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[1] DEMETER (Detection of Electromagnetic Emissions Transmitted From Earthquake
Regions) was a three-axis stabilized Earth-pointing spacecraft launched on 29 June 2004
into a low-altitude (710 km) polar and circular orbit that was subsequently lowered to
650 km until the end of the mission in December 2010. DEMETER measured
electromagnetic waves all around the Earth, except in the auroral zones (invariant latitude
>65°). The frequency range for the electric field was from DC up to 3.5MHz, and for the
magnetic field, it was from a few hertz up to 20 kHz. At its altitude, the phenomena
observed on the E field and B field spectrograms recorded during nighttime by the satellite
in the very low frequency range are mainly dominated by whistlers. In a first step, the more
intense whistlers have been searched. They correspond to the most powerful lightning
strokes occurring below DEMETER. Then, it is shown that this intense lightning activity
is able to perturb the electron and ion densities at the satellite altitude (up to 133%) during
nighttime. These intense lightning strokes are generally associated with transient luminous
events, and one event with many sprites recorded on 17 November 2006 above Europe is
reported. Examining the charged particle precipitation, it is shown that this density
enhancement in the high ionosphere can be related to the energetic particle precipitation
induced by the strong whistlers emitted during a long-duration thunderstorm activity at the
same location.

Citation: Parrot, M., J. A. Sauvaud, S. Soula, J. L. Pinçon, and O. van der Velde (2013), Ionospheric density perturbations
recorded byDEMETERabove intense thunderstorms, J. Geophys. Res. Space Physics, 118, 5169–5176, doi:10.1002/jgra.50460.

1. Introduction

[2] Perturbation of the lower ionosphere by thunderstorm
activity has been known for a long time. Checking the
amplitude of long-distance subionospheric very low fre-
quency (VLF) transmitters, Helliwell et al. [1973] were the
first to report nighttime changes associated with whistlers.
The phenomenon called “Trimpi effect” was explained by
the precipitation of energetic electrons into the D region
due to these whistlers. At the end, this changes the proper-
ties of the Earth-ionosphere waveguide. Later on, many
works have been done to show the ionization in the bottom
of the ionosphere [see, e.g., Inan and Carpenter, 1987; Inan
et al., 1993; Pasko et al., 1998; Strangeways, 1999; Farges
et al., 2007; Inan et al., 2010]. Using a model, Inan et al.
[1991] were the first to calculate ionospheric density changes
at 90–95 km altitude by individual lightning discharges,
through secondary ionization by heated electrons. Rodger

et al. [2001] used lightning data detected over the U.S. with
a simulation code to show that successive intense lightning–
electromagnetic pulse (EMP) events could induce large-
scale changes in the nighttime lower ionosphere. They have
shown that these strong lightning-EMP events can lead to
significant (100% or even greater) increases in the electron
density of the lower ionosphere during nighttime, with the
largest increases at 90 km altitude. They also indicated that
the time required to produce large-scale changes in
ionospheric electron density above an active thunderstorm
may be related to the start of a red sprite activity.
[3] Recently, modification of the global atmospheric

circuit by intense thunderstorms has been reviewed by
Rycroft and Harrison [2012], and Füllekrug et al. [2013] have
published a report dealing with ionization and electrical
discharge processes, observations of transient luminous
events, electromagnetic emissions, energetic charged parti-
cles, and their impact on the Earth’s atmosphere.
[4] The aim of this paper is to use data from the low-altitude

satellite DEMETER (Detection of Electromagnetic Emissions
Transmitted From Earthquake Regions) to show that ionization
processes occur also in the upper ionosphere above intense
thunderstorms. The DEMETER payload, the TLE (transient
luminous event) detector, and the ground-based lightning
network are briefly described in section 2. In section 3, some
events with high wave intensity and simultaneous ionospheric
density perturbations are shown. A dramatic event where
lightning stroke characteristics are known and where many
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Figure 1. (a) Data recorded on 27 January 2005 between 14:06:00 and 14:13:00 UT. (b) Data recorded
on 21 July 2005 between 04:37:00 and 04:47:00 UT. (c) Data recorded on 21 January 2006 between
12:46:00 and 12:53:00 UT. (d) Data recorded on 7 January 2006 between 11:59:00 and 12:07:00 UT.
The top panels in Figures 1a–1d represent the spectrogram of an electric field component from 0 to
20 kHz. The intensity is color-coded according to the color scale on the right. The bottom panels in
Figures 1a–1d represent the variation of the O+ ion density (the densities of the other ions are much
lower). The information at the bottom of Figures 1a–1d is related to the universal time, the local time,
the geographic latitude and longitude, and the McIlwain parameter L.
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sprites have been recorded is presented in section 4.
Discussion and conclusions are provided in sections 5 and
6, respectively.

2. The Experiments

2.1. The DEMETER Satellite

[5] DEMETER was a low-altitude satellite (710 km)
launched in June 2004 onto a polar and circular orbit which
measured electromagnetic waves and plasma parameters all

around the globe, except in the auroral zones and polar cap
[Parrot, 2006]. The altitude of the satellite was decreased
to 660 km in December 2005. The satellite’s science mission
has come to an end in December 2010. Due to technical
reasons, data were only recorded at invariant latitudes less than
65°. The orbit of DEMETER was nearly Sun synchronous,
and the upgoing half-orbits correspond to nighttime (22:30
local time (LT)), whereas the downgoing half-orbits correspond
to daytime (10:30 LT). The very low frequency (VLF) range
of the electric field experiment named ICE (Instrument

Figure 1. (continued)
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Champ Electrique) is from 0 to 20 kHz. There are two
scientific modes, namely, survey mode and burst mode,
when the satellite is above regions of interest. The spectrum
of one electric component is onboard computed in the VLF
range during the two modes. The frequency resolution is
19.5 Hz, and the time resolution is 2.048 s. During the burst
mode, waveforms of the same electric field component are
recorded up to 20 kHz in addition to the spectrum. The burst
mode allows the performance of a spectral analysis with
higher time and frequency resolution. In the survey mode,
the power spectra are the only information available. Details
of the electric field experiment ICE are given by Berthelier
et al. [2006a]. In this paper, the onboard-computed VLF
spectra during nighttime will be used.
[6] To study the variations of the ion density, the payload

of DEMETER included a plasma analyzer instrument
named IAP (Instrument Analyseur de Plasma) which gives
ion density with a 4 s time resolution. Details of the IAP
experiment can be found in Berthelier et al. [2006b]. A
solid-state energetic particle detector IDP (Instrument
Détecteur de Particules) measured high-energy electrons and
protons in the drift loss cone (or just outside) with energies
from 70keV to 2.34MeV every 4 s in survey mode and 1 s in
burst mode [Sauvaud et al., 2006]. The energy channel
resolution depends on the operational mode of the satellite,
being either 17.8 keV in survey mode or 8.9 keV in burst mode.

2.2. Optical Observations

[7] During the specific sequence of observations shown
in this paper, the optical camera system was located at
Observatoire Midi-Pyrénées, Toulouse (43.56°N, 1.48°E;
~150m). It includes one low-light and high-resolution
charge-coupled device camera (Watec 902H) equipped with
a 16mm f/1.4 lens characterized by a 23° field of view, as
described in Soula et al. [2009]. The time resolution is
20ms. The GPS time collected via an antenna is inserted
in the images through the use of a video time inserter device
from PFD Systems (KIWI OSD).

2.3. The Ground-Based Lightning Network

[8] The lightning detection network run by Météorage
provides data for the identification of location, polarity,
peak current value, number of strokes, and timing of
cloud-to-ground (CG) strokes on French territory. Part of the
European Cooperation for Lightning Detection (EUCLID), it
includes 18 sensors which detect radiation in the LF range
produced by the return strokes of CG flashes. These sensors
use both magnetic direction finding and time-of-arrival
techniques to determine the location of CG strokes
[Cummins et al., 1998]. The detection efficiency is ~90%
inland and close to the coastline. In order to identify the
CG flashes, consecutive strokes are associated if they occur
within 5 km of the first stroke and within 0.5 s from the
previous stroke.

3. Examples of Ionospheric Perturbations

[9] Previous studies with the DEMETER data have shown
that VLF wave activity is dominated by thunderstorm activ-
ity [Parrot et al., 2008; Němec et al., 2010; Colman and
Starks, 2013]. Fiser et al. [2010] demonstrated that the
intensity of the whistlers observed at the altitude of the
satellite is directly proportional to the current of their parent
lightning strokes. Then, in order to have data recorded
during powerful thunderstorms, VLF electric field spectro-
grams with a high intensity have been selected during
nighttime. It must be also noted that intense whistlers are a
good indication of the occurrence of sprites [Reising et al.,
1999]. In a second step, the variation of the ion density
has been examined during these periods. Examples are
shown in Figure 1.
[10] In Figure 1a, data have been recorded on 27 January

2005 between 14:06:00 and 14:13:00 universal time (UT)

Table 1. List of Sprite-Producing Lightning Strokes Recorded on
17 November 2006 in the Same Area Just Before the Pass of
the Satellitea

Hour (UT) Longitude Latitude Current (kA)

19:29:21.7119217 4.851 44.1049 77.3
19:44:51.3264650 4.7853 44.333 83.2
19:50:17.0137949 4.7807 44.378 104.5
19:50:17.1541844 4.6716 44.6832 53.4
19:57:29.4213629 4.8244 44.6825 52.9
20:01:03.6943259 4.8773 44.1881 54.6
20:03:43.4388403 4.9819 44.7632 116.8
20:07:56.7688636 4.9701 44.4604 76.5
20:05:56.9085465 4.9031 44.6584 37.8
20:11:01.9779061 4.6365 44.4837 55.5
20:15:52.9067169 4.9236 44.5048 107.2
20:15:52.9539847 4.7719 44.6222 112.2
20:21:43.7457350 4.7309 44.467 82.1
20:25:57.5093498 4.9657 44.8503 165.8
20:34:05. 6411427 5.2921 44.0880 19.0
20:42:05.6411427 5.0709 44.4101 76.7
20:52:42.2526533 5.3471 44.58 109.2

aThe columns display the hour, the geographic longitude and latitude, and
the peak current in kiloamperes. Each of these lightning strokes triggered a
sprite event. The sprite event triggered by the last one is shown in Figure 4.

Figure 2. A map showing the orbit of the satellite (red
dashed line), the observation point where the camera was
located (triangle), and the locations of the lightning strokes
corresponding to the sprites (red crosses). The green spot
indicates the position of the satellite at the time of the sprite
shown in Figure 4. The frame delimits the positions of all
the lightning strokes shown in Figure 3.
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in the south hemisphere (longitude = ~123°; latitude between
�13° and �20°). In the top panel, the spectrogram displays
vertical lines which are the whistlers due to the lightning
strokes. The horizontal lines are due to VLF transmitters. It
can be seen that at the time where the whistlers are numerous
and have a high intensity, there is an increase in the O+ ion
density. At the altitude of DEMETER, the O+ ions are the
majority. The electron density given by a different instrument
has a similar variation (not shown). In this event, the whistlers
are 0+ whistlers (i.e., upgoing fractional hop whistlers) [Smith
and Angerami, 1968], i.e., the corresponding lightning strokes
occur in the same hemisphere below the satellite and the
whistlers cross the ionosphere to reach the satellite.
[11] Data recorded on 21 July 2005 between 04:37:00 and

04:47:00 UT in the south hemisphere are displayed in
Figure 1b (longitude = 265°; latitude between �20° and
�30°). As we are in July, it is summer in the north, and it
means that the whistlers are supposed to come from the
opposite hemisphere. This is confirmed by their high dispersion
values (not shown). It is shown that there are several bursts
of intense whistlers and that each of them corresponds to an
increase in the ionospheric density. Figure 1c shows data
recorded on 21 January 2006 between 12:46:00 and
12:53:00 UT (longitude = 140°–145°; latitude =�10°) in the
south hemisphere during summer time. Then, 0+ whistlers
dominate. Finally, Figure 1d displays data recorded on 7
January 2006 between 11:59:00 and 12:07:00 UT (longitude
=155°; latitude =�20°). Intense and numerous 0+ whistlers
can be observed at the same time as density increase.
[12] The percentage of density increases shown in the

bottom panels in Figure 1 is rather important. It covers a
range from 47% (Figure 1a) up to 133% (Figure 1b). Many
cases at different locations around the Earth have been
shown, but information concerning the lightning strokes
and the thunderstorm characteristics is not available.
Another event with full auxiliary data is now presented in
the next section.

4. Sprite Events Recorded on 17 November 2006

[13] On 17 November 2006, there was an intense winter
thunderstorm in the south of France during which sprites have
been recorded from Toulouse (see section 2.2). From about
19:30 UT and for a duration of about 80min, a total of 17
videos, including sprite events, were recorded, 13 with
one sprite event and 4 with two sprite events. Thus, a total
of 21 sprite events were recorded. Ground-based lightning
data show that for 17 out of the 21 events, a positive light-
ning stroke was detected a few milliseconds earlier. Their
characteristics are listed in Table 1, and Figure 2 indicates their
location with red crosses. The peak current of the lightning
strokes recorded in the boxed area shown in Figure 2 is

Figure 3. Evolution of the CG lightning activity in the frame shown in Figure 2. The crosses indicate the
peak currents of the lightning strokes as a function of time. The triangles are related to the peak currents of
the parent lightning strokes of the sprites (their characteristics are given in Table 1). The circles indicate
sprite occurrences without any CG flash detected. The grey line shows the DEMETER orbit as a function
of latitude shown on the right scale.

Figure 4. A frame (20ms) displaying a carrot sprite event
recorded on 17 November 2006 at 20:52:42 UT. The location
of this event is given in Figure 2. The characteristics of the
parent lightning stroke are given in the last line in Table 1.
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plotted in Figure 3 as a function of time. The peak current of
the 17 sprite-producing strokes is indicated with triangle
symbols, and it ranges between 19 and 165.8 kA. Some of
the 21 sprites were spectacular, such as that displayed in
Figure 4 and registered at 20:52:42 UT. This sprite was
triggered by a +CG lightning stroke of 109.2 kA.
[14] The DEMETER position relative to this lightning

stroke is indicated in Figure 2 with a green spot. The parent
stroke wasmissed by the detection system in four cases of sprite
that are indicated by circles in Figure 3 (SP + undetected CG
in the legend). The remarkable point is that for most of the

lightning strokes with a large peak current (> 75 kA)
produced after 19:30 UT, a sprite event was recorded. It
means that during a period of about 1 h and 20 min, several
spectacular sprites occurred at nearly the same place just
before the arrival of the satellite.
[15] As the experiments were in burst mode during this

thunderstorm, the detailed spectrogram of the electric field
at the time of the sprite shown in Figure 4 is displayed in
Figure 5. The corresponding upgoing fractional hop
whistler with a low dispersion is indicated by an arrow.
The spectrogram recorded between 20:49:30 and 20:54:30

Figure 5. Detailed spectrogram (10 s) of the electric field recorded by DEMETER at the time of the sprite
shown in Figure 2. The frequency is up to 20 kHz, and the wave intensity is color-coded according to
the color scale on the right. The arrow indicates the upgoing fractional hop whistler which corresponds
to the sprite.

Figure 6. (top) Electric field spectrogram recorded on 17 November 2006 between 20:49:30 and 20:54:30
UT. The frequency is up to 20 kHz, and the wave intensity is color-coded according to the color scale on the
right. (middle) Lightning strokes and their current occurring in the rectangular area in Figure 2. (bottom)
Total ion density recorded during the same time. The information at the bottom of the figure is related to
the universal time, the local time, the geographic latitude and longitude, and the McIlwain parameter L.
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UT (it corresponds to a part of the orbit shown in Figure 2) is
plotted in the top panel in Figure 6, whereas the occurrence of
the lightning strokes seen by the ground network is displayed
in the middle panel. The corresponding density variation is
plotted in the bottom panel in Figure 6. It is the total ion density,
and a variation can be seen at the time of the whistlers. This
ion density reaches a maximum just after the time of the
intense parent lightning of the sprite shown in Figure 4.

5. Discussion

[16] The only possibility to explain this increase in ionization
at the altitude of the satellite above intense thunderstorms
is that it is due to particle precipitation induced by the
lightning strokes. In the past, it has been shown on board
a rocket by Rycroft [1973] and on board satellites by
Voss et al. [1984, 1998] that cyclotron-resonant loss of
trapped electrons is directly associated to whistlers. In
relation to DEMETER data, Inan et al. [2007] reported
short bursts of lightning-induced electron precipitation
simultaneously with upgoing whistlers, and Gemelos
et al. [2009] showed a seasonal dependence of energetic
electron precipitation above the U.S. which is attributed
to the increase in the lightning activity during summer.
[17] Concerning the sprite event in Figure 4, Figure 2

shows that DEMETER is well located at the east of the
thunderstorm, which means that it is a favorable situation
to register energetic electron precipitation. The particle data
recorded at the time of this event are shown in Figure 7. The
bottom panel is related to the energy flux between 90 and
250 keV as a function of time, and the top panel presents
the integrated flux in the same energy range. It can be seen
that there is a residual particle precipitation starting at
20:52:00 UT, with a large increase in the flux just after
20:52:42 UT, the time of the intense lightning stroke of
109.2 kA. Then, it is likely that the observed increase in the

ion density at the altitude of the satellite is due to the particle
precipitation induced by strong lightning strokes. This
mechanism is also valid for density increase in a magnetically
conjugate area of a thunderstorm activity (Figure 1b).

6. Conclusions

[18] Previous works have shown that thunderstorm activities
are able to perturb the lower ionosphere. It is shown here
that during nighttime, this perturbation extends to higher
altitudes, particularly when TLEs are present. It means that
there is a column of ionization above areas with a strong
thunderstorm activity which affects the complete ionosphere.
This is due to the lightning-induced electron precipitation.
The DEMETER IDP detector only detects electrons with
energy higher than 90 keV. However, data published by
Voss et al. [1998] have shown that lightning strokes are also
associated with the precipitation at lower energies, i.e., 45 keV.
[19] Though the penetration altitude is in the altitude range

of 80–100 km [see Blelly and Alcaydé, 2007, Figure 8.2],
these particles begin to ionize neutrals at altitudes where
the neutral density is high enough, typically up to 500–
600 km (P.-L. Blelly, personal communication, 2013).
Beside this primary production, the energy deposition in
the thermal electron gas results in heating of the plasma that
may drive to a vertical motion associated to the polarization
electric field. The delay between the heating and the transport
increases with altitude: a few minutes above the F2 peak and
up to an hour at 1500 km [Blelly et al., 1996]. Both effects
lead to the enhancement of the electron and ion
concentrations observed at 650 km. Preliminary simulations
performed with the new interhemispheric TRANSCAR
model show that the observed O+ density increase is well
reproduced (P.-L. Blelly, personal communication, 2013).
A detailed study of the ionospheric effects of the lightning-
associated electron precipitation is underway.

Figure 7. Energy flux recorded by DEMETER at the time of Figure 6 (when the sprite shown in Figure 4
is observed). (bottom) The energy flux from 90 up to 250 keV as a function of the time between 20:49:30
and 20:55:30 UT. It is color-coded according to the color scale on the right. (top) The integrated flux
between 90 and 250 keV. The parameters below the panels are the time in UT, the latitude, the longitude,
and the altitude.
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[20] The perturbation of the density covers a large area.
Concerning the 17 November 2006 event, the distance
between the satellite and the lightning stroke at 20:52:42 UT
is on the order of 610 km. This can be compared with the
extension of the electron precipitation patches observed by
Clilverd et al. [2002] at the bottom of the ionosphere.
They analyzed Trimpi signatures in subionospheric VLF
signals of U.S. transmitters, and they found that the patch
dimensions are large, i.e., (1500 km × 600 km), with the
longer axis orientated east-west.
[21] The rate of the density increase (up to more than

100%) at the satellite altitude is in agreement with the rate
of the density increase which is observed at the bottom of
the ionosphere by Rodger et al. [2001].
[22] This 17 November 2006 event, when a lot of sprites

are observed at the same place in a short time after many
powerful lightning strokes, is also a confirmation of the work
of Pasko et al. [1997], who have shown that the thunderstorm
electromagnetic activity can locally change the conductivity
of the lower ionosphere and then is likely to favor the necessary
conditions to produce sprites. An increase in ionization can
lead to a feedback mechanism and to the occurrence of more
and more sprites.
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