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Abstract 

  

Much debate exists concerning the strength distribution of the continental 

lithosphere, how it controls lithosphere-scale strain localization and hence enables 

plate tectonics. No rheological model proposed to date is comprehensive enough to 

describe both the weakness of plate boundary and rigid-like behaviour of plate 

interiors. Here we show that the duality of strength of the lithosphere corresponds to 

different stages of microstructural evolution. Geological constraints on lithospheric 

strength and large strain numerical experiments reveal that the development of 

layers containing weak minerals and the onset of grain boundary sliding upon grain 

size reduction in olivine cause strain localisation and reduce strength in the crust and 

subcontinental mantle, respectively. The positive feedback between weakening and 

strain localization leads to the progressive development of weak plate boundaries 

while plate interiors remain strong.  
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1/ Introduction 

The extrapolation of laboratory flow laws to geological scale suggests a 

complex layering of brittle and ductile layers within the continental lithosphere (Brace 

and Kohlstedt, 1980; Sawyer, 1985). For classical continental geotherm, the upper 

lithospheric mantle is expected to be brittle and support high stresses. Many 

analogue and numerical experiments indicate that such a rheological layering is 

important to reproduce first-order patterns of lithosphere deformation (Brun, 1999; 

Burov and Yamato, 2008). In particular, the presence of a brittle uppermost mantle is 

needed to explain strain localisation at lithospheric scale (Buck, 1991; Gueydan et 

al., 2008). 

However, recent geophysical studies question this classical view of the 

continental strength layering. Based on earthquakes distribution and elastic 

thicknesses of the continental lithosphere, including cratons, it has been proposed 

that the uppermost mantle could behave as ductile instead of brittle (Déverchère et 

al., 2001; Jackson, 2002; Maggi et al., 2000). However, the mechanical stability of 

cratons requires that the uppermost mantle supports high stresses (Burov, 2010). In 

addition, the post-seismic displacement field, i.e., the pattern of deformation at the 

surface of the Earth within weeks to years following an earthquake, suggests that the 

deep crust is stronger than the lithospheric mantle. (Bürgmann and Dresen, 2008; 

Thatcher and Pollitz, 2008). Note however that post seismic displacement field may 

also result from a complex combination of poro-elasticity and fault creep in the 

seismogenic layer and viscous flow in the lower crust  (Barbot and Fialko, 2010). In 

this case, it may not be used to constrain strength ratios between the ductile crust 
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and lithospheric mantle. Finally, the recent discovery of non-volcanic tremors, i.e., 

long duration seismic events with small amplitudes, below the San Andreas fault 

suggests a zone of localized and easily modulated faulting in the lower crust (Nadeau 

and Guilhem, 2009; Thomas et al., 2009). Assuming high temperatures in plate 

boundaries such as the San Andreas Fault System does not solve this conundrum, 

as that would imply both a weak mantle and a weak crust. 

The above geophysical data question the classical view of continental strength 

layering and suggest a weak continental lithosphere at plate boundaries. To date, no 

rheological self-consistent model accounts for both the weakness of plate boundary, 

which is a prerequisite of plate tectonics, and rigid-like behaviour of plate interiors.  A 

new definition of the continental lithosphere strength is needed to reconcile the 

apparent contradiction between 1) the mechanical prerequisite of a strong brittle 

mantle to trigger lithosphere-scale strain localisation, and 2) the low lithosphere 

strength inferred in actively deforming region, especially in the mantle. Although it 

may be argued that the presence of fluid and/or shear heating can trigger weak plate 

boundaries (Jackson, 2002; Thielmann and Kaus, 2012), the existence of long-lived 

lithosphere-scale inherited weak zone (Tommasi et al., 2009) suggests that a 

structural origin for the weakness of plate boundaries is also necessary. Crucially, 

lithospheric strength must decrease with increasing strain. We present here a 

quantitative model of strain-dependent lithospheric strength derived from large-strain 

numerical experiments and guided by field observations that constrain the structural 

evolution of rocks at various depths in the lithosphere.  

 

2/ Geological constraints 
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Many processes have been suggested as the origin of strain weakening that 

triggers strain localization in both the crust and mantle (Poirier, 1980; White et al., 

1980; Montési and Zuber, 2002; Regenauer-Lieb and Yuen, 2004). To date, shear 

heating has probably received the most extensive theoretical treatment (Brun and 

Cobbold, 1980; Fleitout and Froidevaux, 1980; Regenauer-Lieb and Yuen, 1998; 

Kaus and Podladchikov, 2006; Crameri and Kaus, 2010). However, field 

observations indicate that metamorphic reactions, fluid infiltration and grain size 

reduction  play a crucial role in enabling shear localization (Poirier, 1980; Park et al., 

2006; Wintsch et al., 1995; Warren et al., 1996; Gueydan et al., 2003; Drury, 2005; 

Gerbi et al., 2010; Toy et al., 2010; Platt and Behr, 2011; Rennie et al., 2013; 

Sullivan et al., 2013). It is thus important to characterize the rheological effect of 

these processes. We will show that geologically-constrained changes in rock texture 

are able to explain the apparent weakness of the continental lithosphere and the 

presence of a strong lower crust above a weak mantle at active plate boundaries. 

Field and laboratory constraints on weakening processes are summarized here.  

In the brittle crust, lubrification of fault zone is achieved by nucleation of new 

mineral (mica, talc; Holdsworth, 2004). The development of foliated cataclasis 

enriched in mica leads to strain weakening of fault zone through a decrease of the 

friction coefficient from 0.6 to 0.1 with strain (Collettini et al., 2009; Faulkner et al., 

2010). In the ductile crust, the progressive development of layering (shear zone 

and/or foliation) enriched in mica is also a characteristic of the midcrust and is related 

to intense weakening the rocks (Gueydan et al., 2004; Gueydan et al., 2003; 

Montési, 2013; Wintsch et al., 1995). Here, we used a two-level mixing theory 

(Montési, 2007), see Appendix for more details) to calculate the strength of the 

midcrust as a function of the layering degree, f, which increases from 0 (granitic 
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protolith) to 1 (pure phyllonite) upon deformation. The weakening associated with the 

development of layering is greatest a low temperature (300°C) while hardening is 

expected at temperatures higher than 500°C (Fig 1A). This reflects differences in 

dislocation creep activation energy between mica and quartz/feldspar (Table 1); the 

mica is much weaker than quartz at low temperature but retains its strength while 

quartz and feldspar become much weaker than mica at high temperature 

(Kronenberg et al., 1990). Furthermore, mica breaks down or melts at high 

temperature, making the layer development process irrelevant in the lower crust. 

Therefore, layering-induced weakening can only occur at midcrustal depth where 

temperature is below 500°C. Other weakening processes are expected in the deep 

crust, such as shear heating (Thielmann and Kaus, 2012), but are disregard here in 

order to focus on strain weakening related to microstructural evolution.  

In naturally deformed mantle rocks, strain localisation is typically associated 

with grain size reduction and a switch from grain size-insensitive creep to grain size-

sensitive creep (Drury, 2005). Recent observations on natural samples highlighted 

the importance of the grain-size-dependent dislocation-accommodated grain 

boundary sliding (disGBS) of olivine as controlling the rheology of mantle shear zone 

(Précigout et al., 2007; Warren and Hirth, 2006). Deformation experiments and 

numerical investigations have also shown that disGBS could promote strain 

localisation during dynamic recrystallization (Hirth and Kohlstedt, 2003; Précigout 

and Gueydan, 2009). Indeed, under conditions where disGBS constitutes the 

dominant deformation mechanism of peridotite, i.e., at temperature lower than 800°C, 

grain size reduction is associated with a significant drop of strength ((Précigout et al., 

2007), see Appendix for more details). This amount of strain weakening increases 



 6 

with decreasing temperature and does not occur for temperature larger than 800°C. 

(Fig 1B, (Précigout and Gueydan, 2009)).  

 

3/ Large strain numerical experiments  

 

The rheologies and weakening processes described above are implemented 

in large strain numerical experiments to quantify the relationship between strain and 

strength at various depths in the lithosphere. Because of the non-linear behaviour of 

the ductile crust and mantle, numerical modelling is required to capture the interplay 

between weakening and strain localization and to quantify the strength evolution of 

the ductile layers of the continental lithosphere. By contrast, strain weakening in the 

brittle crust simply consists of a change of the friction coefficient from 0.6 to 0.1 due 

to fabric development (Collettini et al., 2009; Faulkner et al., 2010). 

 

3.1/ Numerical results 

The numerical experiments follow the evolution of a one-dimensional section 

of a ductile rock undergoing horizontal simple shear to large strain at a given 

temperature (Fig. 2). Numerical methods used here for the large strain experiments 

are very similar to those used in previous studies where techniques for large strain 

approximation and numerical details of the finite element code SARPP can be 

founded (Gueydan et al., 2004; Gueydan et al., 2008). A week seed of 100 m and 

with an initial viscosity of 0.9999 times the viscosity of the host rock is imposed in the 

center of the model in order to initiate strain localisation. Figure 2 shows model 

results – extruded to two dimensions to ease reading – for a 100-km wide section of 

crustal or mantle material sheared by a boundary displacement of 230 km for an 
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overall strain 2.3.  In crustal rocks (Fig. 2A), strain localisation occurs at 300°C and 

400°C, resulting in a lithospheric-scale shear zone where the local strain reaches 

100. The amount of weakening (Fig. 1A) and hence the accumulated strain within the 

shear zone is maximum at 300°C. Strain localisation results from the progressive 

development of layering that leads to a decrease in material strength and an increase 

in strain rate within the shear zone (Gueydan et al., 2004; Gueydan et al., 2003; 

Montési, 2007). The crustal shear zones are marked by a degree of layering that 

progressively tends toward 0.9 with increasing strain while the country rocks strength 

does not evolve. The shear zone thickness increases with temperature to 

accommodate the same boundary displacement. For temperature larger than 500°C, 

the increase in layering leads to strengthening of the crustal rocks and no strain 

localisation.  

A similar behaviour is predicted for the mantle. In this case, viscosity 

decreases by more than two orders of magnitude at 600°C, leading to the formation 

of a narrow mantle shear zone (Fig. 2B). Strain localisation results from a weakening  

induced by the dominance of disGBS during dynamic grain size reduction (Fig 1B 

and 2B, (Précigout and Gueydan, 2009)). Strain localisation does not develop for 

mantle temperature larger than 800°C, when disGBS is no longer the dominant 

deformation process (Fig 1B). In this case, grain size evolution does not induce 

weakening, and the shear zone viscosity remains close to the initial value. 

Figure 3 presents the evolution of the effective viscosity in the developing 

shear zone in the mid-crust or in the subcontinental mantle. In crustal rocks (Fig. 3A), 

strain localises at temperatures between 300°C and 400°C. It results from the 

progressive development of layering that decreases material strength by more than a 

factor of 10 at strains larger than 1. The asymptotic value corresponds to the 



 8 

complete layering, and hence no further weakening processes can lead to a later 

drop of strength. At higher temperature, the drop of viscosity is less important and 

even not present for temperature larger than 500°C.  In mantle rocks (Fig 3B), strain 

localisation induced by the dominance of disGBS leads to a drop of viscosity by more 

than one order of magnitude at 600°C. The asymptotic value is also reached after 

strain larger than 1. At this stage, grain size reduction stops and no weakening is 

expected in the mantle shear zone at larger strain. Strain localisation does not 

develop for mantle temperature larger than 800°C, when disGBS is no longer the 

dominant deformation process (Fig 1B). In this case, grain size evolution does not 

induce weakening, and the shear zone viscosity remains close to the initial value. 

 

 3.2/ Strain weakening 

Strain localization is associated with a decrease of effective viscosity from an 

initial value 0 to an asymptotic value ∞ in ductile shear zones or a reduction of 

strength from 0 to ∞ in the brittle crust. The effective viscosity is defined by the ratio 

between the shear stress and the overall strain rate that is here 10-15 s-1. Figure 4 

summarizes these results by presenting a measure of strain weakening, , as a 

function of depth, where =1-(∞/0) or =1-(∞/0) in brittle or ductile layers of the 

crust. For the upper crust, a change from 0.6 to 0.1 implies a strain weakening of 

83% related to the progressive development of foliated cataclasites (Fig. 4). 

Weakening is even more intense in the middle crust where, for example, viscosity 

decreases from 2x1023 Pa.s to 1022 Pa.s and implies a strain weakening of 95% (Fig 

4). These relative high values of viscosity compared to what is inferred in most plate 

boundaries (Thatcher and Pollitz, 2008, Bürgmann and Dresen, 2008) are due to the 

selected value of mean strain rate that would however not change the quantification 
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of strain weakening, since it is a ratio of viscosities. Strain weakening remains close 

to 90% in the crust at temperature lower than 400°C and then progressively 

decreases to vanish at 500°C. No strain weakening is expected in the deep crust, 

since shear heating is disregarded. In the lithospheric mantle, strain weakening 

reaches again 90% for temperature lower than 700°C and then decreases to vanish 

at 800°C (Précigout and Gueydan, 2009).  

The evolution of strength predicted by our numerical models as a function of strain 

can be approximated by an exponential relationship as follow:                    ⁄   (eq. 1) 

in which   is the strain and    is a parameter that represents the characteristic strain 

over which the fabric of deforming rocks changes according layering development or 

grain size reduction. The large strain experiments (Figs. 2-3) are represented well 

with this general form and with a critical strain of   ~ 0.5 for both the ductile crust and 

the ductile mantle. For seek of simplicity, the critical strain for the brittle crust is also 

set to 0.5. However, note that the critical strain depends on the poorly constrained 

kinetics of metamorphic reaction for the crust and of grain size reduction for the 

mantle that remain to be quantified by large strain experimental deformation in 

laboratory.  

Combining eq 1 with the definition of the strain weakening factor  yields an 

unified description of the lithosphere strength that becomes a function of strain , 
temperature T, and strain rate ˙ e  :        ̇       ̇            ⁄                ̇  (eq. 2) 

The initial strength      ̇  is defined in the ductile layers for the protolith (granitic 

composition or an olivine aggregates in the crust or the mantle, respectively) 

according to the classical strain-rate and temperature sensitive flow law such as 
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dislocation creep (Appendix section). In the brittle upper crust, the initial strength 

obeys the Mohr-coulomb failure criterion. It is insensitive to temperature and strain 

rate but depends on confining pressure, and therefore depth. The values of the strain 

weakening coefficient  are those shown on Figure 4 and therefore are a function of 

depth.  

 

4/ Continental lithosphere strength profiles during strain localization 

 

The unified model of strength as a function of strain, strain rate and 

temperature (Eq. 2) is now used to characterize the evolution of the continental 

lithosphere strength during progressive strain localization. The development of plate 

boundary is represented by an increase in strain rate from 10-17 s-1 to 10-13 s-1 coeval 

with a strain increase from 0 to 2  (Fig. 5). The continental geotherm is such that the 

Moho temperature is 600°C. We ignore the possibility of shear heating to focus on 

microstructural changes that accompany localisation. 

At low strain rate and strain (Fig. 5A), the continental strength profile shows a 

classical mechanical layering, with two high strength layers: the upper crust and the 

uppermost mantle. No brittle mantle is predicted at such a low strain rate. As strain 

rate increases to 10-15 s-1 and strain reaches 1, two contrasting features appear (Fig. 

5B). Strength decreases in the upper crust, mid-crust and the uppermost mantle 

where strain weakening is expected because of brittle faulting, layering development 

and grain size reduction coupled to disGBS, respectively (Fig. 5B). By contrast 

strength increases markedly in the deep crust where no strain weakening is 

suspected. The same features are strongly enhanced at the final strain rate and 

strain (10-13 s-1, ε=2, Fig. 5C). Overall, strain weakening is associated with a 
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decrease in lithosphere strength as strain rate increases to counteract the strength 

increase otherwise produced by the fundamental strain-rate hardening characteristics 

of ductile flow laws.  

The positive feedback between strain localization and weakening leads to a 

reversal in strength stratification of the lithosphere. The lower crust, which is initially 

the weakest layer, becomes the strongest, while the upper mantle and upper to 

middle crust become the weakest levels. Thus it is possible to reconcile the 

apparently contradictory evidence for a high strength upper mantle needed to 

develop plate boundaries and the evidence of a strong lower crust in active 

deformation zones.  

 

5/ Discussion and conclusion 

The strength model developed above shows that actively deforming regions 

such as plate boundaries, are characterized by a weak upper-mid crust and weak 

lithosphere mantle surrounding a high strength deep crust (Fig. 5C), where the zones 

of weakness are related to microstructural evolution. The weakness of continental 

plate boundaries is consistent with geophysical observations that suggest very low 

elastic thickness in these regions (Audet and Bürgmann, 2011). 

Strain weakening in the ductile middle crust permits mechanical decoupling 

between lower crustal flow and upper crust faulting, which is essential to promote 

localised faulting and large displacement along faults (Lavier and Buck, 2002; 

Huismans and Beaumont, 2003; Nagel and Buck, 2004; Schueller et al., 2005; 

Schueller et al., 2010). The absence of weakening in the deep crust yields to a 

progressive increase of its strength during strain localization so that it becomes the 

strongest level of the lithosphere, as is indicated by post-seismic creep 
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measurements in California (Bürgmann and Dresen, 2008; Thatcher and Pollitz, 

2008).  

The long-term strength of the continental lithosphere described here may be 

further modified by interaction with the seismic cycle. Figure 6 proposes a structural 

interpretation of the character of seismicity at a continental strike slip fault like the 

San Andreas Fault. Major earthquakes take place in the seismogenic upper crust. 

Immediately below that level, the localizing midcrust, which acts as a decoupling 

layer, constitutes a region where fluid-rock interaction is dominant, allowing 

metamorphic reaction, development of layering, and related weakening (Holdsworth, 

2004). In this layer, weakening would generate relatively narrow ductile shear zones 

where transient changes in pore fluid pressure and shear stress may induce 

microseismicity (Rolandone et al., 2004; Gratier and Gueydan, 2007). 

Post-seismic deformation following large earthquakes is detected at large 

distance from the main shock, implying the presence of a strong layer at depth most 

likely in the lower crust (Freed et al., 2007; Lindsey and Fialko, 2013). Non-volcanic 

tremors at 20 to 40 km depth below the San Andreas fault (Nadeau and Dolenc, 

2005; Thomas et al., 2012) suggests that shear failure is possible within the 

dominantly creeping deep crust. The easy modulation of tremors activity in response 

to different loading (Shelly and Hardebeck, 2010, Thomas et al., 2012) furthermore 

implies that the lower crust is very weak and close to failure. Transient loading during 

earthquakes and slow slip events in the mid-crust and in the upper mantle may 

increase pore fluid pressure and lead to shear failure in the otherwise ductile lower 

crust, generating tremor activity (Fig. 6). Further studies, combining geological, 

mechanical, and seismological approaches, are needed to unravel the precise 
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mechanics of transient loading, fluid-rock interaction, pore fluid pressure and shear 

failure.  

Finally, the mantle opposes little resistance to deformation as evidenced by 

the absence of earthquakes in the mantle and also postseismic displacements 

pattern. Our rheological model supports the idea of a broad mantle shear zone, 

probably 50 km wide below the fault zone (Freed et al., 2007; Fig 6). The exact 

thickness of this mantle shear zone would depend on the degree of heterogeneity 

(Vauchez et al., 2012), the amount of coupling between crustal deformation and 

mantle deformation (Schueller et al., 2010) and the amount of weakening within the 

lithospheric mantle. The rheological model developed here provides the foundation 

for new study of shear zone development that would unravel the expected structure 

of continental fault zones at depth. 
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 7/ Appendix: Strain-dependent rheologies 

 

 6.1/ Midcrust rheology 

The crustal protolith is assumed to have a granite-like mineral assemblage, 

constituted of 40% quartz, 50% feldspar, and 10% mica homogenously distributed 

throughout the rock. The strength of the protolith, protolith, is the weighted sum of the 
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strength of its constitutive minerals assuming that geometrical incompatibilities in a 

homogeneous rock force all the phases to adopt the same strain rate: 

protolith= 0.4quartz + 0.5 feldspar+ 0.1 mica   (eq. 3) 

where quartz, feldspar and mica are defined by the experimentally calibrated flow such 

as the dislocation creep   ̇                (eq. 4) 

where A, Q, and n are the pre-exponential constant, the activation energy and the 

stress exponent and depend on the rock type (Table 1).  

After large deformation, the protolith becomes a mylonite, with higher mica 

content due to fluid-rock interactions and a strain-induced layered structure. If 

reaction reaches completion, the strength of the shear zone would be given by the 

rheology of mica:  

shear zone= mica     (eq. 5) 

At intermediate stages, a two-level mixing theory (Montési, 2007) is used to estimate 

the strength of the aggregate as a function of the degrees of layering f: 

 =(1-f)protolith+fshear zone  (eq. 6) 

Although a pure mylonite would have f=1, we consider the final stage of evolution to 

be f=0.9 to avoid strong numerical instabilities that arise when weakening is too 

intense.  

  

6.2 / Mantle rheology 

Based on field observations in the Ronda peridotite (southern Spain) and the 

experimental data of Hirth and Kohlstedt (2003), Précigout et al. (2007) proposed a 

strain-dependent mantle rheology in which the overall strain rate  ̇ is the sum of four 

ductile deformation mechanisms: dislocation creep (  ̇), diffusion creep (  ̇), disGBS 
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(  ̇) and exponential creep (  ̇) (Hirth and Kohlstedt, 2003; Drury, 2005; Précigout et 

al., 2007). Each mechanism contributes to the bulk strain rate ( ) of an olivine 

aggregate according to:  ̇    ̇    ̇    ̇    ̇     (eq. 7) 

where the corresponding flow laws are:     ̇                   (eq. 8) 

  ̇                     (eq. 9) 

  ̇                     (eq. 10) 

and   ̇                     
  (eq. 11)

 

In the above equation,  is the stress [MPa], d is the grain size [µm], T is temperature 

[K], R is the gas constant, and A, Q and n are the material parameters indicating the 

pre-exponential constant, the activation energy and the stress exponent for each 

mechanism identified by their respective indexes (r=Dislocation creep; d=Diffusion 

creep, g=DisGBS creep and e=exponential creep). Finally, md, mg, and   are 

respectively the grain size exponent for diffusion creep and disGBS, and a constant 

parameter for the exponential creep (Peierls stress; Goetze, 1978) (Table 1). Grain 

size reduction can only occur within grain size/stress domains where dislocation 

creep is effective enough, i.e., dislocation creep and disGBS, up to the boundary of 

the diffusion creep field, where we assume that only grain growth can occur.  
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Figure caption 
 

 

Figure 1: Field observation in naturally deformed rocks allowing the definition of 

weakening mechanisms. A) In the mid-crust, an increase in the fraction of rock that 

has a layered fabric from f=0 in the protolyth to f=0.9 in the mylonite (phyllonite) 

defines weakening that is expected at temperature less than 500°C. B) In the mantle, 

grain size reduction from 1 cm in the protolith to 100 m or less in a mylonite leads to 

significant weakening at temperatures less than 800°C, where deformation is 

accommodated by disGBS. All the curves are shown for a constant strain rate of 10-

15.s-1.  
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Figure 2: 1D large strain simple shear numerical experiments, shown in 2D to ease of 

reading, Deformation profile of horizontal pieces of the crust (top) or the mantle 

(bottom) undergoing simple shear to a strain of 2.3 at various temperature. The 

colors represent local strain and viscosity. Deformation localizes at temperature less 

than 500°C in the crust and 800°C in the mantle, locally reaching a strain of 100. 
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Figure 3: Evolution of effective viscosity during large strain experiment (inset and Fig. 

2) of a piece of the crust (A) or the mantle (B) undergoing simple shear to a strain of 

2.3 at various temperatures. 

 

Figure 4: Strain weakening quantified by large strain experiments (Figs 2-3) as a 

function of depth/temperature across the continental lithosphere. Light brown, dark 

brown and green boxes highlight weakening in respectively the upper crust, the 

midcrust and the subcontinental mantle.  
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Figure 5: Three strength profiles for low (A), medium (B) and high (C) strain rate and 

strain exemplifying the positive feedback strain localization and weakening of the 

continental lithosphere. The relationship between strength, strain and strain rate is 

provided by eq. 3. Rheological parameters are given in Table 1. The continental 

geotherm is such that the Moho temperature at 30 km is 600°C. Light brown, dark 

brown and green boxes highlight weakening in respectively the upper crust, the 

midcrust and the subcontinental mantle. D/ Schematic description of the role of strain 

weakening on continental plate tectonics: definition of both strong plate interiors (low 

strain rate/strain) and weak continental plate boundary (large strain rate/strain).  



 24 

 

Figure 6: Schematic diagram of the mechanical layer of a continental strike-slip plate 

boundary showing, from top to bottom: the seismogenic upper crust; a weak, ductile 

mid-crust where deformation localizes unto ductile shear zones as the fraction of 

layered rock increases; a strong, ductile, lower crust where deformation does not 

localize spontaneously but where shear failure is possible due to transient loading 

and pore pressure increase; a weak upper mantle where grain size reduction 

localises deformation unto a ~50 km wide ductile shear zone.  
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Table 1: Rheological parameters used in this study 

 A (MPa-n.s-1) Q (kJ.mol-

1) 
n m p References 

 Pre-
exponential 
constant 

Activation 
energy 

Stress 
exponent 

Grain size 
exponent 

Goetze 
constant 

 

MANTLE (OLIVINE) RHEOLOGY 
Dislocation 
Creep (r) 

1.1 105 530 3.5 - - (Hirth and 
Kohlstedt, 2003) 

Diffusion 
creep (d) 

1.5 109 370 1 3 - 

Dry-GBS 
Creep (g) 

6.5 103 400 3.5 2 - 

Exponential 
creep (e) 

5.7 1011 s-1 535 2 - 8500 (Goetze, 1978) 

MID CRUST RHEOLOGY 
Quartz 
Dislocation 
Creep 

3.910-10 135 4 - - (Luan and 
Paterson, 1992) 

Feldspar 
Dislocation 
Creep 

3.210-4 238 3.2 - - (Shelton, 1981) 

Mica 
Dislocation 
Creep 

10-30 51 18 - - Biotite(Kronenberg 
et al., 1990) 

DEEP CRUST RHEOLOGY 
Weak deep 
crust 
(granite) 

Protolith rheology: 50% of  feldspar, 40% of quartz, 10% of mica, following the 
mixing flow laws (eq. 3; section methods) 

Strong deep 
crust 
(granulite) 

1.4104 445 4.2 - - Pikwitonei 
granulite (Wilks 
and Carter, 1990) 

 

 

 

 

 

 


