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CNES CNRS IRD UPS, OMP, Université Toulouse III Paul Sabatier, Toulouse, France
5
NASA Goddard Space Flight Center, Hydrological Sciences Lab, Greenbelt, USA

6
Universidade do Estado do Amazonas UEA, Manaus, Amazonas, Brazil

2879

D
is

c
u
s
s
io

n
P

a
p
e
r

|
D

is
c
u
s
s
io

n
P

a
p
e
r

|
D

is
c
u
s
s
io

n
P

a
p
e
r

|
D

is
c
u
s
s
io

n
P

a
p
e
r

|

Received: 1 February 2013 – Accepted: 26 February 2013 – Published: 7 March 2013

Correspondence to: R. C. D. Paiva (rodrigocdpaiva@gmail.com)

Published by Copernicus Publications on behalf of the European Geosciences Union.

2880



D
is

c
u
s
s
io

n
P

a
p
e
r

|
D

is
c
u
s
s
io

n
P

a
p
e
r

|
D

is
c
u
s
s
io

n
P

a
p
e
r

|
D

is
c
u
s
s
io

n
P

a
p
e
r

|

Abstract

In this work we introduce and evaluate a data assimilation framework for gauged and

radar altimetry-based discharge and water levels applied to a large scale hydrologic-

hydrodynamic model for stream flow forecasts over the Amazon River basin. We used

the process-based hydrological model called MGB-IPH coupled with a river hydro-5

dynamic module using a storage model for floodplains. The Ensemble Kalman Filter

technique was used to assimilate information from hundreds of gauging and altimetry

stations based on ENVISAT satellite data. Model state variables errors were generated

by corrupting precipitation forcing, considering log-normally distributed, time and spa-

tially correlated errors. The EnKF performed well when assimilating in situ discharge,10

by improving model estimates at the assimilation sites and also transferring informa-

tion to ungauged rivers reaches. Altimetry data assimilation improves results at a daily

basis in terms of water levels and discharges with minor degree, even though radar

altimetry data has a low temporal resolution. Sensitivity tests highlighted the impor-

tance of the magnitude of the precipitation errors and that of their spatial correlation,15

while temporal correlation showed to be dispensable. The deterioration of model perfor-

mance at some unmonitored reaches indicates the need for proper characterization of

model errors and spatial localization techniques for hydrological applications. Finally,

we evaluated stream flow forecasts for the Amazon basin based on initial conditions

produced by the data assimilation scheme and using the ensemble stream flow predic-20

tion approach where the model is forced by past meteorological forcings. The resulting

forecasts agreed well with the observations and maintained meaningful skill at large

rivers even for long lead times, e.g. > 90 days at the Solimões/Amazon main stem.

Results encourage the potential of hydrological forecasts at large rivers and/or poorly

monitored regions by combining models and remote sensing information.25
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1 Introduction

Land surface waters play an important role in global water cycle and earth system,

regulating freshwater discharge from land into oceans (Oki and Kanae, 2006) and also

land-atmosphere exchanges of water, energy (Krinner, 2003; Decharme et al., 2012)

and gases such as methane (Gedney et al., 2004). Moreover, it affects directly society5

that uses it for drinking water and also transportation of people and goods, agriculture

and energy production from hydropower. More specific to the Amazon basin, important

extreme hydrological events have occurred recently, for instance, the 2009 and 2012

floods and the 1996, 2005 and 2010 droughts (Chen et al., 2010; Tomasella et al.

2010; Marengo et al., 2008; Espinoza et al., 2011; Marengo et al., 2011). These events10

caused several impacts on local population that strongly depends on the rivers and is

very vulnerable to floods since most settlements lie along the rivers.

In situ measurements of river stage and discharge at stream gauges are the most

conventional alternative for monitoring surface waters, although observation networks

are rather sparse at several regions such as the Amazon River basin. Alternatively,15

radar altimetry techniques have been developed in past years to monitor water lev-

els (e.g. Santos da Silva et al., 2010; Alsdorf et al., 2007) or discharges using rating

curves (e.g. Leon et al., 2006; Papa et al., 2010a; Getirana and Peters-Lidard, 2013). If

compared to in situ gauges in remote regions, these satellite instruments can provide

observations with much better spatial resolution, but with worse temporal sampling.20

Moreover, the forthcoming Surface Water and Ocean Topography (SWOT) mission

(Durand et al., 2010a) is designed to provide high resolution images of inland wa-

ter surface elevation, including rivers, lakes, wetlands and reservoirs, using a swath

mapping radar altimeter with high frequency repeat orbit. Additionally, it may also be

possible to derive discharge estimates from SWOT data by using specially developed25

algorithms (e.g. Durand et al., 2010b).

In contrast, there are several efforts on hydrological modeling to simulate processes

as river and floodplain dynamics in large river basins such as the Amazon (Paiva et al.,
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2012, 2013; Yamazaki et al., 2011; Getirana et al., 2012; Decharme et al., 2012; Coe

et al., 2008; Wilson et al., 2007; Trigg et al., 2009). These models can potentially pro-

vide detailed information on surface waters, both spatially and temporally, but such

estimates are somehow imperfect due to uncertainty in model structure, parameters

and forcing data (Liu and Gupta, 2007).5

Data assimilation (DA) methods are an alternative to optimally merge uncertain

model predictions with both in situ and the newly remote sensing observations of sur-

face waters. The aim of DA techniques is to “produce physically consistent representa-

tions or estimates of the dynamical behaviour of a system by merging the information

present in imperfect models and uncertain data in an optimal way to achieve uncer-10

tainty quantification and reduction” (Liu and Gupta, 2007). Such methods can also

be used to estimate balanced initial states of hydrological models for forecasting the

aforementioned extreme events. There are already some hydrological regional/global

forecast systems founded on physically-based hydrological models (e.g. Wood et al.,

2002; Thielen et al., 2009; Alfieri et al., 2012), and also several physical modeling ex-15

periments in the Amazon basin, as previously mentioned. However, current attempts

for developing hydrological forecasts in this basin are mostly based on statistical meth-

ods (e.g. Uvo and Grahan, 1998; Uvo et al., 2000). Furthermore, Paiva et al. (2012b)

showed that, for lead times up to 3 months, uncertainty of initial conditions plays a major

role for discharge predictability on main Amazonian Rivers, if compared to the impor-20

tance of precipitation forcing, suggesting the importance of DA techniques for stream-

flow forecasts in this region.

Research on data assimilation applied to hydrology has increased in past years with

various applications utilizing Kalman filters (e.g. the Ensemble Kalman Filter – EnKF,

developed by Evensen, 2003), particle filters or variational methods, as extensively25

reviewed in Liu and Gupta (2007), Reichle (2008) and Liu et al. (2012). These appli-

cations include a wide range of observations, both in situ and remotely sensed, data

assimilation methods and models representing different hydrological processes, at dif-

ferent spatial scales and with several objectives, such as: the assimilation of snow
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(Andreadis and Lettenmaier, 2006) and soil moisture (Reichle et al., 2002) data into

land surface models using the EnKF; assimilation of in situ water level measurements

into a small scale 1-D hydrodynamic model for flood forecast using Kalman filtering

methods (Neal et al., 2007; Ricci et al., 2011); assimilation of synthetic SWOT data

into hydrodynamic models at restricted areas using the EnKF and some variations5

(Biancamaria et al., 2011; Andreadis et al., 2007; Durand et al., 2008); assimilation

of discharge data into distributed hydrological models (Clark et al., 2008; McMillan

et al., 2013; Lee et al., 2012; Thirel et al., 2010; Rakovec et al., 2012) using the EnKF

or variational methods; simultaneous assimilation of soil moisture and discharge data

into a distributed hydrological model using variational DA (Lee et al., 2011); assimila-10

tion of radar altimetry data of reservoir water levels using the EnKF (Pereira-Cardenal

et al., 2011); development of a modelling platform (Land Information System – LIS)

to merge multiple in situ and remotely sensed observations with land surface models

(Kumar et al., 2008); merging water levels information derived from a satellite Synthetic

Aperture Radar (SAR) image and digital terrain model (DTM) with a 1-D hydrodynamic15

model for estimating river discharge (Neal et al., 2009); among others. Although there is

an extensive bibliography on hydrological data assimilation, the current state of the art

regional/global hydrological prediction systems (e.g. Thielen et al., 2009; Alfieri et al.,

2012) still do not incorporate advanced data assimilation systems for updating model

initial states. Also, the assimilation of discharge and water levels from in situ and re-20

motely sensed observations into regional/global hydrologic-hydrodynamic models is

still uncommon.

In this paper, we present the development and evaluation of a data assimilation

framework for both gauged and radar altimetry-based discharge and water levels into

a large scale hydrologic-hydrodynamic model of the Amazon River basin using the25

EnKF. We also explore the usefulness of such system to provide streamflow forecasts

when forced by past remotely sensed precipitation data and based mostly on model

initial conditions. This paper is in the context of recent developments of techniques

for integrating information from hydrological models with newly remotely sensed data
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such as the forthcoming SWOT mission and also in the context of regional/global hy-

drological forecast systems including large, poorly gauged river basins. Through our

experimental results, we explore questions such as: is an EnKF-based DA scheme

feasible for assimilating discharge and water level data into large scale hydrologic-

hydrodynamic models? Is it able to improve discharge and water level estimates at5

sites where data were assimilated and also at ungauged rivers? Does the assimilation

of radar altimetry data also improve model estimates at large river basins, considering

that it has lower temporal resolution and accuracy if compared to gauged in situ data?

Would it be possible to provide accurate streamflow forecasts at large basins such as

the Amazon using a large scale hydrologic-hydrodynamic model based mostly on the10

initial hydrological states gathered by the DA scheme? At which spatial and temporal

scales?

2 Methods

2.1 The hydrologic-hydrodynamic model

We used the MGB-IPH model (Collischonn et al., 2007), which is a large scale, dis-15

tributed and process-based hydrological model with a hydrodynamic module described

in Paiva et al. (2011). It simulates surface energy and water balance and also dis-

charge, water level and flood inundation on a complex river network. Vertical hydro-

logical processes include soil water budget using a bucket model, energy budget and

evapotranspiration using the Penman Monteith approach, and also surface, subsurface20

and groundwater flow generation, among others. The flow generated within each catch-

ment is routed to the stream network using a linear reservoir type model. River flow

routing is performed using a combination of either a Muskingum-Cunge (MC) method

or a hydrodynamic model (HD).

The hydrodynamic model of MGB-IPH (Paiva et al., 2011) solves the full 1-D Saint-25

Venant equations for the river network and flood inundation is simulated using a simple
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model assuming that the floodplains act only as storage areas. River-floodplain param-

eters (river width, bottom levels, roughness coefficient, floodplain bathymetry) are esti-

mated using GIS-based algorithms from the Shuttle Radar Topography Mission (SRTM)

Digital Elevation Model (DEM) (Farr et al., 2007) and using geomorphological relations.

2.2 The Ensemble Kalman Filter5

The goal of data assimilation is to combine the uncertain and complementary infor-

mation from measurements and simulation models into an optimal estimate of the hy-

drological fields of interest, providing a general framework for dealing with uncertainty

from measurements and also input, output and model structure (Reichle, 2008; Liu and

Gupta, 2007; Liu et al. 2012; Vrugt et al., 2005).10

A great part of the hydrological applications of data assimilation methods uses

schemes based on the Kalman filter (Kalman, 1960), specially the Ensemble Kalman

Filter (Evensen, 2003, 2009), which is also used in this study and is briefly described

below. The model representing the dynamics of the simulated system can be repre-

sented in a discrete form by the process equation:15

xk+1 =M (xk ,uk ,θ )+qk (1)

where x represents the state variables and, u and θ represent model forcings and

parameters, respectively, M is the nonlinear model operator that relates model states

from time interval tk to tk+1 = tk +∆t, and qk represents errors in model structure,

parameter, forcings and antecedent states. In this study, x is a vector composed by20

all MGB-IPH state variables, i.e. soil moisture, storage and discharge from surface,

subsurface and groundwater reservoirs, soil temperature, canopy storage and river

discharge and water level. The measurement equation is defined by:

yk = H(xk)+εk (2)

where y is observation vector, ε is the vector of observation errors and H is the ob-25

servation operator which relates the model state variables vector x to the observations
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vector y. In our case, observations are river discharges or water levels at selected

sites.

In the context of forecast systems and sequential data assimilation methods, at each

time interval, the model is integrated in time using Eq. (1) to provide a short-term

forecast (or background) x
f
k+1 and whenever an observation is available, the forecast5

errors are computed as (yk+1 −H(x
f
k+1)). Therefore, the goal of data assimilation is to

obtain an optimal estimate of model state variables x
a

(called analysis) given model

and observation errors. In the case of the original Kalman Filter (Kalman, 1960), the

DA problem is solved using a linear estimator assuming that (i) model and observation

operators (M and H) are linear; (ii) observation errors are unbiased and both temporally10

and spatially uncorrelated; (iii) model errors are unbiased and temporally uncorrelated;

and (iv) there is no correlation between model and observation errors. Consequently,

an unbiased and minimum variance estimate of model states is obtained by:

xa
= xf

+K
(

y −Hxf
)

(3)

K = Pf HT
(

HPf HT
+R

)−1

(4)15

where K is the Kalman gain, P is the covariance of model errors q, and R is the covari-

ance of measurement errors ε. The Kalman filter also provides the maximum likelihood

solution of the DA problem when model and measurement errors are assumed to be

also Gaussian. However, the applicability of the KF is limited since most hydrological20

systems exhibit nonlinear dynamics (Liu and Gupta, 2007) and the assumptions about

model errors (e.g. Gaussian, unbiased, among others) are not always valid. Moreover,

both the original KF and also its non-linear version, the Extended KF (EKF), have addi-

tional drawbacks when applied in large and complex systems with lots of state variables

(e.g. distributed hydrological models) due to extra programming and heavy computa-25

tional requirements associated with the storage and forward integration of the error

covariance matrix P (Vrugt et al., 2005).
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Evensen (2003) presented the Ensemble Kalman Filter (EnKF), which is a stochastic

or Monte Carlo alternative for the deterministic EKF (Evensen, 2009). In this method,

observations and model states are perturbed using a priori-known errors and by means

of the model operator M, the algorithm generates an ensemble of model trajectories

from which the time evolution of model errors and error covariance matrix can be sam-5

pled:

Pf ∼
= Pf

e =

(

xf −xf
)(

xf −xf
)T

, Pa ∼
= Pa

e =

(

xa −xa
)(

xa −xa
)T

(5)

Each ensemble member is then updated using the same analysis equation from the

original KF (Eqs. 3 and 4). Alternatively, efficient computational implementations of the

EnKF are presented in Evensen (2003, 2004 and 2009) (see http://enkf.nersc.no/ for10

Fortran codes) where the explicit computation and storage of P are not required. We

used the square root scheme presented in Evensen (2004, 2009) where the perturba-

tion of measurements is not performed, in order to reduce sampling errors.

For linear systems and with large ensemble sizes, the EnKF provides the same so-

lution as the KF method. However, it is noteworthy that it does not fully take into ac-15

count non-Gaussian errors nor solve the Bayesian update equation for non-Gaussian

probability distribution functions. Still, it is a computational efficient analysis scheme

for nonlinear models that provides a satisfactory solution, although it is suboptimal,

that somehow lies between a linear Gaussian update and a full Bayesian computation

(Evensen, 2009).20

2.3 Uncertainty in precipitation forcing

We perturbed model states variables by adding a noise in precipitation forcing, con-

sidering (i) that this is the most uncertain model input (Liu et al., 2012) and possibly

the most important source of model uncertainty and (ii) that this is a proper method to

generate physically coherent model errors. A similar approach performed satisfactorily25

in other hydrological applications of DA methods such as Andreadis and Lettenmaier
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(2006) and Biancamaria et al. (2011). Precipitation values were corrupted using a log-

normally distribution as presented by Nijjsen and Lettenmaier (2004) and also applied

by Andreadis and Lettenmaier (2006):

Pc =
1+β

√
E2 +1

exp

(
√

ln
(

E2 +1
)

s

)

P (6)

where Pc (mm∆ t
−1

) is the perturbed daily precipitation, P (mm∆ t
−1

) is the unper-5

turbed daily precipitation, E is the relative error (%), β is the relative bias and s ∼ N(0,1)

is a normally distributed and spatially correlated random variable with zero mean and

unit variance. Spatially correlated pseudo random fields w were generated by means

of the algorithm based on the two dimensional Fourier transform presented in Evensen

(2003) (see http://enkf.nersc.no/ for Fortran codes), having zero mean, unit variance10

and isotropic covariance function decreasing to the e
−1

value at the distance τx called

spatial decorrelation length. At each spatial location, temporal correlation was also

considered using the following equation for simulating the time evolution of errors

(Evensen, 2003):

sk = αsk−1 +

√

1−α2wk−1 (7)15

where k is the time interval, sk is a sequence of time correlated errors with zero mean

and unit variance (input for Eq. 6) and α determines the time decorrelation of the

stochastic forcing, e.g. α = 0 generates a sequence of white noise while α = 1 removes

the stochastic forcing. The parameter α is determined by:

α = 1−
∆t

τt
(8)20

where τt is the temporal decorrelation length, that determines that s decreases by the

ratio e
−1

after a time period t = τt if the stochastic term w is excluded.
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2.4 Measurement errors

Water level (z) and discharge (Q) observations errors were modeled using the following

relations:

zc = z+εz, εz ∼ N
(

0 , σ2
z

)

(9)

Qc =Q+εQ, εQ ∼ N
(

0 , (σQQ)2
)

(10)5

where zc (m) and Qc (m
3

s
−1

) are the corrupted values of z(m) and Q (m
3

s
−1

), εz (m)

and εQ (m
3

s
−1

) are the normally distributed errors with parameters σz (m) and σQ (%)

of z and Q, respectively. The formulation of discharge errors allows representing larger

uncertainties for high stage levels than for low flows due to uncertainties in discharge10

rating curves, as pointed out by Clark et al. (2008). Alternatively, simulated and ob-

served discharges were also transformed into the log space before the assimilation,

following Clark et al. (2008). In this case, observation errors were modeled by:

Qc = ε′
Q
Q, ε′

Q
∼ logN

(

1,σ′
Q

2
)

(11)

where now ε
′
Q is a log-normally distributed error with unit mean and standard de-15

viation σ
′
Q (%), similar to Eq. (10). At log space, standard deviation is given by

σ
′
logQ =

√

log
(

σ′
Q

2
+1

)

.

3 Experimental design

3.1 The Amazon River basin

The study area is the Amazon River basin, known as the largest hydrological system of20

the world (∼ 6 million km
2

of surface area) and contributing with ∼ 15 % to the total fresh
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water released into the oceans. The Amazon basin is characterized by extensive sea-

sonally flooded areas (Hess et al., 2003; Papa et al., 2010b; Melack and Hess, 2010),

which store and release large amounts of water from the rivers and consequently at-

tenuate and delay flood waves in several days or months (Paiva et al., 2012a, 2013;

Yamazaki et al., 2011). Also, complex river hydraulics are present, where the low river5

slopes cause backwater effects that control part of river dynamics (Meade, 1991; Trigg

et al., 2009; Tomasella et al., 2010; Paiva et al., 2012a, 2013). Additionally, this region

presents high precipitation rates (average ∼ 2200 mmyr
−1

) with high spatial variability

and contrasting rainfall regimes in the northern (rainfall peak at JJA) and southern (rain-

fall peak at DJF) parts of the basin, with more defined wet and dry seasons occurring10

in southern and eastern regions (Espinoza et al., 2009).

3.2 Model implementation

We used a MGB-IPH implementation on the Amazon basin developed by Paiva et al.

(2013), as briefly described below. The model was forced using meteorological data

obtained from the CRU CL 2.0 dataset (New et al., 2002) and remotely sensed precip-15

itation estimates from the TRMM 3B42 v6 product (Huffman et al., 2007), with spatial

resolution of 0.25
◦
×0.25

◦
and daily time step for a period spanning 12 yr (1998–2009).

The model parameters related to soil water budget were calibrated using daily dis-

charge data from stream gauges (see next section for description of gauged data).

Then, the model was validated against daily discharge and water level data from stream20

gauge stations, water levels derived from ENVISAT satellite altimetry data (Santos da

Silva et al., 2010) (212 sites with 35-day repeat orbit), monthly Terrestrial Water Stor-

age from GRACE mission (Frappart et al. 2010, 2011b) and monthly flood inunda-

tion extent from Papa et al. (2010b). Simulations agreed with observations, with rel-

atively high Nash and Suttcliffe index (ENS) values: ENS > 0.6 in ∼ 70% of discharge25

gauges, ENS > 0.6 in ∼ 60% of the water level stations derived from satellite altimetry,

ENS = 0.71 for total flood extent and ENS = 0.93 for terrestrial water storage.
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Since this study aimed at applications of data assimilation to hydrological forecasting,

we also used a real time precipitation product to force the MGB-IPH model. We choose

to use the TRMM Merge product (Rozante et al., 2010), which is a near to real time

precipitation estimate based on TRMM 3B42RT (Huffman et al., 2007) merged with

data from in situ gauges and provided by the Brazilian center for weather forecasts and5

climate studies CPTEC (Centro de Previsão do Tempo e Estudos Climáticos), a divi-

sion of the Brazilian National Institute for Space Research INPE (Instituto Nacional de

Pesquisas Espaciais).

3.3 Discharge and water level observations

We evaluated the assimilation of three types of data: (1) in situ discharge observations;10

(2) remotely sensed water levels derived from the ENVISAT radar altimeter; and (3)

remotely sensed discharge estimates derived from radar altimetry water levels and

rating curves.

In situ daily discharge from 109 stream gauges were provided by the Brazilian

agency for water resources ANA (Agência Nacional das Águas), the Peruvian and15

Bolivian national meteorology and hydrology services SENAMHI (Servicio Nacional de

Meteorologı́a e Hidrologı́a) and the French ORE-HYBAM program (Hydrologie, Bio-

geochimie and Geodynamique du Bassin Amazonien, http://www.ore-hybam.org). We

also used stage data from 66 ANA gauge stations, but only for validation purposes.

Remotely sensed water levels were obtained from the ENVISAT satellite altimeter.20

The ENVISAT satellite has a 35-day repeat orbit and an 80 km inter-track distance

at the Equator. The database used is an extension of the one presented in Santos

da Silva et al. (2010), consisting in 212 altimetry stations (AS – deduced from the

intersection of a satellite track with a water body) with water level time series for the

2002–2009 period. ENVISAT data selection techniques preconized by Santos da Silva25

et al. (2010) result in ∼ 10 to 40 cm water level accuracy. Due to differences in water

levels datum reference, the comparisons between simulated and observed water levels

were performed in terms of anomalies, i.e. after removing the long-term average.
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Altimetry-based discharge data was developed by Getirana and Peters-Lidard (2013)

for the Amazon basin, following the methodology first presented by Leon et al. (2006)

in the Negro River sub-basin. This dataset was constructed using a rating-curve-based

methodology deriving water discharge from ENVISAT altimetry data at 475 altimetric

stations (AS). The stage-discharge relations at each AS were built based on satellite5

altimetry and outputs from a global flow routing (GFR) scheme (Getirana et al., 2012).

A second experiment was performed in this study using observed discharges at gauge

stations to force the GFR scheme at downstream reaches. Validation of the methodol-

ogy against observed discharges at 90 sites showed a mean relative error of 27 % for

the experiment using in situ discharge within the GFR scheme. We assimilated data10

only from the 287 ASs located downstream of a gauging station where results were

improved in the second experiment.

3.4 Parameters of the DA scheme

The first sensitivity experiments used the following standard parameters of the DA

scheme. Ensemble size of the EnKF was set as N = 200. Precipitation fields were cor-15

rupted considering the following error parameters: precipitation relative error E = 25 %,

and precipitation relative bias β = 1.0 following Andreadis and Lettenmaier (2006); tem-

poral decorrelation length of precipitation errors τt = 10 days; and spatial decorrelation

length of precipitation errors τx = 1.0
◦
, similarly to Andreadis and Lettenmaier (2006)

and Clark et al. (2008). The parameter of water level measurements error was set20

as σz = 0.20 m, based on the accuracy of ENVISAT estimates provided by Santos da

Silva et al. (2010). We computed the mean relative error between in situ discharge

measurements and values provided by rating curves at 87 gauging stations from the

ANA database as a surrogate of the discharge error parameter σQ. The median value

of all stations was 13 %, while Clark et al. (2008) used 10 % in its DA experiments.25

Therefore, we choose to also use σQ = 10 % for simplicity. We used σQ = 27 % for as-

similation of satellite based discharge data, based on the error value found in Getirana

and Peters-Lidard (2013).
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3.5 Data assimilation experiments

We performed three data assimilation experiments, namely: (i) in situ discharge assim-

ilation (Exp 1) (ii) radar altimetry assimilation (Exp 2) and (iii) assimilation of discharge

series based on satellite altimetry (Exp 3).

In the first experiment, we tested: (Exp. 1a) the assimilation of discharge from almost5

all gauge stations (80 %) using a few of them for validation (20 %); (Exp. 1b) the assim-

ilation of only 12 stations (∼ 10 %) located at some of the major tributaries to emulate

the situation of using only telemetric stream gauges for real time applications; (Exp. 1c)

the assimilation of discharge from almost all gauge stations, similar to (Exp. 1a), but

without transforming discharge into the log space (Sect. 2.4). Moreover, we explored10

the sensibility of the DA scheme to some of its parameters, namely the ensemble size

N, precipitation relative error E and temporal and spatial decorrelation lengths of pre-

cipitation errors τt, and τx.

The second experiment (Exp. 2) evaluated the assimilation of ENVISAT radar al-

timetry water level anomalies. Stage data from in situ gauges were used for model15

verification. Simulations were also compared in terms of discharge using in situ data to

evaluate the impact of water level assimilation in discharge estimates.

In the third experiment (Exp. 3), we assessed the assimilation of discharge derived

from radar altimetry water level. Discharge data from stream gauges were used for

verification.20

In all cases, simulations started in 1998 and ran to 2002 for model spin-up. The year

of 2003 was used for the spin-up of the DA scheme, where no update was performed in

the first months allowing the system to develop a coherent correlation structure, follow-

ing Andreadis and Lettenmaier (2006). Results were evaluated for the two year period

2004–2005 using the following performance statistics: (i) the Nash-Suttcliffe coefficient25

ENS ranging from −∞ to 1 (optimum) and (ii) changes in root mean square error ∆rms

ranging from −100 % (optimum) to ∞.
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3.6 Prospects of streamflow forecasting

Hindcast streamflow forecasts were generated using an ensemble streamflow predic-

tion (ESP) approach (Day, 1985), as described below. The model uses an estimate

of initial conditions derived from the DA scheme and runs forced by an ensemble of

observed meteorological data from past years. An estimate of initial conditions is com-5

puted during the spin-up period using a hydrological model driven by observed mete-

orological forcings, updated using data assimilation of observations up to the time of

forecast (e.g. forecast starts with model states from 1 June 2010). Then, an ensemble

forecast is obtained using observed meteorological data resampled from past years

(e.g. meteorological data from 1 June to 1 September of years 1998, 1999, ..., 2009).10

Precipitation from TRMM Merge was used during spin-up period, while during fore-

cast the model was forced with TRMM 3B42 data for the period spanning 12 yr (1998–

2009) and, consequently, the forecast ensemble had 12 members. The DA scheme

used the configuration from Exp. 1b where in situ discharge data were assimilated to

update model states before starting a forecast. ESP runs generated decadal forecasts15

up to 90 days lead time and starting at every 1st, 10th and 20th day of the month for

the two year period of 2004–2005.

For simplicity reasons, forecasts were evaluated only by deterministic means by av-

eraging ensemble values into a single forecast. We used the skill score SScli which

compares the performance of the model forecasts with a control forecast based on20

climatology (Wilks, 2006):

SScli = 1−

∑

t

(Q
t
obs −Q

t

for)
2

∑

t

(Qt
obs

−Qt
cli

)2
(12)

where t is the time interval, Qobs is daily discharge observed at stream gauge sta-

tions, Qfor is forecasted discharge, Qcli is the climatological value of discharge on day t
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computed from observations. SScli ranges from −∞ to 1 (optimum) and positive values

show an improvement over a forecast based on climatology.

4 Results and discussion

4.1 In situ discharge assimilation

We start our analysis evaluating the sensibility of the DA scheme performance in terms5

of ∆rms to some of its parameters, as presented in Fig. 1. The objective of such ex-

amination is to verify which parameters are the most important ones and if the DA

performance is improved by using values of these parameters that are different from

the first guess ones based on previous studies (see Sect. 3.4). The configuration of

Exp. 1a was used, where in situ discharge data were assimilated. Results were evalu-10

ated in terms of mean changes in root mean squared error (∆rms) between observed

and simulated discharges, computed for two samples, the first including stream gauges

used for data assimilation and the latter only the validation ones. Larger decreases in

the rms error indicate better performance of the DA scheme.

According to the analysis, the DA scheme strongly depends on the ensemble size15

N. Small N values produce small improvements in discharge results and larger values

enhance the DA performance (smaller ∆rms values), although the improvement rate is

small for N values larger than 150 members. Such behaviour is possibly due to numeri-

cal reasons, since a larger N enable a better sampling of model covariance errors from

the ensemble, as discussed by Evensen (2009). The DA scheme is also very sensi-20

tive to precipitation relative error E and increasing E values improves DA performance.

However, if E is larger than 50 %, ∆rms increases in validation sites causing worse

results (see Fig. 1). Possibly, larger precipitation errors cause larger model uncertainty

and consequently the DA scheme gives more weight to observations, but it starts to de-

grade model results at different locations after some point. A moderate dependence to25

the τx parameter was found and spatial correlation of precipitation errors showed to be
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of importance, since the performance degrades for smaller decorrelation lengths. The

best results were obtained for 1.5
◦

for both the assimilation and validation samples. Fi-

nally, a weak sensibility to the τt parameter was found, which indicates that considering

temporal correlation in precipitation errors is not as important as spatial correlation.

Based on the sensitivity tests, we used the following new parameter values for the5

further experiments: N = 200 (unchanged), E = 50 %, τx = 1.5
◦

and τt = 10 days (un-

changed). However, it is noteworthy that these parameter values related to precipitation

errors, although providing better results for data assimilation, may not realistically rep-

resent errors in the TRMM Merge dataset or the spatially variable satellite precipitation

errors presented in Tian and Peters-Lidard (2010). That is possibly because we con-10

sidered that model uncertainty comes from precipitation errors and neglected other

sources such as parameter and model structural errors (Liu and Gupta, 2007). There-

fore, and since the first guess values were not fully justified in the previous studies

(Andreadis and Lettenmaier, 2006; Clark et al., 2008), we preferred to use the param-

eter values where the DA scheme performs better.15

We first evaluate results from the Exp. 1a. The DA scheme improves results by de-

creasing model errors in almost all stream gauges (blue sites in Fig. 2a), including

both assimilation and validation sites. On average, ENS values increase from 0.71 to

0.94 and the rms error decreases by 49 % (Table 1). For example, at an assimilation

site located on the Negro River (Fig. 3a), when the EnKF is used, the discharge esti-20

mates are much closer to observations if compared with the open-loop simulation. The

ENS index increases from 0.62 to 0.91 and the rms error decreases by 51 %. Similarly,

results also improve at validation sites, although with a smaller degree, and the ENS

index increases from 0.60 to 0.73, with a reduction in rms error of −16 % (Table 1), as

illustrated at a validation site located at upper Juruá River basin (Fig. 3b). Such results25

demonstrate that the DA scheme improves model discharge estimates, not only at sites

where data were assimilated but possibly at ungauged rivers reaches as well.

In Exp. 1b, results improve at assimilation sites −ENS increases from 0.89 to 0.98

and the rms error decreases by 50 % (Table 1). However, since data from only a few
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gauges were assimilated, there is no important improvement (∆rms = −3 %) if all vali-

dation sites are examined together. As expected, according to Fig. 2b the DA scheme

improves discharge estimates mostly at large rivers (e.g. Fig. 3c), where ENS increases

from 0.79 to 0.87 while ∆rms equals −23%. But at smaller rivers, in most cases the

DA scheme has minor effect on simulated discharges (green squares at Fig. 2b) or in5

some cases it degrades results.

In previous studies conducted over smaller basins (e.g. in Clark et al., 2008; and in

others summarised by Lee et al., 2012), the attempt to transfer information to neighbour

or upstream ungauged river reaches was unsuccessful and corrupted model results,

while in our case (Exp. 1b) the DA scheme degraded model outputs mostly at smaller10

basins and improved results at larger rivers. Such behaviour possibly happens because

the state estimation in distributed hydrological models is subject to overfitting due to the

large dimensionality of the model state space, and consequently, when limited data is

available, the data assimilation may update state variables at some lumped fashion

such as the sub-basin scale, as explained by Lee et al. (2012).15

Finally, we compare the use (Exp. 1a) or not (Exp. 1c) of the transformation of dis-

charge values into the log space before data assimilation. The performance of the

DA scheme degrades if the log transformation is not used, and in this case ∆rms in-

creases to −29 % and −10 % for the assimilation and validation samples, respectively,

instead of the −49 % and −16 % values obtained in the Exp. 1a. Clark et al. (2008)20

argue that the EnKF with log transformation performs better because relationships be-

tween streamflow and model states are non-linear and state updates are exceptionally

large when differences between model and observed values are high. However, the

worst performance was observed mostly at smaller river reaches (see Fig. 2c) as illus-

trated in Fig. 3c. Also, DA performs better at gauging stations in large rivers and ∆rms25

increases from −34 % (Exp. 1a) to −40 % (Exp. 1c). Apparently, when the log transfor-

mation is not used, the DA scheme gives more weight to large discharge values (∼ 10
3

to ∼ 10
5

m
3

s
−1

) at large rivers while observations at the smaller ones (<∼ 10
3

m
3

s
−1

)

are not fully taken into account. These results indicate the importance of using the log
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space transformation also to deal with very different discharge magnitudes, including

the ones arising from different spatial scales but also concerning to flood and drought

flows.

4.2 Radar altimetry data assimilation

In this section, the assimilation of water levels derived from ENVISAT altimetry is eval-5

uated (Exp. 2). Stage and discharge data observed at in situ gauging stations were

used for validation purposes.

The DA scheme improves water level simulations at altimetry stations used for as-

similation (Fig. 4a), as illustrated in Fig. 5a. On average, rms decreases by 56 % and

ENS values increase from 0.66 to 0.96 (Table 2). Simulated water level accuracy also10

increases when compared to in situ stage data (∆rms = −13 %). However, the improve-

ment is more evident if only gauging stations located at rivers where altimetry data

were assimilated (Figs. 4b and 5b). In this case, mean ∆rms equals −43 % and ENS

changes from 0.75 to 0.94 (Table 2), similar to what was obtained at altimetry stations.

At other sites, the DA scheme has a minor effect on simulated water levels or even15

degrades results in some cases. Similar results were found for the in situ discharge

validation sample (Fig. 4c). Assimilating water level data improves discharge estimates

(∆rms = −15 %) mostly at the same rivers in which altimetry data is available (e.g. Fig.

5c). But it also degrades results at some of the other river reaches.

Furthermore, the DA scheme can degrade results in some reaches where no data20

were assimilated. Such a problem is possibly caused by spurious correlations in the

model covariance matrix from the EnKF due to a poor sampling from the ensemble.

Aiming to avoid spurious correlations, methods such as covariance localization or local

analysis (Sakov and Bertino, 2010) could be used to constrain the influence of observa-

tions based on distance criteria as already used in atmospheric or ocean applications.25

However, in our view, a particular localization criteria should be developed for hydro-

logical applications, since the correlation between the model states can be a function
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of an Euclidean distance in some cases (e.g. soil moisture) or in others, of a distance

measured following the rivers’ path (e.g. river discharge and water levels).

Results from this experiment demonstrate that the assimilation of radar altimetry

data into large scale hydrologic models can improve simulations, mainly in terms of

water levels but also in discharge. Even though ENVISAT data is provided at a 35-5

day temporal resolution, its assimilation can improve model results at a daily basis

as illustrated in Fig. 5b, c possibly due to the low temporal variability of Amazonian

hydrographs and the fact that ENVISAT measurements are non-simultaneous.

4.3 Assimilation of discharge series based on satellite altimetry

In the last DA experiment (Exp. 3), we evaluate the assimilation of discharge data de-10

rived from ENVISAT water level. Therefore, the data assimilated into the model has the

same high spatial coverage and low temporal sampling as altimetry water levels have,

but it also contains discharge information which is the most important hydrological vari-

able of the model. In situ discharge data were also used for validation.

The DA scheme was able to assimilate altimetry-based discharges increasing the15

agreement between these observations and model results in most of the altime-

try stations (Fig. 6a), as exemplified in Fig. 7a. In average, the rms error between

altimetry-based discharges and model results decreased 23 % (Table 3), which rep-

resents a smaller improvement if compared to the assimilation of in situ discharge

(∆rms = −49 % in Exp. 1a). Since observation errors are larger in the altimetry-based20

discharges, the DA scheme gives more weight to background model results and up-

dated discharge values are not so close to measurements. The comparison of model

results with in situ discharge data (Fig. 6b) shows that errors decrease mostly at gaug-

ing stations located at rivers where altimetry data were assimilated (e.g. Fig. 7b). At

these sites, ENS changes from 0.76 to 0.80 and the mean ∆rms is −14 % (Table 3),25

which is comparable to the improvement obtained in the altimetry data assimilation

(Exp. 2, Table 2) over discharge results (∆rms = −15 %), but smaller than the enhance-

ment of water level results (∆rms = −43 %). Moreover, similarly to Exp. 2, at gauging
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stations located outside the assimilation domain, the DA scheme has a minor effect on

simulated discharge or degrades results in some cases.

Results from this section show the potential of assimilating discharge data derived

from satellite altimetry into large scale hydrological models instead of in situ discharge

or satellite water levels, even though such data has lower temporal resolution and ac-5

curacy if compared to data gathered at in situ gauging stations.

4.4 Prospects of streamflow forecasting

We now assess the potential of a large scale hydrologic-hydrodynamic model coupled

with a DA scheme to provide streamflow forecasts in the Amazon basin. Since hy-

drological initial states governs discharge predictability at the large Amazonian rivers10

(discussed by Paiva et al., 2012b), we have chosen to generate forecasts starting with

initial states gathered by the DA scheme and then using the ensemble streamflow pre-

diction approach – ESP (Day, 1985), where the model is run forced by an ensemble

of observed meteorological data from past years. Since this is a first attempt, we have

chosen to evaluate forecasts using only the DA scheme configuration from Exp. 1b,15

where the model is updated using discharge data from 12 gauging stations located on

the Amazon and its main tributaries.

We first evaluate hindcast forecasts at the Solimões/Amazon mainstem, including

upper Solimões River at Tamishiyacu, Solimões River at Manacapuru and Amazon

River at Óbidos (Fig. 8). The model was able to forecast discharges with relatively high20

accuracy even for very large lead times (90 days). In all cases, forecasts are markedly

better than simply using discharge climatology, as shown by positive values of SScli skill

score (Fig. 8). As expected, the agreement between model values and observations

decreases as function of lead time, and, for example, SScli decreases from 0.90 to

0.49 for forecasts 10 and 90 days ahead at Óbidos station. But it remains very high,25

showing that it would be possible to produce accurate forecasts at the Amazon main

river for even larger lead times. Model performance also increases from the upper to the

lower part of the Solimões/Amazon River, and at the same time, the spread of the ESP
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ensemble at large lead times increases upstream and decreases downstream. Such

behaviour is explained by the fact that in larger rivers, the hydrological predictability is

much more influenced by the current volumes of water stored upstream than by future

precipitation forcing, as discussed by Paiva et al. (2012b).

Analysis from Fig. 8 also demonstrates that the model successfully predicted the5

severe 2005 drought at the Solimões/Amazon main stem. At this year, discharges

dropped ∼ 1 month earlier than normal (Fig. 8) and river levels fell to historically low

levels causing navigation to be suspended (Marengo et al., 2008). Even so, the model

was able to predict this low flows ∼ 90 days ahead.

We now evaluate forecasts at gauging stations located all over the Amazon basin.10

Forecasts for a smaller lead time of 5 days or even 15 days (Fig. 9a, b) were relatively

accurate with positive SScli values at several gauging stations located at both upstream

and downstream rivers. However, the quality of the forecasts decreased as a function

of lead time (30 and 90 days, Fig. 9c, d). It becomes very poor at smaller rivers and

remains meaningful with positive SScli values mainly at gauging stations with large15

draining areas. For 90 days lead time, SScli index remains positive at almost all sta-

tions along the Solimões/Amazon main stem and in some of the main tributaries. This

behavior is also illustrated at Fig. 10. SScli values are usually higher at gauging sta-

tions located in rivers draining large areas and decrease with lead time. For instance,

if only stations gauging rivers with drainage area larger than 10
5

km
2

or 4×10
5

km
2

20

are considered, on average, forecasts remain better than climatology (SScli > 0) up

to ∼ 15 and ∼ 25 days lead time, respectively. On the other hand, if only the largest

rivers are taken into account (> 10
6

km
2
), SScli values are high and always positive,

which demonstrates the good performance of the model forecasts. SScli is also high at

stream gauges used for data assimilation where forecasts are usually better, SScli is25

close to one for small lead times, as expected, and becomes negative after ∼ 55 days.
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5 Summary and conclusions

We presented the development and evaluation of a data assimilation scheme for

both gauged and satellite altimetry-based discharge and water levels into a large

scale hydrologic-hydrodynamic model of the Amazon River basin using the Ensem-

ble Kalman Filter – EnKF. We also evaluated hindcast forecasts based on this system5

using the ensemble streamflow prediction approach, where the model was forced by

an ensemble of past precipitation forcing from TRMM mission.

According to our results, the data assimilation scheme performed well in assimilating

in situ and remotely sensed discharge and water levels into the large scale hydrologic-

hydrodynamic model. The assimilation of in situ discharge showed that EnKF can im-10

prove discharge estimates at assimilation gauges but, differently from previous studies

at smaller basins (e.g. Clark et al., 2008; and others summarised by Lee et al., 2012),

also transfer information to ungauged rivers by improving results at validation sites, al-

though with a smaller degree. The assimilation of discharge data at a reduced number

of gauging stations located at larger rivers improves results mostly at the large reaches15

but it degrades results at some smaller basins. Also, the transformation of discharge

measurements into the log space proved to be important to deal with very different dis-

charge magnitudes arising from different spatial scales or from contrasting flood and

recession flows.

The assimilation of satellite altimetry data improved model water levels, and also20

discharges, mostly at the same river reaches where altimetry stations are located.

Assimilating altimetry-based discharge also improved model estimates, although with

minor degree if compared to the in situ discharge assimilation, probably due to the

larger errors in remotely sensed observations. However, in both cases, even though

radar altimetry data has low temporal resolution (35 days), its assimilation can improve25

model results at a daily basis, possibly due to its higher spatial resolution and the low

temporal variability of Amazonian hydrographs.
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The sensitivity analysis of the parameter from the DA scheme highlighted the impor-

tance of the magnitude of precipitation errors and that of their spatial correlation, while

temporal correlation showed to be dispensable.

The deterioration of model performance at some unmonitored reaches may be due to

the large dimensionality of state space in distributed hydrological models compared to5

the available information. Consequently, data assimilation may update state variables

at some lumped fashion such as the sub-basin scale, as explained by Lee et al. (2012).

This problem can be also due to spurious correlations that can arise by numerical rea-

sons and could be avoided by using proper spatial localization methods (e.g. Sakov

and Bertino, 2010) developed for hydrological applications to constrain the influence of10

measurements. Additionally, the DA scheme could benefit from a better characteriza-

tion of model errors, where not only precipitation but other sources of uncertainty, such

as in model parameters and structure could be included, as suggested by Liu et al.

(2012).

Although limitations still exist, results are encouraging. This kind of DA scheme could15

also be easily employed to other similar regional/global scale hydrological models (e.g.

Yamazaki et al., 2011; Decharme et al., 2012; Alfieri et al., 2012). It has also the poten-

tial to improve by assimilating remotely sensed water levels gathered by other satellite

missions as the existing ones, or the altimetry missions to be launched in the coming

years by the European Spatial Agency ESA, namely the Sentinel-3 constellation and20

the forthcoming SWOT mission (Durand et al., 2010a). Moreover, the altimetry-based

discharge assimilation can improve when better discharge estimates become avail-

able, such as the ones under development for the future SWOT mission (Durand et al.,

2010b).

Finally, the model was able to provide relatively accurate streamflow forecasts in the25

Amazon basin. For smaller lead times (∼ 5 to 15 days), forecasts agreed with obser-

vations in lots of gauging stations and for larger lead times (> 30 days) they remained

meaningful mostly at larger rivers. Forecasts were usually better at stream gauges used

for data assimilation, especially for smaller lead times. Along the Solimões/Amazon
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main stem, forecast were highly accurate even for very large lead times (90 days)

and the model was capable to successfully predict the record 2005 drought at the

Solimões/Amazon River well in advance. These results demonstrate the potential for

developing stream flow forecasts with large lead times at the world’s large river basins,

such as the Amazon, founded on large scale hydrological models based mostly on5

initial states gathered with proper DA schemes, and using past climate with the ESP

approach. Also, results point to the potentiality of providing hydrological forecasts at

poorly monitored regions by using mostly remotely sensed information.
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a Modernização do Monitoramento Hidrológico” ICA-MMH) and CNPq-IRD (“Assimilação de

Dados de monitoramento Espacial para a análise do regime hidrológico da Bacia Amazônica
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Table 1. Summary of the performance of in situ discharge data assimilation (Exp 1): median

Nash and Suttcliffe index (ENS) in simulation (Open-loop) and assimilation (EnKF) modes and

mean change in root mean square error (∆rms).

Exp. 1a
b

Exp. 1b
c

Exp. 1c
d

Sites ENS ∆rms (%) ENS ∆rms (%) ENS ∆rms (%)

All Open-loop 0.68 − 0.68 − 0.68 −
EnKF 0.93 −42 0.72 −8 0.85 −25

Assimilation Open-loop 0.71 − 0.89 − 0.71 −
EnKF 0.94 −49 0.98 −51 0.88 −29

Validation Open-loop 0.60 − 0.65 − 0.60 −
EnKF 0.73 −16 0.67 −3 0.67 −10

Large rivers
a

Open-loop 0.79 − 0.79 − 0.79 −
EnKF 0.94 −34 0.87 −23 0.95 −40

a
Stream gauges located at rivers reaches with upstream drainage area larger than 10

5
km

2
.

b
Exp. 1a – data assimilation using discharge from 80 % of the stream gauges.

c
Exp. 1b – data assimilation using discharge from 10 % of the stream gauges.

d
Exp. 1c – equal Exp. 1a but without transforming discharge into the log space.
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Table 2. As Table 1 but for Exp. 2.

Sites ENS ∆rms (%)

All Radar altimetry Open-loop 0.66 −
Assimilation EnKF 0.96 −56.0

In situ stage Open-loop 0.64 −
Validation EnKF 0.74 −13

In situ discharge Open-loop 0.68 −
Validation EnKF 0.68 1

Inside In situ stage Open-loop 0.75 −
ENVISAT Validation EnKF 0.94 −44

domain
∗

In situ discharge Open-loop 0.79 −
Validation EnKF 0.86 −15

∗
Upstream and downstream at least one altimetry station.
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Table 3. As Table 1 but for Exp. 3.

Sites ENS ∆rms (%)

All Altimetry discharge Open-loop 0.62 −
Assimilation EnKF 0.79 −23

In situ discharge Open-loop 0.68 −
Validation EnKF 0.72 −5

Inside In situ discharge Open-loop 0.76 −
ENVISAT Validation EnKF 0.80 −15

Domain
∗

∗
Upstream and downstream at least one altimetry station.
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Fig. 1. Sensitivity tests of DA scheme parameters. Mean change in root mean square error

(∆rms) for the assimilation (line with stars) and validation (line with dots) stream gauges as

function of ensemble size (N), precipitation relative error (E ) and spatial (τx) and temporal (τt)

decorrelation lengths of precipitation errors. First guess values are represented by the black

line.
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Fig. 2. Evaluation of in situ discharge assimilation. Spatial distribution of change in root

mean square error (∆rms) in stream gauges used for data assimilation (circles) and validation

(squares) considering the assimilation of (a) almost all gauges (Exp. 1a), (b) only 12 gauges

(Exp. 1b) and (c) almost all gauges but without log transformation (Exp. 1c).
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Fig. 3. Discharge derived from in situ observation (blue line), open-loop simulation (black line)

and EnKF simulation (red line) at (a) Negro River (assimilation site, Exp. 1a), (b) upper Juruá

River (validation site, Exp. 1a), (c) lower Juruá River (validation site Exp. 1b) and upper Juruá

River (assimilation site, Exp. 1c). Site are indicated Fig. 2.
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Fig. 4. Evaluation of ENVISAT radar altimetry data assimilation. Spatial distribution of change

in root mean square error (∆rms) at (a) altimetry stations used for data assimilation and stream

gauges with (b) stage and (c) discharge data used for verification.
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Fig. 5. Observation (blue line), open-loop simulation (black line) and EnKF simulation (red line)

at (a) Japurá River altimetry site, (b) Madeira River in situ stage site (c) Solimões River in situ

discharge site. Sites are indicated in Fig. 4.
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Fig. 6. Evaluation of ENVISAT radar altimetry discharge assimilation. Spatial distribution of

change in root mean square error (∆rms) at (a) altimetry stations used for data assimilation

and (b) stream gauges with discharge data used for validation.
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Fig. 7. Observation (blue line), open-loop simulation (black line) and EnKF simulation (red line)

of discharge at (a) Negro River altimetry site and (b) Juruá River in situ site. Sites are indicated

in Fig. 6.
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Fig. 8. Evaluation of streamflow forecasts. Observed (blue), climatological (black) discharges,

ensemble forecasts (grey) together with ensemble mean (red) at (a) Upper Solimões River at

Tamishiyacu, (b) Solimões River at Manacapuru and (c) Amazon river at Óbidos. Presented

forecasts started each 10 January, April, July and October. Sites are indicated in Fig. 9.
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Fig. 9. Evaluation of streamflow forecasts. Spatial distribution of the skill score SScli for (a) 5,

(b) 15, (c) 30 and (d) 90 days lead time.
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Fig. 10. Median skill score SScli of stream flow forecasts at gauging stations as function of lead

time. Different curves show results considering gauges with different drainage areas (red and

blue lines) and only gauges used for data assimilation (black line with dots).
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