
Large-scale hydrologic and hydrodynamic modelling of

the Amazon River basin

Rodrigo Paiva, Diogo Buarque, Walter Collischonn, Marie-Paule Bonnet,
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Abstract 22 

 23 

In this paper, a hydrologic/hydrodynamic modelling of the Amazon River basin 24 

is presented using the MGB-IPH model with a validation using remotely-sensed 25 

observations. Moreover, the sources of model errors by means of the validation and 26 

sensitivity tests are investigated and the physical functioning of the Amazon basin is 27 

also explored. The MGB-IPH is a physically-based model resolving all land 28 

hydrological processes and here using a full 1D river hydrodynamic module with a 29 

simple floodplain storage model. River-floodplain geometry parameters were extracted 30 

from SRTM DEM and the model was forced using satellite-derived rainfall from 31 

TRMM3B42. Model results agree with observed in situ daily river discharges and water 32 

levels and with three complementary satellite-based products: (i) water levels derived 33 

from ENVISAT altimetry data; (ii) a global dataset of monthly inundation extent; and 34 

(iii) monthly terrestrial water storage (TWS) anomalies derived from GRACE. 35 

However, the model is sensitive to precipitation forcing and river–floodplain 36 

parameters. Most of the errors occur in westerly regions, possibly due to the poor 37 

quality of TRMM 3B42 rainfall dataset in these mountainous and/or poorly monitored 38 

areas. Also, uncertainty in river-floodplain geometry causes errors in simulated water 39 

levels and inundation extent, suggesting the need for improvement of parameter 40 

estimation methods. Finally, analyses of Amazon hydrological processes demonstrate 41 

that surface waters governs most of the Amazon TWS changes (56%), followed by soil 42 

water (27%) and ground water (8%). Moreover, floodplains play a major role in stream 43 

flow routing, although backwater effects are also important to delay and attenuate flood 44 

waves. 45 

 46 
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1. Introduction 51 

 52 

The development of large-scale hydrological models has been a subject of 53 

important research topics in the past decades. These models, when used in forecast 54 

systems, may help reducing population vulnerability to natural hazards, particularly in 55 

the Amazon River basin, where extreme hydrological events have occurred in the past 56 

few years, such as the floods of 2009 and 2012 and the droughts in 1996, 2005 and 2010 57 

(Chen et al., 2010; Tomasella et al. 2010; Marengo et al., 2008; Espinoza et al., 2011, 58 

Marengo et al., 2011). Furthermore, complementary to observational studies (e.g. 59 

Frappart et al., 2011a; Azarderakhsh et al., 2011; Alsdorf et al., 2007a), simulation 60 

models can support the understanding and quantification of different Amazon 61 

hydrological processes such as evapotranspiration, soil and groundwater storages and 62 

river-floodplain hydrodynamics (e.g. Costa and Foley, 1997; Trigg et al. 2009). 63 

Part of recent model developments concerns river and floodplain flow, which is 64 

an important factor in the Amazon hydrology. Trigg et al. (2009) showed that the 65 

Amazon flood wave is subcritical and diffusive. Consequently, backwater effects cause 66 

the influence of sea tides on the main river channel to be perceived more than ~1000 km 67 

upstream the river mouth (Kosuth et al., 2009). It also causes the influence of the main 68 

river over its tributaries (Meade, 1991) and controls droughts (Tomasella et al., 2010). 69 

Floodplain inundation is also an important issue (Bonnet et al., 2008; Alsdorf et al., 70 

2007a; and Alsdorf et al., 2010), playing a significant role in large-scale flood 71 

propagation (Paiva et al., 2011b; Yamazaki et al., 2011), in sediment dynamics 72 

(Bourgoin et al., 2007), in chemical and ecological conditions (Junk, 1997, Richey et 73 

al., 2002, Melack et al., 2004, Seyler and Boaventura, 2003 among others) and in the 74 



 

climate system due to land surface and atmosphere interactions (Mohamed et al., 2005; 75 

Paiva et al., 2011c; Prigent et al., 2011). 76 

Recent modelling developments used different kinds of approaches aiming at 77 

sufficiently representing physical processes, but considering computational and input 78 

data limitations. River hydrodynamics are generally represented by simplifications of 79 

Saint Venant equations, including a simplistic relation between water volume storage 80 

and discharge (e.g. Coe et al, 2008), kinematic wave models (Decharme et al. 2011; 81 

Getirana et al. 2012) or Muskingum Cunge type methods (Collischonn et al., 2008; 82 

Beighley et al., 2009); diffusive wave models (Yamazaki et al., 2011) or a full 83 

hydrodynamic model (Paiva et al., 2011a; Paiva et al., 2012) where only the last two 84 

can represent the aforementioned backwater effects. Although the use of hydrodynamic 85 

models within large-scale distributed hydrological models is still uncommon, they also 86 

have been applied in other relatively large-scale problems (Paz et al., 2010; 87 

Biancamaria et al., 2009; Lian et al., 2007). When included, floodplain flows are 88 

modelled by different approaches: assuming storage areas having the same river water 89 

levels (e.g. Paiva et al., 2011a; Paiva et al., 2012; Yamazaki et al., 2011) or considering 90 

water exchanges between river and floodplains as a function of river-floodplain water 91 

slope (e.g. Decharme et al. 2011); adopting a composed river floodplain cross sections 92 

with 1D floodplain flow (e.g. Beighley et al., 2009; Getirana et al., 2012); or 93 

considering 2 D floodplain flows (e.g. Wilson et al., 2007; Trigg et al., 2009). In most 94 

of the cases, river bathymetry is approximated by a rectangular shape with parameters 95 

estimated as function of the upstream drainage area (or mean discharge) using empirical 96 

relations. Digital Elevation Models such as the SRTM DEM (Farr et al., 2007) are used 97 

to estimate floodplain bathymetry and river bottom level or surface water slope. Model 98 

limitations can be due to the simplifications on representing physical processes but also 99 



 

due to the deficiencies on the aforementioned input data. Consequently, model 100 

validations and investigations of the source of errors may guide the improvement of 101 

current models. 102 

In this direction, additionally to in situ data commonly used for validation, 103 

remote sensing-derived hydrological datasets, such as river stages based on satellite 104 

altimetry measurements (Alsdorf et al., 2007b; Santos da Silva et al., 2010), inundation 105 

extent (e.g. Hess et al., 2003; Papa et al., 2010) or Terrestrial Water Storage (TWS) 106 

derived from the GRACE gravimetry from space mission (Tapley et al., 2004), offer a 107 

new opportunity to compare and validate simulation outputs and improve these 108 

hydrological modelling approaches. 109 

In this study, we present a hydrologic/hydrodynamic modelling of the Amazon 110 

River basin using the MGB-IPH hydrological model (“Modelo de Grandes Bacias”, 111 

Collischonn et al., 2007) with a full river hydrodynamic module coupled with a simple 112 

floodplain storage model (Paiva et al., 2011a) validated against remotely-sensed 113 

observations. We first present an extensive model validation based on comparisons 114 

between model outputs and i) in situ stream stages and discharges and also water levels 115 

derived from ENVISAT RA-2 satellite altimetry data from Santos da Silva et al. (2010); 116 

ii) monthly inundation extent from a multisatellite product (Papa et al., 2010); and (iii) 117 

GRACE-based TWS from Frappart et al. (2010; 2011b). Then, using the validation 118 

results and also sensitivity analyses, we determine the source of model errors in the 119 

Amazon, that may be extrapolated to other similar large-scale hydrological models 120 

Finally, the hydrological functioning of the Amazon River basin is explored using the 121 

model results, including aspects such as water balance, the surface, soil and ground 122 

water portioning and the role of river-floodplain hydraulics on stream flow routing. 123 

 124 



 

 125 

2. Methods and datasets 126 

 127 

2.1. The Hydrologic-Hydrodynamic Model 128 

 129 

The MGB-IPH model is a large-scale distributed hydrological model that uses 130 

physical and conceptual equations to simulate land surface hydrological processes 131 

(Collischonn et al. 2007). It uses a catchment-based discretization and the hydrological 132 

response units (HRUs) approach. The simulated vertical hydrological processes include 133 

soil water budget using a bucket model, energy budget and evapotranspiration using 134 

Penman Monteith approach, interception and soil infiltration, surface runoff based on 135 

the variable contributing area concept and also subsurface and groundwater flow 136 

generation. The flow generated within the HRUs of each catchment is routed to the 137 

stream network using three linear reservoirs representing the groundwater, subsurface 138 

and surface flow. River flow routing is performed using a combination of either a 139 

Muskingum-Cunge (MC) method or a hydrodynamic model (HD). 140 

The large-scale hydrodynamic model of MGB-IPH was developed by Paiva et 141 

al. (2011a) and applied to the Solimões River basin by Paiva et al. (2012). This model 142 

differs from the MC model by its capacity to simulate flood inundation and backwater 143 

effects. The model solves the full 1-D Saint-Venant equations (Cunge et al., 1980) for a 144 

river network using an implicit finite difference numeric scheme and a Gauss 145 

elimination procedure based on a modified skyline storage method. Flood inundation is 146 

simulated using a simple storage model (Cunge et al., 1980), assuming that (i) the flow 147 

velocity parallel to the river direction is null on the floodplain, (ii) the floodplains act 148 

only as storage areas, (iii) the floodplain water level equals the water level at the main 149 



 

channel. Consequently, the river-floodplain lateral exchange equals qfl =(dz/dt)Afl(z)/dx 150 

where x and t are spatial and time dimensions and z is the river water level, and Afl(z) is 151 

the flooded area inside a floodplain unit as described below. GIS-based algorithms are 152 

used to extract river and floodplain geometry parameters mainly from Digital Elevation 153 

Models (DEM) (Paiva et al., 2011a). Parameters from a rectangular-shaped river cross 154 

section are estimated using geomorphologic equations and the river bottom level is 155 

estimated from the DEM using corrections presented in Paiva et al. (2011a). The 156 

algorithm delineates discrete “floodplain units” for each sub-reach and extracts a z vs 157 

Afl curve from the DEM for each of them. Corrections are applied on the DEM since 158 

SRTM signal does not penetrate vegetation or surface water and consequently does not 159 

provide ground elevation. Flood inundation results in terms of 2D water levels are 160 

computed based on 1D water level outputs and the DEM.  161 

 162 

 163 

2.2. The Amazon River basin 164 

 165 

The Amazon River basin (Fig. 1a) is known as the world’s largest river basin. It 166 

has 6 million km
2
 of surface area and drains ~15% of the total amount of fresh water 167 

dumped into oceans. This region exhibits high rainfall rates (average ~2200 mm/year) 168 

with high spatial variability (Espinoza et al., 2009a). Contrasting rainfall regimes are 169 

found in northern and southern parts of the basin, with the rainy season happening on 170 

June, July and August  (on December, January and February) in the North (South) with 171 

more (less) defined wet and dry seasons occurring in the southern and eastern (northern 172 

and western) parts of the basin (Espinoza et al., 2009a). The Amazon basin is composed 173 

by three morphological units: the Andes with high altitudes and slopes, the Guyanese 174 



 

and Brazilian shields with moderate slopes and the Amazon plain with very low slopes. 175 

Extensive seasonally flooded areas are found at the Amazon plains (Hess et al., 2003; 176 

Papa et al., 2010). Also, this region is characterized by complex river hydraulics, where 177 

the low river slopes cause backwater effects to control part of the river dynamics 178 

(Meade, 1991; Paiva et al., 2012). The abovementioned characteristics put together give 179 

rise to an interesting discharge regime. Rivers draining southern areas have a maximum 180 

flow occurring from March to May and a minimum one from August to October 181 

(Espinoza et al., 2009a). In some other rivers a weaker seasonal regime can be found, in 182 

some cases due to rainfall characteristics and in others, such as the Solimões/Amazon 183 

main stem, due to the contribution of lagged hydrographs from northern and southern 184 

areas. In the latter, high (low) water occurs generally from May to July (September to 185 

November). 186 

 187 

2.3. Model discretization, parameter estimation and forcing data. 188 

 189 

The model discretization into river reaches, catchments, hydrodynamic 190 

computational cross sections and parameter estimation was carried out using the SRTM 191 

DEM (Farr et al., 2007) with 15″ resolution (~ 500 m) (see Fig. 1a) and GIS based 192 

algorithms described in Paiva et al. (2011a). The Amazon basin was discretized into 193 

5763 catchments, ranging from 100 to 5000 km
2
 (Fig. 1b). 194 

An HRU map with 12 classes was developed using Brazilian and South 195 

American soil and vegetation maps (RADAMBRASIL, 1982; Dijkshoorn et al., 2005; 196 

Eva et al., 2002), and the Height Above the Nearest Drainage (HAND) terrain 197 

descriptor (Rennó et al., 2008) to identify areas close to rivers where plant-groundwater 198 

interactions might take place. 199 



 

To avoid excessive computing time, we used a combination of the Muskingum 200 

Cunge (MC) and hydrodynamic (HD) models (Fig. 1c). River reaches which were  201 

simulated with the HD model were selected using the following criteria: (i) river slope 202 

lower than 20cm/km, based on Ponce’s (1989) criteria for kinematic wave models and 203 

(ii) presence of large floodplains using DEM visual inspection. As a result, ~30% of the 204 

reaches were simulated using the HD model (Fig. 1c). River reaches were then 205 

discretized considering the distance between two computational cross sections 206 

x = 10 km, based on the criteria of the hydrodynamic model numerical scheme 207 

performance (Castellarin et al., 2009; Cunge et al., 1980; Paiva et al., 2011a). 208 

Temporal discretization for both HD and MC models weret = 3600 s, based on 209 

Courant criteria (Cunge et al., 1980).  210 

River geometry parameters, i.e. river width B [m] and maximum water depth H 211 

[m], were estimated as a function of the drainage area Ad [km
2
], using geomorphologic 212 

equations developed from river cross sections surveys achieved at stream gauge 213 

locations provided by the Brazilian Water Resources Agency (ANA). We developed 214 

different sets of geomorphologic equations for six sub-basins within the Amazon 215 

defined by its major tributaries, as shown in Table 1 (also see Fig. 1a).  216 

River bottom levels were estimated from the DEM using Paiva et al. (2011a) 217 

algorithms and Hveg = 17 m (vegetation height) to eliminate DEM errors due to 218 

vegetation. Also, when using DEM to extract water level vs flooded area curves, all of 219 

its pixel values (ZDEM) were corrected using Z
*

DEM = ZDEM – Hveg, except for areas with 220 

low vegetation, according to the HRU map.  221 

Meteorological data were obtained from the CRU CL 2.0 dataset (New et al., 222 

2002), which provides monthly climatological values calculated using interpolated data 223 

from ground stations for the period between 1960 and 1990  at a spatial resolution of 224 



 

10’, which is in accordance with the low density of meteorological stations in the 225 

Amazon. We also used TRMM daily precipitation data provided by algorithm 3B42 226 

(Huffman et al., 2007), with a spatial resolution of 0.25
 o

 × 0.25
o
 for the 12-year period 227 

1998–2009. 228 

The MGB-IPH model parameters related to soil water budget were calibrated 229 

against discharge data from stream gauges using the MOCOM-UA optimization 230 

algorithm (Yapo et al., 1998; Collischonn et al., 2007) for the 1998-2005 time period,  231 

using the model performance statistics ENS, ENSlog and V, described in the next section. 232 

For parameter calibration, model runs were used only within the MC model to avoid 233 

high computational costs and, therefore, we used only stream gauges located in river 234 

reaches simulated with the MC model (Fig. 1c). Gauges located in reaches simulated 235 

with the HD model were used only for validation. The calibration procedure optimized 236 

6 parameters related to soil water budget for each HRU (the maximum water storage in 237 

the upper layer of soil Wm; 3 equivalent hydraulic conductivities Kbas, Kint, Kcap; the 238 

parameter from the variable contributing area model for runoff generation b), and 3 239 

parameters related to surface, subsurface and base flow residence time (Cs, Ci and 240 

TKB), following Collischonn et al. (2007). We optimized these parameters for each 241 

large river sub-basin, giving rise to tens of different parameter sets with the following 242 

median values and ranges (5% and 95% percentiles): Wm = 282 (30-1800) mm, b = 243 

0.48 (0.02-4.6), Kbas = 1.2 (0.03-6.9) mm/day, Kint = 5.2 (0.2-200) mm/day, Kcap = 244 

0.02 (0-0.26) mm/day, Cs = 12.4 (5.6-35.5), Ci = 10.0 (3.9-1379), TKB = 99 (18-386) 245 

days. In some cases (10%), calibrated parameters were out of these ranges, possibly due 246 

to input data errors (e.g. precipitation as discussed later) or even limitations in the 247 

model.  Vegetation parameters used in energy balance and evapotranspiration 248 

computations (e.g. leaf area index, superficial resistance, albedo and vegetation height) 249 



 

were taken from Shuttleworth (1993). The only parameter related to the hydrodynamic 250 

model is the Manning’s coefficient and it was not calibrated using the MOCOM-UA 251 

algorithm. Instead, we used different values for different large river basins aiming at 252 

fitting hydrographs in the largest Amazonian rivers (0.035 in almost all the Amazon 253 

basin, 0.025 in the lower Madeira basin, 0.030 in the upper Madeira, upper Solimões 254 

and upper Negro basins, 0.040 in upper part of Brazilian Solimões River). 255 

 256 

2.4. Model validation approach 257 

 258 

Discharge 259 

 260 

Daily discharge results were compared with data from 111 stream gauges (Fig. 261 

2) provided by the Brazilian Agency for Water Resources ANA (Agência Nacional das 262 

Águas), the Peruvian and Bolivian National Meteorology and Hydrology Services 263 

SENAMHI (Servicio Nacional de Meteorología e Hidrología) and the Hydrology, 264 

Biogeochemistry and Geodynamic of the Amazon Basin (HYBAM) program 265 

(http://www.ore-hybam.org) for the 1999-2009 period. Values from the HYBAM 266 

database provided better discharge estimates in the central Amazon since it is based on 267 

both stages and water slope and, consequently, are able to represent looped rating 268 

curves. 269 

 270 

Water level 271 

 272 

http://www.ore-hybam.org/


 

Simulated daily water levels were validated against stream gauge records and 273 

radar altimetry data. We used 69 stream gauges for the 1998-2005 period, selected from 274 

ANA’s database (see Fig. 5).  275 

We also compared the computed water levels with ENVISAT satellite altimetry 276 

data. ENVISAT satellite has a 35-day repeat orbit and an 80 km inter-track distance. 277 

The database used is an extension of the one presented in Santos da Silva et al. (2010). 278 

It consists of 212 altimetry stations (AS – deduced from the intersection of a satellite 279 

track with a water body) with water level time series reported to EGM08 geoid for the 280 

2002-2009 period. Altimetry stations are located mainly along the Solimões, Amazon, 281 

Juruá, Japurá, Madeira, Negro and Branco Rivers (see Fig. 5). ENVISAT data selection 282 

techniques preconized by Santos da Silva et al. (2010) result in ~ 10 to 40 cm water 283 

level accuracy. Since water level model results are based on the SRTM DEM, it became  284 

necessary to convert ENVISAT water levels from their initial EGM08 geoidal reference 285 

to an EGM96 geoidal reference. We used the programs provided by the National 286 

Geospatial-Intelligence agency (http://earth-info.nga.mil/ ) to perform the conversion. 287 

 288 

 289 

Flood Extent 290 

 291 

Flood inundation results were compared to a multi-satellite monthly global 292 

inundation extent dataset at a ~25 x 25 km spatial resolution and available over the 1993 293 

to 2004 period (Papa et al., 2010). This product was derived from multiple-satellite 294 

observations, including passive (Special Sensor Microwave Imager) and active (ERS 295 

scatterometer) microwaves along with visible and near-infrared imagery (advanced very 296 

high-resolution radiometer; AVHRR). This dataset was already used for validating other 297 

http://earth-info.nga.mil/


 

large-scale streamflow routing and flood models (e.g. Decharme et al., 2011; Yamazaki 298 

et al., 2011). It is provided on an equal area grid of 0.25
o
x0.25

o
 at the Equator where 299 

each pixel has 773km
2
 of surface area. Considering this, for model validation, we 300 

computed daily water depth grids at a 15″ resolution (~500 m) based on simulated water 301 

levels and the DEM, as described in Paiva et al. (2011a), and then we resampled it into 302 

a ~25 x 25 km grid to compute monthly inundation extent only for the 1999-2004 time 303 

period. 304 

 305 

Terrestrial water storage 306 

 307 

The Gravity Recovery and Climate Experiment (GRACE) mission, launched in 308 

March 2002, provides measurements of the spatio-temporal changes in Earth’s gravity 309 

field. Several recent studies have shown that GRACE data over the continents can be 310 

used to derive the monthly changes of the terrestrial water storage (TWS) (Ramillien et 311 

al., 2005 and 2008; Schmidt et al., 2008) with an accuracy of ~1.5 cm of equivalent 312 

water thickness when averaged over surfaces of thousands of square-kilometres. These 313 

TWS changes estimates over land include all hydrological compartments, such as rivers, 314 

floodplains, lakes, soil and groundwater. We used the Level-2 land water solutions 315 

(RL04) produced by GFZ, JPL, and CSR with a spatial resolution of ~333 km, and an 316 

accuracy of 15-20 mm of water thickness. These are smoothed solutions using a 400 317 

and 500 km halfwidth Gaussian filter and provided at 1x1
o
 and at a monthly time 318 

interval. They are also post-processed using an Independent Component Analysis (ICA) 319 

approach (Frappart et al., 2010) which demonstrates a strong capacity for removing the 320 

north-south stripes polluting the GRACE solutions (Frappart et al., 2011b). 321 



 

To derive TWS estimates from the MGB-IPH model we used the following 322 

procedure. For each catchment, total water storage S (considering river, floodplain, 323 

surface, soil and ground waters) is related to precipitation (P), evapotranspiration (ET), 324 

river inflow (I) and outflow (O) by the continuity equation dS/dt = (P – ET).Ad +  I – O, 325 

where Ad is the catchment drainage area and t is time. For each day, water storage was 326 

derived as St+1 = St + [ (Pt,t+1 - ET t,t+1).Ad + I t,t+1 - O t,t+1  ]t where t is the time 327 

interval, similarly as used by Getirana et al. (2011) at the basin scale for the Negro 328 

River basin. 329 

Then, to derive model TWS estimates comparable with GRACE data, we 330 

smoothed MGB-IPH TWS values using a 450 km halfwidth Gaussian filter. Moreover, 331 

since the original GRACE spatial resolution is larger than 1
o
 x 1

o
, we chose to resample 332 

both GRACE and MGB-IPH data to a 4
o
 x 4

o
 grid (Fig. 9). For each 4

o
 x 4

o
 pixel, TWS 333 

derived from GRACE was computed as a simple average of the 1
o
 x 1

o
 pixels and TWS 334 

from MGB-IPH model was estimated as the weighted mean of TWS of all catchments 335 

inside each 4
o
 x 4

o
 pixel, using catchment drainage area as weight. Finally, we 336 

computed TWS anomalies using the 2003-2009 long-term average. 337 

  338 

Model performance statistics 339 

 340 

MGB-IPH model results were compared to observations using some statistics 341 

commonly used in hydrological modelling studies: (i) Nash-Suttcliffe coefficient ENS; 342 

(ii) log-Nash-Suttcliffe coefficient ENSlog (Collischonn et al., 2007), i.e. ENS 343 

computed using a logarithm transformation on discharge time series to focus on low 344 

flows; (iii) relative bias V [%] or BIAS; and (iv) Pearson correlation coefficient R. A 345 

“delay index” DI [days] (Paiva et al., 2011b) was used to measure errors related to the 346 



 

time delay between simulated and observed hydrographs. It is computed using the cross 347 

correlation function Rxy(m) from simulated (x) and observed (y) time series, where DI 348 

equals the value of the time lag m where Rxy(m) is at maximum. Positive (negative) DI 349 

values indicate delayed (advanced) simulated hydrographs. Furthermore, we measured 350 

the water level, the TWS and the flood extent amplitude error A’=100.(Acalc-Aobs)/ Aobs, 351 

where Acalc and Aobs are the simulated and observed amplitudes. The amplitude A of a 352 

given variable is defined here as the difference between its 95% and 5% percentiles. 353 

Due to differences in water levels datum reference and since GRACE actually measures 354 

TWS changes, for these variables all model performance statistics (except BIAS) were 355 

computed after removing the long-term average. 356 

 357 

3. Model validation 358 

 359 

3.1. Discharge 360 

 361 

Validation against river discharges shows a good performance of the MGB-IPH 362 

model. According to Fig. 2, in 70% of the stream gauges the ENS > 0.6 and model 363 

represents mean discharge with accuracy, since volume errors |V| < 15% in 75% of the 364 

gauges. According to ENS and V values (Fig. 2d), the model performs better in large 365 

rivers, although it is sufficiently good in the smaller ones (ENS>~0.5 and |V|<~20%). 366 

The flood waves’ timing is also well represented by the model and DI < 5 days in 70% 367 

of the stream gauges. DI values increase in large rivers and, for example, simulated 368 

flood wave is 5 to 15 days in advance in the Solimões/Amazon main stem. However, 369 

these values can be considered small if compared to the large flood traveling times of 370 

Amazon large rivers (a couple of months).  371 



 

Most of the errors are concentrated in rivers draining westerly areas in Bolivia, 372 

Peru and Colombia, where the model underestimates discharges. However, these errors 373 

can compensate each other and provide feasible discharge results in downstream rivers. 374 

We speculate that such errors are a consequence of the poor quality of TRMM 3B42 375 

rainfall datasets in these areas, which are poorly monitored and/or mountainous. This is 376 

supported by the sensitivity analysis of section 4, which shows that errors in 377 

precipitation cause large changes in mean discharge and as well as in water depths and 378 

flood extent. Errors in satellite rainfall estimates over the Andean region of the Amazon 379 

were also shown by Condom et al. (2010) and by Tian and Peters-Lidard (2010) in a 380 

global map of uncertainties of satellite precipitation estimates.  381 

Results for the main Amazon tributaries are promising (Fig. 3). A very good 382 

model performance can be  found in Juruá and Purus River basins, where the model is 383 

able to represent complex (noisy) hydrographs in the upper part and flood waves 384 

attenuations as they travel downstream (see Fig. 3c for lower Purus). For the Madeira 385 

River basin, errors are found mostly in the Bolivian region (Fig. 2), but in most of 386 

Brazilian tributaries and in the Madeira main stem the discharge is well represented 387 

(Fig. 3d). Satisfactory model results are also found at Tapajós River basin (Fig. 3e), 388 

where hydrographs are mostly dominated by direct runoff and base flow, since large 389 

floodplains are not present (see Fig. 7). At Japurá River, which drains parts of the Andes 390 

of Colombia and Peru, the model results are poor, as shown in Fig. 3a. At Negro River 391 

basin, better results are found mostly in the Branco River basin (northeast) and worst 392 

results in the upper Negro River (northwest), but it shows improvement in lower Negro 393 

River. 394 

Although there are large errors in the upper part of the Solimões river basin in 395 

Peru, flood waves are well represented in the Solimões/Amazon main stem, as shown in 396 



 

Fig. 3f and 3g at Tamshiyacu and Manacapuru, respectively. At Óbidos site, located 397 

close to the Amazon River outlet, results (Fig. 3h) show a good performance of the 398 

MGB-IPH model. ENS is high (0.89), the volume error is low (-4.6%) and flood wave is 399 

advanced in only -11 days. Hydrological extremes such as the 2005 drought and the 400 

2009 flood are well represented (Fig. 3h) and the model captured inter-annual 401 

variability (Fig. 4).  402 

 403 

3.2. Water levels 404 

 405 

Validation against water levels from stream gauges shows that the model is 406 

performing well in the major tributaries of the Amazon (Fig. 5). ENS > 0.60 in 55% of 407 

the stream gauges and R > 0.8 in 80% of the cases. Water level results are similar to the 408 

observations in large rivers, such as in the Solimões River (Fig. 6a) and also in smaller 409 

rivers where fast flood waves are present, such as in the Acre River in the upper Purus 410 

basin (Fig. 6b). Timing of flood waves are well represented in most gauges (DI < 5 days 411 

in 80% of the cases). Validation against ENVISAT satellite altimetry data also shows 412 

that the model performs well, mostly in central Amazon, Solimões, Juruá (Fig. 6d), 413 

Branco (Fig. 6e) and Madeira River and ENS > 0.6 in 60% of the virtual stations.  414 

However, large errors are found in some sites. A part of them is located in rivers 415 

draining poorly monitored and/or mountainous areas where discharges are also poorly 416 

simulated (see section 3.1). In some of the stream gauges, despite the fact that the 417 

observed and simulated water levels are highly correlated and DI values are low, large 418 

amplitude errors are present, which indicates that model errors are due to the uncertainty 419 

of local cross section geometry, e.g. river width. In other sites located mainly close to a 420 

confluence with a large river (e.g. lower Tapajós River in Fig. 6c), there are large errors 421 



 

of timing and shape of flood waves, probably because either simulated or observed 422 

water levels are controlled by both upstream flow and backwater effects. In this case, 423 

errors in river bottom level estimates could give rise to errors in the extension of 424 

backwater effects and in the timing of flood waves (similar to Paiva et al. 2012). We 425 

also found a large bias between model and ENVISAT water levels, ranging from -3 to -426 

15 m (Fig. 5). Smaller bias values were found by Yamazaki et al. (2012b) in the 427 

Amazon main stem, and differences may be associated to different methods for 428 

extracting errors from the DEM. In addition, important errors are found in lower 429 

Amazon River (Fig. 5 and 6f). The correlation with the observations is very high but the 430 

model strongly underestimates the amplitude of water levels. Such errors could be due 431 

to errors in river width estimates and also due to DEM, and therefore floodplain 432 

geometry errors, which cause errors in flood extent and consequently in river-floodplain 433 

volume exchanges, as supported by the sensitivity analysis presented in Section 4. 434 

 435 

3.3. Flood extent 436 

 437 

The overall inundation extent results from the MGB-IPH model are similar to 438 

remote sensing estimates from Papa et al. (2010) showing the seasonal variation of 439 

flood extent and the north-south contrast, with flood peaks occurring in DJF and MAM 440 

at the Bolivian Amazon, in MAM and JJA at central Amazon and JJA in the north (Fig. 441 

7). 442 

The model provides total inundation extent similar to remote sensing estimates 443 

(Fig. 8) for the whole Amazon basin, with relatively good model performance statistics: 444 

ENS = 0.71, R = 0.92, A’ = -26 % and BIAS = -7 %. However, analyses in different 445 



 

regions (rectangles in Fig. 7) show that errors are compensated when generating the 446 

overall estimate. 447 

The best model results are found in central Amazon (Fig. 8), where a relatively 448 

low amplitude error (12%), bias (14%) and high correlation coefficient (0.85) are found. 449 

In the Peruvian Amazon (Fig. 8c) the model overestimates flood extent although the 450 

seasonal variation is well represented, while in the Bolivian Amazon (Fig. 8b), low 451 

water period and seasonal variation are well captured by the model, but flood at high 452 

water period is underestimated (DJF and MAM). In lower Amazon (Fig. 8d), bias is 453 

only -30 % and the seasonal variation is well represented (R = 0.90). However, the 454 

model underestimates the amplitude and flood at the high water period, leading to a low 455 

ENS value. This is in accordance with errors in water levels presented in section 3.2.  456 

It is noteworthy that a part of the errors could come from the remote sensing 457 

observations. A previous and similar dataset (Prigent et al., 2007) seems to 458 

overestimate flood extent in the lower Amazon and underestimate it in the Solimões 459 

floodplain (central Amazon) if compared to Hess et al. (2003) dual season estimates for 460 

1996 high water and 1995 low water periods. 461 

Errors in flood extent may be due to uncertainty in river-floodplain geometry 462 

parameters, as presented in Section 4. For example, important errors are found in water 463 

levels and inundation extent in the lower Amazon River. In both cases, model results are 464 

highly correlated with observations, but the model underestimated the amplitude of 465 

water levels and flooded area. We speculate that the errors in lower Amazon River are 466 

due to river width errors and due to DEM errors. We used a coarser version of SRTM 467 

DEM with a ~500 m resolution instead of the ~90m, while floodplain flows can be 468 

partly controlled by smaller scale topography such as small channels (Trigg et al., 469 

2012). Besides, the SRTM DEM has systematic errors related to vegetation and surface 470 



 

water effects (Sun et al., 2003). We corrected these errors using methods presented in 471 

Paiva et al. (2011a) for river bottom level estimation and subtracting a constant value of 472 

Hveg=17 m in all DEM pixels, except where there is low vegetation. However, 473 

vegetation height may be variable even in forested areas. For example, in lower 474 

Amazon, large marginal lakes are present in floodplain (e.g. Melack and Hess, 2010; 475 

Bonnet et al., 2008) and due to the correction applied in DEM, they are always flooded 476 

in the model simulation. Furthermore, a small water level variation leads to less river-477 

floodplain volume exchanges. 478 

 479 

3.4. Terrestrial water storage 480 

 481 

Analyses show that the model provides TWS in good accordance with GRACE 482 

estimates. ENS values for TWS over the whole Amazon is 0.93, the correlation 483 

coefficient is high (0.97) and the amplitude error is low (12%). Fig. 9d shows that 484 

interannual variability is represented by the model, including the 2005 drought and the 485 

2009 flood. 486 

We also examined results in 21 square sub-regions with spatial resolution of 4° x 487 

4°. ENS < 0.8 and R < 0.9 only in 5 areas, and these are found mostly in the northwest 488 

part of the Amazon and in upper Branco River basin, possibly due to the same errors 489 

reported in discharge results related to the precipitation forcing. Also, these areas are 490 

concentrated in the border of the river basin, where the Gaussian filter applied to the 491 

model results may have added errors. In other parts of the Amazon, results were 492 

provided in accordance with GRACE estimates (e.g. Fig. 9b,c). Amplitude errors are 493 

larger than 20% only in 5 sub-regions, located in west, but also in lower Amazon River. 494 



 

In the latter, errors are in accordance with the underestimation of water level and flood 495 

extent amplitude presented in sections 3.2 and 3.3. 496 

 497 

4. Sensitivity analysis 498 

 499 

We performed a sensitivity analysis to investigate the sources of model errors 500 

and also the physical functioning of the Amazon River basin. The model sensitivity to 501 

six model parameters/variables was evaluated: river width, manning’s roughness 502 

coefficient, river bottom level, precipitation, flooded area and maximum soil storage. In 503 

all cases, each parameter/variable was equally perturbed in all Amazon river basin by 504 

the factors +50, +20, 0, -20 and -50%, except for river bottom level where we used 505 

+3,+1,0,-1,-3 m. Results were evaluated in terms of discharge close to the basin outlet at 506 

Óbidos station (Obd site at Fig. 1), water depth at central Amazon at Manacapuru 507 

station (Man site at Fig. 1) and total flooded area (Fig. 10 and 11) using climatological 508 

values computed from the 1999 to 2009 time period.  509 

An important interaction between water levels, flooded areas and discharge 510 

occurs during flood waves traveling (Fig. 10). A decrease in river width causes a large 511 

increase in water depths and levels, consequently an increase of flooded areas occurs 512 

and flood waves are attenuated and delayed in a couple of months, causing minor flood 513 

flows and droughts, although the mean discharge does not change. Still, an increase in 514 

river width decreases water depth and flood inundation, resulting in advanced flood 515 

waves and major high water discharges. An explanation would be that larger amounts of 516 

water are stored and released across the floodplains, causing larger flow travel times. 517 

An inverse effect is observed perturbing manning’s roughness coefficient. River width 518 



 

and manning coefficient results are similar to those discussed by Yamazaki et al. (2011) 519 

about river and floodplain interactions and flood wave travel times.  520 

Increasing river bottom levels causes, at first, a smaller difference between river 521 

and floodplain bottom levels and as a result, flooding is easier to occur. Consequently, 522 

flood extension increases and the aforementioned effect takes place with a delayed flood 523 

wave. However, now water depth decreases possibly because larger amounts of water 524 

enter in floodplains. 525 

Precipitation is the most sensitive variable (Fig. 10) and increasing it 526 

dramatically increases mean discharge, water depths and flood extent. Also, the same 527 

river-floodplain interaction takes place and flood waves are delayed and attenuated, 528 

although changes in mean values are much more pronounced. 529 

Positive changes in flooded areas (from the z vs Afl curve derived from the 530 

SRTM DEM) cause a similar effect than that observed in the river bottom level, with a 531 

decrease in water depths and delayed and attenuated flood waves (Fig. 11). Finally, we 532 

examined maximum soil water storage (Fig. 11), the most sensitive parameter of 533 

vertical water/energy balance of the MGB-IPH model (Collischonn, 2001). Positive 534 

perturbations decrease all variables, probably because larger amounts of available water 535 

in the soil facilitate larger evapotranspiration rates. However, the sensibility of this 536 

parameter is not as pronounced as the others. 537 

It is worth mentioning that we evaluated errors equally distributed over the 538 

entire basin, and that local uncertainties can cause different kinds of errors in 539 

discharges, water depths and flood extent. For example, errors in river width in a small 540 

reach may cause errors in both the mean and amplitude of water depths, and 541 

consequently in local flood extent, but may not have a major influence over other parts 542 

of the basin.  543 



 

The analysis shows that input data uncertainty might play an important role in 544 

model errors. The model results are very sensitive to river – floodplain parameters, 545 

indicating the need to improve current estimation methods, which are based mostly in 546 

geomorphological relations and information from the SRTM DEM. These conclusions 547 

are consistent with recommendations from other modelling studies using global river-548 

flood models (Decharme et al., 2011; Yamazaki et al., 2011) and a flood inundation 549 

model (Wilson et al., 2007). Data from field campaigns could be used, but also methods 550 

using remote sensing to estimate river width and bottom level should be investigated, 551 

such as in Durand et al. (2010a). Also, either a new DEM or a more sophisticated 552 

correction of the SRTM DEM is needed, removing vegetation height in forested areas 553 

and estimating bottom level of floodplain lakes. Vegetation effects could be removed, 554 

for example, using a global vegetation height map, such as in Simard et al. (2011). 555 

Water level effects could be removed using a combination of satellite altimetry water 556 

levels and flood extent data, such as the techniques used by Frappart et al. (2008; 557 

2011a) to estimate floodplain volumes variation. DEM corrections to allow better flow 558 

connectivity in small channels connecting floodplains such as presented by Yamazaki et 559 

al. (2012) could also be used. Additionally, data from the future Surface Water and 560 

Ocean Topography (SWOT) mission could also be employed (Durand et al., 2010b). 561 

 562 

 563 

 564 

 565 

5. Aspects of Amazon hydrological processes 566 

 567 

 568 



 

5.1 Water balance 569 

 570 

Fig. 12 presents the main components of water balance of the Amazon basin, 571 

comprising mean precipitation (P), evapotranspiration (ET) and discharge (Q) at Óbidos 572 

station rates derived from model results. Mean annual rates for the 1998-2009 period are 573 

P = 5.65 mm/day, ET = 2.72 mm/day and Q = 3.09 mm/day. As discussed in section 574 

3.1., simulated discharge is similar to observations at Óbidos station, with a small bias 575 

equal to -4.6%. Mean precipitation, which is based on TRMM 3B42 v6 data, is slightly 576 

smaller (~6%) than values obtained in others: 6.0 mm/day from Espinoza et al. (2009) 577 

based on 756 pluviometric stations; 6.3 mm/day from Azarderakhsh et al. (2011) based 578 

on GPCP remote sensing data; 5.8 (5.2 – 8.6) mm/day by Marengo et al. (2005) based 579 

on several rain gauges, remote sensing and reanalyses-based data. ET rates are also 580 

comparable with values obtained in other studies, although there are large differences 581 

between them: 2.27 mm/day by Azarderakhsh et al. (2011) using global remote sensing-582 

based products; 4.3 mm/day by Marengo et al. (2005); 3.23 mm/day by Ruhoff (2011) 583 

using MOD16 remote sensing product but including the Tocantins basin; 3.2 mm/day 584 

(at Negro basin), 2.9-3.8 mm/day and 2.6-3.0 mm/day using modeling results by 585 

Getirana et al. (2010),� Costa and Foley (1997) and Beighley et al., (2009), 586 

respectively.  587 

P exhibits a large seasonal variation, with larger rates (P>7mm/day) between 588 

December and April with the maximum at February and March (P~8.5mm/day) and 589 

minimum values at July and August (P~2.5mm/day). The mean Amazon ET is almost 590 

constant along the year, without significant seasonal variations. The combination of P 591 

and ET rates causes a marked seasonal behaviour in discharge, with maximum 592 

(minimum) values of 4.3 (1.9) mm/day, occurring in May-June (October-November). 593 



 

Discharge signal is delayed in 3 months if compared with P, showing the large water 594 

travel times along the Amazon rivers and floodplains.  595 

Although the seasonally inundated floodplains play an important role in water 596 

transport throughout the Amazonian rivers, as demonstrated by the sensitivity analysis 597 

and by the results shown in next section, it seems not to have a major influence in water 598 

balance. Fig. 12 show a comparison of Q and ET results from two simulations, one 599 

considering the effect of seasonal flooded areas on ET (using methods described in 600 

Paiva et al. 2011a) and the other without such consideration, and the differences 601 

between them are insignificant. Although this is a preliminary analysis, and since ET 602 

from flooded forests is not completely represented using the Penman Monteith 603 

approach, a possible explanation could be that (i) flooded areas represent a small part 604 

(less than 5%) of the total area of the Amazon and that (ii) ET in the Amazon is driven 605 

mostly by radiation (Costa et al., 2010) and not by water availability and consequently 606 

ET rates from flooded and nonflooded forests are similar.  607 

 608 

5.2 Terrestrial water storage 609 

 610 

In this section, the Amazon terrestrial water storage changes and the role of 611 

surface, soil and ground waters on TWS are explored. Analyses of Fig. 9 based on 612 

GRACE data show a marked seasonal variability of terrestrial water storage with large 613 

amplitude of variation (325 mm, mean of all GRACE solutions). Larger TWS variations 614 

are found mostly in central Amazon, with amplitudes of TWS larger than 750 mm, and 615 

smaller values are found in the Andean region (< 300 mm). To evaluate the main 616 

contributors of the TWS variations, we computed the water storage of three major 617 

hydrological compartments using model results, namely surface water (sum of river, 618 



 

floodplain and surface runoff storages), soil water and ground water and calculated the 619 

respective amplitude of variation as described in Section 2. The amplitude of variation 620 

of surface waters governs most of TWS changes in the Amazon basin (see Fig. 13), 621 

mostly in central Amazon and areas with large floodplains (see Fig. 7 and 13a). Soil 622 

water presents an important contribution on TWS changes in south-eastern areas; whilst 623 

ground water is the least important compartment in almost all regions. Surface waters 624 

dominate TWS variations for the whole Amazon area with a fraction of 56%, followed 625 

by soil (27%) and ground water storages (8%) (see Fig. 13b). Also, surface and soil 626 

water present similar seasonal variation, while groundwater storage presents a small 627 

delay. Results agree with Han et al. (2009) and Frappart et al. (2008), which indicated 628 

the dominant role of surface waters in TWS variations in the Amazon. The results also 629 

agree with Frappart et al. (2011a) that, using mostly remotely sensed datasets at the 630 

Negro river basin, showed that TWS changes are dominated by surface waters followed 631 

by soil and ground water with similar importance. Our results are also similar with Kim 632 

et al. (2009) estimates for the Amazon in a global study using modelling results, where 633 

river storage including shallow ground water (soil moisture) explained 73% (27%) of 634 

total TWS changes.  635 

 636 

5.3 River - floodplain hydraulics 637 

 638 

To finish our analyses of the Amazon hydrological processes, river and 639 

floodplain processes are investigated and the importance of backwater effects and flood 640 

inundation in stream flow routing is evaluated. We compared discharge results from 641 

four model runs using the same parameters and model input forcings in all of them, but 642 

with different kinds of stream flow routing methods: (i) HDf - hydrodynamic model 643 



 

with floodplains, equal to model configuration used in the rest of the manuscript; (ii) 644 

MCf – Munskingum Cunge Todini with floodplains, using a nonlinear version of the 645 

Muskingum Cunge as presented by Todini (2007) and extended by Pontes (2011)  to 646 

consider floodplains; (iii) HDn – hydrodynamic model without floodplains; (iv) MCn - 647 

Muskingum Cunge without floodplains. The Muskingum Cunge based models, MCf 648 

and MCn, do not deal with backwater effects, since they are based on a kinematic wave 649 

approximation of the Saint Venant equations and do not consider neither the inertia nor 650 

the pressure forces, while HDn and MCn models do not represent flood inundation. 651 

Results shown in Fig. 14 and in Table 2 indicate the better performance of the 652 

complete hydrodynamic model (HDf) in comparison with the other methods. Including 653 

backwater effects and floodplain storage generally delay and attenuates hydrographs, 654 

and simulations agree with observations (for example, ENS = 0.89 and 0.77 and DI = -655 

11 and -10 days at Óbidos and Manacapuru stations respectively). Neither considering 656 

backwater effects nor floodplains (MC run) causes very advanced (DI = -64 and -76 657 

days) and noisy hydrographs, with low ENS values (ENS = -0.51 and -1.44) and 658 

discarding only flood inundation (HDn run) causes a similar effect. However, to include  659 

floodplains only (MCf) is not sufficient to reproduce observed discharges (ENS = 0.72 660 

and 0.31) and hydrographs still advanced about 15 and 25 days if compared to the most 661 

complete model (HDf). Possibly, the influence of floodplains is increased when the 662 

pressure term is present, as discussed in Paiva et al. (2012).  663 

These results suggest that floodplains play a major role in flood wave 664 

attenuation and delay, but that backwater effects also cause important impacts. They are 665 

in accordance with preliminary analyses from Paiva et al. (2012), but they disagree with 666 

Yamazaki et al. (2011), who presented similar conclusions about floodplain storage but 667 



 

stated that backwater effects have a minor impact on hydrographs and are more 668 

important for representing water level profiles. 669 

Although discussions from previous sections indicate that the model errors may 670 

arise from uncertainty in input data, results from this section show the importance of the 671 

model structure. Our approach is relatively complex in terms of river hydraulics since it 672 

uses full Saint-Venant equations, but is somehow simplified in terms of floodplain 673 

simulation. Consequently, it cannot fully represent all aspects of floodplain 674 

hydrodynamics such as bidirectional flows and river-floodplain water level dynamics 675 

(Alsdorf et al. 2007a; Alsdorf et al., 2003; Bonnet et al., 2008) and flow in small 676 

floodplain channels (Trigg et al., 2012). We believe that different flood inundation 677 

approaches (e.g. Bonnet et al., 2008; Paz et al., 2011; Wilson et al., 2007; Bates and De 678 

Roo, 2000; Neal et al. 2012) coupled with full hydrodynamic models should still be 679 

tested to check its feasibility to represent all floodplain processes and the influence of 680 

these processes in large-scale stream flow routing and inundation dynamics. 681 

 682 

6. Summary and conclusions 683 

 684 

We present an extensive validation of the physically based large-scale 685 

hydrologic and hydrodynamic model MGB-IPH in the Amazon River basin using in situ 686 

and remote sensing data sets. Sources of model errors, which can be extrapolated to 687 

other similar large scale models, were investigated by using model validation results 688 

and also supported by sensitivity tests. Finally, aspects of the physical functioning of the 689 

Amazon River basin are discussed taking advantage of the model results.  690 

The model is able to reproduce observed hydrographs at different spatial scales, 691 

although performance is usually better in large rivers with large flood wave travel times. 692 



 

The model provides feasible water level results in most of the gauging stations and also 693 

at altimetry-based validation sites and overall inundation extent results similar to the 694 

remote sensing estimates. Discharge is well simulated even in regions where other 695 

hydrological variables are not well represented, as in the lower Amazon where some 696 

errors in water levels and flood extent can be found. Terrestrial water storage results 697 

also agree with GRACE-derived estimates. 698 

Results from the sensitivity analysis indicate that model input data uncertainty 699 

may play an important role in model errors such as the ones presented in the model 700 

validation, although part of them can be due to the uncertainty in remote sensing data 701 

used here as observations. Precipitation forcing is the most sensitive variable, causing 702 

significant errors in mean discharge, water depth and flood extent. At the same time, 703 

important errors occur in westerly areas, which may be a consequence of the poor 704 

quality of TRMM 3B42 rainfall datasets in these areas, which are mountainous and/or 705 

poorly monitored.  706 

The model results are also very sensitive to river-floodplain parameters, 707 

including river width and bottom level, Manning roughness coefficient and floodplain 708 

bathymetry. Important interactions between water levels, flooded areas and discharge 709 

errors are observed during the floodwaves traveling. Uncertainty in river and floodplain 710 

geometry, estimated through geomorphological relations and the SRTM DEM, causes 711 

errors in simulated water levels and inundation extent in some areas, indicating the need 712 

for improving current parameter estimation methods. These parameters are similar to 713 

the ones required in other large scale models and its uncertainty may cause errors in 714 

these models as well. Some alternatives to that could be the usage of newly remote 715 

sensing techniques for parameter estimation or corrections of the SRTM DEM to 716 

remove vegetation height in forested areas and to estimate bottom level of floodplains. 717 



 

Overall water balance derived from model results is similar to estimates from 718 

previous studies. Mean annual rates of precipitation, evapotranspiration and discharge at 719 

Óbidos station are P = 5.65 mm/day, ET = 2.72 mm/day and Q = 3.09 mm/day. TWS 720 

changes show marked seasonal variability with a large amplitude of variation of 325 721 

mm for all Amazon, and larger amplitude values (>750 mm) are found in central 722 

Amazon. Surface waters governs most of TWS changes in the Amazon basin (56%), 723 

mostly in central Amazon and in areas with large floodplains, while soil water presents 724 

an important contribution to TWS changes  (27%), mainly in south-eastern areas and 725 

groundwater, it is the less important hydrological compartment (8%).  726 

Finally, river and floodplain processes and the importance of backwater effects 727 

and flood inundation in stream flow routing were investigated. Results suggest that 728 

floodplains play a major role in flood wave attenuation and delay, but that backwater 729 

effects also cause important impacts, indicating the importance of including a flood 730 

inundation module and a complex Saint Venant equation approximation for river 731 

floodplain processes modelling in the Amazon. In contrast, although the seasonally 732 

inundated floodplains play an important role in water transport along Amazonian rivers, 733 

it seems not to have a major influence on evapotranspiration and water balance.  734 
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Tables 1014 

 1015 

Table 1 – Geomorphologic equations developed to estimate river geometric parameters 1016 

in computational cross sections: river width, B [m]; maximum water depth, H [m]; 1017 

upstream drainage area Ad [km
2
]. 1018 

River Sub-Basin River width [m] Maximum water depth [m] 

Tapajós and Xingu B=0.35.Ad
0.62

 H=1.91.Ad
0.15

 

Purus and Juruá B=3.75.Ad
0.36

 H=2.35.Ad
0.16

 

Madeira B=1.30.Ad
0.46

 H=1.25.Ad
0.20

 

Negro and Japurá B=0.41.Ad
0.63

 H=1.26.Ad
0.20

 

Solimões B=0.80.Ad
0.53

 H=1.43.Ad
0.19

 

Solimões/Amazon 

main stream 

B=1.20.Ad
0.54

 

H=22 Ad < 400000 km
2
 

H=20.86+2.86E-06.Ad Ad < 2150000 km
2
 

H=-1.04+1.30E-05.Ad Ad > 2150000 km
2
 

 1019 

Table 2 – Discharge model performance statistics Nash and Suttcliffe index (ENS) and 1020 

delay index (DI) in days at gauging stations presented in Fig. 1 for simulations using 1021 

hydrodynamic model with(out) floodplain – HDf (HDn) and Muskingum Cunge model 1022 

with(out) floodplain – MCf (MCn). 1023 

  
ENS DI (days) 

Gauge River HDf MCf HDn MCn HDf MCf HDn MCn 

Jap Japura 0.21 0.22 0.11 0.1 -21 -21 -27 -27 

Mou Negro 0.65 0.66 0.49 0.45 5 -6 -24 -26 

Pur Purus 0.91 0.74 0.66 0.61 -6 -18 -22 -24 

Faz Madeira 0.92 0.88 0.63 0.54 8 -4 -26 -29 

Ita Tapajós 0.87 0.84 0.85 0.85 -2 9 -5 -5 

Tam Solimões 0.74 0.67 0.21 0.04 -3 -11 -35 -39 

Man Solimões 0.77 0.31 -1.15 -1.44 -10 -36 -71 -76 

Obd Amazon 0.89 0.72 -0.37 -0.51 -11 -24 -60 -64 
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Figure captions 1025 

 1026 

Figure 1 – (a) Amazon River basin with its main tributaries, international limits, relief 1027 

from SRTM DEM and some of the validation sites. Symbols for the location of the 1028 

validation sites presented in Figures 3 and 5 are as following: black circles for the 1029 

gauge-based discharge series, grey rectangles for the gauge-based water level series, 1030 

and black crosses for the altimetry-based water level series. Amazon River basin 1031 

discretization into (b) catchments and (c) river reaches simulated using the Muskingum 1032 

Cunge (MC) and hydrodynamic (HD) models. 1033 

 1034 

Figure 2 – Validation of daily discharge derived from MGB-IPH model against stream 1035 

gauge observations. Spatial distribution, probability (pdf) and cumulative (cdf) 1036 

distribution functions of model performance statistics (a) Nash and Sutcliffe Index 1037 

(ENS), (b) delay index (DI) and (c) volume error (V) and (d) relation between 1038 

upstream drainage area and model performance statistics. 1039 

 1040 

Figure 3 - Observed (blue line) and simulated (red line) daily discharge in (a) Japurá 1041 

River (Jap), (b) lower Negro River at Moura (Mou), (c) lower Purus River (Pur), (d) 1042 

lower Madeira River at Fazenda Vista Alegre (Faz), (e) lower Tapajós River at Itaituba 1043 

(Ita), (f) Solimões River at Tamshiyacu (Tam), (g) Solimões River close to confluence 1044 

with Negro at Manacapuru (Man), and (h) Amazon River at Obidos (Obd). Sites are 1045 

indicated in Fig. 1. 1046 

 1047 

Figure 4 - Observed (blue line) and simulated (red line) anomalies of monthly 1048 

discharges in the Amazon River at Obidos (Obd). 1049 



 

 1050 

Figure 5 – Validation of daily water levels derived from MGB-IPH model against 1051 

stream gauge observations (squares) and ENVISAT satellite altimetry data (circles). 1052 

Spatial distribution of model performance statistics Nash and Sutcliffe Index (ENS), 1053 

Pearson correlation coefficient (R), amplitude error (A’),\ delay index (DI) and bias 1054 

(BIAS). 1055 

 1056 

Figure 6 - Simulated (red line) and observed  daily water levels from stream gauges 1057 

(blue line) and derived from ENVISAT satellite altimetry data (blue points) at (a) 1058 

Solimões River (Sol), (b) upper Purus River basin at Acre River in Rio Branco (RBra), 1059 

(c) lower Tapajós River at Itaituba (Ita), (d) lower Juruá River (Jur) (e) lower Branco 1060 

River (Bra), (f) Amazon River at Óbidos (Obd). Sites are indicated in Fig. 1. 1061 

 1062 

Figure 7 – Seasonal variation of inundation extent derived from MGB-IPH model and 1063 

remote sensing estimates from Papa et al. (2010). Average values for DJF, MAM, JJA 1064 

and SON seasons were computed for the 1999 to 2004 period. 1065 

 1066 

Figure 8 – Monthly flooded area derived from MGB-IPH model (red dashed line) and 1067 

remote sensing estimates from Papa et al. (2010) (blue line) at central Amazon (8
o
S 1068 

70
o
W to 2

o
N 60

o
W), Bolivian Amazon (18

o
S 70

o
W to 10

o
S 60

o
W), Peruvian Amazon 1069 

(12
o
S 78

o
W to 0

o
S 70

o
W), lower Amazon (8

o
S 60

o
W to 0

o
S 50

o
W), and  Amazon River 1070 

basin. Regions are presented in Fig. 7. 1071 

 1072 

Figure 9 – Validation of monthly Terrestrial Water Storage (TWS) derived from MGB-1073 

IPH model against GRACE estimates (2003-2009). (a) Spatial distribution of Nash and 1074 



 

Sutcliffe Index (ENS), amplitude error (A’), observed amplitude (Aobs). Monthly time 1075 

series of TWS derived from MGB-IPH model (black) and 6 GRACE solutions (grey) in 1076 

(b) Lower Negro River Basin (4
o
x4

o
 pixel centered in 62

o
W, 2

o
S),(c) Upper Tapajós 1077 

River Basin (58
o
W, 10

o
S) and (d) Amazon River Basin. Statistics are presented for CSR 1078 

solution with 400 km Gaussian filter. 1079 

 1080 

Figure 10 – Sensitivity analysis: Climatology of discharge at Óbidos (Obd), water depth 1081 

at Manacapuru (Man) and total flooded area derived from simulations using perturbed 1082 

values of river width, manning coefficient, river bottom level and precipitation. 1083 

 1084 

Figure 11 – Sensitivity analysis: Climatology of discharge at Óbidos (Obd), water depth 1085 

at Manacapuru (Man) and total flooded area derived from simulations using perturbed 1086 

values of flooded area and maximum soil storage. 1087 

 1088 

Figure 12 – Water balance of the Amazon River basin. Monthly (left) and 1089 

climatological (right) values of mean precipitation (black), evapotranspiration (red) and 1090 

discharge close to the outlet at Óbidos (blue). Continuous lines (points) show simulation 1091 

results (not) considering the influence of flood extent variability on evapotranspiration.  1092 

 1093 

Figure 13 – Fraction of terrestrial water storage divided into surface, soil and ground 1094 

waters. (a) Spatial distribution of the fraction of TWS amplitude from each hydrological 1095 

compartment. (b) Monthly time series of TWS from surface (blue), soil (red) and 1096 

ground (black) waters. 1097 

 1098 



 

Figure 14 – Observed (black line with dots) and simulated discharges at Óbidos (a) and 1099 

Manacapuru (b) sites using hydrodynamic model with floodplains (blue line with dots), 1100 

Muskingum Cunge with floodplains (red line), hydrodynamic model without 1101 

floodplains (dashed black line) and Muskingum Cunge model without floodplains (grey 1102 

line). 1103 

 1104 





 

Figure 1 – (a) Amazon River basin with its main tributaries, international limits, relief from SRTM DEM and 

some of the validation sites. Symbols for the location of the validation sites presented in Figures 3 and 5 are as 

following: black circles for the gauge-based discharge series, grey rectangles for the gauge-based water level 

series, and black crosses for the altimetry-based water level series. Amazon River basin discretization into (b) 

catchments and (c) river reaches simulated using the Muskingum Cunge (MC) and hydrodynamic (HD) models. 





 

Figure 2 – Validation of daily discharge derived from MGB-IPH model against stream gauge observations. 

Spatial distribution, probability (pdf) and cumulative (cdf) distribution functions of model performance 

statistics (a) Nash and Sutcliffe Index (ENS), (b) delay index (DI) and (c) volume error (V) and (d) relation 

between upstream drainage area and model performance statistics. 

 



















Figure 3 - Observed (blue line) and simulated (red line) daily discharge in (a) Japurá River (Jap), (b) lower 

Negro River at Moura (Mou), (c) lower Purus River (Pur), (d) lower Madeira River at Fazenda Vista Alegre 

(Faz), (e) lower Tapajós River at Itaituba (Ita), (f) Solimões River at Tamshiyacu (Tam), (g) Solimões River 

close to confluence with Negro at Manacapuru (Man), and (h) Amazon River at Obidos (Obd). Sites are 

indicated in Fig. 1. 

 





Figure 4 - Observed (blue line) and simulated (red line) anomalies of monthly discharges in the Amazon River 

at Obidos (Obd). 

 

 

 





Figure 5 – Validation of daily water levels derived from MGB-IPH model against stream gauge observations 

(squares) and ENVISAT satellite altimetry data (circles). Spatial distribution of model performance statistics 

Nash and Sutcliffe Index (ENS), Pearson correlation coefficient (R), amplitude error (A’),\ delay index (DI) and 

bias (BIAS). 

 

 





Figure 6 - Simulated (red line) and observed  daily water levels from stream gauges (blue line) and derived 

from ENVISAT satellite altimetry data (blue points) at (a) Solimões River (Sol), (b) upper Purus River basin at 

Acre River in Rio Branco (RBra), (c) lower Tapajós River at Itaituba (Ita), (d) lower Juruá River (Jur) (e) lower 

Branco River (Bra), (f) Amazon River at Óbidos (Obd). Sites are indicated in Fig. 1. 

 





Figure 7 – Seasonal variation of inundation extent derived from MGB-IPH model and remote sensing estimates 

from Papa et al. (2010). Average values for DJF, MAM, JJA and SON seasons were computed for the 1999 to 

2004 period. 

 

 





Figure 8 – Monthly flooded area derived from MGB-IPH model (red dashed line) and remote sensing estimates 

from Papa et al. (2010) (blue line) at central Amazon (8
o
S 70

o
W to 2

o
N 60

o
W), Bolivian Amazon (18

o
S 70

o
W 

to 10
o
S 60

o
W), Peruvian Amazon (12

o
S 78

o
W to 0

o
S 70

o
W), lower Amazon (8

o
S 60

o
W to 0

o
S 50

o
W), and  

Amazon River basin. Regions are presented in Fig. 7. 

 





Figure 9 – Validation of monthly Terrestrial Water Storage (TWS) derived from MGB-IPH model against 

GRACE estimates (2003-2009). (a) Spatial distribution of Nash and Sutcliffe Index (ENS), amplitude error 

(A’), observed amplitude (Aobs). Monthly time series of TWS derived from MGB-IPH model (black) and 6 

GRACE solutions (grey) in (b) Lower Negro River Basin (4
o
x4

o
 pixel centered in 62

o
W, 2

o
S),(c) Upper 

Tapajós River Basin (58
o
W, 10

o
S) and (d) Amazon River Basin. Statistics are presented for CSR solution with 

400 km Gaussian filter. 





 

Figure 10 – Sensitivity analysis: Climatology of discharge at Óbidos (Obd), water depth at Manacapuru (Man) 

and total flooded area derived from simulations using perturbed values of river width, manning coefficient, 

river bottom level and precipitation. 

 





Figure 11 – Sensitivity analysis: Climatology of discharge at Óbidos (Obd), water depth at Manacapuru (Man) 

and total flooded area derived from simulations using perturbed values of flooded area and maximum soil 

storage. 

 

 





Figure 12 – Water balance of the Amazon River basin. Monthly (left) and climatological (right) values of mean 

precipitation (black), evapotranspiration (red) and discharge close to the outlet at Óbidos (blue). Continuous 

lines (points) show simulation results (not) considering the influence of flood extent variability on 

evapotranspiration.  

 





Figure 13 – Fraction of terrestrial water storage divided into surface, soil and ground waters. (a) Spatial 

distribution of the fraction of TWS amplitude from each hydrological compartment. (b) Monthly time series of 

TWS from surface (blue), soil (red) and ground (black) waters. 

 

 







Figure 14 – Observed (black line with dots) and simulated discharges at Óbidos (a) and Manacapuru (b) sites 

using hydrodynamic model with floodplains (blue line with dots), Muskingum Cunge with floodplains (red 

line), hydrodynamic model without floodplains (dashed black line) and Muskingum Cunge model without 

floodplains (grey line). 
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