data channels 1–35), #2 (data channels 36–79) and #3 (data channels 80–103) that

encompass strongly correlated adjacent channels. By contrast, the subset defined by

channels 109–219, which was previously divided by water absorption bands (i.e. data

channels 149–163), is considered as two separate sources (i.e. source #4, data channels

109–148, and #5, data channels 164–219). In the 4-SVM case, however, one single source is

defined for this spectral range. Finally, source #2 is split into two sources for the 6-SVM

case (data channels 36–59 and 60–79, respectively). In fact, Figure 3 shows that the

resulting data sources may be more significant than the original source #2.

The correlation matrix R is also computed (Figure 4) for the Hekla data set in order to

identify potential data sources. Data channels 1–2, 106–110 and 151–157 are removed

because of noise due to water absorption, eventually resulting in a 143-band data set,

which is used throughout the experiments.

Figure 3. Correlation matrix of the Indian Pine data set.
Note: Black boxes highlight the 5-SVM case in experiments.
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Two decompositions are considered for experiment 2. First, Figure 4 shows the 3-SVM

case corresponding to the definition of three data sources. As shown in Figure 4, data

source #1 (data channels 3–29) is uncorrelated to both data sources #2 (data channels

30–105) and #3 (data channels 111–150). Subsets #2 and #3 are defined since data channels

within the latter present a greater inner correlation in comparison to the correlation to

channels in subset #2. Second, a 4-SVM case is also considered in order to investigate the

impact of defining a greater number of sources with a lower degree of uncorrelation. Now,

the former data source #2 is divided into two subsets separated by data channel 53.

Once all the data sources are defined for both experiments, data are standardised by

using the mean and variance of each band in order to make all features statistically equal.

Then, the data are scaled to the range [0, 1]. This procedure eases the tuning of the SVM

kernel parameters (Chen and Lin 2001).

Classification by the SVM fusion ensemble is performed on all the data configurations

that have been previously introduced. In addition to the proposed approach, a

conventional SVM classifier using the same training and testing sets is applied on both

the 200-band Indian Pine image and the 143-band Hekla data set for comparison.

SVM with RBF kernel and OAO multiclass strategy are considered in all experiments,

as explained in section 2. In order to evaluate the kernel and the regularisation parameters

of the SVM classifiers, a fivefold cross-validation is performed on training data with a

user-defined range. All SVM classifications are implemented using LIBSVM (Chen

and Lin 2001).

In the proposed SVM fusion ensemble, the rule images, which are obtained from the

classification of every data source by a SVM classifier, are standardised and scaled in the

same fashion as it is done for the original data. Again, a fivefold cross-validation is

performed to determine the SVM parameters.

Figure 4. Correlation matrix of the Hekla data set.
Note: Black boxes highlight the 3-SVM case in experiments.
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As mentioned previously, all classifications based on the SVM fusion are performed

10 times, using different randomly selected training sets. Afterwards, the accuracies

are averaged for a final assessment of the results.

6.2 Classification results

The overall results in Figure 5 for the Indian Pine data clearly demonstrate that the

proposed SVM ensemble outperforms a standard SVM in terms of accuracy, irrespective

of the number of training samples as well as the number of defined subspaces. The

improvement of the overall accuracy varies between 1.1% and 2.4%. Using 1/4 of the

samples, an overall test accuracy of 88.8% is obtained with the standard SVM. Then,

the results are improved by the SVM fusion up to 2.1% in the 6-SVM case. As expected,

the results clearly underline the positive impact of increasing the number of training

samples. Whereas the overall accuracy for the 4-SVM is 81.8%, using 1/16 of the available

samples, the classification accuracy increases up to 89.8%, using 1/4 of all samples.

Regarding the number of feature subsets decompositions, the 6-SVM achieves the best

accuracies (up to 90.8%) in contrast to the 4-SVM classifier which obtains the smallest

improvement. Nevertheless, 4-SVM results still show improvement than those obtained by

the standard SVM. In addition to the previous results, Figure 6 compares the Indian Pine’s

ground truth (i.e. training and testing samples) to the classification map that is obtained by

the 6-SVM classifier.

Regarding the class accuracies in Figure 7, similar results are obtained. The SVM

ensemble classifiers outperform all standard SVM class accuracies or at least achieve

similar results. As in the case of the overall accuracies, the 6-SVM approach provides the

best average accuracies. In fact, it improves the accuracy results for most classes, especially

the largest classes such as classes #2, #11 and #14, thus underlining the benefits of splitting

the data set into several sources. In particular, small classes #1 (alfalfa, 14 training

samples) and #9 (oats, 5 training samples) are poorly classified by a standard SVM with

accuracies of 69% and 67%, respectively. With the SVM fusion, however, these individual

accuracies are improved by at least 9%. In contrast to the good average performance

of the 6-SVM approach, these two classes obtain their best results when the SVM fusion is

Figure 5. Overall test accuracy for the Indian Pine data set using the SVM fusion ensemble and
a standard SVM classifier.
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performed with four individual sources, achieving accuracies up to 78% and 93%,

respectively. Furthermore, the analysis of the obtained accuracies shows that the SVM

fusion achieves more balanced results as measured by the standard deviation of the

classification accuracy. The standard deviation for the class-specific accuracies is 10.4

when classified by a standard SVM. In contrast, the variance drops down to 7.4, using the

proposed method.

On the other hand, results for the Hekla data set corroborates the good performances

of the SVM fusion in terms of accuracy (Figure 8) that have been shown by the Indian

Pine experiment. For the classification of the Hekla data, the improvement of the overall

accuracy varies between 2.3% and 6.3%, being greater than for the Indian Pine case.

Using all training samples, an overall test accuracy of 90.0% was achieved with a standard

SVM. Then, the results are improved by the SVM fusion up to 3.5% in the 4-SVM case.

Again, the results demonstrate the positive impact of larger training sets. The overall

accuracy for the 4-SVM using 25 samples per class is 73.1%, while classification accuracy

Figure 7. Class test accuracy for the Indian Pine data set using the SVM fusion ensemble and a
standard SVM classifier.

Figure 6. Ground truth and 6-SVM classification map for the Indian Pine data set.
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increases up to 84.2% using 100 samples per class. Regarding the number of data sources,

experiment 2 reaffirms the benefits of a higher number of samples. Certainly, the 4-SVM

achieves the best overall accuracy (up to 93.5%) in contrast to the 3-SVM classifier which

shows the smallest improvement. The fact that the SVM fusion obtains equal or better

accuracies than a standard SVM by using half of the training samples is interesting and it

might be useful to reduce fieldwork to be carried out by experts in order to collect

reference data. Figure 8 also shows how all SVM-based results outperform a classical

maximum likelihood classifier, whose results are poorer mainly due to the Hughes

phenomenon.

Figure 9 shows results similar to Figure 7 concerning class accuracies for the Hekla

data set. The SVM fusion classifiers outperform all standard SVM class accuracies or, at

least, achieves similar results. In general, the 4-SVM approach provides the best average

accuracies. As in experiment 1, several classes (e.g. #8, #9, #13 and #20) are significantly

improved. Again, the results demonstrate the benefits of splitting the data set into several

sources and fusing the outputs. In particular, difficult classes like #9 (hyaloclastite

formation II, 342 training samples) and #20 (andesite lava 1991b, 246 training samples) are

poorly classified by a standard SVM, while the improvement by 21% or 13% is achieved

by the SVM fusion approach. Similar to the Indian Pine case, the SVM ensemble achieved

more balanced results for the Hekla data in terms of the standard deviation of the

class-specific classification accuracy, as shown in Figure 9.

Concerning the 10 independent runs that are done in each experiment, standard

deviation measures demonstrated that classifications considering a few training samples

are slightly affected by the choice of training data. Nevertheless, these measures

are negligible since they are below the accuracy improvements that have been presented

in this section.

7. Discussion and conclusion

In this article, the problem of classifying hyperspectral data was addressed and

an approach that is based on the fusion of multiple SVM classifiers was proposed.

Figure 8. Overall test accuracy for the Hekla data set using the SVM fusion ensemble, a standard
SVM classifier and a maximum likelihood (ML) classifier.
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The proposed method relies on the decision fusion of individual SVM classifiers that

are trained on different feature subspaces emerging from a single hyperspectral data set.

The separate data sources are defined according to the correlation of the spectral bands.

In doing so, each individual SVM classifier may exploit the heterogeneity of the data along

the hyperspectral spectrum.

In experiments, different feature space decompositions were performed in order to

evaluate the convenience of defining a lower number of data sources for the sake of a

greater uncorrelation between them. Then, all the SVM fusion results were compared to

those obtained by a standard SVM classifier dealing with the whole hyperspectral data set.

The SVM fusion ensemble always outperformed the standard SVM classifier in terms of

the overall and class accuracies. Regarding the different number of subspaces, our

experimental results underline that the overall and class accuracies increase with a higher

number of individual sources. Furthermore, experiments on the Hekla data set

demonstrated that the SVM fusion ensemble provides similar accuracies to those yielded

by the standard SVM classifier using twice as many training samples. The latter makes the

SVM fusion approach particularly interesting in terms of small training sample sets.

One reason for the success of the proposed approach might be the combination of two

powerful machine learning concepts: SVM and MCS. On the one hand, SVMs have shown

to perform well with high-dimensional data. On the other hand, the conceptual advantage

of classifier ensembles has been widely demonstrated. Even though the accuracy of each

classifier in the ensemble may decrease due to individual errors, the utilisation of many

classifiers, as well as the final result of the decision fusion, eliminates the misclassifications,

improving the results of final classifications, as shown by the presented experiments.

Another reason for the success of the proposed approach may be the differences

between spectral bands along the hyperspectral image spectrum. For instance, using the

conventional SVM for the whole heterogeneous data requires the definition of one single

kernel function, which may not be adapted to the whole diversity of information. It might

be more adequate to take advantage of this heterogeneity by splitting the data into a few

distinct subsets, defining a kernel function, which is adapted for each data source (i.e. a

Figure 9. Class test accuracy for the Hekla data set using the SVM fusion ensemble and a standard
SVM classifier.

International Journal of Image and Data Fusion 305

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
1
6
 
2
2
 
M
a
r
c
h
 
2
0
1
1



portion of the hyperspectral image), separately and fuse the derived outputs. Using this,

each single SVM is built according the properties of its corresponding feature set and thus

the possible discriminative information can be extracted.

Concerning the different decomposition of the hyperspectral data set, the experiments

underline that a greater number of subspaces may be more relevant for an optimal data

processing than a high degree of non-correlation between data sources. As a matter of fact,

the latter assumption is corroborated by the results, which show that the overall

accuracies, as well as the class accuracies, increase with a higher number of individual

sources. Again, the cause might be that classifier ensembles become more advantageous

with more classifiers. The optimal number of data sources as well as the automatic

decomposition of the original data set is a topic of our current research.

The previous statements are confirmed by the presented experimental results. Overall,

the proposed method can be considered attractive for the classification of hyperspectral

remote sensing data. It relies on the original concept of SVM and therefore the strategy

can be simply integrated in existing applications. In the future research, a deeper study on

the impact of the definition of the data sources (i.e. measure of the spectral bands

similarity and number of subsets) on the overall accuracy will be investigated.

Furthermore, the reduction of the computational complexity, as well as classification

problems with few training samples, need to be investigated.
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