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Abstract

The challenge of estimating the potential impacts of climate change has led to an increasing use of
dynamical downscaling to producee spatial-scale climate projections forimpact assessments. In

this work, we analyze if and to what extent the bias in the simulated crop yield can be reduced by using
the Weather Research and ForecagiMgF regional climate model to downscale ERA-Interim
(European Centre for Medium-Range Weather Fore@&isIWH Re-Analysigainfall and

radiation data. Then, we evaluate the uncertainties resulting from both the choice of the physical
parameterizations of the WRF model and its internal variability. Impact assessments were performed
attwo sites in Sub-Saharan Africa and by using two crop models to simulate Niger pearl millet and
Benin maize yields. Wead that the use of the WRF model to downscale ERA-Interim climate data
generally reduces the bias in the simulated crop yield, yet this reduction in bias strongly depends on
the choices inthe model setup. Among the physical parameterizations considered, we show that the
choice of the land surface modeEM is of primary importance. When there is no coupling with a

LSM, orwhenthe LSM s too simplistic, the simulated precipitation and then the simulated yield are
null, or respectively very low; therefore, coupling with a LSM is necessary. The convective scheme is
the second mostiruential scheme for yield simulation, followed by the shortwave radiation scheme.
The uncertainties related to the internal variability of the WRF model are alsacsigténd reach up

to 30% of the simulated yields. These results suggest that regional models need to be used more
carefully in order to improve the reliability ofimpact assessments.

1. Introduction historical data(e.g. Lobell and Burke01Q Shi

et al2013. The goal of all these modeling approaches
The assessment of climate change impact on crigpo estimate crop productivity as aresponse to climate
production is crucial to support adaptation strategiesariability. Process-based models represent the phy-
that ensure food security in a warmer climate. Tsiological processes of crop development as a response
evaluate these impacts, three modeling approachestarelimate forcing. This approach is often preferred
adopted: process-based modéésg. EPIC(Wil- since it can be used to capture the complex effects of
liams1990, SARRA-HDingkuhnet al2003, DSSAT the climate, CQ concentration and management on
modelgJone®t al2003, APSIM(Keatinget al2003), crop productivity(Roudieret al201). However, the
agro-ecosystem modelge.g. LPJImL (Bondeau use of projected climate data from global climate
et al2007, ORCHIDEE(Krinner et al2009, PEGA- models(GCM) to force crop models is challenging.
SUS(Derynget al201)), and statistical analyzes offhe scale of the GCM grid points is much larger than

©201510P Publishing Ltd
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the processes governing the yields at the plot sdaten the physical parameterization and internal varia-
(Baron et al 2005 and many agricultural modelsbility of the RCM. The chosen physical parameteriza-
require input data that describes the environmentébns of the regional Weather Research and
conditions at high spatial and temporal resolutiorzorecastingWRF model(Skamaroclet al2009 are
Thus, integrated climaterop modeling systems needsystematically sampled to produce a set of downscaled
to appropriately handle the loss of variability caused BRA-Interim rainfall and incoming solar radiation
differences between the scdf@sttli et al2011 Glot- time series at two sites in Benin and Niger. These cli-
ter et al2019. This can potentially be achieved bynate variables are used to simulate Niger pearl millet
downscaling GCM outputs. Dynamical downscalinghd Benin maize yields with both the EPIC and
offers a self-consistent approach that captums- SARRA-H crop models in order to evaludtethe
scale topographic features and coastal boundarieseffgct of using the WRF on the simulated yield bias and
using regional climate mode(RCMg with a ne (i) the uncertainties arising from the choice of the
resolution (approximately 1950 km) nested in the physical parameterization. Sampling from among the
GCM (Paethet al2011 Glotteret al2019. Althoughit different parameterizations also allows the selection of
can improve weather and climate variabil{feser a satisfactory set of parameterizations for the WRF
et al2011 Gutmannet al2012 as well as crop yield model for impact studies in Soudar®ahelian Africa.
projectionge.g. Mearnst al1999 Mearnset al2001,  This retained conguration is later used in this study
Adamset al2003 Tsvetsinskayet al2003, dynamical to perform a 10-member ensemble simulation to
downscaling is also an additional source of errors aagsess the uncertainties linked to the internal varia-
uncertainties to crop yield projections. For examplgility of the WRF model.

when different RCMs were used to downscale atmo- The next section introduces the climate data,
spheric re-analyses to force the SARRA-H crop mo@ebp model, RCM and simulation protocols. Simu-
in Senegal, Oettit al(201), large differences werelated crop yields using both raw ERA-Interim and
found in the simulated sorghum yields depending oWRF downscaled climate data anst compared.

the RCM used. Moreover, these authors showed thakfer highlighting the inuence of the climate vari-
change in the physical parameterizations of a singi§les taken into account in the simulated yields, the
RCM can lead to major changes in the derived cregmpact of each physical parameterization on the
yields. More recently, using two RCMs and theimulated climate variables and yields is investigated.
DSSAT-CERES-maize crop model over the Unitgghally, the uncertainties in the simulated crop yields

States, Glotteet al(2019 showed that although theinduced by the internal variability of WRF are
RCMs correct some GCM biases relatedrne-scale quanti ed.

geographic features, the use of a RCM cannot com-
pensate for broad-scale systematic errors that dom- .
inate the errors for simulated maize yields. 2. Materials and methods

Projected yields rely on the accuracy of climate ) _
input data and are thus sensitive to the downscalifg!- Location of the sites
method. It is therefore crucial to quantify the errord WO Sites of approximately one squared-degree
inevitably propagated by such downscaling techniqdegure 1) are retained for this study; they are
through combined climaterop modeling. However, characterized by a rain-fed agriculture with low input
to our knowledge, very few studies have investigaf@gPoor soils. The Niger siterange bokis typical of
the sensitivity of local climate and the resulting sim§=entral Sahel conditions. There, the rainy season
lated crop yields to choices in the experimental sett@sts approximately from June to September and
of a single RCM even though they can consideratfjevides roughly 458600 mm of rainfall. The Benin
affect the RCM output. For instance, RCMs are highft€ (yellow boj is in the Sudanian zone. There, the
sensitive to the size and location of the dom@iry. 'ainy season lasts up to six months from May to
Seth and Giorgi998 Leduc and Laprisg009, the lat- October providing 120@.300 mm  of rainfall
eral boundary conditionge.g. Diaconescet al2007  Peryear.
Syllaet al2009, the mode€k horizontal and vertical
resolutionge.g. lorioet al2009 and its physical para- 2.2. Climate data
meterizations (e.g. Jankovet al 2005 Flaounas For each site, the observed meteorological data are
et al201(Q Crétatet al2011l). Moreover, atmosphere taken from the AMMA-CATCH observation system
and surface-atmosphere feedback processes are cisivican Monsoon Multidisciplinary AnalysisCou-
tic and result in an internal variability of the RCMwling the Tropical Atmosphere and the Hydrological
that is not reproducible(e.g. by a multimember Cycle; www.amma-catch.o)g The precipitation is
ensemble simulatigriCrétatet al20113. interpolated by kriging over each site using more than

Here, we investigate the effect of using a RCM &9 rain-gauge measurements for the 2089 per-
simulated yields in Sub-Saharan Africa, one of tlad (for a detailed description of the method used, see
most vulnerable areas to climate change. We dodfirstetteret al2013 while the other variablggsadia-
ment and rank the errors and uncertainties arisintipn, temperature, relative humidity and windre
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Figure 1. Map of West Africa and location of the sites. Mean annual ranfatl) averaged over the 20809 period fronfa)
Climatic Research Un(€RU) data(b) ERA-Interim data an(t) a single physical coguration of the WRF model. The site in Niger

in shown in orange and the site in Benin in yellow. The reference rainfall, from AMMA-CATCH OS and only available on these/two
sites, match the CRU data in Niger with an annual rainfall of 522 mm and the CS1b data in Benin with an annual rainfall of 1289 mm

(table?).

taken from synoptic stations. These data are consigsolution of 1.5 to force the(i) WRF and(ii) crop
ered as reference climate data and they are usednidels.

simulate the reference yields.
The ERA-Interim datase{ERA-I; Simmons 2 3. Climate downscaling experimental setup

et al2007 Deeet al201]) consists of a set of globalall of the climate downscaling experiments are
gridded analyses describing the state of the atngerformed using the non-hydrostatic Advanced
sphere, land and ocean wave conditions from 1979Research WRF ARMNVRF model, version 3.3.1
date. Climate variables from this dataset are used #¢RF; Skamarockt al200§. This model has been
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used in alarge number of studies, some of which focsisch as agriculture, deciduous forests, grasslands,
on West Africa(e.g. Vigaudet al 2009 Flaounas etc), where each typology is characterized by speci
etal201QKleinet al2015, and includes a large choicealbedo, soil moisture, surface roughness and emissiv-
of physical schemes. Simulations are carried out foitpvalues. In this set of simulations, four distinct LSMs
domain extending from 105 to 30 N and 48 W to  and two LUs are tested. Due to the results inherited
45’ E, covering the large West African region, atfom Set# 1, the SW scheme is set to Dudhia and the
resolution of 80 km. Lateral forcings are provided hyps is set to Kakfrritsch with the modied trigger

six hourly ERA-I re-analyses and the integrations Wef{fhction (KF-t, tablel). This is necessary in order to
carried out between 1 January 1989 and 31 Decempgjiate the spect effects of the LSM and the LU data,

2010Q(including one year of spin-gpOnly runs from \yhen all other settings are constant.
2003 to 2009 have been retained to be compared with

the observed meteorological data and to drive the crop
models. Sett 3. Ensemble simulation

Although our goal is to assess both thelience of In this Set# 3, we quantify the amplitude of the
the physical parameterizations on the simulated yigiicertainties associated with the chaotic component
bias and the uncertainties linked to the choice of o the regional atmosphere in our West African
scheme over another. For computational cost reasoelemain (hereafter referred to as thiaternal varia-
it was not possible to test all of the combinationgility’ of our model, I\J. We then compare it to the
Three sets of experiments were thus designed dfaanges induced by the settings mediin Set# 1-2.
address the sensitivity to the model settings and intéx-10-member ensemble simulation is therefore per-
nal variability. As the agriculture of the SudaBahe- formed by initializing the integrations on January 1st
lian zone is highly dependent on rainfall, we focus aat 0 h UTC, and then every 6 h, thus providing 10
parameters that have been previously idedtito different initial conditions. This simulation was per-
exert the largest iruence on rainfall in Afric§Pohl formed using a unique physical cayuration: the
et al201): convective and shortway®W) radiation Dudhia SW scheme, the KF-t CPS, the Noah LSM and
schemeg¢Set# 1), the land surface mod@dLSM) and the MODIS LU data.
land useg(LU) categoriegSet# 2), forced versus sto-
chastic components of the regional climate variability
(Set# 3, through one ensemble simulatjoAll of the  2-4- Crop model simulations
other parameters arexed: the Yonsei University pla-In order to span some of the uncertainties in crop
netary boundary layéHonget al2006, WRF Single- modeling, which have been shown to be an important
Moment 6-Class cloud microphysiggiong and contributor to the overall uncertainty in climate
Lim 2008, the rapid radiative transfer model longimpacts(e.g. Assenet al2013, we use two different
wave radiation schem@llawer et al1997% and the Crop models, SARRA-H and EPIC, to simulate Benin
Monin-Obukhov surface layer. More informationmaize yields and Niger pearl millet yields.
about the model settings described below is given in

tableland inthe supplementary material. 2.4.1. The SARRA-H crop model

The SARRA-H v32Systeme '‘dnalyse Régionale des
Sett 1. SW radiation and atmospheric convection . V. esy. . y ) g
Risques Agroclimatiques-Habillééittp:// sarra-h.

SW radiation scheme; can be .used to e_stlmate EgFedetection.erARRAH_Home.htn)lI crop model
amount of energy available at different altitudes, e

. E)'ingkuhn et al 2003 was developed by CIRAD
the energy of an air parcel at the surface, Wh|8 e Int tional de Recherche A
convective parameterization schen(€®S} are of entre Interational de Recherche Agronomjque

primary importance for rainfall, especially in region?as_ed on a_ water balance m_oqel’ It calc_;l_JIates the
receiving predominantly convective rainfall, as is t@tamaple yield gnder water-limited cqnd|t|ons by
case in West Africa. S#tl addresses the sensitivity t§imulating thg 59" water balance, poter.mal and actual
these two types of settings. Three SW schemes and fo{fPotranspiration, phenology, potential and water-
CPSs are tested in this paper; their main characterist/fdted assimilation, and biomass partitionirfg.g.

are detailed in tablel (and the supplementary Kouressyet al 2008 the supplementary material in
materia). For this set of experiments, the LSM is set tgultanet al2013. Soil nitrogen balance processes are
the Noah LSM and LU is set to the USGSited Ot simulated. The SARRA-H model is particularly

States Geological Suryey map. suited for the analysis of climate impacts on cereal
growth and yield in dry tropical environmen(s.qg.
Sett2.LSMand LU Sultanet al2013 Baronet al2005 Sultanet al2003.

Atmospheric models are coupled to LSMs to resolV&al and on-farm data were used to calibrate and
the uxes at the interface between the continents amélidate the model for local varieties of Niger millet
the atmosphere. They are forced by atmosphetfids (Traoréet al2011, Sultanet al2013 and Benin maize
and use global-scale soil and surface LU datasets.(BUE et al2019. Both varieties have a growth-cycle
maps consist of typologid€e.g. 20 or 24 categoriedength of approximately 90 days.
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Table 1 Parameterization scheme characteristics and references.

Shortwave schemes Characteristics Interactions Reference
Dudhia Simple downward Water vapor absorption. Cloud albedo and Dudhia(1989
calculation. absorption. No ozone effect.
RRTMG(Rapid Radiative Transfer Spectral method Cloud fractions. Ozone and G@ro le. laconoet al(2009
Model) (14 bandy Trace gases. Aerosols. Top of atmosphere
and surface diagnostics for climate.
Goddard Spectral method Clouds. Ozone prde. CO, xed. Aerosols. Chou and Suaf&z99
(11 bands
Convective schemes Characteristics Reference
Kain-Fritsch Entraining-detraining masax scheme. Triggered by CAPE, Cloud Kain(2009
depth, CIN and sub-cloud mass convection. Closure assump-
tion: CAPE.
Kain-Fritsch trigge(KF-t) Kain-Fritsch with a modied trigger function including moisture Kain(2009, Ma and
advection here. Tan(2009
Betts-Miller-JanjiqBMJ Convective adjustment scheme. Triggered by CAPE, cloud depth arBett1986), Betts and
cloud-layer moisture. Closure assumptions: CAPE and cloud-layer Miller (1989,
moisture. Janjiq1999
Tiedtke Entraining-detraining masax scheme of acloud ensemble. Trig-  Tiedtke(1989, Zhang

gered by CAPE, cloud depth and moisture convection. Closure etal(201)
assumption: CAPE.

Land surface models Characteristics Reference

NoLSM No land surface model, i.e. no temperature or soil moisture prediction.

Thermal diffusion 5-layer soil temperature model. Soil moistues with aland-use and Dudhia(199¢
season-dependent constant value. No explicit vegetation effect.

Noah 4-layer soil temperature and moist(aad ic§ model with canopy Chen and Dudhi§007)
moisture prediction.

Rapid update cyc[&UC) > 6-layer soil model. Includes temperature, moistarel icg and Smirnoveaetal(2000,
vegetation processes. Benjamiret al(2009

Pleim-Xiu 2-layer force-restore soil temperature and moisture model. Includes Xiu and Pleim(200)
vegetation.

Land use Characteristics Reference

US geological survéySG$ 24 land use categories, derived from NO#dvanced Very high Anderson(1976),
resolution radiometer sensors. Hitt (1999

Moderate resolutionimaging spec- 20 land use categories. Friethi(2009

troradiomete(MODIS)

2.4.2. The EPIC crop model the mean yield of both Niger millet and Benin maize.
The EPIC crop mode(Williams et al 1984 Wil- This overestimation is a common shortfall in many
liams199Q Williams and Singli999 includes a ne crop modeling studie&@.g. Challinoet al2004 Bon-
description of soil processes and takes casidm- deauet al2007 Ramarohetr&t al2013 and is likely
gen dynamics into account. The calibration wague to a lack of nitrogen stress in the model. More
performed with a multi-location approach in the subdetails on this evaluation are provided in the supple-
humid savanna zone of West Africa using data frofentary material.
station and farm fertilizer experimentg¢Gaiser
et al 201Q Srivastava and Gais2d1(). The EPIC
model is used to simulate 90-day cultivars of Ben#5- Evaluation protocol
maize(Ramarohetrat al2013 and Niger pearl millet. In this paper, we adopt the three-tier hierarchical
Both crop models, forced iy situ climate data, @PProach described by Morseal(2005 gure2). A
were evaluated against Food and Agriculture Orgaffmparison of the ERA-I and WRF simulations with
zation(FAO) crop yield data for the two sitésgure the corresponding observed variables is carried out in
SJ). Correlations between the observed and simulatadier-1 evaluation. Since Oetéit al(201) showed
yields were signcant for both models at the two siteghat, among the climate variables derived from the
(close to 0.6 for millet in Niger and 0.78 for maize ilRCM, precipitation and radiation are the most likely
Benin for both mode)sand the EPIC model accuratelyto induce errors in the simulated crop yields, this paper
reproduces the mean yield of Benin maize and Nigenly concentrates on the effects of these two variables;
millet. However the SARRA-H model overestimatdlse other climate variableftemperature, relative

5
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Figure 2.Schematic representation of the three-tier evaluation approach. Rectangular boxes represent sources of data, while oval
boxes indicate the different types of evaluation. Adapted from Moad@005.

humidity and wind are taken fromin situ observa-
tions. In atier-2 evaluation, the essential reference data
are precipitation and radiatio¢as in tier-3, but the
data are integrated into the two crop models t&/herexqisthe value of the baseline aqds the value
produce an estimate of the crop yields. However, tk@be tested.

tier-2 evaluation does not validate the crop mqui The uncertainties are estimated by calculating the
sesince the objective of the tier-2 evaluation is not tePef cient of variation(CV) of the variables derived
produce an accurate yield prediction, as is the caseffé@m the different rungclimate variables or yields cal-
the tier-3 evaluation. By using a tier-2 evaluation, vé!lated using the different WRF cagurations or the
will be validating the ERA-I and WRF output againgtifferent members of the ensemble simula}icfhe

the observed meteorological situ data, but in a CVisde nedasfollows:

situation where the precipitation and radiatioalds oV 100 T

have been integrated and synthesized to produce crop N’

yields. For both crop models situclimate datgour i o
reference climajeare rst used to simulate the where is the standard deviation of the values of the

reference yields for Niger millet and Benin maize ngpns!dered var.|able andis the averaged value of the
the 20032009 period. Then, the crop models argon&dered variable.
forced using ERA-I and climate variables simulated by
the WRF model(three sets of experiments, se&. Results
paragraph 233 The deviation of these alternative
simulated yields from the reference yields gives ari. Overview of the simulated yield biases and
estimate of the errors that result from forcing thencertainties
climate variables. Simulated yields using ERA-I data directly show biases

In this paper, we consider the climate inputs fromwvith an amplitude higher than 20%, reaching up to
the WRF or ERA-I models as the most suitable for77.82% for the SARRA-H Niger millet yields
crop yield simulations as they minimize the distandegure3: gray dots, and tabl®. The use of the WRF
between the simulated yields and the reference yietdsdel to downscale the ERA-I climate data can reduce
obtained within situ meteorological data. We werethe bias in the simulated yields at both sites and for
also able to validate the resulting simulated yieldsth crop models; for example, the amplitude of the
against the observed yield d4teer-3 evaluatiofi mean bias erro(%MBE) for the ensemble meain
however, since the objective of this paper is to asseagk greeinis lower than 15%. Yet, the use of the WRF
the sensitivity of the simulated crop yield to the RCMwuodel can also introduce large uncertainties due to the
biases rather than predict accurate yields in the twhoice of parameterization schen{asred): the %
sites, the results reported in this paper are mainly dediBE for the simulated yield using different physical
catedtothetier-1 andtier-2 evaluations. con gurations ranges from 100%(crop failurg to

We used the same metric for the tier-1 and tier-2 84.48%table2) and the CV for its %MBE is higher
evaluations to measure the distance to the obsenthdn 39%(table2). The effect of the choice of each
in situ data. We calculated the mean bias el@r parameterization will be detailed later in this paper.
MBE) of the climate inputs and simulated yields relaFhe internal variability of the WRF model, even for a
tive to the observed seasonal climate varighrsl moderately sized domairfsee gure 1), notably
evaluatiofn and simulated yields using the observetbmpared to the much larger CORDEX-Africa
in situ climate variablegtier-2 evaluation The % domain(Giorgietal2009, also induces non-negligible
MBEisdenedas uncertainties in the simulated crop yie(dseen dots

1 N | X Xo‘)
%MBE — 100 ,
N i1 Xoi
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Figure 39%MBE of the simulated yields. %MBE of the EPIC yields versus %MBE of the SARRA-H y{g)diger millet andb)
Benin maize. Dots represent the mean %MBE for the simulated yields with models forced by raw ERA-I precipitation and SW
radiation outputggray), by the outputs of the WRF model under different physical parameterizéteahand by the 10 members of
the ensemble simulatidfight green. Dark green dots represent the mean of %MBE of the yields simulated using the ensemble
simulation.

The largest difference of yield %MBE between twoodel, high rainfall intensity leads to nitrogen leach-
members of the ensemble simulation ranges betwdrg, leading in turn to nitrogen stress which then
roughly 14%(18.08%4.36% for the EPIC Benin restricts crop development and grain formation
maize yields and 34%25.63%+ 8.32% for the ( gure4(d)). Inthe SARRA-H crop model, the rainfall
SARRA-H Niger millet yieldéable?2). However, the intensity has noinuence on soil fertility and radiation
uncertainties in the crop yield induced by the interna$ the most limiting climate variable for the Benin
variability of the WRF model remain lower than thos@aize yield gure4(c)).

induced by the model parameterizations with aninter- Ranking of the climate variables relative to the

member yield %MBE CV lower than 1Q2able?). explained variance of simulated yield when included
in a multiple linear regression. The climate variables

2 ¢ cli iabl he simulated taken into account are the annual cumulative rainfall,
3.2. n ulgnceo climate variables on the simulated 0.5 daily rainfall and mean daily radiation. The cli-
cropyu(aj_ S h deland th idered mate variables on the left explain the largest fraction of
Depep g onF ecrop mg eland the consi .gre ¢"%Re variance whereas the variables on the right explain
and site, the simulated yields are not sensitive to lowest fraction for the simulated SARRA-H Niger
same climate variable characteristics and the yield Mot the EPIC Niger millet, the SARRA-H Benin
MBE differq gure3). Inthissection,themainclimatemaize, the EPIC Benin maize and the simulated

characteristics leading the simulated crop yields &&RrA-H Niger millet when the annual rainfall
identi ed. o _ amount remains below 600 mm.

Precipitation and radiation errors result in errors Large biases in the simulated Niger millet yields
in the simulated yield¢ gure4). When considering (yp to  779% for SARRA-plusing the ERA-I model
similar variations of the climate variables, the climaigme from the strong biases in the ERA-I annual rain-
variable with the most marked inence on the % fa|| and rainfall intensityroughly 70% and 74%,
MBE of the simulated crop yields depends on the locgsspectively; tab. The underestimation of the rain-
tion and crop model considered. fall intensity in the ERA-I model results in an over-

~ Water is a limiting factor at therst order, espe- estimation of the EPIC simulated Benin maize yields,
cially for the Niger millet yields which are highly sensjyhile the underestimation of radiation in the ERA-I

tive to a change in the total rainf@ligure4, top). This  model results in the underestimation of the yield by
is the case even for the Niger millet cultivar simulategughly 34%.

withthe SARRA-H model, which requires less waterto Using the WRF model to downscale the ERA-I cli-
reach its attainable yield. Once the water demanshte data, the model-output climate variables and
(approximately 600 min is met, the simulated then the simulated crop yields generally show larger
SARRA-H Niger millet yields no longer depend on thigiases than the ERA-I climate variables. These biases
total water amount. The total rainfall is not a limitingare strongly dependent on the chosen physicalgon
factor for Benin maize growth. When using the EPIGration of the WRF mode(CV, table3). Yet, these
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Table 2 Overview of the climate variables and the %MBE of the simulated yields.

Niger Benin
Millet yields Maizeyields
Daily Daily
Annualrain rainfall Radiation SARRA-H EPIC Annualrain rainfall Radiation SARRA-H EPIC
Reference 522.35 6.07 5353.99 1202.75 281.71 1289.81 7.3 4708.72 4302.51
ERAI%MBE 70.47 73.48 11.13 77.82 23.11 5.12 17.26 5.95 33.6 21.21
Parameterization sets
Median %MBE 106.92 45.63 1251 7.22 27.54 7291 65.48 9.6 13.67 34.11
100 100 100 99.28 100 100 4.68 100 100
Max. %MBE
291.06 106.86 29.95 26.5 84.48 182.36 143.18 49.22 31.88
%MBE CV 72.33 50.51 5.23 47.02 46.78 53.95 37.27 10.96 39.91
Ensemble simulation
Mean %MBE 11.64 3.16 13.75 8.99 6.19 5.77 12.08 11.15 10.18 141
0.06 13.34 13.14 8.32 13.13 2.58 3.42 9.57 22.11 18.08
Max. %MBE
36.22 24.71 14.29 25.63 18.87 15 19.86 12.24 1.33 4.36
%MBE CV 9.34 11.94 0.33 9.12 9.34 5.92 5.12 0.88 7.22

sulysiiand dol
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Figure 4 Relationships between the %MBE of the simulated yields and the %MBE of the forcing climate data. The %MBE of th
simulated yield versus the %MBE of the dominant climatic varigla)ése %MBE of the SARRA-H Niger millet yields versus the ¢
MBE of the annual rainfal{p) the %MBE of the EPIC Niger millet yields versus the %MBE of the annual ricjfdle SARRA-H
Benin maize yields versus the radiation %MBE (djthe %MBE of the EPIC Benin maize yields versus the %MBE of the mean
rainfall intensity. This gure is based on all of the simulated yi¢ldsng the reference, ERA-Interim and WRF precipitation and
radiation datjused in this study.

0]

biases are strongly reduced for some gpmations. crop yields are generally dramatically underestimated,
The following section investigates the uence of if not null (table2 and gure5(a)), especially in Niger
each tested physical parameterization on the simuhere a larger part of the humidity comes from
lated climate variables and yields. recycling. Climate variables derived using the other
LSMs lead to a %MBE amplitude for the Niger millet
yields that is lower than 15%able3), except for the
3.3. Effectof the different physical Pleim-Xiu scheme, for which the overestimation of
parameterizations tested on crop yield the precipitation leads to an overestimation of the
The choice of the WRF physical parameterizatiogg|c Niger millet yields by roughly 29%. The Pleim
strongly modulates the climate variables relevant $§, scheme results in simulated Benin maize yields
crop yield simulations, thus resulting in high uncerghat are signicantly lower than in the other schemes;
tainties in the crop yieldsable2and gure3). Among  the underestimation of the EPIC Benin maize yields is
the different parameterizations, the choice of a LS#ie to the high daily rainfall overestimation in the
that takes the moisture dynamics into account is ®fleim-Xiu scheme while the underestimation of the
primary importance for the simulation of realisticSARRA-H Benin maize yield is due to an under-
rainfall: when there is no soil moisture predictioNo  estimation of the incoming radiatioftable 3). The
LSM or ‘Thermal diffusion schem§ there is no Pleim-Xiu LSM tends to favor larger rainfall amounts
moisture recycling and then rainfall and the simulatethan the RUC and Noah LSMs, as already highlighted

9



0T

Table 3%MBE of the climate and simulated yields for each of the parameterization schemes. Bold cells indicate the used parameterizations for thessisemble si rgn
Niger Benin =
)
Milletyields Maize yields v
p
Annual rain Daily rainfall Radiation SARRA-H EPIC Annualrain Daily rainfall Radiation SARRA-H EPIC%
N
o
Dudhia 8.13 11.45 10.58 18.39 6.63 24.43 22.71 9.46 1.02 6.79 &
SW radiation schemes RRTMG 199.95 88.84 8.9 3.83 58.25 127.44 100.07 484 871 40.71 §
Goddard 291.06 129.2 14.22 13.83 65.49 182.36 143.18 10.2 3.59 44.43 s
IS
Kain-Fritsch 279.66 106.86 10.78 11.12 84.48 148.05 110.68 16.47 31.88 31.6
CPS KF-trigger 176.9 89.02 13.87 9.64 36.9 60.85 55.75 9.28 5.65 39.17
BMJ 12151 12.47 10.99 4.46 36.36 110.95 80.18 6.66 6.89 15.32
Tiedke 87.45 67.11 9.29 26.19 16.07 125.79 107.99 0.26 27.52 36.48
Noah 24.42 7.58 13.69 12.47 9.15 6.59 6.3 10.61 10.17 15.8
NoLSM 100 100 29.95 100 99.28 100 100 49.22 100 100
LSM Thermal dif 97.93 78.09 18.99 100 94.8 13.69 2.74 4.21 37.17 29.93
RUC 8.52 10.21 13.84 1.04 0.14 11.53 6.16 10.66 16.94 4.48
Pleim-Xiu 94.52 51.73 3.35 6.46 28.77 19.3 34.93 4.68 66.11 38.23
LU USGS 24.42 7.58 13.69 12.47 9.15 6.59 6.3 10.61 10.17 15.8
MODIS 8.18 3.29 14.29 26.5 14.15 2.58 4.93 12.19 8.54 10.77
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Figure5In uence of WRF parameterization on the simulated yield %MBE. %MBE of the EPIC yields versus %MBE of the SARRA-H
yields for Benin maize for each tested parameterizgtjdand surface modelf) convection parameterization schentek,

shortwave radiation schemes gdpland use maps. Each small dot represents one simu(&icgach of the seven years fgures
(8 and(d), forthe 7x 3 SW schemes f¢in) and the 7x 4 convective schemes fo)) and the larger dots represent the average of th
simulated yields for each coguration.

0]

over East Africa by Poht al(201), who linked itto a distribution of the precipitation than the Kaifritsch
larger simulated surface evapotranspiration in ttand Tiedtke schemésgure S2 and tabl®). The latter
Pleim-Xiu model. These authors suggest that theo schemes systematically overestimate the rainfall
simpli ed vertical proles of soil moisture in the intensities, and the KF-t scheme results in an under-
Pleim-Xiu LSM (two layers measuring 1 and 100 crestimation of the number of rainfall events of less than
deep) may accelerate evapotranspiration processes2imm, compensated by an overestimation of the
turn, this might increase soil moisture recycling andumber of daily rainfall events higher than this thresh-
cloud cover and decrease incoming radiation. old. However, this good performance obtained with
The second most important parameterization fahe BMJ scheme in terms of the daily rainfall simula-
the crop yield simulation is the CPS. CPSs haveian cannot be generalized to other tropical regions, as
strong in uence on both rainfall and radiation charshown for instance by Crétatal(2011f over South-
acteristics and can result in sigoant uncertainties in ern Africa. Using the EPIC model, the simulated Niger
the simulated crop yields gure5(b)). The %MBE of millet yields are more iruenced by the CPS scheme
the SARRA-H simulated Benin maize yields goes frqmith the %MBE ranging from 16% to over 84%an
less than 50% to over+100% and it is driven by the yields simulated with the SARRA-H model
radiation. The %MBE of the EPIC simulated Beniftable 2). When using the SARRA-H crop model, a
maize yields has its smallest value when the BMJ CH&rige overestimation of the rainfall does not result in
used. This is explained by the rainfall distribution. Icomparable overestimations of the simulated Niger
West Africa, the BMJ scheme leads to a more realistidlet yieldq gure4(a)).
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Table 4Ranking of the climate variables relative to the explained simulated yield variance.

SARRA-H Niger millet Variable Meandailyrainfall ~ Annual radiation Annual rainfall
Cumulative explained 0.12 0.18 0.18
variancéR?)
SARRA-H Niger millefannual Variable Annual rainfall Meandailyrainfall ~ Annual radiation
rainfall< 600 mm
Cumulative explained 0.48 0.52 0.53
variancgR?)
EPIC Niger millet Variable Annual rainfall Annual radiation Mean daily rainfall
Cumulative explained 0.59 0.63 0.59
variancéR?)
SARRA-H Benin maize Variable Annual radiation Annual rainfall Mean daily rainfall
Cumulative explained 0.56 0.61 0.62
variancéR?)
EPIC Benin maize Variable Meandailyrainfall ~ Annual radiation Annual rainfall
Cumulative explained 0.3 0.34 0.34
variancéR?)

Among the tested radiation schemes, the Du&-4. Internal variability

hia SW scheme is the one that minimizes the ovdn this section, we run the same experiment 10 times
estimation of both total rainfall and rainy dayby modifying the initial conditions at therst model
intensity(table3); this tendency to favor drier con-time step. The physical package and all other settings
ditions is consistent with the results presented @€ constantin all of the simulatio(memberyof the
Pohlet al(2017). For the EPIC yields, this leads t&nsemble. This allows disentangling the fofoewko-
lower biases than the other SW schemes. THuCIbI§ and stochastiinternal, or irreproduciblg
SARRA-H yields are not very sensitive to ovelractions of the simulated climate variability. Our idea
estimations of the rainfall amount&or Niger here is to compare and rank the magnitude of the

millet) or intensity(for Benin maizk The RRTMG uncertainties due to the chaotic component of the

and Goddard schemes do not lead to high biasesrﬁgional climate, materialized by the internal variabil-

the SARRA-H yield¢ gure 5(c)); for both sites ity, and those related to modiations of the physics of

radiation is the main driver of the SARRA-H yieldé.he model. At the rst order, rainfall is generally the

The simulated radiation shows relatively low unceftan driver of simulated crop yields; the WRF model

. _ . was then set to the coguration that minimizes the

tainties(the radiation biases are of the same order; . . . .
. . ... rainfall biases. This coguration combines the Dud-

for all SW schemgsleading to low uncertainties in . :

the SARRA-H vields. Thus the SW schemes mairE‘la SW scheme, the KF-t convective scheme, the

: nATY 1S The mes, MANBAH LSM model and MODIS LU data.

in uencing simulated rainfall, induce high uncer-

o ) ’ We previously showed that when the WRF model
tainties in the EPIC yields but have arelatively Iow%r

) ] ; . used with an appropriate coguration to down-
in uence on the crop yields simulated with thgcale the ERA-Interim climate data, the bias in the

SARRA-Hmodel. simulated vyields is considerably reducedure 3).

The LU maps tested in this study do not producgyis ¢an be linked to the dramatic decrease in the
large differences in the simulated yie{dgure(d)  gimyated rainfall amount and the intensity biases

andtables). _ (table2, ensemble sptHowever, the internal varia-
Finally, within a crop-modeling framework andyjity of the WRF model also introduces non-negli-
over the tested parameterizations, it is very importagisje uncertainties in the simulated crop yields. The
to choose an appropriate LSM, given the high biases§.member simulation leads to uncertainties in rain-
the rainfall induced by using a LSM that is too simplis|, for which the annual rainfall %MBE ranges from
tic. Then, as the CPS has a sigaint in uence on (% to 36% in Niger and from 2.58% to 15% in
both rainfall and radiation, this parameterizationBenin (table2). These uncertainties in the simulated
should be carefully set. The SW radiation schergrids can be linked to those in the mean states of the
mainly drives precipitation and can be important agadiation and rainfall characteristics as well as to intra-
well. In contrast, the choice of the LU scheme seemss@asonal variatiorfe.g. Ramarohetret al2013. Fol-
only have a moderate imence on rainfall and radia- lowing Crétatet al(20119, the reproducible fraction
tion and thus on the yields. of day-to-day rainfall and radiation is calculated for

12
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Table 5Coef cients of variation of the simulated Intra-seasonal precipitation descriptors control-

yields, mean radiation and intra-seasonal precipitation . . . s L

descriptors. ling the simulated yield variability within the ensemble
experiment were idented using a multiple regression

Coef cients of analysis. For the SARRA-H Niger millet and the EPIC
variation Benin maize, the simulated yield variability is mainly
NIGER BENIN driven by the number of dry spells with coeients of

determination(R?) of 0.52 and 0.31, respectivéhpt

EﬁERy?éEy'EId 8'355’ 3'1113 showr). For the EPIC Niger millet, the total rainfall
Onset 0.22 0.02 during the rainy season explains 0.47 of the yield varia-
End of rainy season 0.04 0.01 bility while the SARRA-H Benin maize yield variability
Duration 0.47 0.02 is mainly explained by the number of rainy
Total rainfall 0.37 0.14 daygR? = 0.9.

Number of rainy days 0.39 0.04 The variability of the mean intra-seasonal radia-
Mean intensity 0.54 0.13 tion and precipitation descriptors explains 68689
Numberofdry spells 0-40 023 otthe yield variabilitgnot showr). However, the tim-
Mean duration of dry spells 0.14 0.07 . .
Mean radiation 0.01 001 ing of events such as dry spells or heavy rainfall

explains up to 0.42 of the yield variability.

Therefore, internal variability of the WRF climate
model has a non-negligible impact on the simulated
the JuneJduly-August-September period of each yeafainfall and radiation mean state and intra-seasonal
as the ratio betweeN(X), the daily variance of all variability, and this translates into uncertainties in the
members(i.e. 122 days duplicated 10 timeand simulated crop yields that should be taken into
V (X), the daily variance of the ensemble méa?2 account.

. V (X)
days: f v

On average, over the seven years, the reproduci@lecondusion and discussion
fraction of the day-to-day rainfall is approximately

30% for both site29% in Niger and 31% in Benjn 5 sensitivity analysis of the state-of-the-art WRF RCM
The inter-annual variability of these scores remaips,s heen conducted to assess its performance and to
quite low: it ranges from 21% to 35% in Niger ang,, antity uncertainties for the crop yield simulations of
from 25%to 37%in Benin. Therefore, evenforamodiger millet and Benin maize in two sites in West
erate-sized domaif gurel), the rainfall intra-seaso- arica. Itis challenging to account for all of the sources
nal variability is mainly driven by the stochastigt yncertainties in a RCM and to quantify their
component of the WRF model rather than by ERAjlespective effects on the simulated climate and subse-
forcing. Although the scores are alittle higher, the daygently simulated yields since these uncertainties may
to-day radiation variations are also strongly led by thgise from a wide number of parameters and simula-
models internal variability, with averaged reproducition choicegsuch as the size, location or resolution of
bility values of 75% and 58% for the Niger and Benifhe domain, the model physics, the lateral boundary
sites, respectively. conditions, etl: Over West Africa, parameterizations
In order to link the intra-seasonal precipitationsf geep atmospheric convectio(e.g. Flaounas
descriptors to the simulated yield variability in th@ta1201q Syllaet al2011 Im et al2014, SW radiation
ensemble experiment, the reproducibility of thesg g. Dominguert al201(, LSMs(e.g. Dominguez
descriptors has been investigated for the year 2Q4€1201( Im et al2019 and the surface albede.g.
(table5). In Niger, the least reproducible descriptorgjaounast al201) have been shown to have a non-
are the mean intensity of precipitation, the length afegligible inuence on the simulated climate. In this
the rainy season and the number of dry spells witiudy, we chose to assess the relativagnce of these
coef cients of variation(CV) across the ensembleparameterizationgconvection, SW radiation, LSM
members of 0.54, 0.47 and 0.40, respectively. InBeriRd LU on simulated crop yields in a combined
the least reproducible descriptors are the number @imate-crop modeling.
dry spell{CV = 0.23, the mean total rainfall0.14 We rst showed that the choice of the LSM is of
and the mean intensity of precipitati¢d. 13. primary importance: to simulate realistic rainfalls, the
CV statistics are preferred to standard deviationSM must include a dynamic moisture calculation.
to better compare the various descriptors considergdlis is consistent with previous studies: for example,
here, since they have different units. Large CV valu&sster2004showed a strong relationship between soil
denote strong differences from one ensemble membroisture and precipitation over this region and Im
to another, and are thus indicative of a strong internat al(2019 showed that LSMs have a sigrant in u-
variability(i.e. chaotic or local componégrand a weak ence on the calculated rainfall. Among the LSMs that
to moderate large-scale forcing prescribed by the iaelude dynamic moisture calculations, the RUC and
analyses. Noah models lead to rather similar simulated yields
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while the PleimXiu LSM, driving heavier rainfall andquestion. Moreover, the choice of the best agura-
especially high rainfall intensities, leads to a higion for re-analysis downscaling does not necessarily
underestimation of the Benin maize yields simulatezhable a correction of the GCMs biag€dotter
with the EPIC model. etal2019.

Second, the convective parameterization sig- Although it can probably be considered that the
ni cantly in uences both rainfall and radiation.RCM procedure is likely to reveal its added-value in
Among the tested schemes, the BMJ produces dafilg case of a strong resolution jump with the GCM for-
rainfall intensities that are the closest to the observeithg or re-analyses, allowing for a more realistic reso-
intensities, and therefore it is the best scheme fition of the sub-grid processes, this may not be
Benin maize simulations with the EPIC model. The K$uf cient since realistic surface boundary conditions
scheme is the one that overestimates the total rainfélicluding topography, land-use and sub-surface
the most(consistent with Crétaet al 2011k Pohl propertieg are also needed. In this regard, due to the
et al2011and Crétat and PoHt012, radiation and scarcity of high-resolution, reliable datasets doc-
then the simulated crop yield for both sites. umenting surface and soil dynamics, climate down-

Third, the SW radiation scheme, mainly affectingcaling over Africaremains a challenging issue.
rainfall, has to be chosen carefully. The Dudhia
scheme produces sigeantly less rain than theAcknowIedgments
RRTMG and Goddard schemes, thus minimizing the

WRF overcompensation of the ERA-I dry bias anflyo anonymous reviewers and one editorial board
leading to a better crop yield estimation. The RRTMfember are thanked for their helpful comments that
scheme leads to slightly drier conditions than the Goflg|ped us improve the manuscript. WRF was provided
dard scheme. This is consistent with Peh&l(201) py the University Corporation for Atmospheric
over East Africa. Research websie/\ww2.mmm.ucar.eduwrf/ users
Conversely, the tested LU model does not lead §@nload ). ERA-Interim data were provided by the
hlgh differences inthe crop yields; the uncertainties EUropean Centre for Medium-Range Weather Fore-
the simulated yields are smaller than those induced é&fst(ECMWH. WRF calculations were performed
the internal variability of the climate model. using HPC resources from DSI-CCBniversité de
In an ensemble experiment, the internal variaBourgogng
bility of the WRF model has been shown to introduce
non-negligible uncertainties in crop vyield SimUIaReferences
tions with differences in the simulated yields reach-
ing up to 30%. Dynamical downscaling can improvédams R M, McCarl BAand Mearns L O 2003 The effects of spatial

the climate forcing upon re—analyses for the simula- scale of climate scenarios on economic assessments: an
example from US agricultuf@im. Changé0131-48

tion of agr'cu_ltu_ral mpgcts at the local Sca!e' HOWAllé CSUY,BaronC, GuibertH, Aghossou E K and Afouda A A
ever, uncertainties arising from both the setting ofthe 2014 Choice and risks of management strategies of
parameterizations and the internal variability of the  agricultural calendar: application to the maize cultivationin

; ; h Benirint. J. Innov. Appl. Stud113747
RCM need to be taken into account. Adding arelaxa- _S°Ut PP
9 %nderson JR 1976 Aland use and land cover ctz#in system

tion term in the mOd_és_ pr_OQ_nOS“C equ"’_‘t'on could for use with remote sensor dgReport No. 96¥Professional
allow for a more realistic timing of transient pertur- PapebJS Government Printing Ote, Washington, DC
bations in the regional model, and thus favor loweisseng 8tal2013 Uncertainty in simulating wheat yields under

_— L ol climate chang®at. Clim. Chang@827-32
uncertainties and more realistic variability ate Baron C, Sultan B, Balme M, Sarr B, Traore S, Lebel T, Janicot S and

temporal scales. These relaxatfonnudging tech- Dingkuhn M 2005 From GCM grid cell to agricultural plot:
niques could be advisable for impact studies, scaleissuesaffecting modelling of climate imphitt Trans.

although it strongly weakens the coupling between = R.Sod3602095108

. . Benjamin S G, Dévényi D, Weygandt S S, Brundage K J, Brown J M,
the phy5|cs and dynamlcs of the moqjl@bhl and GrellGA,KimD, SchwartzB E, Smirnova T G and Smith TL

Crétat2013. 2004 An hourly assimilation-forecast cycle: the RU.
Simulated yields have been shown in this studyto  Weather Re#32495-518

be strongly sensitive to the RCM physics and tﬁ@ttsAK1986Anewconvectivgadjustmentscheme. Partl:
simulation setu Errors and uncertainties arisin Observational and theoretical bagis). R. Meteorol. Saé2
p. 9 67701

from such sensitivity should not be neglected. Tigetts AK and Miller M J 1986 A new convective adjustment scheme.
minimize these errors, the RCM physics must be  Partll:Single columntests using GATE wave, BOMEX,

carefully set, and to estimate uncertainties coming 2;:5)7(02”" arcticair-mass data stsl. R. Meteorol. St2

from the RCMs internal Va”ablhw’ the crop mC'delBondeau Aetal2007 Modelling the role of agriculture for the 20th
should be forced by an ensemble simulation of the  century globalterrestrial carbon bala@ieb. Change Biol.
regional climate. The use of an RCM to downscale 13679-706 .
climate data for crop yield simulations then implies §"2inorAJ, Wheeler TR, Craufurd P Q, Slingo JMand

. Grimes D | F 2004 Design and optimisation of alarge-area
cumbersome methodology and high-performance  pocess-based model for annual cragsic. For. Meteorol.

computing facilities, which calls its suitability into 12499-120

14



10P Publishing

Environ. Res. Leti0(2015 124014 JRamarohetrat al
Chen F and Dudhia J 2001 Coupling an advanced land surface- statistical and dynamical downscaling of winter precipitation
hydrology model with the penn state-NCAR MM5 modeling over complexterraid. Clim25262-81
system: |. Model implementation and sensitilikyn. Hitt K J 1994 Rening 1970s land-use data with 1990 population
Weather Re?29569-85 datatoindicate new residential developmafaiter-Resources
Chou M-D and Suarez M J 1994 An efent thermal infrared Investigations Rephit.94-4250
radiation parameterization for use in general circulation ~ Hong S-Y and Lim J-O J 2006 The WRF single-moment 6-class
modelNASA Tech. Memo. 104&#5 microphysics schenfé&/SM@ J. Korean Meteorol. S¢2.
CrétatJ, Macron C, Pohl B and Richard Y 2011a Quantifying 12951
internal variability in a regional climate model: a case study Hong S-Y, Noh Y and Dudhia J 2006 A new vertical diffusion
for Southern Afric&lim. Dyn.37133556 package with an explicit treatment of entrainment processes
CrétatJ and Pohl B 2012 How physical parameterizations can Mon. Weather Re¥34
modulate internal variability in a regional climate model lacono M J, Delamere J S, Mlawer E J, Shephard MW,
J. Atmos. S¢9714-24 Clough S A and Collins W D 2008 Radiative forcing by long-
CrétatJ, Pohl B, Richard Y and Drobinski P 2011b Uncertaintiesin  lived greenhouse gases: calculations with the AER radiative
simulating regional climate ob8thern Africa: sensitivity transfer model3. Geophys. Res. Atmé8§4-2012113
to physical parameterizations using W&n. Dyn.38 Im E-S, Gianotti R L and Eltahir E A B 2014 Improving the
613-34 simulation of the West African monsoon using the mit
Dee D Retal2011 The ERA-Interim reanalysis: cgaration and regional climate modél Clim272209-29
performance of the data assimilation sys@nd. R. Meteorol. lorio JP, Duffy P B, Govindasamy B, Thompson SL,
Socl37553-97 Khairoutdinov M and Randall D 2004 Effects of model
Deryng D, Sacks W J, Barford C C and Ramankutty N 2011 resolution and subgrid-scale physics on the simulation of
Simulating the effects of climate and agricultural precipitation in the continental United Statem. Dyn.23
management practices on global cropyield: simulating global 24358
crop yieldGlob. Biogeochem. Cy2t&sB2006 Janjic Z11994 The step-mountain eta coordinate model: further
Diaconescu E P, Laprise R and Sushama L 2007 The impact of lateral developments of the convection, viscous sublayer, and
boundary data errors on the simulated climate of a nested turbulence closure schemdsn. Weather Rel22
regional climate modélim. Dyn28333-50 92745
Dingkuhn M, Baron C, Bonnal V, Maraux F, Sarr B, Clopes Aand Jankov |, Gallus W A, Segal M, Shaw B and Koch S E 2005 The
Forest F 2003 Decision support tools for rainfed crops in the impact of Different WRF model physical parameterizations
Sahel at the plot and regional sc&esision Support Tools for and their interactions on warm season MCS rainviahther
Smallholder Agriculture in Sub-Saharan Africa: A Practical Forecas?0104860
Guideed T E Struif Bontkes and M C S WopdNscle Jones JW, Hoogenboom G, Porter C H, Boote K J, Batchelor WD,
Shoals: IFDTpp 12739 HuntL A, Wilkens P W, Singh U, Gijsman A J and Ritchie J T
Dominguez M, Gaertner M A, Rosnay P and de, Losada T 2010 A 2003 The DSSAT cropping system mdgiel J. Agror.8
regional climate model simulation over West Africa: 23565
parameterization tests and analysis of land-surfelcks Kain J S 2004 The Kaifritsch convective parameterization: an
Clim. Dyn.35249-65 updatel. Appl. Meteoral3170-81
Dudhia J 1996 A multi-layer soil temperature model for MM5 Keating B Aet al2003 An overview of APSIM, amodel designed for
Preprints, The Sixth PBNCAR Mesoscale Model Users farming systems simulatidur. J. Agron., Modelling
WorkshogBoulder, CQ pp 49-50 Cropping Syst.: Sci. Softw. App?67-88
Dudhia J 1989 Numerical study of convection observed during theKirstetter P-E, Viltard N and Gosset M 2013 An error model for
winter monsoon experiment using a mesoscale two- instantaneous satellite rainfall estimates: evaluation of
dimensional model. Atmospheric 853077107 BRAIN-TMI over WesAfr. Q. J. R. Meteorol. Sb&9
Feser F, Rockel B, von Storch H, Winterfeldt Jand Zahn M 2011 894911
Regional climate models add value to global model data: a Klein C, Heinzeller D, Bliefernicht Jand Kunstmann H 2015
review and selected examiedl. Am. Meteorol. S&2 Variability of West African monsoon patterns generated by a
118192 WRF multi-physics ensemi¥m. Dyn452733-5

Flaounas E, Bastin S and Janicot S 2010 Regional climate modellikgster R D 2004 Regions of strong coupling between soil moisture
of the 2006 West African monsoon: sensitivity to convection and precipitatiorScienc&05113840
and planetary boundary layer parameterisation using WRF Kouressy M, Dingkuhn M, Vaksmann M and Heinemann A B

Clim. Dyn.361083-105 2008 Adaptation to diverse semi-arid environments of
Flaounas E, Janicot S, Bastin S and Roca R 2011 The West African sorghum genotypes having different plant type and
monsoon onsetin 2006: sensitivity to surface albedo, sensitivity to photoperiodgric. For. Meteordl48
orography, SST and synoptic scale dry-air intrusions using 35771
WRFClim. Dyn.38685-708 Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J,
FriedlM A, Mclver DK, Hodges JC, Zhang X Y, Muchoney D, Friedlingstein P, Ciais P, Sitch S and Prentice | C 2005 A
Strahler AH, Woodcock C E, Gopal S, Schneider Aand dynamic global vegetation model for studies of the coupled
Cooper A 2002 Globalland cover mapping from MODIS: atmosphere-biosphere systéiob. Biogeochem. Cyttes
algorithms and early resuRemote Sens. Envirgs287-302 GB1015
Gaiser T, de Barros |, Sereke F and Lange F-M 2010 Validation arlceduc M and Laprise R 2009 Regional climate model sensitivity to
reliability of the EPIC model to simulate maize productionin domain siz€lim. Dyn.32833-54
small-holder farming systems in tropical sub-humid West  Lobell D B and Burke M B 2010 On the use of statistical models to
Africaand semi-arid Brazlgric. Ecosyst. Envir@A5 predict crop yield responses to climate chakgyéc. For.
318-27 Meteorol150144352
Giorgi F, Jones C and Asrar G R 2009 Addressing climate Ma L-M and Tan Z-M 2009 Improving the behavior of the cumulus
information needs at the regional level: the CORDEX parameterization for tropical cyclone prediction: convection
frameworkWorld Meteorol. Organ. WMO B&8175 triggerAtmos. Re82190-211
Glotter M, Elliott J, Mclnerney D, Best N, Foster land MoyerEJ  Mearns L O, Easterling W, Hays C and Marx D 2001 Comparison of
2014 Evaluating the utility of dynamical downscaling in agricultural impacts of climate change calculated from high
agricultural impacts projectiofgoc. Natl Acad. Sci. USAL and low resolution climate change scenarios: |. The
877681 uncertainty due to spatial sc&ém. Change1131-72
Gutmann E D, Rasmussen R M, Liu C, Ikeda K, Gochis D J, Mearns L O, Mavromatis T, Tsvetsinskaya E, Hays C and

Clark M P, Dudhia J and Thompson G 2012 A comparison of Easterling W 1999 Comparative responses of EPIC and

15



10P Publishing

Environ. Res. Leti0(2015 124014 JRamarohetrat al

CERES crop models to high and low spatial resolution physiological parameters and calibration at tekel
climate change scenarib$seophys. R&846623-46 scal&ield Crops RelsL623-9

Mlawer E J, Taubman S J, Brown P D, lacono M J and Clough S A Sultan B, Baron C, Dingkuhn M, Sarr B and Janicot S 2005
1997 Radiative transfer forinhomogeneous atmospheres: Agricultural impacts of large-scale variability of the West
RRTM, avalidated correlated-k model for the longwave African monsoorfgric. For. Meteord2893-110
J. Geophys. Res. Atmé84-201216663-82 Sultan B, Roudier P, Quirion P, Alhassane A, Muller B,

Morse AP, Doblas-Reyes F J, Hoshen M B, Hagedorn R and Dingkuhn M, Ciais P, Guimberteau M, Traore S and Baron C
Palmer T N 2005 A forecast quality assessment of an end-to- 2013 Assessing climate change impacts on sorghum and
end probabilistic multi-model seasonal forecast systemusing  milletyields in the Sudanian and Sahelian savannas of West
amalariamodelellusA57464-75 AfricaEnviron. Res. LeBt014040

Oettli P, Sultan B, Baron C and Vrac M 2011 Are regional climate SyllaMB,Gaye AT, PalJS, Jenkins G Sand Bi X Q 2009 High-
models relevant for crop yield prediction in West Africa? resolution simulations of West African climate using regional
Environ. Res. Left014008 climate mode(RegCM3with different lateral boundary

Paeth Hetal2011 Progress in regional downscaling of west African conditionsTheor. Appl. Climatd8293-314
precipitationAtmos. Sci. Left275-82 SyllaM B, Giorgi F, Ruti P M, Calmanti S and Dijjuila A 2011

Pohl B and Crétat J 2013 On the use of nudging techniques for The impact of deep convection on the West African summer
regional climate modeling: application for tropical monsoon climate: aregional climate model sensitivity study
convectiorClim. Dyn431693-714 Q.J.R. Meteorol. S®@87141730

Pohl B, CrétatJ and Camberlin P 2011 Testing WRF capability in Tiedtke M 1989 A comprehensive masgg scheme for cumulus
simulating the atmospheric water cycle over Equatorial East parameterization in large-scale modétm. Weather Rev.
AfricaClim. Dyn.37135779 1171779800

Ramarohetra J, Sultan B, Baron C, Gaiser T and Gosset M 2013 Hinaoré S Bt al2011 Characterizing and modeling the diversity of
satellite rainfall estimate errors may impact rainfed cereal cropping situations under climatic constraints in West Africa
yield simulation in West AfricAgric. For. Meteordl30 Atmos. Sci. Left289-95
11831 Tsvetsinskaya E A, Mearns L O, Mavromatis T, Gao W,

Roudier P, Sultan B, Quirion P and Berg A 2011 The impact of McDaniel L and Downton M W 2003 The Effect of spatial
future climate change on West African crop yields: what does scale of climatic change scenarios on simulated maize, winter
the recentliterature sag?ob. Environ. Chang&1073-83 wheat, and rice production in the southeastern United States

Seth Aand Giorgi F 1998 The effects of domain choice on summer Clim. Chang8037-72
precipitation simulation and sensitivity in aregional climate Vigaud N, Roucou P, Fontaine B, Sijikumar S and Tyteca S 2009

modelJ. Clim112698-712 WRHF ARPEGE-CLIMAT simulated climate trends over
ShiW, Tao Fand Zhang Z 2013 A review on statistical models for West AfricaClim. Dyn.36925-44

identifying climate contributions to crop yieldsGeogr. Sci.  Williams J R 1990 The erosion-productivity impact calculator

2356776 (EPIQ model: a case histoBhilos. Trans. R. SB8329

Simmons A, Uppala S, Dee D and Kobayashi S 2007 ERA-Interim: 4218
New ECMWF reanalysis products from 1989 onwards Williams JR, Jones C Aand Dyke P T 1984 A modeling approach to

ECMWF Newslett1025-35 determining the relationship between erosion and soil
Skamarock W, Klemp J B, Dudhia J, Gill D, Barker D, Duda M, productivityTrans. ASAE70129-44

Huang X, Wang W and Powers J 2008 A description of the Williams J R and Singh V P 1995 The EPIC m@itehputer Models

advanced research WRF versiddi3AR Technical Note of Watershed Hydrolqgy909-1000

NCAR TN-475+ STRp 123 Xiu A and Pleim J E 2001 Development of aland surface model: I.
Smirnova T G, Brown J M, Benjamin S G and Kim D 2000 Application in a mesoscale meteorological mddappl.

Parameterization of cold-season processes inthe MAPSland- Meteorok0192-209

surface schemk Geophys. Res. Atm684077-86 Zhang C, Wang Y and Hamilton K2011 Improved representation of
Srivastava AK and Gaiser T 2010 Simulating biomass boundary layer clouds over the southeast RaniARW-

accumulation and yield of yaf@ioscorea alata the WRF using amodied Tiedtke cumulus parameterization

Upper Ouémé Basi{Benin Republig |. Compilation of schemé/on. Weather Re¥/393483-513

16



	1. Introduction
	2. Materials and methods



