Assessment of sea surface temperature changes in the
Gulf of Cadiz during the last 30 ka: implications for
glacial changes in the regional hydrography
Aurélie Pénaud, Frédérique Eynaud, A. Voelker, M. Kageyama, F. Marret, J.
L. Turon, D. Blamart, T. Mulder, L. Rossignol

To cite this version:
Aurélie Pénaud, Frédérique Eynaud, A. Voelker, M. Kageyama, F. Marret, et al.. Assessment
of sea surface temperature changes in the Gulf of Cadiz during the last 30 ka: implications
for glacial changes in the regional hydrography. Biogeosciences, European Geosciences Union,
2011, 8, pp.2295-2316. <10.5194/bg-8-2295-2011>. <insu-00634989>

HAL Id: insu-00634989
https://hal-insu.archives-ouvertes.fr/insu-00634989
Submitted on 24 Oct 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Assessment of sea surface temperature changes in the Gulf of Cadiz during the last 30 ka: implications for glacial changes in the regional hydrography

A. Penaud1,2, F. Eynaud2, A. Voelker3, M. Kageyama4, F. Marret5, J. L. Turon2, D. Blamart4, T. Mulder2, and L. Rossignol2

1UMR6538 Domaines Océaniques, IUEM-UBO, 29280 Plouzané, France
2UMR5805 EPOC, Université de Bordeaux 1, 33405 Talence, France
3LNEG, Unidade de Geologia Marinha, Estrada da Portela, Zambujal, 2610-143 Amadora, Portugal
4Laboratoire des Sciences du Climat et l’Environnement (LSCE), Orme des Merisiers, Centre de Saclay, 91191 Gif sur Yvette Cedex, France
5School of Environmental Sciences, University of Liverpool, Liverpool, L69 7ZT, UK

Received: 11 February 2011 – Published in Biogeosciences Discuss.: 7 March 2011
Revised: 23 June 2011 – Accepted: 5 July 2011 – Published: 23 August 2011

Abstract. New dinocyst analyses were conducted on core MD99-2339 retrieved from the central Gulf of Cadiz. Dinocyst and foraminiferal assemblages from this core are combined with existing data off SW Portugal and NW Morocco to investigate past hydrological and primary productivity regimes in the subtropical NE Atlantic Ocean over the last 30 ka. Our results have revealed highest upwelling intensity during Heinrich Stadial 1 (HS 1) and the Younger Dryas and weaker upwelling cells during the Last Glacial Maximum (LGM) and HS 2, off the SW Iberian and NW Moroccan margins. Similar assemblages between the Gulf of Cadiz and the NW Moroccan margin, and distinct species off Portugal, were observed during the cold climatic extremes that punctuated the last 30 ka. This pattern has been linked to the occurrence of a hydrological structure between SW Iberia and Cadiz during the last glacial period, perhaps similar to the modern Azores Front. This front was probably responsible locally for heterotrophic dinocysts found in the Gulf of Cadiz during the last glacial period, even if this sector is not conductive to upwelling phenomena by Ekman transport. Regional reconstructions of paleo-sea-surface temperatures (SSTs) using dinocyst and foraminiferal transfer functions, as well as alkenones, are also discussed and depict coherent scenarios over the last 30 ka. Seasonal reconstructions of LGM SSTs obtained with this multi-proxy panel are discussed jointly with model outputs in order to contribute to ongoing efforts in model-data comparison.

1 Introduction

Eastern Boundary Current systems are associated to major coastal upwelling characterized by high marine planktonic productivity (e.g. Hagen, 2001). A complex spatial distribution of planktonic organisms is observed in these systems, tightly coupled to intensity gradients which structure the upwelling zone (Margalef, 1978; Jacques and Tréguer, 1986; Smayda and Trainer, 2010). These rich and fragile coastal ecosystems are key areas to understand the link between the biological pump and climate at present, but also in the past. Sedimentological archives from these domains provide detailed records of primary productivity changes through time (e.g. Berger et al., 1978). However, numerous oceanographic and paleoceanographic studies point to a large heterogeneity in the dynamic response of upwelling to climate changes (e.g. Agnihotri et al., 2003). Indeed, even within the same coastal upwelling system, as for instance off the coasts of Portugal and NW Africa, opposite responses in terms of periods of increased upwelling phenomena have been detected (e.g. Bertrand et al., 1996; Eberwein and Mackensen, 2008; Voelker et al., 2009; Salgueiro et al., 2010). Testing the response of upwelling dynamics (modality and intensity) to high-frequency climate variability is therefore of major...
interest; it further allows better constraining the function of productive areas as biodiversity spots, as well as potential sources or sinks of CO$_2$ during rapid environmental changes.

Greenland Stadials (GS) including Heinrich Stadials (HS, following Sánchez-Goñi and Harrison, 2010) have previously been observed in marine climate records worldwide (e.g. Voelker et al., 2002; Hemming, 2004; Clement and Peterson, 2008). Their impact on the paleohydrology off NW Morocco (core MD04-2805 CQ; Fig. 1) has previously been discussed with special emphasis on past regimes of primary productivity (Penaud et al., 2010). This multi-proxy study allowed to integrate responses in dinoflagellate cyst (dinocyst), planktonic foraminifera, alkenone, and stable isotope data to past abrupt climatic changes, and to highlight changes in past upwelling intensity. It demonstrated abrupt SST decreases in phase with intense northern hemispheric ice-sheet decays (i.e. HS 1 and 2), as well as intensified upwelling conditions during the last deglaciation and especially during HS 1.

The present study aims at better understanding hydrological processes affecting the subtropical NE Atlantic from the end of Marine Stage 3 to the Holocene period. New micropaleontological data acquired in the central Gulf of Cadiz (core MD99-2339, 35.9° N; Fig. 1), derived from the analysis of dinocyst and planktonic foraminiferal fossil communities, are integrated with previous analysis conducted on two cores retrieved further south off the NW Moroccan margin (MD04-2805 CQ, 34.5° N; Fig. 1) and further north off the SW Iberian margin (SU-8118, 37.8° N; Fig. 1). Several objectives have guided us through this study:

1. To document the potentiality of the dinocyst proxy in the reconstruction of past sea-surface environments from the subtropical north-eastern Atlantic, both considering index species as well as using transfer functions. Actually, dinocyst studies in subtropical areas are less frequent than those performed in northern basins of the North Atlantic.

2. To test, in subtropical latitudes, the robustness of quantitative paleotemperature reconstructions inferred from a multi-proxy approach (i.e. dinocysts, foraminifera and alkenones). The direct comparison, in the same cores, of these reconstructions offers a way to test the capability of these proxies to detect coherent climatic signals (according to the robustness of the quantifications or to different biotic responses), thus constituting the best way to discuss their reliability.

3. To characterize the migration of the hydrological fronts during abrupt climatic changes over the last 30 ka; the study sites representing a North-South transect allowing us to illustrate the latitudinal transfer of the climatic variability.

4. To monitor the upwelling behaviour and the associated dynamics of the planktonic communities off NW Morocco and Portugal during abrupt and millennial-scale climatic events.

2 Modern regional setting

The sedimentary sequences used for this study were collected in the subtropical north-eastern Atlantic (Fig. 1), and are each representative of a unique hydrologic regime. The reader is referred to Eynaud et al. (2009), Voelker et al. (2009) and Penaud et al. (2010) for a detailed description of these hydrographical settings. Hereafter are listed key features regarding our discussion.

The so-called Portugal-Canary eastern boundary upwelling system is the result of the interaction of the north-eastern trade winds, blowing alongshore (e.g. Pearce, 1991; Hagen, 2001, Mann and Lazier, 2005, McGregor et al., 2007) and dependent on the seasonal migrations of the Azores High coupled to the Intertropical Convergence Zone dynamics (Hsu and Wallace, 1976), with the Canary Current (CC; Fig. 1), which flows southward between 32 and 28° N.
At present, seasonal wind-driven coastal upwelling is active mainly from late May/early June to late September/early October (e.g. Haynes et al., 1993; Aristegui et al., 2005; Peliz et al., 2005). Eastern North Atlantic Central Water (ENACW) and partially Mediterranean Outflow Water (MOW) are the sources of the upwelled waters (Sánchez and Relvas, 2003).

Wind-driven coastal upwelling along the Algarve coast in the northern Gulf of Cadiz is restricted to episodes with strong northerly winds (Sanchez and Relvas, 2003). Furthermore, the Gulf of Cadiz is influenced by Portuguese and Moroccan coastal currents and an extension of the Azores Current (AC; Fig. 1), flowing eastward at about 35° N. The AC coincides with the Azores Front (AF), marking the northeastern boundary of the North Atlantic subtropical gyre, south of the Azores Islands. Today, the AF is located at the latitude of the Gulf of Cadiz in the open Atlantic Ocean but does not penetrate into the Gulf of Cadiz (Rogerson et al., 2004). The AF corresponds to a zone of strong hydrographical transition between European and African surface water masses, both in terms of SST (thermal transition of about 4 °C; Gould, 1985) and in terms of vertical structure of the water column (Fasham et al., 1985). Moreover, it is locally characterized by intense upwelling cells (Rudnick, 1996; Alves and de Verdière, 1999; Alves et al., 2002).

Below subtropical waters, water mass stratification is characterized by North Atlantic Central Water between 100 and 600 m, MOW between 600 and 1700 m (Knoll et al., 2002; Llinas et al., 2002), and the North Atlantic Deep Water below 1700 m. Annual SSTs are comprised between 18 and 19 °C at the SW Iberian margin and Gulf of Cadiz, and between 19 and 20 °C off NW Morocco (WOA 2005; Locarnini et al., 2006). Annual sea-surface salinities are approximately 36.2–36.4 throughout the year at the three study sites (WOA 2005; Antonov et al., 2006).

3 Material and methods

3.1 Age models

Core MD04-2805 CQ (34.52° N, 7.02° W, 859 m depth, and 7.72 m long), mainly characterized by homogenous hemipelagic clays, was retrieved at about 40 km off the Moroccan coast, in relative shallow environments of the northwestern African margin. The stratigraphical framework of core MD04-2805 CQ (Penaud et al., 2010) is based on six AMS 14C dates and correlation of the planktonic δ18O data with the one from the well-dated core MD99-2339 (Voelker et al., 2006), both derived from the planktonic foraminifer Globigerina bulloides.

Core MD99-2339 (35.89° N, 7.53° W, 1170 m depth, 18.54 m long) was retrieved in a contourite field (Habgood et al., 2003) from the eastern Gulf of Cadiz and allows to trace the MOW dynamics over the last 47 000 years (Voelker et al., 2006). The stratigraphy of core MD99-2339 (Voelker et al., 2006) is based on 20 AMS 14C dates and on three control points correlated with the GISP2 chronology (Grootes and Stuiver, 1997).

Core SU-8118 (37.78° N, 10.18° W, 3155 m depth, 7 m long) was retrieved from the south-western Iberian margin, near the Tagus Abyssal Plain. This sedimentary sequence is mainly composed of homogeneous clays with two discrete peaks of ice-rafted debris (IRD) recorded around 260–290 cm (15.2–16.2 cal. ka BP) and 500–520 cm (22.6–23.4 cal. ka BP) corresponding with HS 1 and HS 2, respectively (Turon et al., 2003). The stratigraphy of this core is established on the basis of 22 AMS 14C dates (Bard et al., 2000) and planktonic δ18O data derived from the planktonic foraminifer G. bulloides (Bard et al., 1987, 1989).

3.2 Dinocyst analysis

Dinocyst analyses were previously carried out on cores MD04-2805 CQ (Penaud et al., 2010) and SU-8118 (Turon et al., 2003).

Core MD99-2339 was subsampled at the EPOC laboratory (“Environnements et Paléoenvironnements OCéaniques”, Bordeaux1 University, France). Each subsample of 4 cm³ was weighed, dried overnight and then weighed again to obtain dry weight. Subsamples were then washed through a 150 µm sieve and the fraction smaller than 150 µm was used for palynological preparation and analysis. Sixty-five samples were analysed over the last 30 ka. The preparation technique followed the protocol described by de Vernal et al. (1999) and Rochon et al. (1999), slightly modified at the EPOC laboratory (http://www.epoc.u-bordeaux.fr/index.php?lang=fr&page=eq.paleo26). For each sample, an average of 300 dinocyst specimens was identified and counted using a Leica DM 6000 microscope at 400 × magnification. Dinocyst taxonomic identification is conform to Fensome et al. (1998) and Fensome and Williams (2004), and dinocyst assemblages were described by the percentages of each species calculated on the basis of the total dinocyst sum including unidentified modern taxa and excluding pre-Quaternary specimens.

Maximal relative abundances of Lingulodinium machaerophorum in core MD99-2339 reach nearly 85 % during the Bölling/Allerød and this species shows an average of 55 % of the total dinocyst assemblage throughout the whole record. For this reason, we have systematically counted 100 dinocysts excluding L. machaerophorum in order to obtain a statistically correct image of dinocyst assemblages (cf. Appendix A for the whole counts on cores MD04-2805 CQ and MD99-2339). Brigantedinium spp. includes all spherical brown cysts as their crumbled aspect makes them difficult to identify to species level. Cysts of Protoperdinium nudum are grouped with the species Selenopemphix quanta and noted as S. quanta in this study.

Calculation of absolute abundances of dinocysts is based on the marker grain method (de Vernal et al., 1999; Mertens et al., 2003).
et al., 2009): aliquot volumes of Lykopodium spores were added to each sample before chemical treatment in order to estimate palynomorph concentrations (number of dinocysts/cm³).

3.3 SST reconstructions

3.3.1 Dinocyst SST reconstructions

We used two transfer functions based on the Modern Analogue Technique (MAT) to reconstruct dinocyst SST on the three cores. The MAT principally uses the statistical distance between fossil (paleoceanographic record) and current (modern database) assemblages. The calculation of past hydrological parameters relies on a weighted average of the SST values of the best modern analogues found (maximum number of analogues imposed in the transfer functions is 5). The maximum weight is given for the closest analogue in terms of statistical distance. The reader is referred to Guiot and de Vernal (2007) for a review of theory of transfer functions and to de Vernal et al. (2001, 2005) for a step by step description of the application of transfer functions to dinocysts, including discussion about the degree of accuracy of the method.

The first transfer function used in this work (de Vernal et al., 2005; GEOTOP website: http://www.unites.uqam.ca/geotop/monographie_n940/eng/index.shtml) is derived from a modern database comprising 60 dinocyst species and 940 stations from the North Atlantic, Arctic and North Pacific oceans and their adjacent seas, including the Mediterranean Sea, as well as epicontinental environments such as the Estuary and Gulf of St. Lawrence, the Bering Sea and the Hudson Bay. The transfer function (n = 940) is run under the “3PBase” software (Guiot and Goeyru, 1996). Hydrological parameters are systematically calculated on the basis of the 5 best analogues found by the transfer function. An index “Dmin”, provided by the “3PBase” software, allows testing the reliability of the reconstructions. This index describes, for each sample analyzed, the distance between the closest analogue found by the transfer function and the fossil assemblage. A threshold value is calculated from the calibration of the database for the identification of non-similar or very bad analogues. The similarity between the modern data and the fossil record is considered significant below the threshold value of 71.72 (de Vernal et al., 2005). With the n = 940 transfer function implemented with the “3PBase” software (i.e. 3PBase-940), we present February and August mean SST with a prediction error of ±1.2 °C and ±1.6 °C, respectively.

The second, and most recent, transfer function has been developed at EPOC laboratory (“Environnements et Paléoenvironnements Océaniques”, Bordeaux1 University, France). The MAT (e.g. Kucera, 2007) is run under the “R” software using a script first developed for dinocyst transfer functions (Kucera et al., 2005). Fossil assemblages are compared to the modern ones, based on the relative abundances of species for which no transformation has been done (no weight given artificially to species by logarithmic transformation for instance). In this paper, we present February and August mean SST with a prediction error of ±1.2 °C and ±1.4 °C, respectively. More information can be found in the compilation of Kucera et al. (2005) for a critical review of the accuracy of the method. It is worth noting that seasonal SST reconstructions have already been published for core MD99-2339 with the SIMMAX program and a modern database including 1020 Atlantic modern analogues (Voelker et al., 2006, 2009). Our results obtained with the transfer function “n = 692” have been compared and show exactly the same values. However, since we have used the transfer function “n = 692” for cores MD04-2805 CQ (SST published in Penaud et al., 2010) and SU-8118, we have chosen to apply the same procedure for the three cores.

The second, and most recent, transfer function has been developed at EPOC laboratory (“Environnements et Paléoenvironnements Océaniques”, Bordeaux1 University, France). The MAT (e.g. Kucera, 2007) is run under the “R” software using a script first developed for dinocyst transfer functions (www.cerege.fr/IMG/pdf/formationR08.pdf). The modern database relies on a modern database of 1007 modern assemblages and is derived from the ones developed separately for the North Atlantic and the Mediterranean Sea during the MARGO project (Kucera et al., 2005; Hayes et al., 2005). These databases were merged together to offer a large...
Fig. 2. Dinocyst data of core MD99-2339 (Gulf of Cadiz) versus depth (cm). Dinocyst relative abundances (%) and concentrations of selected species, as well as total dinocyst concentrations, are displayed. The planktonic oxygen isotope curve (*G. bulloides*) provides the stratigraphical framework for the core (Voelker et al., 2006). YD: Younger Dryas; B/A: Bölling-Allerød; HS: Heinrich Stadial; LGM: Last Glacial Maximum; TI: Termination I.

set of analogues for subtropical reconstructions over the last glacial period notably (Eynaud et al., 2009; Matsuzaki et al., 2011). Modern hydrological parameters were requested from the WOA 1998 database using the tool developed during the MARGO project (http://www.geo.uni-bremen.de/geomod/staff/csn/woasample.html). This method allows the reconstruction of annual and seasonal (winter, spring, summer and fall) SST. In this paper, we present winter and summer mean SST with a prediction error of ±1.2 °C and ±1.3 °C, respectively, and annual SST with a prediction error of ±1.1 °C (Eynaud et al, 2009; Matsuzaki et al., 2011).

3.3.3 Alkenone SST reconstructions

SST changes were previously reconstructed with the alkenone unsaturation ratios on cores MD04-2805 CQ (Penaud et al., 2010) and SU-8118 (Bard et al., 2000).

In this study, we compare dinocyst and foraminiferal SST reconstructions obtained on these two cores with two different calibrations converting the C37 alkenone unsaturation data (U\textsubscript{K37}') in terms of SST. First temperature estimates are based on a culture calibration (SST = (U\textsubscript{K37}'−0.039)/0.034; Prahl et al., 1988), equivalent to a global core-top compilation (Müller et al., 1998). Additional temperature estimates, also used in this study, are calculated from a regional calibration (SST = (U\textsubscript{K37}'−0.186)/0.026; Weaver et al., 1999) and based on U\textsubscript{K37}' measured in modern sediments from the NE Atlantic (Rosell-Melé et al., 1995).

4 Dinocyst assemblages from core MD99-2339 through time

Dinocyst analysis in core MD99-2339 shows concentrations varying between 1600 and 13 500 cysts/cm3, with values being the highest at the transition between the Bölling-Alleröd (B/A) and the Younger Dryas (YD) (Fig. 2). The average dinocyst concentration in the whole sedimentary record is 5900 cysts/cm3.

From the beginning to the end of the sequence, assemblages are dominated by *Lingulodinium machaerophorum* and *Brigantedinium* spp. (Fig. 2). *Brigantedinium* spp. were present during the whole glacial period and decreased abruptly at Termination IA (transition between HS 1 and the
Fig. 3. SU-8118 (a), MD99-2339 (b) and MD04-2805 CQ (c). Comparison of quantitative dinocyst SST reconstructions (February and August) from 3PBase-940 and R-1189, in parallel with planktonic δ^{18}O (G. bulloides). Error bars are shown for the different reconstructions. Dmin, for each transfer function, represents the statistical distance between the closest analogue found by the transfer function and the fossil assemblage. Threshold values of each method are represented by dotted lines. Tables under the graphs show the correlation coefficient between each reconstruction, and the average (mean-diff) and standard deviation (SD-diff) of the differences calculated between each reconstruction. YD: Younger Dryas; B/A: Bølling-Allerød; HS: Heinrich Stadial; LGM: Last Glacial Maximum; TI: Termination 1.

B/A; Bard, 1998) while L. machaerophorum strongly expanded, with relative abundances of this latter species reaching 80% during the B/A and 70% during the Holocene (Fig. 2). This is consistent with the current distribution of this taxon which shows the highest abundances off Portugal and around the Strait of Gibraltar with modern values reaching 80% (Rochon et al., 1999). Concerning Brigantedinium spp., it is important to keep in mind that this species can be linked to better preservation under preanoxic or anoxic bottom conditions (Combournié-Nebout et al., 1998; Zonneveld et al., 2001; Kodrans-Nsiah et al., 2008).

The species occurring during cold intervals (HS and YD) are represented by Bitectatodinium tepikiense, Spiniferites lazus, Spiniferites elongatus, Trinovantedinium planatatum and Nematosphaeropsis labyrinthus. Warmer periods (Last Glacial Maximum: LGM, B/A, and Holocene) are mainly characterized by increases of Spiniferites mirabilis, Impagidinium species (I. aculeatum, I. paradoxum, I. patulum, I. sphaericum, I. strialatum), Spiniferites bentorii, and Spiniferites delicatus (Fig. 2). These occurrences are very similar to those found off the NW Moroccan margin over the last 30 ka (Penaud et al., 2010). More details on the present-day ecology and geographical distribution of the species, discussed later in this manuscript, can be found in Penaud et al. (2010).

5 Temperature records: convergences and discrepancies

In this study, paleotemperature records have been obtained with three different proxies (foraminiferal and dinocyst transfer functions as well as alkenones based on the U_{37}^{c} index). Very limited sedimentary archives illustrate such a complete SST dataset in subtropical latitudes (e.g. Bard, 2001; Margo Project Members, 2009).

5.1 The different transfer functions applied to dinocysts and foraminifera

For each core, dinocyst SST reconstructions obtained from the two transfer functions (3PBase-940 and R-1189) for the months of February and August are compared on the same graphics (Fig. 3). Concerning cores MD99-2339 and MD04-2805 CQ, differences between SST values reconstructed with R-1189 and 3PBase-940 are generally lower than or equal to the error bars. This is especially true for the Holocene period (Fig. 3). For core SU-8118, Holocene reconstructions are also very close (mean difference of 0.4°C and 0.7°C for February and August SSTs, respectively) but differences between R-1189 and 3PBase-940 reconstructions can reach 11°C during the glacial period (Fig. 3). Differences between the results of the two transfer functions cannot be due to
the different software used and result from the expansion of the dinocyst database. Indeed, in order to overcome this potential bias on our quantitative data, we have tested the “3PBase” software with the “n = 1189” database and the results were exactly similar to those obtained from the “R” software. However, we chose to apply the same statistical methods as those applied in previous paleoenvironmental reconstructions (3PBase-940; de Vernal et al., 2005) and those recommended at present (R-1189; Dino8 meeting, Montréal, May 2008).

Besides the enlargement of R-1189, it is important to note that 3PBase-940 provides data in a systematic way while R-1189 provides a discontinuous record, particularly for core SU-8118 (Fig. 3). One way to illustrate this fact is the Dmin index. This index is provided by the two transfer functions (Fig. 3) and represents the distance between the closest analogue found by each transfer function and the fossil assemblage. Concerning the transfer functions 3PBase-940 and R-1189, the similarity between modern and fossil data is judged significant below the Dmin values of 71.72 and 1.2, respectively (Fig. 3; de Vernal et al., 2005). However, 3PBase-940 considers systematically the 5 analogues without removing any of the worst ones, while R-1189 makes a selection of the different analogues found and does not consider those for which the statistical distance between modern and fossil data exceeds 1.2. This can lead to non-analogue situations for a fossil sample when the distance of the closest analogue (Dmin) exceeds the threshold value of 1.2 (Fig. 3). Concerning the SW Iberian margin core (SU-8118), many fossil assemblages cannot find an echo with R-1189. Non-analogue situations may result from glacial upwelling microfossil assemblages (de Vernal et al., 2006). Indeed, it is worth noting that Brigantedinium spp. are particularly dominant on the SW Iberian margin core and make up generally more than 40% of the total dinocyst assemblage during the last glacial (Fig. 7). The present-day occurrence of Brigantedinium spp. shows a multimodal temperature preference since they are observed in sub-arctic/arctic waters (Rochon et al., 1999) as well as along continental margins subjected to upwelling phenomena (Gaines and Elbrächter, 1987; Biebow, 1996; Marret and Zonneveld, 2003). This taxon thrives particularly in nutrient-rich sea-surface waters but no clear correlation was found between Brigantedinium spp. and conditions of temperature or salinity.

In summary, the reconstructions from R-1189 are more reliable. Indeed, the modern database “n = 1189” offers the largest set of analogues and the new script associated with the program “R” allows us to distinguish better the critical periods when the results are less reliable by removing bad analogues. It begs to question the validity of the SST values reconstructed for core SU-8118.

Quantitative reconstructions derived from the two foraminiferal transfer functions are not directly comparable since the reconstructed parameters are not exactly the same. The transfer function PaleoToolBox-692 only provides February and August SST reconstructions while the transfer function R-1007 provides annual and seasonal-mean (i.e. winter, spring, summer and fall) SST reconstructions. However, the comparison of winter versus February SST values on the 664 common stations from the North Atlantic databases (n = 1007 versus n = 940) provides a mean difference of 0.26°C (with a maximum difference of 1.95°C). For the summer versus August SST values, the mean difference is 0.37°C (with a maximum difference of 1.1°C). These values are within the range of the error bars of the reconstructions and therefore encourage us to compare both sets of reconstructions.

The results show that monthly or seasonal reconstructions are extremely close for cores SU-8118 and MD99-2339 (mean differences generally lower than or equal to the error bars), and differ more for core MD04-2805 CQ (Fig. 4). Using a strict Atlantic database (n = 692) or the complete database with 1007 stations (including Mediterranean sites) does not alter the SST values reconstructed at the SW Iberian margin (Fig. 4). However, mean differences between SST reconstructed are increasing towards southern latitudes (Fig. 4). This could be due to the fact that R-1007, contrary to PaleoToolBox-692, integrates a larger set of subtropical modern sediments (from Mediterranean sites) and thus offers a larger panel of analogues (Eynaud et al., 2009; Matsuazuki et al., 2011) for cores MD99-2339 and MD04-2805 CQ.

5.2 SST multi-proxy compilation

5.2.1 Dinocysts versus foraminifera

The comparison of the quantitative reconstructions obtained from the two microfossil communities shows that seasonal data illustrated by winter and summer SST values are more coherent than those obtained for February and August (Fig. 5). Closer, and probably more reliable, seasonal reconstructions may be due to the update and enlargement of the databases (n = 1189 versus n = 940 for dinocysts; and n = 1007 versus n = 692 for foraminifera) providing a wider choice of analogues, and to the fact that R-1189 does not consider “bad” analogues for its calculations. Absolute seasonal SST values show also reduced differences for LGM reconstructions derived from dinocysts and foraminifera, whereas those obtained for February and August diverge by almost 2 or 3°C, with foraminifera providing systematically cooler SST during this period. These seasonal reconstructions, providing consistent absolute SST values on the mean LGM time interval (19–23 ka BP – EPILOG definition; Mix et al., 2001), were averaged (Table 1) to create a new LGM document for the subtropical eastern Atlantic. The reader should keep in mind that these values are provided as mean values, but that SST estimates derived from dinocysts and foraminifera exhibit however some differences during the 4 ka covered by the LGM. However, de Vernal et al. (2006), in an attempt of re-evaluating LGM sea-surface conditions.
Fig. 4. SU-8118 (a), MD99-2339 (b) and MD04-2805 CQ (c). Comparison of quantitative foraminiferal SST reconstructions (February versus winter and August versus summer) from PaleoToolBox-692 and R-1007, in parallel with planktonic $\delta^{18}O$ ($G. bulloides$). Error bars are shown for the different reconstructions. Tables under the graphs show the correlation coefficient between each reconstruction, and the average (mean-diff) and standard deviation (SD-diff) of the differences calculated between each reconstruction. YD: Younger Dryas; B/A: Bølling-Allerød; HS: Heinrich Stadial; LGM: Last Glacial Maximum; TI: Termination 1.

Table 1. Mean SST values (winter, summer and annual) reconstructed for the LGM (19–23 ka BP) from dinocysts ($n = 1189$), foraminifera ($n = 1007$), and alkenones (Prahl et al., 1988), on the three cores. Data into brackets in the table are less reliable. SD: Standard Deviation; Pts: Number of points used for the calculation.

<table>
<thead>
<tr>
<th>Average LGM SST (19–23 ka BP)</th>
<th>Portugal (37.8° N)</th>
<th>Cadiz (35.9° N)</th>
<th>Morocco (34.5° N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proxies</td>
<td>Mean SST</td>
<td>SD</td>
<td>Pts</td>
</tr>
<tr>
<td>Winter Foram.</td>
<td>11.6 (2.2)</td>
<td>2.0</td>
<td>11</td>
</tr>
<tr>
<td>Dino.</td>
<td>(4.9)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Summer Foram.</td>
<td>16.5 (4.8)</td>
<td>2.5</td>
<td>11</td>
</tr>
<tr>
<td>Dino.</td>
<td>(5.8)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Annual Foram.</td>
<td>13.7 (3.7)</td>
<td>2.3</td>
<td>11</td>
</tr>
<tr>
<td>Alk.</td>
<td>13.3 (3.3)</td>
<td>0.9</td>
<td>15</td>
</tr>
</tbody>
</table>
Fig. 5. Comparison of foraminiferal versus dinocyst SST reconstructions: February and August (PaleoToolBox-692-foraminifera versus 3PBase-940-dinocysts), winter and summer (R-1007-foraminifera versus R-1189-dinocysts). Error bars are shown for the different reconstructions. Tables under the graphs show the correlation coefficient between each reconstruction, and the average (mean-diff) and standard deviation (SD-diff) of the differences calculated between each reconstruction. YD: Younger Dryas; B/A: Bolling-Allerød; HS: Heinrich Stadial; LGM: Last Glacial Maximum; TI: Termination 1.

with various proxies including dinocysts, foraminifera and alkenones, previously demonstrated that LGM SSTs show significant differences depending upon the proxy used for reconstruction. Discrepancies between the different techniques especially marks the eastern boundary currents (de Vernal et al., 2006), i.e. our study area.

The largest discrepancy between dinocysts and foraminifera is observed during HS 1 in the Gulf of Cadiz (around 7 °C; Fig. 5). However, dinocyst reconstructions appear reliable according to the Dmin index (Fig. 3). Beyond the accuracy of the reconstructions, two hypotheses can be put forward with respect to this observation. Either the dinocyst and/or foraminiferal SST are less reliable, or, the discrepancy reflects an ecological bias. Dinocysts are indeed produced by dinoflagellates (phytoplankton group) with shallow living depths (photic zone) while planktonic foraminifera (zooplankton group) can migrate deeply in the water column with living depths ranging from 0 to 1000 m (Schiebel et al., 2001). Dinoflagellates, being found in shallower water, would thus record warmer SST. Various biases between different micropaleontological reconstructions can thus occur in relation to water masses or productivity and to the ecological strategy (depth of habitat, growth seasons) of phytoplankton versus zooplankton organisms (de Vernal et al., 2005).

<table>
<thead>
<tr>
<th>Year</th>
<th>Mean (°C)</th>
<th>SD (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>3.5 (52 points)</td>
<td>2.9</td>
</tr>
<tr>
<td>1981</td>
<td>4.1 (26 points)</td>
<td>5.0</td>
</tr>
<tr>
<td>1982</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
<tr>
<td>1983</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
<tr>
<td>1984</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
<tr>
<td>1985</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
<tr>
<td>1986</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
<tr>
<td>1987</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
<tr>
<td>1988</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
<tr>
<td>1989</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
<tr>
<td>1990</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
<tr>
<td>1991</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
<tr>
<td>1992</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
<tr>
<td>1993</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
<tr>
<td>1994</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
<tr>
<td>1995</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
<tr>
<td>1996</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
<tr>
<td>1997</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
<tr>
<td>1998</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
<tr>
<td>1999</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
<tr>
<td>2000</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
<tr>
<td>2001</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
<tr>
<td>2002</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
<tr>
<td>2003</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
<tr>
<td>2004</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
<tr>
<td>2005</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
<tr>
<td>2006</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
<tr>
<td>2007</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
<tr>
<td>2008</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
<tr>
<td>2009</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
<tr>
<td>2010</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
<tr>
<td>2011</td>
<td>6.0 (73 points)</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Dinocysts versus foraminifera versus alkenones

Alkenone-derived SST from cores SU-8118 (Bard et al., 2000) and MD04-2805 CQ (Penaud et al., 2010) have previously been compared with ice-core records, demonstrating a close link between SSTs in the subtropical NE Atlantic and temperature developments over the wider North Atlantic region, including Greenland. Regarding methodological considerations, we decided here to show two reconstructions of alkenone-derived SST based on two different calibrations. This confrontation allows us to confirm that using the regional NE Atlantic calibration (Weaver et al., 1999) or the culture calibration (Prahl et al., 1988) does not change both SST patterns (Fig. 6). Largest offsets between both calibrations are observed at the SW Iberian margin and represent small differences of less than 1.5°C (Fig. 6). Therefore, selecting one instead of the other equation will not alter the following discussion.

Fig. 6. SW Iberian margin (MD95-2042) and NW Moroccan margin (MD04-2805 CQ). Dinocyst SST reconstructions (February and August, 3PBase-940) and foraminiferal SST reconstructions (winter, summer and annual, R-1007) are compared with SST provided by alkenones (U\textsubscript{37}′ – SST). Two different calibrations have been used to convert the C\textsubscript{37} alkenone unsaturation data in terms of SST: #1 corresponds to Prahl et al. (1988) and #2 corresponds to Weaver et al. (1999). Error bars are shown for the different reconstructions. YD: Younger Dryas; B/A: Bølling-Allerød; HS: Heinrich Stadial; LGM: Last Glacial Maximum; TI: Termination 1.

5.2.2 Transfer functions versus alkenones

alkenones, showing minimum values during HS and the YD (Fig. 6). Alkenone-based SSTs fluctuate between the seasonal temperature range given by dinocyst and foraminiferal reconstructions, except during the glacial period. Furthermore, alkenone-based SSTs reconstructed for the Holocene (5–10 ka BP) on both cores are consistent with modern annual SST values at the two core sites (Fig. 6). It confirms that alkenones would capture a mean annual SST signal rather than a seasonal one. Concerning the NW Moroccan margin, our results show that the alkenone signal is closely similar to winter foraminiferal and dinocyst temperatures during the glacial and the YD. This observation has already been discussed (Penaud et al., 2010) originating from possible switches in mean annual temperatures dominated by large winter changes (Denton et al., 2005). The seasonality of the alkenone production may also have changed through time (MARGO Project Members, 2009).

Based on the observation of foraminiferal versus alkenones data, we can also see that HS 1 displays a major discrepancy in the estimates, with seasonal foraminiferal SST much colder than alkenone ones, even in summer (Fig. 6). The foraminiferal transfer function n=1007 also provides annual SST reconstructions that can directly be compared with the alkenone signal (Fig. 6). Annual SST values reconstructed with both proxies on the two cores are very close, except during HS 1 when foraminifera provide 5°C colder temperatures than alkenones. This supports the fact that foraminiferal SST reconstructed during HS 1 in the Gulf of Cadiz may also be underestimated (Fig. 5). This trend of foraminiferal SST towards colder estimates during Greenland Stadials, and especially during HS, was previously observed on the SW Iberian margin and in the Alboran Sea between 25 and 50 ka BP, with significant SST anomalies between 4 and 7°C (Penaud et al., 2011). It will be crucial to understand if this finding reflects a problem in the methods of reconstructions of SSTs. Indeed, G. bulloides and T. quinqueloba, species strongly represented in the foraminiferal assemblage, represent an "unusual" fauna that may yield a bias towards colder SSTs (Voelker, personnel communication). Problem may also result from the ecological strategy of planktonic organisms. Indeed, foraminifera are characterized by different depths of habitat according seasons, while alkenones (synthesized by coccolithophorids) and dinocysts may represent a more robust signature of sea-surface hydrological change since they represent phytoplanktonic productivity.

6 Paleohydrological changes affecting the NE Atlantic over the last 30 ka

6.1 Sea Surface Temperature evolution through time

6.1.1 Holocene and Bölling-Allerød

The Holocene and B/A are characterized by the development of temperate to tropical species S. mirabilis and Impagidinium spp., however with lower percentages during the B/A than during the Holocene (Fig. 7). Dinocyst, foraminifera, and alkenone derived-SST reconstructed during the Holocene (until 5 ka BP) from cores retrieved off Portugal and NW Morocco and in the Gulf of Cadiz are consistent, given the method’s uncertainties, with those characterizing these areas today (Figs. 5 and 6; Table 2). Annual SSTs (modern SST from WOA98 and reconstructed SST from this study) are around 18°C and 19°C for the areas of Portugal and Cadiz-Morocco, respectively (Table 2).

6.1.2 Heinrich Stadials and Younger Dryas

During HS, armadas of icebergs invaded the North Atlantic Ocean (e.g. Heinrich, 1988; Bond et al., 1992), causing major sea-surface cooling and freshening up to the subtropical latitudes off Portugal (e.g. Lebreiro et al., 1996; Baas et al., 1997; Zahn et al., 1997; Cayre et al., 1999; Bard et al., 2000; Turon et al., 2003; de Abreu et al., 2003; Eynaud et al., 2009). Cold sea-surface waters likely invaded latitudes of the eastern subtropical Atlantic via the Portugal Current and were then spread by the Canary Current (Zhao et al., 1995; Plewa et al., 2006). On the three cores, HS are noted by significant SST decreases (Fig. 8) linked to a significant drop in warm species (dinocyst species Impagidinium spp. and S. mirabilis; Fig. 7) and the development of polar to subpolar species: dinocysts B. tepiienza and S. lazus, and foraminifera N. pachyderma s. and T. quinqueloba (Fig. 8).

Table 2. Mean SST values reconstructed for the Holocene (5–10 ka BP) from foraminifera (n = 1007) and alkenones (Prahl et al., 1988) on the three cores versus present-day SST values from World Ocean Atlas 1998 (WOA98). SD: Standard Deviation; Pts: Number of points used for the calculation.

<table>
<thead>
<tr>
<th>Annual SST values (°C)</th>
<th>Actual (WOA98)</th>
<th>Holocene estimates on the time interval 5–10 ka BP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Foram. SD Pts</td>
<td>Alkenones SD Pts</td>
</tr>
<tr>
<td>Portugal (37.8° N; 10.2° W)</td>
<td>17.7</td>
<td>18.3 0.8 9</td>
</tr>
<tr>
<td>Cadiz (35.9° N; 7.5° W)</td>
<td>18.5</td>
<td>20.0 1.1 10 No data</td>
</tr>
<tr>
<td>Morocco (34.5° N; 7.0° W)</td>
<td>19.4</td>
<td>18.9 0.3 8</td>
</tr>
</tbody>
</table>

www.biogeosciences.net/8/2295/2011/
The YD can be assimilated to an HE if the hydrological disturbance associated with this cold climatic event is considered (HE 0, Andrews et al., 1995). In our study, this interval is clearly marked, in the three sedimentary sequences, with a decline of thermophilous species (Fig. 7), a decrease of \textit{L. machaerophorum} percentages (Fig. 7) and the development of species dominating today polar to sub-polar environments (Fig. 8). The YD is characterized by winter foraminiferal SST of about 7°C off Portugal, while further south (Cadiz and Morocco), it is characterized by warmer foraminiferal and dinocyst SSTs of 13°C (Fig. 8). This represents a mean anomaly of minus 3.5 and 8.5°C regarding to present-day winter SSTs in the areas of Portugal and Cadiz-Morocco, respectively. This reveals a strong gradient with thus a frontal structure probably developed somewhere between the SW Iberian margin and the latitudes of Cadiz and Morocco, respectively located at 315 km and 460 km from the SW Iberian margin.

6.1.3 Last Glacial Maximum

The LGM is the period of the last glacial period characterized by maximum extension of polar ice caps and minimum mean global sea-level (Mix et al., 2001). High resolution studies have called into question the CLIMAP paleoclimate quantifications (CLIMAP Project Members, 1981), including the
Fig. 8. On each graph, relative abundances (%) of selected planktonic foraminiferal and dinocyst species are depicted for the three cores with the same percentage scales. These data allow materializing the hydrological front in the NE subtropical Atlantic over the last 30 ka. The color code is noted on the figure. Reconstructions of Winter and Summer SST with dinocysts and foraminifera are also shown in the figure with error bars, except for the dinocyst SST reconstructions of core SU-8118 (too few data available).

In our study, we find increases of the temperate to tropical *Impagidinium* dinocyst species and *S. mirabilis*, these species being quasi-absent from the surrounding HS (Fig. 7). These taxa suggest a warming of sea-surface waters. This is in agreement with temperature reconstructions obtained during the LGM showing mean SSTs higher than those recorded during the surrounding HS and close to present-day and B/A temperature estimates, if considering the warmest LGM excursions (Fig. 8). Some oscillations with amplitudes ranging from 2 to 4 °C, observed in SST records derived from foraminifera, dinocysts and alkenones (Figs. 6 and 8) suggest that the LGM was not a stable period, consistent with previous studies carried out in the temperate Atlantic Ocean (Zaragosí et al. 2001; Mojtabah et al., 2005; Voelker et al., 2009). However, the resolution of the LGM is different for the three different cores and we chose to average SSTs estimates (winter, summer and annual) reconstructed with the three different proxies (foraminifera, dinocysts and alkenones) on the stratigraphical interval 19–23 ka BP (Table 1). These values can then be compared with recently published compilations from MARGO (including data from Rosell-Melé et al., 2004; Kucera et al., 2005; Barker et al., 2005; Meland et al., 2005; de Vernal et al., 2005) and PMIP/PMIP2 models (Kageyama et al., 2006). Figure 9 thus presents the various means (and standard deviations) for the LGM temperatures reconstructed in this study versus model outputs, as well as SST anomalies calculated from present-day values (WOA98). It updates previous comparisons such as those presented in Kageyama et al. (2006), because it includes the most recent model results, as well as the new reconstructions obtained in this study.
Fig. 9. Comparison, for the present and Last Glacial Maximum (LGM) periods, between the new reconstructions from this study, the previous reconstructions from the MARGO project (http://margo.pangaea.de/) and PMIP2 model results. Top panels (a), (b) and (c): Pre-industrial states (control) for the Annual (ANN), winter (JFM) and summer (JJA) means. Bottom panels (d), (e) and (f): LGM states. The lines are the longitudinal averages of simulated sea surface temperatures in a sector covering 35°W to 20°E in the North Atlantic, for a latitudinal transect 25 to 85°N. Symbols represent SST reconstructions, with the new ones (this study) represented by large circles. Model name abbreviations: HadCM3-v: HadCM3 coupled atmosphere-ocean-vegetation run. ECH-MPI-LPJ is for the ECHAM5-MPIOM127-LPJ and MIROC is for MIROC3.2.

to reconstructions at higher latitudes, the three proxies used here produce consistent LGM temperatures. Model results broadly agree with these new reconstructions, for the annual mean as well as for the winter and summer seasons (Fig. 9).

6.2 Paleoproductivity conditions through time

6.2.1 Duality *L. machaerophorum Brigantedinium* spp.

Dinocyst assemblages from the three study areas are dominated by the taxa *L. machaerophorum* and *Brigantedinium* spp. (Fig. 7). Profiles of these two species are furthermore almost identical between the Gulf of Cadiz and the Moroccan margin, with the dominance of *Brigantedinium* spp. during the glacial period until the end of HS 1 (Termination IA; Fig. 7), then followed by a sharp decrease of *Brigantedinium* spp. replaced by a strong development of the species *L. machaerophorum*. At the SW Iberian margin, the switch between these two taxa occurred at the end of the YD (Termination IB; Fig. 7). Moreover, we note that the percentages of *Brigantedinium* spp. were always much higher at the SW Iberian margin, and vice versa for *L. machaerophorum* which exhibited maximum relative abundances at the NW Moroccan margin and central Gulf of Cadiz (Fig. 7). In all cases, for the three studied areas, there existed a duality between these two taxa which had previously been described for the MIS 5 substages at the SW Iberian margin (Eynaud, 1999; Eynaud et al., 2000). *L. machaerophorum* is a species mostly occurring in neritic environments, close to the Strait of Gibraltar and including the Portuguese coast, representing today 80% of the total dinocyst assemblage (Marret and Zonneveld, 2003). This taxon has often been associated with relatively warm and stratified water masses (Marret and Zonneveld, 2003), and particularly off NW Africa, where highest abundances of this taxon have been linked to periods of relaxation of upwelling cells (Bouimetarhan et al., 2009). In contrast, *Brigantedinium* spp. are formed by heterotrophic dinoflagellates whose nutrition is mainly characterized by diatoms (e.g. Wall et al., 1977; Gaines and Elbrächter, 1987; Matsuoka, 1987, Lewis et al., 1990). The occurrence of these cysts in significant proportions in dinocyst assemblages has often been linked to nutrient-rich sea-surface waters, such as areas affected by permanent upwelling (Marret, 1994; Biebow, 1996; Dupont et al., 1998; Zonneveld et al. 2001; Radi and de Vernal, 2004; Sprangers
Fig. 10. Summer export productivity estimated for core MD95-2042 (Salgueiro et al., 2010) versus relative abundances of Brigantedinium spp. obtained in core SU-8118 (Turon et al., 2003). The planktonic δ¹⁸O records provide the stratigraphic framework for the two sedimentary sequences.

et al., 2004). Furthermore, when comparing Brigantedinium spp. percentages on core SU-8118 with summer export productivity obtained on the twin core MD95-2042 (Salgueiro et al., 2010; Fig. 10), the same trend of decreasing productivity is noted on both sedimentary sequences over the last 30 ka. These preliminary observations based on dinocyst from heterotrophic dinoflagellates suggest a general intensification of primary productivity in this sector likely reflecting the intensification of upwelling cells during the last glacial period, echoing previous studies carried out along the Iberian margin (e.g. Abrantes, 2000; Lebreiro et al., 1997; Voelker et al., 2009; Salgueiro et al., 2010).

6.2.2 Significance of S. quanta and T. applanatum occurrences

Particularly intense upwelling conditions prevailing off NW Morocco during HS 1 were derived from a various set of proxies (Penaud et al., 2010). Among these tracers, high planktonic δ¹³C values and expansions of heterotrophic taxa (especially S. quanta and T. applanatum; Fig. 7) suggested high primary productivity in surface waters. In addition, increased concentrations of Pinus pollen, likely representing a component of the southern European vegetation (Agwu and Beug, 1982; Hooghiemstra et al., 2006), suggested stronger north-eastern trade winds (Marret and Turon, 1994; Penaud et al., 2010). In this study, we show that, off the SW Iberian margin, S. quanta and T. applanatum also increased substantially during HS 1 and Termination IA (TIA), but also characterized the YD with relative abundances as high as during HS 1 (Fig. 7). Similar to the Moroccan margin, percentages of these species decreased during the LGM, and especially during HS 2. By analogy with observations made off NW Morocco (Penaud et al., 2010), these taxa thus allow us to discriminate between periods of intensification of upwelling at the SW Iberian margin. It suggests relatively weak upwelling cells during HS 2, and particularly intensified upwelling cells during HS 1 on the NW Moroccan and SW Iberian margins as well as during the YD along the Portuguese coast. S. quanta and T. applanatum did not occur significantly in the Gulf of Cadiz during HS 1 and the YD (Fig. 7). In the subtropical north-eastern Atlantic, these species may be restricted to neritic areas affected by coastal upwelling, as suggested previously off NW Africa (Wall et al., 1977; Marret and Turon, 1994; Penaud et al., 2010). However, the profile of Brigantedinium spp. recorded within core MD99-2339 is very close to the one in the Moroccan core (Fig. 7), suggesting higher concentration of nutrients during the last glacial period in the Gulf of Cadiz as well. Processes other than coastal upwelling may thus be involved to explain the occurrence of Brigantedinium spp. in the Gulf of Cadiz, as an indirect proxy of paleoproductivity, such as frontal upwelling (Voelker et al., 2009).
6.2.3 Influence of the Azores Front on the local paleohydrology

Rogerson et al. (2004) studied the migration of the AF, over the last 30,000 years, with two cores located in the Gulf of Cadiz and at the SW Iberian margin (MD95-2042). Based on the planktonic foraminifer G. scitula, this study shows that the AF, a robust element characterizing sea-surface circulation in the Atlantic, penetrated into the Gulf of Cadiz during the YD and before 16,000 years. G. scitula is a temperate to subpolar species (Thunnell, 1978) which mainly grows in environments characterized by seasonal vertical mixing within the water column (Thunnell and Reynolds, 1984; Eguchi et al., 1999; Kuruyanagi et al., 2002, Rogerson et al., 2004) and which is found in high abundances along the AF (Schiebel et al., 2002a, b). Rogerson et al. (2004) thus interpreted periods of relative high abundances of G. scitula as intervals of active upwelling in the Gulf of Cadiz, rather due to the presence of the AF in this area than to coastal upwelling processes. Indeed, the AF is at present locally associated with intense upwelling cells (Rudnick, 1996; Alves and de Verdière, 1999; Alves et al., 2002). We have thus tested this hypothesis with our data by comparing the profiles of G. scitula in cores MD04-2805 CQ, MD99-2339 and SU-8118 (Fig. 8). We show that high percentages of this species mainly characterized the LGM, with no significant differences being observed between the 3 sites, over the last 30,000 years. However, the AF represents today a strong thermal gradient of around 4°C (Gould, 1985), and, if the AF was present in the Gulf of Cadiz during the last glacial, it should have resulted in drastic hydrological changes between core MD04-2805 CQ located further south and core SU-8118 located further north from site MD99-2339.

When comparing the profiles of N. pachyderma s. and T. quinqueloba from the three sedimentary sequences (Fig. 8), a strong gradient of decreasing temperature is well demonstrated by a significant decrease of relative abundances of these two species from the SW Iberian margin up to the NW Moroccan margin, during the YD and HS 1. This decline is particularly important with regard to N. pachyderma s., whose occurrence fades abruptly between the SW Iberian margin and the Gulf of Cadiz. The foraminifer T. quinqueloba shows high relative abundances during the YD and HS 1 at the SW Iberian margin and also decreases towards southern latitudes. However, significant percentages of this species are still recorded in the Gulf of Cadiz and off the SW Iberian margin during the YD and HS 1 (Fig. 8). Today, this species is found in high latitudes and becomes abundant in transitional domains to polar water masses. This species prefers cool environments characterized by low vertical temperature gradients and low stratification. Van Leeuwen (1989) considers T. quinqueloba as an indicator of upwelling episodes off Angola and Meggers et al. (2002) include this species among the taxa related to upwelling filaments in the Canary Islands region. The observation of T. quinqueloba during the YD and HS 1 thus suggests periods of increased upwelling influence on the three study sites. This is consistent with observations made earlier from heterotrophic dinocysts (S. quanta, T. applanatum and Brignantedinium spp.).

The profile of the foraminifer N. pachyderma s. is particularly similar to that of the dinocyst B. tepikiense (Fig. 8). The SW Iberian margin is indeed characterized by the occurrence of the subpolar taxon B. tepikiense during HS 1 and HS 2 (20–30%) and during the YD (5%). This species has also been observed previously further north in the Bay of Biscay (47° N) with higher percentages up to 30–40% during HS 1 and HS 2 (Zaragosi et al., 2001; Penaud et al., 2009). At the NW Moroccan margin and Gulf of Cadiz, this subpolar taxon occurred in very low percentages during HS (3% maximum) and the YD, while the species S. lazus is clearly identified with abundances close to 10 and 5% during HS and the YD, respectively (Fig. 8). Unlike B. tepikiense whose ecological affinity for subpolar water masses and high seasonal contrast has already been the subject of numerous paleoenvironmental interpretations in the North Atlantic and Mediterranean Sea (e.g. Turon and Londeix, 1988; Sánchez-Góñi et al., 1999; Eynaud et al., 2000; Combrouie-Nebout et al., 2002; Turon et al., 2003; Penaud et al., 2008, 2009, 2011), S. lazus is identified here for the first time as a marker of HS from the latitude of the Gulf of Cadiz to the NW Moroccan margin.

Nematosphaeropsis labyrinthus is another dinocyst taxon whose percentages on the three cores illustrate the southward shift of the bioclimatic belts during the last glacial period and the YD. This species occurs at the transition between the LGM and HS 1 as well as during the YD (Fig. 8). During the YD, there is a gradient from north to south, between 38 and 34° N, with percentages around 20% off the Iberian margin, 10% in the central Gulf of Cadiz and 5% off Morocco (Fig. 8). This decreasing gradient in percentages from the Portuguese to the NW Moroccan margin may reflect a latitudinal climate trend associated with the YD impact in the subtropical north-eastern Atlantic that goes conform to the reconstructed SST (Fig. 8). It should be mentioned that further north in the Bay of Biscay, around 47° N, Zaragosi et al. (2001) and Penaud et al. (2009) found this species with percentages of 15 and 30%, respectively, during the B/A. They, however, also noted a percentage decrease during the YD, time interval when cysts of Pentapharsodinium dalei expanded. It is therefore interesting to see that, north of the Iberian Peninsula, N. labyrinthus characterizes the warm event of the last deglaciation (B/A), while at the latitudes of our study, i.e. in subtropical areas of the north-eastern Atlantic and also in the western Mediterranean (Turon and Londeix, 1988), this species characterizes the cold event of the last deglaciation (YD). Eynaud (1999) suggested a migration of this species from the Bay of Biscay to more southern latitudes due to the climatic deterioration during the YD. Our study thus confirms a general southward shift of the
bioclimatic belts, even affecting the Moroccan margin, while the magnitude of this cold episode is low compared to that associated with HS.

To conclude, a regional synthesis (36–42° N) on the extension of the Polar Front (PF) during the last glacial period showed that the PF oscillated around 40° N at the Iberian margin during HS (Eynaud et al., 2009). The fact that the PF did not reach the latitudes of Cadiz and Morocco may explain the quasi-absence of *N. pachyderma* s. and *B. tepikienne* in both these areas. The relay of dinocyst and foraminiferal species to the south likely marks a well-defined hydrological front somewhere between 38 and 36° N, during the last glacial period and the YD, probably similar to the modern Azores Front (Rogerson et al., 2004; Voelker et al., 2009) and responsible for upwelling cells (Rudnick, 1996; Alves and de Verdière, 1999; Alves et al., 2002) in the Gulf of Cadiz as deduced from our paleoproductivity record.

7 Conclusions

This work aimed at improving our understanding of the spatial and temporal high frequency climate variability of the late Quaternary in the subtropical NE Atlantic. Combined micropaleontological (dinocysts and planktonic foraminifera) data from three sedimentary cores, distributed on a latitudinal transect from 34 to 38° N, have shown that planktonic population dynamics were very consistent over the last 30 ka, and were essentially forced by the movements of hydrological fronts in response to millennial-scale climate variability.

Despite the fact that these cores are located in a narrow geographical area, we demonstrate that microfossil assemblages from the NW Moroccan margin and Gulf of Cadiz are very similar qualitatively but quite different from those observed northward off the SW Iberian margin. Their response to cold extreme events (YD, HS) has highlighted a very large drop in percentages of subpolar species from the SW Iberian margin to the Gulf of Cadiz. This strong gradient likely highlights a hydrological structure, probably equivalent to the present-day Azores Front, that separated the SW Iberian margin from the study sites further south during the last glacial period. Furthermore, occurrences in the Gulf of Cadiz of the foraminifer *T. quinqueloba* and of heterotrophic dinocysts (*Brigantedinium* spp.) suggest higher primary productivity during the last glacial. Upwelling cannot be initiated there by Ekman transport, as it is the case along continental margins subjected to trade winds. Thus, we suggest that the presence of the Azores Front in the vicinity of the Gulf of Cadiz during the last glacial could be locally responsible for the occurrence of nutrient-rich water masses in this area.

Common points were highlighted between the two areas subjected to seasonal coastal upwelling (SW Iberian and NW Moroccan margins), with increased coastal upwelling cells during HS 1 and the YD, and upwelling relaxation during the LGM and HS 2. Interestingly, core MD99-2339 (Cadiz) has also highlighted variations in the paleo-intensity of the MOW over the past 50 ka and, regarding the last 30 ka, intensifications of upwelling cells off Portugal and NW Morocco correspond to periods of higher export of the MOW. Knowing that the formation of the MOW is directly coupled to the cold and dry continental winds from northern Europe, we could establish a link between the prevailing wind regimes above the Northern Hemisphere, upwelling cells, and formation of Mediterranean deep waters.

This study further demonstrates the great sensitivity of dinocysts in reconstructing (qualitatively as well as quantitatively) sea-surface conditions in the subtropical NE Atlantic, despite a modern dinocyst database that primarily focuses on subpolar areas. Furthermore, these new LGM reconstructions have been compared with previous reconstruction and available PMIP2 model results for the LGM, therefore contributing to ongoing efforts in model-data comparison.

Supplementary material related to this article is available online at: http://www.biogeosciences.net/8/2295/2011/bg-8-2295-2011-supplement.zip.

Acknowledgements. Thanks to IPEV, the captain and the crew of the Marion Dufresne and the scientific team of the PRIVILEGE and IMAGES-GINNA cruises. We wish to thank Mr. Y. Balut for his assistance at sea and M. Castera, M. Georget and O. Ther for invaluable technical assistance at the laboratory. We gratefully acknowledge the reviewers, in particular Michael Rogerson whose comments permit to greatly improve this manuscript. A.V. acknowledges funding support from FCT through the MOWFADRI project. Part of this study was supported by the French CNRS and the ANR IDEGLACE.

We acknowledge MARGO project members and the international modeling groups for providing their data for analysis in the PMIP2 project. The PMIP 2 Data Archive is supported by CEA and CNRS and maintained at LSCE. The analyses were performed using the PMIP2 database as of 21 June 2011. More information is available on http://pmip2.lsce.ipsl.fr/.

Edited by: N. Ohkouchi

The publication of this article is financed by CNRS-INSU.
References

Biebow, N.: Dinoflagellatenzysten als Indikatoren der spätdurch postglazialen Entwicklung des Auftriebsgeschehens vor Peru, Geomar Report, 57, 100 pp., 1996.

Assessment of sea surface temperature changes in the Gulf of Cadiz

A. Penaud et al.

2313

Kodrans-Nsiah, M., de Lange, G. J., and Zonneveld, K. A. F.: A

