
Influence of asperities on fluid and thermal flow in a

fracture: a coupled Lattice Boltzmann study
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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Influence of asperities on fluid and thermal flow in a fracture: a

coupled Lattice Boltzmann study

A. Neuville1, E.G. Flekkøy1,3, and R. Toussaint2,3

Abstract. The characteristics of the hydro-thermal flow which occurs when a cold fluid
is injected into a hot fractured bedrock depend on the morphology of the fracture. We
consider a sharp triangular asperity, invariant in one direction, perturbing an otherwise
flat fracture. We investigate its influence on the macroscopic hydraulic transmissivity and
heat transfer efficiency, at fixed low Reynolds number. In this study, numerical simula-
tions are done with a coupled lattice Boltzmann method that solves both the complete
Navier-Stokes and advection-diffusion equations in three dimensions. The results are com-
pared with those obtained under lubrication approximations which rely on many hypothe-
ses and neglect the three-dimensional (3D) effects. The lubrication results are obtained
by analytically solving the Stokes equation and a two-dimensional (integrated over the
thickness) advection-diffusion equation. We use a lattice Boltzmann method with a dou-
ble distribution (for mass and energy transport) on hypercubic and cubic lattices. Be-
yond some critical slope for the boundaries, the velocity profile is observed to be far from
a quadratic profile in the vicinity of the sharp asperity: the fluid within the triangular
asperity is quasi-static. We find that taking account of both the 3D effects and the cool-
ing of the rock, are important for the thermal exchange. Neglecting these effects with
lubrication approximations results in overestimating the heat exchange efficiency. The
evolution of the temperature over time, towards steady state, also shows complex be-
havior: some sites alternately reheat and cool down several times, making it difficult to
forecast the extracted heat.

1. Introduction

Conductive and convective transport of heat or chemi-
cal species, is omni-present in Earth sciences [Stephansson
et al., 2004; Steefel et al., 2005], within porous or fractured
media. Some technologies related to chemical transport,
like radioactive storage [Cvetkovic et al., 2004; Amaziane
et al., 2008; Halecky et al., 2011; Hoteit et al., 2004], or well
acidizing, requires a good resolution of advection diffusion of
chemical concentration [Szymczak and Ladd , 2009; Cardenas
et al., 2007]. The transport is influenced by the temperature
which may play a role by modifying 1) the fluid transport –
notably by natural convection, 2) the chemical constants of
the reactions, or 3) the geometry of the porous medium. For
instance some chemical reactions or rheological rock trans-
formations only occur in given ranges of temperature (e.g.
decarbonation, dehydration of sediments, decomposition of
kerogen [e.g.Mollo et al., 2011; Petersen et al., 2010]). Ther-
mal fracturing can result from chemical reactions generat-
ing gas [Kobchenko et al., 2011], or from thermal stress [Lan
et al., 2012; Bergbauer et al., 1998], or from hydro-thermal
stress, when injecting hot or cold fluid into a rock. Tem-
perature monitoring is for example necessary to prevent po-
tential damages of well installations. Apart from fracturing
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processes, other changes of geometry of the porous medium
can also occur during injection of cold or warm fluid in En-
hanced Geothermal Systems (EGS), because of poroelastic
effects [Gelet et al., 2012], and also because of chemical re-
actions like acidizing. Exploitation of EGS requires also the
heat exchange to be efficient and durable. An important
step is, therefore, to understand the hydro-thermal coupling
between fluid and rock; this is the aim of our present mod-
eling.

Hydraulic transport mostly occurs in fractures. It was
shown under lubrication approximations and steady state
conditions, that the complexity of the fracture topography
influences the hydro-thermal exchange when a cold fluid is
injected into a hot fractured bedrock [Neuville et al., 2010].
More specifically, the lubrication approximations state that
the aperture and its wall topographies vary smoothly so that
the velocity field is parallel to the main plane of the frac-
ture (the component of the hydraulic flow perpendicular to
the main fracture plane is neglected), and that the thermal
diffusion only occurs in the directions perpendicular to the
main plane of the fracture. For this modeling, the rock tem-
perature was also supposed to be constant. In other models,
as e.g. in the study of Natarajan and Kumar [2010], the heat
diffusion in the rock is considered, but with a simplified fluid
flow. Some features which are observed in nature, like fluid
recirculation, and time-dependent temperature at the pump-
ing well, can, however, not be explained with these model.
We therefore wish to go beyond this lubrication assumption
and be especially able to observe effects due to highly vari-
able morphology of the fluid-rock interface. Indeed, even if
many fluid rock interface topographies or fracture apertures
are statistically self-affine (multi-scale property) [Brown and
Scholz , 1985; Bouchaud , 1997; Neuville et al., 2012; Can-
dela et al., 2009], it is very often possible to observe some
isolated asperities with sharp variations of the topography,
for instance along cleavage planes [Neuville et al., 2012], or
due to particle detachment, or along stylolite teeth [Renard
et al., 2004; Ebner et al., 2010; Koehn et al., 2012; Laronne
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Ben-Itzhak et al., 2012; Rolland et al., 2012]. The roughness
of the fracture can also be perturbed by intersection with
other fractures [Nenna and Aydin, 2011], or, for microfrac-
tures, by the matrix porosity [Renard et al., 2009].

Investigations on the validity of the lubrication approx-
imation, based on the study of some geometrical parame-
ters have been performed e.g. by Zimmerman and Bodvars-
son [1996]; Oron and Berkowitz [1998]; Nicholl et al. [1999].
Without the lubrication approximation, i.e. with full solv-
ing of the Navier-Stokes equation, the hydraulic behavior
in channels or fracture with sinusoidal walls were studied
e.g. by Brown et al. [1995]; Waite et al. [1998]; Bernabé
and Olson [2000] with lattice gas methods. It was shown
that for a sinusoid with a short wavelength and large ampli-
tude compared to the mean aperture, the hydraulic aperture
is smaller than that expected with the lubrication approx-
imation. Error on the hydraulic aperture computed with a
lubrication approximation have been analytically obtained
by Zimmerman and Bodvarsson [1996], and experimentally
by Oron and Berkowitz [1998]; Nicholl et al. [1999]. In these
studies, the fluid flow was reported to be important in the
middle of the channel, while it is quasi-stagnant in the sharp
hollows of the walls. Eddies were numerically observed in
this quasi-stagnant zones [Brown et al., 1995; Brush and
Thomson, 2003; Boutt et al., 2006; Cardenas et al., 2007;
Andrade Jr. et al., 2004] in various fracture geometries, in-
cluding realistic fracture geometries. These eddies are sim-
ilar to those analytically predicted by Moffatt [1964], who
studied eddies formation in a corner between two intersect-
ing planes, when the flow is imposed to be tangential to the
planes at an infinite distance from the corner. Microfluidics
has also been investigated using LBM [e.g. Harting et al.,
2010].

On the one hand, many studies exist about the coupling
between the fully solved hydraulic behavior – solving of the
Navier Stokes equation – and solute or particle transport,
or dispersion in general [Boutt et al., 2006; Cardenas et al.,
2007; Drazer and Koplik , 2001, 2002; Flekkøy , 1993; Yeo,
2001; Johnsen et al., 2006; Niebling et al., 2010; Vinning-
land et al., 2012].

On the other hand, few studies take into account the
fully solved hydraulic flow with the heat transfer, when
a cold fluid is injected into a fracture embedded in a hot
solid. In the absence of flow, the stationary problem of heat
transport accross a fractal interface was studied, e.g. by
Grebenkov et al. [2007]. Even if both, heat and solute trans-
port, are described with advection-diffusion equation, many
differences exist due to different boundary conditions and
different range of parameters. Andrade Jr. et al. [2004]
solved the temperature field when a warm fluid is injected
within a two-dimensional (2D) channel delimited by walls
whose topographies follow Koch fractals, using the “Semi-
Implicit Method for Pressure Linked Equations” algorithm
developed by Patankar [1980]. In his study, the walls of the
channel were however set at a constant temperature. Other
studies regarding cooling issues of electrical devices have
also been done [e.g. Young , 1998, and references therein],
but in contrast to the current study, the thermal boundary
conditions used in these works are less relevant for natu-
ral problems (for instance, insulated walls are used). An-
other branch of algorithms for heat solving are done with
lattice Boltzmann methods (LBM). The LBM [e.g. Wolf-
Gladrow , 2005] are very suitable to model the complexity
of hydrothermal transport in a rough fracture morphology,
whatever the slopes of the morphology (i.e., without any
conditions on the smoothness of the morphology). As the
algorithms require only local operations (while other numer-
ical methods requires e.g. inversion of matrices depending
on the geometry of the entire porous medium), they handle
complex boundaries very well. Several methods have been
proposed: multispeed scheme (a density distribution is used,

with additional speeds and high order velocity terms in the
equilibrium distribution), hybrid method (hydraulic flow is
solved with LBM, and heat transport is solved with another
method), and double distribution. A review of these meth-
ods can be found in Lallemand and Luo [2003]; Luan et al.
[2012]. Most of the problems solved so far with LBM deal
with benchmarks that consist in close systems (square cav-
ity with impermeable walls). In this paper we will examine
the limits of the lubrication approximation, and the model
developed in Neuville et al. [2010]. After briefly recalling
the fundamentals of this model, we describe the numerical
methods used for our modeling outside the lubrication ap-
proximations. We chose a LBM with a double distribution
method, where the hydraulic flow is independent of the tem-
perature. The chosen lattices for the flow and temperature
variables are respectively hypercubic and cubic, with a sin-
gle lattice speed for each lattice. This choice is seldom used
in literature, but it is suitable for three-dimensional (3D)
mass and heat transport modeling [d’Humières et al., 1986;
Wolf-Gladrow , 2005; Hiorth et al., 2008]. Despite the meth-
ods being implemented in 3D, for simplicity reasons, the pa-
rameter exploration is done in two dimensions, translational
invariance being assumed along the third dimension. For a
self-affine aperture, the contribution of each asperity on the
total hydraulic and thermal exchanges is difficult to single
out. For this reason, here, we chose as a simpler situation
to focus on one single asperity where we can lead a precise
quantitative study of the flow organization and properties in
space and time as function of flow speed, asperity size and
shape, and heat transport properties.

We will thus explore the behavior of the flow in a frac-
ture with a triangular asperity, as function of the asperity
size. We will compare the results directly to the lubrication
approximation results, and establish when this one fails to
model correctly the mass and heat transport.

2. Methods for hydro-thermal modeling

2.1. Solving under lubrication approximations

The lubrication approximation holds in the laminar
regime, at small Reynolds number, for fluids flowing into
a fracture whose aperture and both wall-topographies, show
smooth variations. Under these assumption, the Navier-
Stokes equation reduces to the Reynolds equation [Pinkus
and Sternlicht , 1961; Brown, 1987]:

∇ ·
(
a3(x, y)∇p

)
= 0, (1)

where∇p is the local 2D pressure gradient, and a(x, y) is the
fracture aperture. With x̂ (unitary vector) as the direction
of the macroscopic pressure gradient, the velocity expresses
as

u(x, y, z) =
∇p(x, y)

2η
[z1(x, y)− z][z − z2(x, y)]x̂, (2)

where z1 and z2 are the out of plane coordinates of the frac-
ture walls related to the aperture by z2 − z1 = a, and η the
dynamic viscosity of the fluid. The aperture of a fracture a
is partially characterized by its mean geometrical aperture,
A, and by the standard deviation of the aperture. The hy-
draulic behavior can be partially characterized by the flow
across the aperture, q, defined as

q =

∫
a(x,y)

u(x, y, z)dz. (3)

The hydraulic apertureH is classically defined [Guyon et al.,
2001] from the component of q along the macroscopic gra-
dient direction, qx:

H =

(
〈qx〉

12η

F

)1/3

, (4)
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where F is the norm macroscopic pressure gradient, and 〈.〉
refers to the x − y space averaging. For parallel plates ge-
ometry, q is a constant vector and H = A. The thermal
behavior of a fluid injected in a fracture (with a self-affine
aperture) embedded in a constantly warm rock was modeled
in Neuville et al. [2010, 2011] under the so-called thermal lu-
brication approximation. In their solving, several terms are
discarded in the heat equation: for instance the conduction
occurs only perpendicularly to the fracture mean plane (z),
and the convection is neglected along z. The thermal ex-
change balance in a stationary regime resumes in

q ·∇T + 2
χf
a
Nu ·

(
T − Tr

)
= 0, (5)

where χf is the thermal diffusivity of the fluid, Nu =
± ∂T

∂z

∣∣
z=z1,2

a/(Tr − T ) is the Nusselt number, classically
used to evaluate the thermal efficiency in reference with the
conductive heat flow, and

T (x, y) =

∫
a
ux (x, y, z)T (x, y, z) dz

qx
(6)

is a temperature averaged across the aperture, weighted
by the velocity. For a parallel plates geometry, it can be
shown, under assumptions over the temperature gradient,
that Nu = 70/17 [Turcotte and Schubert , 2002; Neuville
et al., 2010]. In this method, the temperature profile across
the aperture follows a quartic law. It was shown [Neuville
et al., 2010] that for a self-affine aperture, the averaged tem-
perature law over the y direction, T , defined as

T (x) =

∫
qx (x, y)T (x, y) /a(x, y)dy∫

qx (x, y) /a(x, y)dy
, (7)

can be approximated by

T − Tr =
(
T 0
f − Tr

)
exp

(
− x
R

)
, (8)

where T 0
f = T (x = 0) is imposed at the inlet of the fracture,

Tr is the temperature of the wall (interface fluid-solid), and
R is a thermal length, obtained from a linear regression. For
parallel plates separated by A0, R is equal to

R =
A0q

2Nuχf
. (9)

Note that any change of the thermal length can also be in-
terpreted in term of Nusselt number variation.

2.2. Full solving, using coupled Lattice Boltzmann
Methods (LBM)

2.2.1. Solving the mass transport with FCHC LBM
In LBM, fictitious particles move and collide on a lat-

tice. Operations conserves mass and momentum at meso-
scopic scale. Using appropriate rules and lattice topology,
it can be shown that the Navier-Stokes equation can be
recovered at macroscopic scale [e.g. Rothman and Zaleski ,
1997; Chopard and Droz , 1998; Wolf-Gladrow , 2005]. The
distribution of mass density is denoted as fi, where the in-
dex i refers to the direction of propagation of the parti-
cles moving with a velocity ci on the lattice. We choose
a “Face-Centered-Hyper-Cubic” (FCHC) lattice. This is a
four-dimensional lattice with suitable topological proper-
ties to solve the Navier-Stokes equation [d’Humières et al.,
1986] in three dimensions. The N = 24 vectors defining
the lattice directions are ci

δt
δx

(±1,±1, 0, 0), (0,±1,±1, 0),
(0, 0,±1,±1), (0,±1, 0,±1), (±1, 0,±1, 0), (±1, 0, 0,±1),
with c =

√
2δx/δt, where δt and δx are the time and space

steps. The total density and the macroscopic velocity u at
each node M are computed with (OM being the position

Figure 1. Discretization of the interface between the
solid and fluid. The dots indicate the nodes of the lat-
tice. BB stands for nodes in light gray where some par-
ticle distributions are bounce backed.

vector):

ρ(t,OM) =

24∑
i=1

fi(t,OM)

ρu(t,OM) =

24∑
i=1

cifi(t,OM).

(10)

For the collision phase, a standard BGK scheme [Bhat-
nagar, Gross, and Krook – Bhatnagar et al., 1954; Qian
et al., 1992] is used. The linearized collision term depends
on a constant of relaxation λ, which is linked to ν = η/ρ the
kinematic viscosity of the fluid [Rothman and Zaleski , 1997]
by:

ν = −c
2δt

6

(
−1

2
+ λ

)
. (11)

The macroscopic pressure gradient between the inlet and
outlet of the fracture is implemented through a volumet-
ric force that intervenes during the collision phase at each
lattice node.

It can be shown that the density of the fluid is linked
to the velocity by p = ρ(δx2/(2δt)2 − u2/4) [Rothman and
Zaleski , 1997]. This modeling of Navier-Stokes equation
holds for compressible flows in the incompressibility limit,
at small Mach number (ratio between the velocity and the
sound speed on the lattice – here, equal to uδt/(

√
2δx)).

The Knudsen number (ratio between the average distance
between two collision, and the macroscopic scale of the sys-
tem) should also be small.
2.2.2. Solving the heat transport with 3D cubic LBM

The transport of the heat is solved using a coupled lattice
Boltzmann method, using a second particle distribution, gi,
which represents the internal energy distribution of the par-
ticles moving with the velocity bi. It is assumed that the
heat is passively transported by the fluid: viscous heat dissi-
pation is neglected, as well as the viscosity dependence with
the temperature. Using square lattices and appropriate col-
lision rules, it has been shown [Wolf-Gladrow , 2005; Hiorth
et al., 2008] that the LBM solves advection-diffusion equa-
tion. The internal energy and its flux are conserved during
the collision phase, which is done with a BGK scheme as
in e.g. Hiorth et al. [2008] is used. We choose a 3D cu-
bic lattice. Its NT = 6 base vectors, bi δtδx , are defined by
(±1, 0, 0), (0,±1, 0), (0, 0,±1) and b = δx/δt. This net-
work is a sublattice of the 3D projection – perpendicularly
to fourth direction – of the FCHC lattice. The temperature
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at each node M , and the internal energy flux are given by:

NT∑
i

gi(OM, t) = T (OM, t)

NT∑
i

bigi(OM, t) = T (OM, t)u

(12)

2.2.3. LBM boundary conditions
Let consider a fractured medium, where the macroscopic

pressure gradient in the fluid is aligned with the x̂ direction:
the fluid injected at the inlet (x = 0), and pumped out at
the outlet of the system (x = Lx). The unitary vectors x̂, ŷ
and ẑ define an orthonormal frame, and this porous medium
is discretized with a cubic mesh. The center of each mesh is
a fluid or a solid node.

The porous medium geometry and the flow are supposed
to be periodic in x and y. At the interface between the fluid
and the solid, non slip boundary condition are chosen. This
is implemented using the full-way bounce back boundary
condition [Rothman and Zaleski , 1997] for the mass parti-
cle distributions. This bounce back operation is done for
particle distributions fi(OM) where M is a solid node, and
OM + ciδt is in the fluid. For these nodes, the mass distri-
butions fi of the bounce-backed nodes are exchanged with
fi+12, where the direction i+ 12 is opposite to the direction
i. This is done instead of a collision operation. The propa-
gation phase is then done normally on these nodes. For this
bounce-back boundary condition, the interface fluid solid is
supposed to be located half-way between the bounce-backed
node and the fluid nodes (Fig. 1).

The temperature field is supposed to be periodic along
y direction. The temperature is imposed in x = 0, z = 0,
z = Lz, where Lz is the height of our system in the z direc-
tion. In this study, the rock is maintained at temperature
T 0
r = 150°C at the borders in z = Lz and z = 0. At the

inlet of the system, in x = 0, the rock and fluid are main-
tained respectively at T = T 0

r , and T = T 0
f = 30°C. At the

outlet of the system, the temperature is forced to T = T 0
r at

solid nodes (Dirichlet condition), and T (x = Lx) = T (x =
Lx − δx) in liquid (von Neumann condition). In our pro-
gram, the temperature at these nodes is imposed through
an “equilibrium scheme” [Huang et al., 2011]: at the end
of each time step, and at the next collision step, the equi-
librium distributions gi of these boundary nodes is set at
the next collision step to the equilibrium distribution geq

i ,
with the desired temperature. For the nodes located at the
outlet in the fluid, our boundary condition is equivalent, at
first order, to zero temperature gradient along the x direc-
tion. The systems considered are long enough so that the
beginning of the systems is almost not influenced by outlet
conditions (this boundary condition only creates a local ar-
tifact at the outlet). At the initial time, the rock and fluid
have a temperature of respectively T 0

r and T 0
f .

3. Geometry and hydro-thermal regime
studied

We focus on the hydrothermal behavior within a fracture
with a very simple geometry: it is a fracture with flat walls
parallel to the x − y plane, perturbed by a single asperity
with sharp edges (Fig. 3). The fracture aperture a(x) is
invariable along the y direction. In cross-view (x− z plane),
the asperity has a triangle shape characterized by its width
L, depth d, and abscissa position x0:

a(x) = A0 + d Λ

[
2

L
(x− x0 − L/2)

]
, (13)

where Λ is the unitary triangle function:

Λ(x) =

{
0, |x| ≥ 1

1− |x| , |x| < 1.
(14)

For all the computations done with LBM in this study,
the fracture is embedded in a solid whose dimension are
(Lx, Lz) = (200 mm, 89.5 mm). This medium can be com-
pletely seen in Fig. 2a. The bottom wall of the fracture
intersects the x − z plane in z = 39.75 mm, and the asper-
ity is characterized by (A0, x0) = (10 mm, 5 mm), while d
and L vary. The lattice discretization is δx = 0.5 mm and
δt = 0.1250 s.

The LBM simulations are done at low Reynolds number:
Re = 0.17, where it is computed as Re = 2AuM/(3ν) with
uM being the maximum velocity within a flat fracture sepa-
rated by two parallel plates, of aperture A0, estimated from
the classical cubic law uM = FA2

0/(8η) [Guyon et al., 2001].
For the thermal parameters, two different thermal diffu-

sivity values are used in LBM for the fluid and the solid.
The ratio of both, χr/χf = 0.17, corresponds to the typical
ratio of diffusivity values for crystalline rocks (of order of
1 mm2/s [Drury , 1987]) and water (at 100°C, 0.17 mm2/s
– [Taine and Petit , 2003]). The Péclet number, defined as
Pe = uMA/χf is set to 45.96. The orders of magnitude of
Reynolds and Péclet numbers that we use are compatible
with the lubrication approximations.

4. Results: example of application

4.1. Illustration of the hydraulic behavior

4.1.1. Hydraulic lubrication approximation for a tri-
angular asperity

The lubrication velocity is computed using Eq. (2). For
an aperture which is invariant along y, the Reynolds equa-
tion Eq. (1) simplifies to

∂xp = K/a(x)3, (15)

and the hydraulic flow is constant:

q = −K/(12η)x̂, (16)

where K is a constant. By integrating the pressure gradient
between the inlet and outlet of the fracture, one gets

K = −FLx
(∫ Lx

0

a−3(x)dx

)−1

, (17)

where F is the pressure gradient imposed between the inlet
and outlet of the fracture. K is calculated analytically for
the considered geometry (Eq. (13)), by noticing that:∫ Lx

0

dx

a3(x)
=
−3A0dL− 2d2L+ 2A2

0Lx + 4A0dLx + 2d2Lx
2A3

0(A0 + d)2
.

(18)

4.1.2. Fully resolved hydraulic behavior compared to
the lubrication approximation

Let’s first comment on the precision of the lattice Boltz-
mann (LB) results. We have some errors that come from
the chosen implementation of the boundary conditions com-
bined to the type of LBM. Because the fluid is slightly com-
pressible with LBM, the averaged flow qx is not constant
(the relative standard deviation of qx is around 0.39% for
this example), and therefore the hydraulic aperture slightly
varies according to the x−domain where it is computed.
We chose to compute H at the asperity scale, i.e. for
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x0 ≤ x ≤ x0 + L. For the case of a parallel flat wall
fracture separated by A0 = 10 mm, with a flow character-
ized by Re = 0.17, solved with steps δx = 0.5 mm, and
δt = 0.125 s, the absolute error on the computed velocity,
defined as Ea = 〈

(
uLB
x − ulx)

)2〉1/2 is 5.36 10−4 mm/s. The
relative error, defined as Er = Ea/〈ulx〉 is 3.22%. The rela-
tive error on the hydraulic aperture computed in this case is
1.11%. In order to take into account this numerical error, the
comparison between LB and lubrication results is done using
normalized hydraulic apertures. The hydraulic aperture ob-
tained from the LBM calculation, and the one obtained from
the lubrication approximation are respectively normalized in
this way H∗

LB = HLB/H
//
LB and H∗

lub = Hlub/H
//
lub. H

//
LB and

H
//
lub are the hydraulic apertures in parallel plate geometry,

computed respectively with the LBM (discretized aperture),
and with the lubrication approximation. We note also an er-
ror on the direction of the velocity vectors in the deepest part
of the corner, for velocity vectors whose norm are of order
10−5 mm/s, i.e. very low velocity compared to the average
velocity (see Fig. 3). In the zones where artefacts at very
low velocities were observed, the thermal exchange is mainly
led by diffusive exchanges. Therefore, we estimate that the
error in the direction does not influence much the thermal
exchange. Note that lattice Boltzmann methods with bet-
ter precision are also available, like those with a modified
equilibrium distribution [He and Luo, 1997], or those with
two relaxation times [e.g. Talon et al., 2012].

Figure 3a shows the velocity norm under lubrication ap-
proximation (cross-section view), for a fracture with an as-
perity characterized by (d, L) = (20 mm, 50 mm). This has
to be compared with Fig. 3b which shows the velocity
norm and vectors at steady state across the fracture aper-
ture, computed with the LBM. The difference of the velocity
norms is in addition shown in Fig. 4a. In this configuration,
the fluid flows within the asperity, and the main flow di-
rection changes gently in accordance with the topography
of the walls. The velocity field fully resolved and the one
solved with the lubrication approximation show some sim-
ilarities. However, some details are not captured with the
lubrication approximation, notably in the deepest part of
the corner where the full computation locally shows fluid at
rest. It is computed that H∗

LB = 1.06 and H∗
lub = 1.07 for the

geometry shown in Fig. 3a, with (d, L) = (20 mm, 50 mm).
Those values only differs by 1.15% i.e. the lubrication ap-
proximation still holds on average.

Let depart further from the smooth geometry where the
lubrication assumptions apply. The same geometry as pre-
viously is used, but L is set to L = 10 mm, so that the
geometry has a steeper topography. Similarly to Figs. 3a-b,
Figs. 3c-d respectively show the lubrication and fully re-
solved velocity fields. Here, it is very clear that both are
very different (see also Fig. 4b). In the asperity, a sep-
aration zone is observed: the fluid velocity is very small,
and Fig. 3e shows that the fluid recirculates as if being
trapped. The velocity profile is consequently very different
from a quadratic profile as in Eq. (2). For the geometry
shown in Figs. 3c-d (d, L) = (20 mm, 10 mm), it is com-
puted that H∗

lub = 1.01 and H∗
LB = 1.00. Therefore, it means

that macroscopically the lubrication approximation is still
a good estimation is this case. It is however clear that lo-
cally, within the asperity, the lubrication approximation is
not valid.

Fractures with a bump (asperity with d < 0) that re-
duces the aperture, are also investigated. Figs. 3f-g show
the lubrication, and fully resolved velocity fields. The main
differences are the two small separation zones with low veloc-
ities that appear just before and after the bump (Fig. 4c),
in the corners with obtuse angles. This tiny asperity re-
duces the hydraulic aperture of 3.0%, with H∗

LB = 0.96 and
H∗

lub = 0.98.

4.2. Illustration of the thermal behavior
4.2.1. Thermal lubrication approximation for a tri-
angular asperity

a)

b) c)

Figure 2. Temperature maps at steady state for var-
ious asperity shapes: (a) (d, L) = (20 mm, 50 mm), (b)
(d, L) = (20 mm, 10 mm), (c) (d, L) = (−5 mm, 5 mm).
The black lines delimits the fracture embedded in the
rock. The gray lines are isotherm lines (80, 100, 120 and
140°C).

For an aperture which is invariant along y, the hydraulic
flow q is constant (Eq. (16)), and T = T . By assuming
that the rock temperature Tr is constant, Eq. (5) simplifies
into a first order linear ordinary differential equations with
constant coefficients which has for solution (in a stationary
regime):

T − Tr =
(
T 0
f − Tr

)
exp

(
−
∫ x

0

A0

a(ξ)R
dξ

)
. (19)

For the considered geometry (Eq. (13)),
∫ x
0

(a(ξ))−1dξ can
be computed analytically and expressed as a function of R
(Eq. (9)). The solution T ∗

= (T − Tr)/(T 0
f − Tr), is:



e−
x
R , 0 ≤ x ≤ x0

e−
x0
R

[
1 + 2d(x−x0)

A0L

]−LA0
2dR

, x0 ≤ x ≤ x0 + L
2

e−
x0
R

[
A0(A0L+2d(L−x+x0))

L(A0+d)2

]LA0
2dR

, x0 + L
2
≤ x ≤ x0 + L

e
L−x
R

(
A0
A0+d

)LA0
dR

, x0 + L ≤ x ≤ Lx.
(20)

This solution is shown in plot (a) of Fig. 5 and (a’, b’, c’) of
Fig. 7, where lnT

∗ as a function of x is plotted for several
geometries. Within the lubrication approximation, the slope
of lnT

∗ as a function of x (Eq. (20)) is the same before and
after the asperity, (i.e. for x ≤ x0 and for x ≥ x0 +L) and it
is given by 1/R, where R is defined in the lubrication regime
with Eq. (9), q being computed from Eqs. (16) to (18). Both
straight lines have however different ordinates at the origin.
This comes from the complicated behavior within the asper-
ity zone. As a consequence the fit of lnT

∗
(x) with a single

straight line, following Eq. (8), clearly does not capture the
details of the thermal exchange. In Fig. 7e, the linear fits
done for the restricted range 0 ≤ x ≤ 55 mm (in the vicinity
of the inlet) are shown. The negative inverse of the slope of
these fits is named R1 lub (reported values in Tab. 1), and
it can be compared to the R values. For hollow asperities
(d > 0), R1 lub > R. It means that, according to this so-
lution, the heat exchange efficiency is reduced around the
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Figure 3. (Color online) (a) Cross section view of the velocity norm (unit of the color scale: mm/s) under
lubrification approximation (u = ux). The shape of the asperity is defined by (d, L) = (20 mm, 50 mm).
(b) Velocity vectors and their norm in color, with LBM. Same color scale as Fig. 3a. (c, d) Same as (a,
b) for (d, L) = (20 mm, 10 mm). (e) Zoom of (d) with a different color scale, and the normalized velocity
vectors u(x, z)/ ‖u‖ superimposed. (f, g) Same as (c, d, e) for a bump asperity: (d, L) = (−5 mm, 5 mm).
The scaling used to represent the vectors is six times smaller for (f, g) than for (c, d) and (a, b).
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Figure 4. (Color online) Cross section view of the difference of the velocity norms obtained with
lubrication and with LBM, for the geometries shown in Fig. 3

corner, compared to the heat exchange efficiency far from
the corner. On the contrary, for bumps d < 0, R1 lub < R.
The linear fit of the second part (far from the inlet), for
55 ≤ x ≤ 150 mm, results in a thermal length R2 lub analyti-
cally always equal to R. Indeed, since x0 and L values fulfill,
by choice, x0 +L ≤ 55 mm, this second fit is systematically
done after the asperity.
4.2.2. Fully resolved thermal behavior compared to
the lubrication approximation

In this subsection, we first comment qualitatively on the
maps of the temperature obtained with LBM for few differ-
ent asperities, in a stationary regime. The comparison to the
lubrication approximation is then done quantitatively using
average temperatures curves, from which thermal lengths

are computed. The transient regime is also discussed at the
end of this subsection.

Figure 2 shows the temperature map at steady state cor-
responding to the hydraulic behavior illustrated in Fig. 3.
The shape of the isotherm lines within the fluid are
strongly correlated with the hydraulic flow. For (d, L) =
(20 mm, 50 mm), the cold fluid is clearly advected into the
asperity. On the contrary, for (d, L) = (20 mm, 10 mm), the
deepest part of the asperity is not affected by the injection
of the cold fluid (very low velocities in this separated flow
zone), and it heats up fast by conduction. As a consequence,
the fluid within this second channel is warmer (ex. compare
isolines T = 80°C on Figs 2a-b. For the narrower fracture,
Fig. 2c, with (d, L) = (−5 mm, 5 mm), the reduction of the
hydraulic flow (H∗

LB = 0.96 and H∗
LB = 1.06 respectively

for (d, L) = (−5 mm, 5 mm) and (d, L) = (20 mm, 50 mm))
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inhibits the propagation of the cold fluid. This fluid con-
sequently heats up in a shorter distance (better conductive
transport) than for the two other cases. The rock cools down
by conduction: the wall temperature is inferior to the rock
temperature at the border of the system (150°C), especially
where the rock is surrounded by cold fluid, for instance in
Fig. 2c, at (x, z) = (10 mm, 45 mm).

The thermal behavior is now quantified in the same way
as done in Neuville et al. [2010, 2011], i.e. by computing T ∗

(Fig. 5) as in Eq. (6). For reference, we first look at the re-
sults obtained in a fracture with flat parallel walls. Fig. 5a
shows lnT

∗ obtained with lubrication approximation: it is
a straight line with a slope 1/R

//
lub, with R

//
lub = 37.2 mm.

This result is compared to a LB simulation performed with
an imposed constant temperature rock – i.e. only the fluid
temperature is computed. This plot (Fig. 5b) can be very
well approximated with a single straight line of slope 1/Rnr

1,2,
where Rnr

1,2 = 42.8 mm. This value is higher than R//lub, i.e.
the thermal exchange is worse than expected from the lu-
brication approximation. In the lubrication approximation,
the in plane diffusion in the fluid is neglected. The differ-
ence between R//lub and Rnr

1,2 means that the in plane-diffusion
tends to inhibit the heat exchange.

Then, we relax the hypothesis of constant rock tempera-
ture and look at the effect of the heat diffusion in the rock:
the LB solving is done both in the rock and fluid. Two
definitions of T ∗ are proposed. The first way is to com-
pute it as

(
T − T 0

r

)
/
(
T 0
f − T 0

r

)
(Fig. 5c). In this expres-

sion, the cooling down of the rock intervenes only indirectly
through its influence on T . This plot is close to a linear
plot with slope 1/R0

1 where R0
1 = 106.2 mm (fit performed

for x ≤ 55 mm). This value is much higher than Rnr
1,2 and

R
//
lub: it shows that the temperature evolution of the rock

reduces by more than a factor two the heat efficiency. The
second way of defining T ∗ takes into account the variability
of the bottom wall temperature, Tr, which is computed as
Tr(x) = T (x, z = 39.5 mm). This definition of T ∗ (Fig. 5d)
emphases the dynamic of the fluid temperature compared
to the wall temperature. Contrary to plots a-c, plot d of
Fig. 5 is not a straight line. The beginning of this plot (for
x ≤ 55 mm) is approximated by a linear fit of slope 1/Rwr

1 ,
where Rwr

1 = 42.4 mm. The concave curvature of plot (d)
of Fig. 5 around x = 55 mm however attests a change of
thermal regime. The second part of the curve is fitted with
a straight line of slope 1/Rwr

2 , where Rwr
2 = 100.2 mm. By

choosing the Péclet number equal to 45.96, there is a good
agreement between the thermal lengths R//lub and Rwr

1 . Doing
so, we have a reference case where the lubrication assump-
tions holds for the computation of the average temperature,
in the vicinity of the inlet of the fracture. The Péclet num-
ber significantly influences the agreement between R//lub and
Rwr

1 values. At higher values (e.g. Pe = 500) the thermal lu-
brication approximation clearly loose its validity. Further in
the fracture, the thermal length R2 is higher than Rwr

1 : the
thermal exchange efficiency between the wall and the fluid is
lower than around the injection zone. This change of regime
is not predicted by the lubrication approximation, and does
not appear with an imposed wall temperature. Here, the
rock temperature Tr evolves over time, and is not anymore
uniform at stationary regime along the fracture: this spatial
variability leads to a spatial change of regime in the fluid
temperature.

Hereafter, the average temperature T ∗ in LB simulations
is computed with the second definition (i.e. using the space
variable wall temperature Tr(x) = T (x, z = 39.5 mm)), for
other geometries (Fig. 7). The full resolution solving (plots
a, b, c) are compared to the lubrication approximation (a’,
b’, c’). In general, the lubrication approximation gives very
different results, especially for large x. For negative d values
(bumps), the LB computation shows that the temperature
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Figure 5. (Color online) Plots (a-d) show the opposite
of the logarithm of the averaged temperature − ln

(
T

∗
)

as a function of x computed in a fracture with flat parallel
walls separated by A0. The temperature is computed (a)
with the lubrication approximation, and (b, c, d) with
the full resolution in LB. “flat nr” (b) and “flat wr” (c-d)
stand for computation done within a flat geometry, re-
spectively without and with rock temperature variation.
The vertical lines shows the limits used for the fits (whose
slopes are respectively 1/R1 and 1/R2) done on range
x ≤ 55 mm and ≤ 55 ≤ 155 mm. Plot (c) is obtained
using the same simulation as plot (d); it differs from plot
(d) by the way of computing T ∗: (c) is obtained with the
first definition (T 0

r used as reference – see text) and (d)
with the second one (where the variable wall temperature
Tr intervenes).

behavior changes at the abscissa corresponding to the edge
of the corner (x0 +L/2). Within the lubrication, it is possi-
ble, by adapting R in Eq. (20), to obtain a similar behavior
for x < x0 + L/2, but the change of slope in x = x0 + L/2
cannot be modeled in this way, as attested by the poor qual-
ity of the fit shown in plot (d) of Fig. 7. This change of slope
might be linked to the change of the hydraulic flow, also oc-
curring around the corner edge, and not predicted by the
lubrication approximation. For positive d values (hollow
asperity), the corner geometry causes smoother variations
in the slope of − ln(T

∗
), than expected with the lubrica-

tion approximation. The incomplete modeling of the heat
diffusion artificially implies sharper temperature variations.
Some similarities in the variations can however been ob-
served, notably for the highest values of (d, L) (e.g. Fig. 7b,
b’, b”), close to the injection zone (x ≤ 55 mm), provid-

Table 1. Thermal lengths obtained for various triangular
geometries, obtained from Eq. (9) (for R) and from the fits of
the curves lnT

∗ (cf Fig. 5 and Fig. 7). Subscripts 1 and 2 refer
to the range of values where the fit has been done (x ≤ 55 mm
and 55 ≤ x ≤ 150 mm). “flat wr” and “flat nr” stand for flat
geometry with and without rock temperature variation

lubrication LB ratios
d, L R R1lub R1 R2

R1

R
//
lub

R1
R1lub

R2

R
//
lub

R2
R

flat wr 37.2 37.2 42.4 100.2 1.14 1.14 2.70 2.69
flat nr 37.2 37.2 42.8 42.8 1.15 1.15 1.15 1.15
20, 10 38.7 41.7 45.5 98.0 1.22 1.09 2.63 2.53
20, 50 46.2 92.3 64.8 101.5 1.74 0.70 2.72 2.20
-5, 5 35.4 34.6 38.5 91.7 1.04 1.11 2.46 2.59
-5, 50 24.8 17.0 26.6 79.3 0.72 1.58 2.1 3.20
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Figure 6. (Color online) Temperature as a function of time, at different locations a-h, for the geometry
characterized by (d, L) = (20 mm, 50 mm), and for the flat geometry (caption: e-flat). The locations,
indicated by the letters a-h, are shown in Fig. 8.
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Figure 7. (Color online) Opposite of the logarithm of
the averaged temperature − ln

(
T

∗
)

as a function of x
computed with the full resolution (a, b, c) or with lu-
brication approximation (a’, b’, c’), for various aperture
geometries (d and L indicated in the caption). Plot (b”)
is obtained with the same equation as (b’) (Eq. (20)),
with the same (d, L) values, but with a different R value.
Plots (d) and (e) are the linear fits of (a-c, a’-c’) over
x ≤ 55 mm. The vertical lines shows the limits used for
the fits.

ing that the thermal length is adjusted (32.3 mm instead of
46.2 mm for (d, L) = (20 mm, 50 mm)).

The quantification of the thermal behavior is done in the
same way as previously (cf 4.2.1). Two thermal lengths R1

and R2 are defined, by approximating − ln(T
∗
) with two

linear fits on two x ranges. R1 and R2 (reported in Tab. 1)
respectively characterizes the thermal behavior in the vicin-
ity, and far from the injection zone, (i.e. for x ≤ 55 mm and
55 ≤ x ≤ 150 mm). These values are commented in Sec. 5.
The limit of 55 mm corresponds to the change of behavior
observed with the flat fracture in LB (Fig. 5d). The range
x ≤ 55 mm also systematically includes the asperity: the
temperature estimate in x = 55 mm somehow reflects what
would be observed by a temperature probe located there,
investigating at the integrated effect of the morphology.

The temperature of the fluid and rock evolves over time
(Fig. 8). Because the diffusivity of the fluid is much higher
than that of the rock, first, the fluid warms up fast (points
and plots b, c, e, h in Fig. 6). On the contrary, the points in
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T(°C) t = 1375 s

g
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he
b
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h
e

b
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c

a

Figure 8. (Color online) Temperature as a function
of time, for the geometry characterized by (d, L) =
(20 mm, 50 mm), at t = 1375 s and t = 2250 s, with
isotherm lines (40, 65, 140, 148)°C. The letters a-h in-
dicates the locations where the temperature evolution is
observed in Fig. 6.

the rock which are close to the fluid, cool down fast (plots
a, f of Fig. 6). With a slower dynamic (intermediate time
scale) the heat source maintaining the system borders at a
hot temperature, provides a heat flux that diffuses towards
the walls (points a and f), which causes their temperature
to increase again. The temperature at points located far
enough from the fluid (d, g), does not change as fast at
early times; points (d, g) simply cool down in a monotonic
way. Similar variations are observed for a flat fracture. The
sudden slow down of the heating process of points e and
h (around 2000 and 4000 s), located after the asperity can
however specifically be attributed to the asperity (see for
comparison, plot e-flat, obtained in a flat geometry). This
variation is not observed at points (b) and (c), located in the
fluid, close to the injection zone. Finally the temperature
field decreases everywhere at very low time scale, and the
system seems to reach a steady state. The variation of the
temperature field over time is complex as, two points close
to each other, may have different variations. Some points
reheat and cool down alternately several times, which makes
it difficult to forecast the extracted heat.



NEUVILLE ET AL.: ASPERITIES INFLUENCE ON HYDROTHERMAL EXCHANGES X - 9

a) b)

Figure 9. (Color online) Color maps of the normalized hydraulic aperture H∗
LB (a) and normalized

thermal length R1/R
wr
1 (b) as a function of the asperity depth d and width L. H∗

LB, and R1, Rwr
1 are

respectively defined in paragraphs 4.1.2 and 4. The normalizations are done by constant values. The
dots indicate the parameters for which the values are computed. The gray lines are isolines. The black
dashed and dot-dashed lines respectively are the lines d = 0.4L and d = 0.2L.

5. Results: exploration of the parameter
space

5.1. Hydraulic aperture and thermal length computation

Exploration of the parameter space for d and L, and their
influence on the hydraulic aperture and the thermal length
has been investigated. Figure 9 shows a color map of the
normalized hydraulic aperture H∗

LB as a function of d and
L. For d > 0 (channel larger than A0with a hollow asper-
ity), the permeability increases compared to a flat channel
of aperture A0, as HLB > H

//
LB. For d < 0 (channel narrower

than A0 with a bump), the opposite behavior is observed
HLB < H

//
LB. It is possible to divide the map in three ar-

eas that can be approximately separated with two straight
lines. For d > 0.4L (black dashed line), the hydraulic aper-
ture for a given width L tends to be constant (vertical iso-
lines on Fig. 9) whatever the depth d of the asperity is.
On the contrary, for d < 0.2L (black dash-dotted line), the
hydraulic aperture tends to be constant for a given d (hor-
izontal isolines). Among the explored β angles (defined as
arctan(2d/L), in the range 0 < β ≤ 360°, not exhaustively
explored), these limits corresponds to the angles β < 103°
(d > 0.4L) and β > 136° (d < 0.2L). This last limit angle is
of same order as the one obtained by Moffatt [1964], whose
study was done using slightly different flow assumptions.
He showed that even at vanishing Reynolds number, eddies
form in a corner between two intersecting planes when the
angle exceeds 146°, when a shear flow is imposed far away
from the corner. The presence of eddies is well supported
in our case by almost zero velocity values and/or negative
velocities observed in the middle of the corner (see Fig. 3e).

a) b)

Figure 10. (Color online) Color maps as a function of
the asperity depth d and width L of (a) the hydraulic
aperture computed with the lubrication approximation,
H∗

lub = Hlub/H
//
lub, and (b) the ratio between the hydraulic

aperture computed with LBM, H∗
LB, and the one com-

puted with the lubrication approximation, H∗
lub . The

dots indicate the computed values from which the map
is deduced. The purple lines are isolines.

The flow in the corner is very small, almost separated from
the main flow; it thus does not contribute significantly to
the hydraulic flow.

Figure 9 shows a map of the thermal lengths R1 (obtained
from LB computation for range x ≤ 55 mm), normalized by
Rwr

1 (constant value) as a function of d and L values. For
any geometry with d > 0 (hollow asperities), the thermal
exchange around the asperity is inhibited compared to that
within a flat fracture (R1 > Rwr

1 ). For d < 0, the thermal
exchange in on the contrary better (R1 < Rwr

1 ). For geom-
etry with angle β > 136° (d < 0.2L), for a given depth d,
R1 shows few variations. For the range 55 ≤ x ≤ 150 mm,
the thermal length R2 was also computed. R2 is on average
2.3 times higher than RLB

1 : the thermal exchange is far less
efficient than it is close to the injection zone. Far from the in-
jection zone, the thermal exchange also does not vary much
with the geometry. Indeed, on average, R2/R

wr
2 = 0.98,

with a standard deviation of 0.04).

5.2. Comparison to the lubrication approximation

It is questionable if our parameter study may be com-
pared to the results obtained in Neuville et al. [2010]. This
latest study focused on the hydraulic aperture and ther-
mal length obtained for self-affine fractures under lubrica-
tion approximation, using the analysis exposed in 2.1. By
contrast with the current study, the aperture studied in
Neuville et al. [2010] is self-affine, which means that using
the Fourier decomposition, it is decomposed in a(x, y) =∑
k ã(kx, ky)e−2iπ(kxx+kyy), where k is the wave vector and

ã(kx, ky) scales as ã(kx, ky) ∼ Ck−1−ζ for k 6= 0. For such
aperture, it was shown in Neuville et al. [2011] that the hy-
draulic and thermal behavior can mostly be deduced from
the highest wave lengths of the aperture. For a flat aperture
perturbed with an isolated triangular shape, the situation
is very different. Its power spectrum at the largest length
scales not only depends on the triangular asperity shape,
but also depends on the length of the flat area before and
after the asperity. For a given pressure gradient, perform-
ing statistics (like calculating the hydraulic aperture, mean
aperture, and standard deviation) at the asperity scale or
over the full fracture scale provides very different results.
We clearly see that HLB/A is dominated by the range where
it is calculated, and are therefore difficult to be compared
with the values obtained under lubrication in Neuville et al.
[2010]. For this reason, we compared (Fig. 9) the hydraulic
aperture H∗

LB to the one obtained under lubrication approx-
imation H∗

lub, defined as done in 4.1.2.
Figure 10a shows the hydraulic aperture under lubrica-

tion H∗
lub. It can be noticed that the isoline shapes differ
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a) b)

Figure 11. (Color online) Color maps of (a) the normalized thermal length R1/R1 lub (R1 computed
for x ≤ 55 mm) and (b) R2/R (computed for 55 ≤ x ≤ 150 mm) as a function of the asperity depth d
and width L. R1,2, R1lub and R are respectively defined in paragraphs 4, 4.2.1 and in Eq. 9. The dots
indicate the computed values from which the map is deduced. Isolines for R∗

1 or 2 are shown.

from that shown in Fig. 9: the hydraulic aperture com-
puted under lubrication approximation evolves smoothly for
a constant depth d or width L. It is also not possible to de-
limit the different zones separated by the straight lines as
done for the LBM computation in paragraph 5.1. Figure 10b
shows H∗

LB/H
∗
lub. This ratio is always very close to 1, with

a systematic characteristic: H∗
LB < H∗

lub. It means that the
hydraulic flow is very slightly overestimated with the lubri-
cation approximation. However, it should be kept in mind,
that the hydraulic aperture only reflects an averaged perme-
ability, and not the local flow differences. We will now see
if these local differences may be seen through the thermal
behavior.

Figure 11 shows a map of the thermal lengths R1, normal-
ized by R1 lub, which also varies with the geometry, as a func-
tion of d and L values. The domain can be separated in two.
First the geometries where R1/R1 lub < 1: for these geome-
tries, the thermal exchange is actually better than expected
from the lubrication approximation. These geometries cor-
respond to asperities which are deep and large enough. This
can be explained by the fact that the lubrication approxi-
mation does not take into account the local reduction of
the hydraulic flow within the corner, which diminishes the
convective heat transport, and therefore favorites a better
local heating up, by conduction. Second, the domain where
R1/R1 lub > 1: for these geometries the thermal exchange
is not as good as expected from the lubrication approxima-
tion. Note that, for the geometries with d < 0, R1 is over-
estimated, as it is obtained from a fit done for x ≤ 55 mm,
while a change of regime occurs in the middle of the asper-
ity (the thermal exchange is observed to be less efficient for
x ≥ x0 + L/2).

6. Discussion and conclusion

Our hydraulic results are coherent with literature: quasi
stagnant fluid is observed in the corners with small β angles.
For the studied corner geometry, the hydraulic aperture ob-
tained with the full resolution, although not very different,
is systematically smaller than the one obtained with lubrica-
tion assumptions. Compared to fractures with parallel flat
walls, the hydraulic aperture is systematically higher for the
fractures with the triangular hollows, and smaller for bump
asperities: this is completely expected as the aperture is
clearly either increased or reduced. For the asperities with
β angle superior to 136°, the hydraulic aperture depends al-
most only on the depth of the asperities, while for β angle
inferior to 103°, the hydraulic aperture depends almost only
on the width of the asperities. The fluid trapped in deep
asperities does not mix easily with the main flow. In order

to mix better this trapped fluid, and prevent stagnant fluid,
it could be interesting to stimulate the system with oscillat-
ing pressure gradients. The oscillating frequency should be
smaller than the diffusion time in the corner, i.e. smaller
than d2/ν.

For the heat exchange, we notice that the deep part of
the corner, although insignificant in term of hydraulic flux
contribution, changes the heat exchange. Compared to frac-
tures with parallel flat walls, the heat efficiency is systemat-
ically worse (factor 1 to 1.4) for the studied fractures with
hollow asperities, and better for the bumpy ones (factor 0.7
to 1). The hydraulic aperture only depend on the width of
the asperity for β < 103°. This feature is not recovered for
the thermal lengths: this shows that the thermal exchange
is even more dependent on the geometry shape than the hy-
draulic behavior. The fluid trapped in the corner is mostly
sensitive to heat diffusive processes whose time scale depend
of
√

(d2f/χf ) and
√

(d2i /χf ), where df is the distance to the
well flowing fluid and di is the distance to the fluid-rock in-
terface. It means that the deepest point in the corner, which
is in contact with the warm rock, transmits the heat of the
rock to the main flowing fluid at latest after ∆t = d2/χf ,
where d is the depth of the corner. When the main flow
penetrates deeper in the corner, the distance between the
flowing fluid and warm wall is reduced: we may think that
this transfer time is reduced. This is however not neces-
sary true since the volume of fluid trapped in the corner,
as well as the surface of exchange (interface fluid rock) also
change and modify the heat exchange. For instance very
deep and thin asperities transmit very efficiently the heat
from the rock. It is important to note that the temperature
efficiency can however not be directly linked neither to the
volume of the asperity nor to the ratio of the volume and
surface of exchange. Another important parameter is the
distance ds between the heat source and the fluid-rock in-
terface: the variations of the wall temperature are sensitive
to both time scales

√
(d2f/χf ) and

√
(d2s/χr). If both time

scales are of same order, the temperature fluctuates quickly
and is very sensitive to local heterogeneities. On the field, it
is very likely that ds >> df : the diffusion process transports
the heat through long distances in the rock. This will bring
slower dynamic in the temperature variation. Local temper-
ature heterogeneities due to complex geometry of fracture
will however still behave as local sources (cooler or warmer
sites than the surroundings) and create short time scale vari-
ations. The forecast of pumped water temperature should
therefore not relies on simple parameters, but should really
take into account the geometry of the porous medium. The
diffusive exchange is important not only in the corner, but



NEUVILLE ET AL.: ASPERITIES INFLUENCE ON HYDROTHERMAL EXCHANGES X - 11

also more generally, close to the fluid rock interface, where
the velocity is low. The advective heat transfer mostly oc-
curs in the middle of the channel, where the velocity is high;
this transfer is characterized by time scales of order of Lx/u.
In order to better mix the fluid between the zones where
the advective process is efficient and those where the dif-
fusive process occurs, it would be interesting to introduce
some tortuosity in the fracture (with a typical length scale
of order χf/u), or to stimulate the system by oscillating the
pressure gradient, with a time scale smaller than

√
(d/χf ).

The oscillations may locally introduce changes of direction
of the flow, and transverse velocity components, which may
very efficient mix the fluid. The computed thermal lengths
can be associated to heat efficiencies. The heat exchange
efficiency may also be defined in other ways, by computing
the difference of the total energy flux between the inlet and
outlet of the fluid.

The full resolution of the temperature field computed
with the lattice Boltzmann method shows that the heat effi-
ciency evolves with the distance to the inlet of the fracture.
This evolution can be attributed both to the asperity, and
the cooling of the rock. Two thermal lengths were therefore
defined to evaluate the heat efficiency. Far enough from the
inlet, the thermal lengths obtained with lubrication approx-
imation are clearly underestimated (of a factor 2.2 to 3.2),
which means that the heat efficiency is overestimated. Close
to the injection point, the efficiency is either under or over
estimated, depending on the shape of the asperity. For deep
and thin asperities, as well as rather flat asperities (asper-
ities with small volume), and bump asperities, the thermal
exchange efficiency is underestimated with the lubrication
approximation of a factor 1 to 1.6. It is otherwise slightly
overestimated (factor 0.7 to 1).

The time variations of the heating and cooling of the fluid
and the rock have also been studied. It was observed local
and sudden slow downs of the heating process, probably
caused by the asperity. A similar phenomena with a more
complicated geometry could explain the sudden temperature
variations during transient regime observed when pumping
in geothermal systems.

In spite of the simplicity of the studied fracture geometry,
the observed hydro-thermal exchanges are finally very com-
plex. The local three-dimensional phenomena modify both
the hydraulic and thermal macroscopic properties, in a dif-
ferent way. To extend this work on real field, it would be
interesting to consider multiplicity of scales – either a distri-
bution of asperity sizes, or a network of fractures –. At the
field scale, it is not clear how much time will be necessary
for a real steady state to be reached. This depends on the
volume of the hydraulically stimulated rock, and also on the
distance and time dependency of the heat sources.
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