Spacecraft observations of electromagnetic perturbations connected with seismic activity
František Němec, Ondrej Santolík, Michel Parrot, Jean-Jacques Berthelier

To cite this version:

HAL Id: hal-00288122
https://hal.archives-ouvertes.fr/hal-00288122
Submitted on 11 Jan 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Spacecraft observations of electromagnetic perturbations connected with seismic activity

F. Němec, O. Santolík, M. Parrot, and J. J. Berthelier

Received 31 October 2007; revised 29 January 2008; accepted 12 February 2008; published 15 March 2008.

[1] Results of a statistical study of intensity of VLF electromagnetic waves observed in the vicinity of earthquakes are presented. A unique set of data obtained by the micro-satellite DEMETER (altitude of about 700 km, nearly Sun-synchronous orbit) and a robust two-step data processing has been used. In the first step, all the measured data are used to construct a map of electromagnetic emissions containing a statistical description of wave intensity at a given point of the satellite orbit under given conditions. In the second step, the intensity measured close to earthquakes is analyzed using the statistical distribution of background intensity obtained in the first step. The changes of wave intensity caused by seismic activity are investigated and their statistical significance is evaluated. Altogether, more than 2.5 years of satellite data have been analyzed and about 9000 earthquakes with magnitudes larger than or equal to 4.8 that occurred all over the world during the analyzed period have been included in the study. It is shown that, during the night, there is a statistically significant decrease by 4–6 dB of the measured wave intensity shortly (0–4 hours) before an intense surface earthquake. It is shown that, during the night, there is a statistically significant decrease by 4–6 dB of the measured wave intensity shortly (0–4 hours) before an intense surface earthquake.

1. Introduction

[2] Electromagnetic perturbations possibly connected with seismic activity have been in the recent years reported by several authors, both from ground based measurements [Tate and Daily, 1989; Asada et al., 2001] and from low-altitude satellite experiments [Parrot and Mogilevsky, 1989; Larkin et al., 1989; Molchanov et al., 1993; Parrot, 1994; Hobara et al., 2005; Molchanov et al., 2006]. These observations have been the subject of an intense debate in the literature [see, e.g., Rodger et al., 1996] for two main reasons. The first one stems from the lack of large and reliable database: most studies in this area have been limited by a lack of enough experimental results to conduct a statistically significant analysis of the phenomena and obtain firm results. In addition, the theoretical ideas needed to define the statistical distribution of the wave intensity in absence of seismic activity. As the first step of the data processing, we thus built a map of electromagnetic emissions, which contains a statistical description of the intensity of electromagnetic waves obtained from the entire 11500-hour data set. It can be represented by a 6-dimensional matrix. Two dimensions are the geomagnetic longitude and
...latitude of the satellite with a resolution of 10 and 2 degrees, respectively. The third dimension is the frequency. We limit our analysis to frequency range below 10 kHz in order to avoid frequencies of terrestrial VLF transmitters. We have selected 16 and 13 frequency bands (117 Hz each) for the electric and magnetic field, respectively, in such a way that these omit spacecraft interferences and cover the entire studied frequency range as uniformly as possible. The lower number of chosen frequency bands for magnetic field data is caused by a significantly larger amount of interferences, which makes the suitable choice much more difficult. The last 3 dimensions describe the magnetospheric conditions at the time of observation: Kp index for the quiet (0–10) moderate (1–2+) and disturbed (above 3+) geomagnetic conditions; magnetic local time (dayside and nightside), and season of the year (October–April, May–September). In each cell of this matrix we accumulate a histogram of the common logarithm of the intensity at a given place and under given conditions, using all the available data. For a given spacecraft location and magnetospheric conditions this results into an estimate of the probability density function \(f(E) \) of observing a power spectral density \(E \).

[6] The basic idea of the second step of our procedure is as follows. For a measured power spectral density of electric (magnetic) field fluctuations \(E_i \), we determine its cumulative probability \(F_i \) as the value of the corresponding cumulative distribution function. This can be calculated as an integral of the probability density function \(f_i \) obtained for the same frequency and spacecraft location under similar magnetospheric conditions:

\[
F_i = \int_{-\infty}^{E_i} f(E) \, dE
\]

[7] In other words, this is the probability (a number between 0 and 1) of occurrence of signals with an intensity less or equal to the measured level.

[8] We calculate these cumulative probabilities for measurements of wave intensity recorded during seismic events. We select the data points for which the vertical projection of the spacecraft position to the ground was closer than 1100 km to the epicenter of an earthquake and which were measured no more than 5 days before and 3 days after the main shock. If two or more different earthquakes occur close enough, and therefore possibly influence the data, the measurement is not taken into account. This condition is equivalent to taking into account only “individually occurring” earthquakes, sufficiently separated one from another either in time or in space. Consequently, sequences of earthquakes occurring at about the same time and the same location (typically the main shock and aftershocks) are not considered and data measured in their vicinity are not used. This is done in order to not mix pre- and post-seismic effects.

[9] The obtained cumulative probabilities are organized in bins as a function of: frequency (16/13 selected bands), time to/from an earthquake (resolution of 4 hours) and distance from an earthquake (resolution of 110 km). For a bin \(b \) we define a “probabilistic intensity” as follows:

\[
I_b = \frac{\sum_{i=1}^{M_b} F_i}{M_b} - 0.5
\]

where \(M_b \) is the number of cumulative probabilities \(F_i \) collected in a given bin. Now, if the observed intensities were significantly lower or larger than the usual ones, the attributed cumulative probabilities would be significantly different from 0.5 and the resulting probabilistic intensity would be significantly different from 0. In this way, we neutralize the influence of the distribution of intensities of natural waves on the resulting statistics. However, one problem remains: what quantitative value should we attribute to the word “significantly”? The answer can be found using basic statistical properties of the probabilistic intensity.

[10] If we calculate values of the cumulative probability from the entire original data set (not just from the selected earthquake cases), we obtain a large set of values which are uniformly distributed between 0 and 1. This is a trivial consequence of the definition of the cumulative distribution function [Press et al., 1992]. Averaging them into the finite bins in position and time we sum a large number of these values. Consequently, according to the central limit theorem and supposing that \(M_b \) is sufficiently large, values of \(I_b \) follow the normal distribution with a mean value 0 and a standard deviation \(\sigma_b \). If all the values \(F_i \) were independent, an estimate of \(\sigma_b \) would read

\[
\sigma_b' = \frac{1}{\sqrt{2M_b}}
\]

[11] The problem when performing this calculation is that although we know the total number of cumulative probabilities in the bin \(M_b \), we do not know how many of them can be considered as independent. We can define this number of independent cumulative probabilities as \(M_b \).

[12] An estimate of \(M_b \) should be derived from the number of continuous data intervals contained in a given bin. These continuous data intervals correspond to different half-orbits of the spacecraft. Duration of a half-orbit is about 35 minutes, which is longer than a typical time scale of intensity changes of electromagnetic waves in the upper ionosphere. Moreover, data from two successive orbits cannot be contained in the same bin. The number \(N_b \) of half-orbits contributing to a given bin could be thus considered as a lower estimate of \(M_b \),

\[
M_b' = \frac{N_b}{\alpha^2},
\]

where \(\alpha \leq 1 \) is a positive number defining which relative fraction of the data from a single half-orbit can be on average considered as independent. In other words, \(\alpha \) is the same for all the bins and represents a measure of stability of electromagnetic waves: the lower the \(\alpha \) is, the more variable is their intensity.

[13] This provides us with an estimate of \(\sigma_b \) which is based on the known number \(N_b \) of half-orbits contributing to a given bin,

\[
\hat{\sigma}_b = \frac{\alpha}{\sqrt{12N_b}}.
\]

where \(\alpha \) can then be estimated experimentally. The simplest approach is to select a set of bins and to suppose that the
standard deviation of the normalized probabilistic intensities \(I_b/\sigma_b \) should be unity within this set of bins. Since the mean value of \(I_b/\sigma_b \) should be zero, this leads us to an estimate of \(\alpha \),

\[
\alpha = \sqrt{\frac{12}{Q} \sum_{b=1}^{Q} N_b I_b^2}, \tag{6}
\]

where \(Q \) is the number of bins in the set.

[14] In the paper, the values of the normalized probabilistic intensity are evaluated for \(Q = 48 \) time bins going from 5 days before an earthquake to 3 days after it, each bin representing 4 hours of time difference. This enables us to define \(\alpha \) (the same for all the 48 time bins), calculate \(\sigma_b \) from equation (5), and to obtain the normalized probabilistic intensities \(I_b/\sigma_b \) for all the bins. These are then displayed in Figures 1, 2, and 3. If systematic deviations of several standard deviations (\(>3\sigma_b \)) are observed, we can consider the effect to be statistically significant.

[15] The correctness of the statistical analysis is demonstrated in Figure 1, which represents the results obtained from randomly distributed time intervals of the DEMETER data. Left panel shows an example frequency-time spectrogram of normalized probabilistic intensity in order to demonstrate that the expected random fluctuations of normalized probabilistic intensity (in the absence of seismic effects) do not display any particular variation. A histogram of values of normalized probabilistic intensity is plotted in the right-hand panel. It was obtained by combining 144 plots similar to the one shown in the left-hand panel together. Over-plotted is a Gaussian distribution with mean value 0 and standard deviation 1 to demonstrate that the normalized probabilistic intensity follows this distribution.

![Figure 1](image1.png)

Figure 1. (left) Results from a superposed epoch method showing an example frequency-time spectrogram of normalized probabilistic intensity constructed from randomly distributed time intervals. The number and length of the time intervals corresponds to those used in the left panel of Figure 2. (right) Histogram of values of normalized probabilistic intensity obtained from randomly distributed time intervals of DEMETER data (obtained by combining 144 plots similar to the one shown in the left panel together). Over-plotted is a Gaussian distribution with mean value 0 and standard deviation 1 to demonstrate that the normalized probabilistic intensity follows this distribution.

![Figure 2](image2.png)

Figure 2. (left) Frequency-time spectrogram of the normalized probabilistic intensity (see text) obtained from the nighttime electric field data measured within 330 km of the earthquakes with magnitudes larger than or equal to 4.8 and depth less than or equal to 40 km. Data measured for all Kp values and seasons have been included. (right) The same but for earthquakes with magnitudes larger than or equal to 5.0.
generating their positions. Again, no particular variation has been observed.

4. Results

[16] Since it has been reported that a depth of earthquakes can play a significant role in earthquake-related effects [e.g., Rodger et al. 1999], we have divided the earthquakes into two groups: surface earthquakes (depth less than or equal to 40 km) and deep earthquakes (depth larger than 40 km). Moreover, day-time and night-time data have been treated separately. Finally, all 4 different combinations of surface/deep earthquakes and day-time/night-time data have been examined for the presence of possible seismic effects.

[17] Figure 2 shows that the normalized probabilistic intensity obtained from the night-time electric field data is below the “normal” level shortly (0–4 hours) before the surface earthquakes at frequencies of about 1–2 kHz. The probabilistic intensity decreases by about 3 standard deviations for earthquakes with magnitudes larger than or equal to 4.8. This effect is based on the data collected during 50 different orbits. If we consider only surface earthquakes with magnitudes larger than or equal to 5.0, the effect becomes stronger, with the probabilistic intensity decreasing by about 4 standard deviations, and with 34 different orbits contributing to the bins where the decrease is detected. Concerning the probabilistic intensities, these correspond to values between −0.10 and −0.15. Transforming these values back to the corresponding power spectral density, we obtain a decrease between −4 and −6 dB. The decrease was observed also in the magnetic field data, but it is much weaker and its statistical significance is questionable. This can be probably explained by a lower sensitivity of magnetic field instrument and is not connected with the nature of intensity decrease. No similar effects were observed during the day (not shown). No effects were observed for deep earthquakes (not shown).

[18] Figure 3 shows that the spatial scale of the affected area is approximately 350 km (however, one should keep in mind that the spatial resolution of our bins is only about 110 km, which place rather large uncertainties on the result). This corresponds relatively well to the size of the earthquake preparation zone estimated using the Dobrovolsky et al. [1979] formula: 140 km for earthquakes with magnitudes 5.0 and 380 km for earthquakes with magnitudes 6.0.

5. Discussion and Summary

[19] The presented statistical study disagrees with previous systematic studies that claimed the presence of seismic effects since they mostly reported an increase in the ELF/VLF activity [Larkina et al., 1989; Parrot and Mogilevsky, 1989; Serebryakova et al., 1992; Molchanov et al., 1993; Parrot, 1994]. These studies have been critically examined by Henderson et al. [1993], who underlined the importance of usage of control set of data in order to estimate statistical significance of the observed effects and who failed to indicate any significant differences between the earthquake and control orbits. More recently, a similar result was obtained by Rodger et al. [1996]. However, as noted by Parrot [1999], both these studies probably could not detect decreases in wave activity and can be therefore considered as being in agreement with our study.

[20] There are two basic possibilities for the explanation of the observed decrease: naturally occurring waves are either attenuated or diverged over earthquake epicenters (this could be caused by a decrease of the refractive index, as proposed by Vodyanitskii et al. [1990]). A possible explanation of why the decrease is observed only in the night-time data could be that during the day the ionospheric ionization is significantly larger. Any potential changes caused by seismic activity may be thus overwhelmed by this stronger influence. It is also important to note that the frequency band where the decrease is observed could be related to the cut-off frequency of the first TM mode in the Earth-ionosphere guide (1.7 kHz during the night-time). Finally, our analysis shows that the effect is connected only with surface earthquakes, as suggested by previous researchers [see, e.g., Rodger et al., 1999, and references therein].

[21] We have statistically demonstrated that a significant intensity decrease is observed in night-time data shortly before the main shock of large surface earthquakes. Further research based on the increasing data set of DEMETER measurements will hopefully help us to understand its nature.

[22] Acknowledgments. FN and OS acknowledge support of the GACR grant 205/06/1267.

References

Berthelier, J. J., et al. (2006), ICE, the electric field experiment on DEMETER, Planet. Space Sci., 54, 456–471.

