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Abstract 

The paleogeographic evolution of South East Asia (SEA) during the early Mesozoic is still 

poorly understood and a number of models have recently been put forward to account 

for the geodynamic evolution of SEA. The Luang Prabang Basin (north Laos), located in 

the core of a “paleogeographic jigsaw” in SEA, recorded a long lasting volcanism that 

spanned for ~ 35 my from the earliest Triassic up to Late Triassic as evidenced by 

combined stratigraphic and geochronological (U-Pb/zircon) analyses performed on both 

volcanic and volcaniclastic series. The volcanic rocks are arc tholeiites and calk-alkaline 

andesites to dacites. The volcaniclastic rocks contain, in part, volcaniclasts produced 

contemporaneously with sedimentation. Both the volcanic and volcaniclastic series 

display geochemical features characteristic of a subduction related volcanism. 

Therefore, the Luang Prabang Basin documents a magmatic arc in a good agreement 

with the recent recognition of neighboring ophiolitic rocks in the Luang Prabang area. 

Following a passive margin setting that prevailed from the late Carboniferous to the late 

Permian, an active margin then initiated along the western margin of the Indochina 

Block. This active magmatic arc developed as the result of an east-dipping subduction 

below the Indochina Block during most of the Triassic, at least from ca. 250 to 215 Ma. 

Subsequently, this oceanic subduction episode must have been followed by a continental 

collision of the Indochina Block with the eastern Simao Block, at a period that remains to 

be defined. 
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1. Introduction 

The present day South East Asia (SEA) largely results from collisions between several 

continental blocks (e.g., the Sibumasu, Simao, Indochina and South China blocks, Fig. 1A) 

and volcanic arcs (e.g., Sukhothai arc, Fig. 1A) during the Triassic and Jurassic periods 

(e.g., Barr et al., 2006; Mitchell et al., 2012; Peng T. et al., 2013; Zaw et al., 2014; Burrett 

et al., 2014; Lai C.-K. et al., 2014a and references therein). The exact number of 

continental fragments and volcanic arcs that actually compose SEA, as well as the timing 

of their amalgamation, are still controversial and a number of geodynamic models have 

been proposed to account for the tectonic evolution of the east Tethyan domain (e.g., 

Ridd, 1971; Burrett, 1974; Sengör, 1979; Mitchell, 1981; Helmcke, 1985; Metcalfe, 1988, 

2002; Lepvrier et al., 2004; Ferrari et al., 2008; Carter and Clift, 2008; Cai J.-X. and Zhang 

K.-J., 2009; Metcalfe, 2011; Liu J. et al., 2012; Cocks and Torsvik, 2013; Lai C.-K. et al., 

2014b; Qian X. et al., 2015a). Corollary to these uncertainties about the geodynamic 

evolution of SEA from the late Paleozoic to the early Mesozoic, the spatial configuration 

(i.e., the shape) of the blocks that compose the east Tethyan domain and the nature of 

their boundaries are not precisely known (e.g., Heppe et al., 2007; Wang Q. et al., 2014). 
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Despite the fact that the Simao Block encompasses a relatively large geographic 

area with a triangular shape in south China (western Yunnan) and northern Laos (Fig. 

1A), its paleogeographic affinity is poorly constrained. This block was initially 

recognized by Wu H. et al. (1995), and is sometimes considered as an independent 

continental block prior to the Late Triassic (e.g., Wu H. et al., 1995; Metcalfe, 2002; 

Wakita and Metcalfe, 2005). For instance, Kamvong et al. (2014) suggested that the 

Simao plate was independent before it collided with, and was integrated into, the 

eastern Indochina Block during the late Carboniferous. Contradictorily with the 

existence of this independent plate, the Simao Block is sometimes considered as 

belonging to the Indochina Block (e.g., Ferrari et al., 2008; Wang Q. et al., 2014), while 

Sone and Metcalfe (2008) considered it as a “semi-detached portion” of the Indochina 

Block. Another hypothesis by Barr et al. (2006), reasserted by Qian X. et al. (2015a), 

postulates that the Simao Block was part of a larger continental unit (called the 

Sukhothai Block by Barr et al., 2006) that includes both the Simao and the Sukhothai 

blocks, as depicted on Fig. 1A. 

Central to the question of the paleogeographic affinity of the Simao Block is the 

actual nature of the mafic rocks cropping out along the Dien Bien Phu Fault (DBPF; Fig. 

1B), in the vicinity of which are located the possible eastern and western margins of the 

Simao and Indochina blocks, respectively. Indeed, the estimated cumulated dextral 

offset along the Dien Bien Phu Fault (ca. 40 km, Roger et al., 2014) is largely insufficient 

to explain the occurrence of mafic rocks along the fault by a simple transposition from 

the Ailaoshan Suture to the NW and/or from the Nan Uttaradit Suture Zone to the SE 

(i.e., the line approximately located in between the cities of Nan and Uttaradit, Fig. 1B). 

Therefore, some of the mafic rocks cropping out along the Dien Bien Phu Fault could 

correspond to a suture zone, which was previously called “Nan Uttaradit – Luang 
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Prabang” and “Nan Uttaradit Luang Prabang Dien Bien Phu” by Hutchison (1975) and 

Wu H. et al. (1995), respectively. However, this potential suture zone did not receive the 

attention it deserves until recently, as Qian X. et al. (2015a) studied some mafic rocks 

cropping out ca. 35 km to the northeast of Luang Prabang. Their investigations lead 

them to infer a back-arc setting in northwest Laos during the late Carboniferous. 

Some other mafic and felsic volcanic and volcaniclastic rocks have been 

documented in the Luang Prabang Basin (e.g., Bercovici et al., 2012; Blanchard et al., 

2013, Fig. 2). However, the geodynamical significance of these rocks, as well as their 

relationships with the mafic rocks described by Qian X. et al. (2015a) as representative 

of late Carboniferous back-arc basins, are unknown, thus motivating the present work. 

Based on a petro-geochemical and geochronological study of the volcanic and 

volcaniclastic rocks from the Luang Prabang Basin, and a comparison of the results with 

those from Qian X. et al. (2015a), a geodynamical model for the northeast Indochina 

Block during the Triassic is proposed. 

 

2. Geological setting 

 

2.1. Regional setting 

The blocks that compose the present-day SEA are delimited by proven (ophiolitic) or 

inferred suture zones (Fig. 1), corresponding to former continental plate boundaries. 

Some of these suture zones were reactivated and/or offset by Cenozoic shear zones such 

as the Dien Bien Phu Fault (Roger et al., 2014), the Mae Ping Fault (e.g., Ridd, 2012) or 

the Red River Fault (e.g., Faure et al., 2014). 
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The Simao Block (as depicted on Fig. 1A) is surrounded by a number of suture 

zones, some of which are poorly known and/or controversial. To the northeast, the 

Simao Block is separated from the South China Block by the Ailaoshan Suture (Fig. 1B), 

which is marked by the occurrence of N-MORB and plagiogranite Devonian to early 

Carboniferous in age (Jian P. et al., 2009a, b; Lai C.-K. et al., 2014a). The closure of the 

corresponding oceanic domain occurred during the late Permian to the Early Triassic 

(Jian P. et al., 2009a, b; Lai C.-K. et al., 2014a, b; Liu H. et al., 2014). 

To the southeast, the Simao Block is delimited by the debated “Luang Prabang 

Suture” (Fig. 1B), commonly described as a part of a larger “Nan Uttaradit Luang 

Prabang Dien Bien Phu” Suture Zone (Hutchison, 1975; Wu H. et al., 1995). The 

existence of the Luang Prabang Suture was recently backed up by some new results 

from Qian X. et al. (2015a) who reported the occurrence of late Carboniferous dolerite 

(335.5 ± 3.3 Ma, U-Pb/zircon) with an E-MORB signature and pillow-lava basalt (304.9 ± 

3.9 Ma, U-Pb/zircon) with a N-MORB affinity, ca. 35 km to the northeast of the city of 

Luang Prabang (Fig. 1B). This work evidences the presence of an oceanic (or oceanic-

like) domain in the vicinity of Luang-Prabang during the late Carboniferous. However 

the timing of its closure and subsequent collision remain unknown. 

West of the city of Simao, mafic rocks with an enriched to transitional MORB 

affinity, and inferred to represent the remnant of another early Permian oceanic 

paleolithosphere, have been reported in the Jinghong area (Hennig et al., 2009; Li G. et 

al., 2012; Fig. 1). However, these mafic rocks have also been interpreted as a component 

of a bimodal, late orogenic magmatic event (Heppe et al., 2007). Further studies are 

required to demonstrate that the Jinghong area really corresponds to a suture. 

Westward, the Simao Block (or a larger block including the Simao area) is 

possibly delimited by the less controversial Changning Menglian Suture Zone (e.g., Wu 
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H. et al., 1995, Fig. 1). Indeed, the Changning Menglian Suture delineates the 

paleobiogeographic limit between the Gondwanian and the Cathaysian provinces (Wu H. 

et al., 1995; see also Zhang K.-J., 1998 and Wu H. et al., 1998). In addition, it contains 

early Permian blueschists (Zhang R.Y. et al., 1993; Heppe et al., 2007), dismembered 

ophiolitic complexes (Wu H. et al., 1995) limiting the Sibumasu Block to the west from 

an eastern block encompassing the Simao area. As a paleobiogeographic divide, this 

suture zone is also commonly accepted as representing remnants of the “main branch” 

of the Paleotethys ocean (e.g., Sone and Metcalfe, 2008). In the area, the Changning 

Menglian accretionary complex is unconformably overlain by unmetamorphosed Middle 

Jurassic molassic sediments (Zhang R.Y. et al., 1993), which were possibly deposited 

after a collision, even though the precise age of these molassic sediments is poorly 

constrained. 

 

In addition to the suture zones delimiting the Simao Block (as depicted on Fig. 1A 

or as originally defined by Wu H. et al., 1995), numerous other suture zones have been 

described in SEA. The Indochina and the South China blocks are delimited by the Song 

Ma Suture (Fig. 1), represented by a ribbon of ultramafic and mafic rocks displaying a 

MORB affinity. As for the Ailaoshan Suture, these rocks are Devonian to Carboniferous in 

age (e.g., Trung et al., 2006; Vuong et al., 2013; Zhang R.Y. et al., 2013, 2014). However 

here, the timing of the oceanic closure and subsequent collision between the South 

China and the Indochina blocks is controversial. Carter and Clift (2008) argue for a 

collision during the Silurian while Liu J. et al. (2012) postulate that the collision took 

place during the Late Triassic. Various intermediate ages have also been proposed (i.e., 

early Carboniferous, Metcalfe, 2011; late Permian, Halpin et al., 2015; Early Triassic, 

Lepvrier et al., 2008; Kamvong et al., 2014, and Middle Triassic, Zhang R.Y. et al., 2013; 
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Faure et al., 2014). Recent investigations (Zhang R.Y. et al., 2013; Faure et al., 2014 and 

references therein) evidenced a high-pressure, low-temperature metamorphic event 

during the Middle Triassic (Fig. 1B), which is interpreted as the result of the collision 

between the South China and Indochina blocks, following a south- (e.g., Zhang R.Y. et al., 

2013; Faure et al., 2014) or a north- (e.g., Nakano et al., 2010) dipping subduction. 

To the south, the Nan Uttaradit Suture (Fig. 1) marks the western limit of the 

Indochina Block. It consists of ultramafic and mafic rocks displaying a supra-subduction 

zone affinity (Orberger et al., 1995) and high-grade metasedimentary rocks (blueschist 

facies, Barr and Macdonald, 1987). These mafic rocks are late Carboniferous in age (U-

Pb/zircon dates of 311 ± 10 Ma and 316 ± 3 Ma obtained on a gabbro and a meta-basalt, 

respectively, and interpreted as their emplacement age, Yang W. et al., accepted). This 

suture zone also includes cherts containing early Permian to Middle Triassic (Anisian) 

radiolarian fauna (Ueno and Hisada, 2001; Saesaengseerung et al., 2008). There is a 

general consensus about the ophiolitic nature of the Nan Uttaradit Suture Zone, although 

the age of the oceanic closure (e.g., middle Permian; Hirsch et al., 2006; late Permian; 

Metcalfe, 2011, Early Triassic; Lepvrier et al., 2004; Middle Triassic; Salam et al., 2014 or 

Late Triassic; Kamvong et al., 2014) and its extension to the north are still controversial 

(Fig.1). 

Westward, the Inthanon Suture Zone (Fig. 1), also called the “Chiang Rai tectonic 

line cryptic suture” (e.g., Ridd, 2014), has been proposed to represent the limit between 

the Sibumasu and the Sukhothai blocks (e.g., Sone and Metcalfe, 2008; Ridd, 2014). To 

the west of the “Chiang Rai tectonic line cryptic suture”, the Inthanon Zone corresponds 

to the Paleotethys ocean floor material, including seamounts with carbonate caps. This 

zone is interpreted as an extensive accretionary complex (e.g., Sone and Metcalfe, 2008). 

Alternatively, the boundary between the Sibumasu and the Sukhothai blocks is possibly 



  

 9 

located further to the west along the Mae Yuam Fault (Fig. 1B), which is considered by 

Ferrari et al. (2008) as a reactivated suture zone. Indeed the fault also corresponds to 

the boundary between the Gondwanian and Cathaysian paleobiogeographic provinces 

(e.g., Ueno and Hisada, 2001). Nevertheless, giving support to the hypothesis of a suture 

along the Inthanon line, the occurrence of Cathaysian fauna in between the Inthanon line 

and the Mae Yuam Fault has been interpreted as the result of a westward thrusting of 

the Sukhothai Block, thus standing in an allochthonous position above the Sibumasu 

Block (Ridd, 2014). 

In addition to the aforementioned sutures, some other structures, sometimes 

including ultramafic and/or mafic rocks have been reported in SEA. Among these, there 

is the Loei Suture, located to the west of Vientiane (Fig. 1B). When considered as a real 

suture, most authors propose that it was closed before the late Permian (Boonsoong et 

al., 2011; Qian X. et al., 2015b). Ultramafic rocks including peridotite and serpentinite of 

uncertain age are also reported ca. 50 km to the east of the Luang Prabang Basin 

(Geological map of Laos, 1990; Fig. 1B) but to our knowledge, these rocks have never 

been described nor characterized. 

Several hypotheses concerning the lateral extension of the ophiolitic segments 

(dashed lines on Fig. 1) have been proposed in order to correlate assorted ophiolitic 

segments together and to localize the block boundaries (circled numbers, Fig. 1B). 

Particularly, the continuity of the Inthanon and Nan Uttaradit sutures toward the north 

have been hindered by the paucity of data in the concerned areas of Myanmar and Laos. 

Therefore, depending on the authors, the Inthanon Suture may correlate either with the 

Changning Menglian Suture (1, Fig. 1B), based on comparisons of the stratigraphic 

sequences (Sone and Metcalfe, 2008), or with the Jinghong Suture (2, Fig. 1B), based on 
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correlations of the interbedded volcanic series (Barr et al., 2006) or from general 

tectonic and stratigraphic considerations (Ridd, 2014). 

Similarly, and relying on stratigraphic considerations, Sone and Metcalfe (2008) 

correlate the Nan Uttaradit Suture with the Jinghong Suture (3, Fig. 1B) while Feng Q. et 

al. (2005) correlate it with the Ailaoshan Suture (4, Fig. 1B). Barr et al. (2006) reached a 

similar conclusion as Feng Q. et al. (2005), derived from the comparison of volcanic 

series in northern Thailand and Yunnan. In this case, the Dien Bien Phu Fault possibly 

overprints a potential suture trace (4, Fig. 1B) that is referred to as the “Nan Uttaradit–

Luang Prabang Suture” (Hutchison, 1975), because the estimated dextral offset along 

this fault (ca. 40 km, Roger et al., 2014) is largely insufficient to account for the offset of 

the Ailaoshan Suture up to the Nan Uttaradit Suture. The existence of the Luang Prabang 

Suture recently received some support from the description of mafic rocks displaying a 

N-MORB affinity along the Dien Bien Phu Fault, ca. 35 km to the northeast of Luang 

Prabang (Qian X. et al., 2015a, Fig. 1). 

 

In addition to the uncertainties on the exact positions of the limits of the blocks, 

there are also contrasted opinions on the timing of the subductions and subsequent 

collisions that are inferred along these different suture zones. The east Tethyan domain 

comprises a large number of Permian to Lower Jurassic magmatic rocks (Fig. 1B), 

among which calk-alkaline volcanic and plutonic rocks are predominant. Depending on 

the interpretations deduced from these rocks, different timings might be discussed. 

Notably, the rocks belonging to the (high-K) calk-alkaline suites are subjected to 

different and somewhat contradictory interpretations. Indeed, the same rocks can be 

interpreted as emplaced either in a subduction or in a late orogenic setting. For instance, 

Barr et al. (2006) interpreted the calk-alkaline volcanic rocks cropping out between the 
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Nan-Uttaradit and the Inthanon sutures as subduction related, while Srichan et al. 

(2009), using the coeval occurrence of continental sedimentation, postulated a post-

collisional setting for the same calk-alkaline volcanism. Elsewhere, the stratigraphic 

position of the magmatic rocks with respect to the regional unconformities has also been 

used to discuss the tectonic settings (e.g., Wang Y. et al., 2010; Peng T. et al., 2013; Liu H. 

et al., 2014; Wang B. et al., 2014). Nevertheless, the ages of the unconformities are often 

poorly constrained in SEA. Two to three major regional unconformities are known in 

northern Thailand (Stokes et al., 1996; Lovatt Smith and Stokes, 1997; Racey, 2009) and 

Yunnan (Feng et al., 2005) during the upper Permian to the Middle Triassic, the Upper 

Triassic and the Lower to Middle Jurassic. 

 

2.2. Geological outline of the Luang Prabang Basin 

The Luang Prabang Basin, originally studied by Counillon (1896, see also Steyer, 2009 

and references therein), has been recently investigated for depositional environments 

(Bercovici et al., 2012; Blanchard et al., 2013), geochronology (Blanchard et al., 2013) 

and paleontological remains (flora: Bercovici et al., 2012; and fauna: Battail, 2009; 

Blanchard et al., 2013). A brief outline of these recent results is provided in Table 1. 

Structurally, the Luang Prabang Basin (Fig. 2) consists of an asymmetric NE-SW 

syncline (Blanchard et al., 2013) with a major thrust, possibly superimposed to an 

unconformity, separating the Purple Claystone (PCS) Formation and the Limestone and 

Sandstone (LS) Formation to the north from the Red Claystone (RCS) Formation to the 

south. Internal southeast verging thrusts are documented within the PCS and the LS 

formations (fms.) and the stratigraphic relationship between these formations is unclear 

(Fig. 2A; Blanchard et al., 2013). Two hypothesis were kept open by Bercovici et al. 
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(2012) and Blanchard et al. (2013): either the PCS Formation (Fm.) is stratigraphically 

below the LS Fm., or the LS Fm. is stratigraphically overlain by the PCS Fm. (Fig. 2C). 

Southward, the Mafic Rocks Unit (MRU), of unknown age, is composed of 

volcaniclastic rocks and basaltic pillow-lava flows (Blanchard et al., 2013) that were 

sampled for this work. The MRU is separated from the RCS Fm. to the north by an 

inferred fault (Fig. 2A, B) and to the south by a reverse fault that constitutes the basal 

contact of the Luang Prabang nappe (Bush et al., 1996). This nappe, over-thrusting the 

basin, is composed of polygenic conglomerates including volcanic boulders. Volcanic 

boulders and volcaniclastic rocks from the Luang Prabang nappe and from the PCS, the 

RCS and the Luang Prabang Tuffite (LPT) fms. were also sampled for this study to 

complement those from Blanchard et al. (2013). 

 

3. Methodology 

 

3.1. Geochemistry 

Major and trace element analyses were performed on 18 samples, including 4 volcanic 

and 8 volcaniclastic samples from the MRU along with 2 boulders of volcanic rocks and 4 

volcaniclastic samples from the RCS and the LPT fms. The samples were first crushed in 

a steel jaw crusher, then separated in two aliquots and grounded in a tungsten or in an 

agate mill, for major and trace elements analyzes, respectively. The analyses were 

performed at the SARM laboratory, (CRPG-CNRS, Nancy, France) following the 

procedure described by Carignan et al. (2001). The powders were digested using lithium 

metaborate (LiBO2) fusion and acid dissolution techniques prior to analyses by 

Inductively Coupled Plasma – Atomic Emission Spectrometry (ICP-AES) for major 
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elements and Sc and by Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) for 

trace elements. Loss On Ignition (LOI) was determined by heating 1g of sample at 

1000°C and reweighing. Detection limits and analytical uncertainties are given in the 

Appendix 1. 

The composition of magmatic (e.g., Pearce and Cann, 1973) and sedimentary (e.g., 

Roser and Korsch, 1986) rocks depends upon their tectonic setting, which can be 

assessed using discrimination diagrams. Discrimination diagrams used in the present 

study have been established by Verma and Verma (2013) for intermediate magmatic 

rocks (52% < SiO2(adj) ≤ 63%), by Verma et al. (2013) for acid magmatic rocks (SiO2(adj) > 

63%) and by Verma and Armstrong-Altrin (2013) for volcaniclastic rocks. The subscript 

“adj” refers to an adjustment of the major element contents to 100% on an anhydrous 

basis for both magmatic and sedimentary rocks, and using the standard Fe oxidation 

ratios proposed by Middlemost (1989) for magmatic rocks. The diagrams dedicated to 

intermediate (Verma and Verma, 2013) and acid (Verma et al., 2013) magmatic rocks 

are based on discriminant functions using natural logarithm ratios of reputedly 

relatively immobile trace elements (Yb, La, Ce, Sm, Nb, Th, Y and Zr). The diagrams 

dedicated to sedimentary rocks (Verma and Armstrong-Altrin, 2013) are established on 

a similar approach, but use ratios of major elements including the total iron in the form 

Fe2O3t(adj) instead of the trace elements. Calculation of the probabilities for a given sets of 

samples to belong to a given field in these discrimination diagrams were carried out 

following the methodology described by Verma and Verma (2013). According to these 

authors, the classification performances of the discrimination diagrams were found 

relatively unaffected by large (± 20% for magmatic rocks and ± 40% for sedimentary 

rocks, respectively) post emplacement compositional changes (e.g., by weathering) 

making these diagrams of particular interest for weathered rocks. 
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All these diagrams allow the discrimination of the following tectonic settings: 

island arc, continental arc (or undifferentiated arc setting in the diagrams for 

sedimentary rocks), continental rift together with oceanic island (within plate) and 

collision. The late orogenic setting is absent from these diagrams. As magmatic suites in 

late orogenic settings may resemble those encountered in subduction related 

environments, the method is not able to discriminate a late orogenic setting from an arc 

setting. 

 

3.2. U-Pb geochronology 

 

3.2.1. Analytical methods 

Zircon grains were extracted following a classical mineral separation procedure (e.g., 

Poujol and Anhaeusser, 2001). Heavy minerals from <250 μm grain size fraction were 

successively concentrated using a Wilfey table, a Frantz isodynamic magnetic separator 

and funnel separation in heavy liquids (bromoform then methylene iodide). Zircon 

grains were then handpicked under a binocular microscope to produce the most 

representative sampling, with the aim to avoid intentional bias (but see Sláma and 

Košler, 2012 and Malusà et al., 2013 and references enclosed in these papers). After 

embedding the grains in an epoxy resin, the pucks were hand grounded to reveal 

equatorial cross sections. Laser microsampling sites were chosen based on 

cathodoluminescence (CL) imaging using a Reliotron CL system equipped with a digital 

color camera. 

To conduct in situ isotopic analyses, samples were ablated using an ESI 

NWR193UC Excimer laser system connected to an Agilent 7700x quadrupole ICP-MS 
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instrument located at the Géosciences Rennes laboratory. Detailed operating and 

instrumental conditions can be found in Ballouard et al. (2015). During the course of the 

analyses, the signals of 204(Pb+Hg), 206Pb, 207Pb, 208Pb, and 238U masses were acquired. 

No common Pb correction was applied. The 235U signal was calculated from 238U using 

the ratio 235U/238U = 137.88. Laser spot diameters of 25 to 40 μm with repetition rates of 

3-4 Hz were used for ablation. Every ten unknown analyses were bracketed by two 

measurements of primary GJ-1 standard (Jackson et al., 2004), followed by one 

measurement of secondary 91500 standard (Wiedenbeck et al., 1995), to correct for 

mass fractionation and bias and to control data reproducibility, respectively (Appendix 

2). 

 

3.2.2. Data filtering, maximum age calculations and detection limits 

A two-step procedure has been applied to derive maximum depositional ages from the 

volcaniclastic samples. The first step consisted in filtering the data based on their 

probability of concordance (Ludwig, 1998; Nemchin and Cawood, 2005), calculated 

using the relevant function in Isoplot/Ex 3.00 (Ludwig, 2012). Decay constant errors 

were included in this calculation. The use of the probability of concordance instead of 

the classical percent of concordance (defined as the percent ratio of the 206Pb/238U 

versus the 207Pb/206Pb or 207Pb/235U ages) allows to take into account the errors linked 

to each analysis. It also avoids variable age difference for grains of different ages at a 

given level of percent of concordance (e.g., 90% of concordance means that the 

206Pb/238U and 207Pb/206Pb ages for a 2.0 Ga grain differ by 200 Ma while the difference 

is only 2 Ma for a 20 Ma grain). Additionally, the use of a percent of concordance may be 

problematic because of the difficulty in determining reliable 206Pb/207Pb ages, and hence 
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degrees of concordance, for young ages. The use of the probability of concordance 

appears thus to be more convenient to filter the data regarding the drawbacks of 

percent concordance. The cut-off level applied to filter the data was 10%. 

Data having a probability of concordance ≥ 10% were kept for the second step 

that consisted in calculating the maximum depositional age using the youngest cluster of 

at least 3 analyses from 3 different grains overlapping in age at 2σ (standard deviation) 

as proposed by Dickinson and Gehrels (2009) to ensure a statistically robust estimate of 

the maximum depositional ages. Maximum depositional ages were calculated as the 

concordia age (Ludwig, 1998) of these youngest clusters using Isoplot/Ex 3.00 (Ludwig, 

2012) and are provided with 95% confidence limits. The MSWD (mean square of 

weighted deviates) and probabilities associated with the calculation of concordia ages 

refer both to the concordance and the equivalence of the chosen populations (Ludwig, 

1998), unless otherwise mentioned. Errors on calculated ages take into account decay 

constant errors. 

The ages of the volcanic samples have been calculated using the Tuff Zirc 

algorithm (Ludwig and Mundill, 2002) to minimize the effects of Pb loss. The algorithm 

isolates the largest cluster of analyses having a probability of fit in age at a higher value 

than 0.05 and calculates the median age of this cluster. The uncertainties (asymmetric) 

are provided with a 95% confidence limit. 

To assess whether the filtered data set for each volcaniclastic sample is 

representative, the detection limits (i.e., the relative proportions, expressed as the 

percentages of the largest population of zircon grains that are likely to remain 

undetected at a given confidence level; Andersen, 2005) are provided. Following 

Andersen (2005), the calculation of the detection limits for a single grain (assuming a 

random sampling) is given by: 
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    (1) 

where    is the probability level assigned to the detection limit   , and   the number of 

zircon grains displaying a probability of concordance ≥ 10%. However, as at least 3 

grains are required to define a maximum depositional age following the criteria of 

Dickinson and Gehrels (2009), the threshold value of    is implicitly defined by the 

following: 
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where k ranges between 0 and 2 to subtract, to the total space of probability, the chance 

to find not any grain (k = 0), only 1 grain (k = 1) and 2 grains (k = 2) belonging to a 

poorly represented population that would fall below the 3 grains criterion 

aforementioned. 

Developing Eq. (2) we have: 

           
          

       
       

 
       

   

   
  

(3) 

Eq. (3) cannot be solved analytically but a solution can nevertheless be approximated. 

A comparison of the detection limits and the maximum depositional ages 

obtained following the aforementioned procedure with the classical filtering procedure 

based on percent of concordance (206Pb/238U versus 207Pb/206Pb ages, cut-off level at 100 

± 10%) is given in the Appendix 2. 

 

4. Petrography and geochemistry 

We focus here on the petro-geochemistry of the MRU, as well as on volcanic boulders 

and sediments forming part of the Luang Prabang nappe. The petrography of the 
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volcaniclastic rocks of the PCS, the RCS and the LPT fms. have already been described in 

Bercovici et al. (2012) and Blanchard et al. (2013). This work mostly adds geochemical 

information for the samples from these formations. Petrographic descriptions of all the 

samples used in this work are provided in Table 2. 

The terminology that is used in this work for volcaniclastic rocks partly follows 

the recommendations of Le Maitre et al. (2002, after Schmid, 1981) for pyroclastic and 

mixed pyroclastic-epiclastic deposits. However, we choose to use the term “volcaniclast” 

defined as any rock fragment or individual crystal of volcanic origin independently from 

any genetic consideration. Indeed, according to Le Maitre et al. (2002), a “pyroclast” is a 

particle that has not been reworked but, as it is often difficult to distinguish unreworked 

from reworked volcaniclasts, the strict application of Le Maitre et al. (2002)’s 

nomenclature is difficult. 

 

4.1. Mafic Rock Unit (MRU) 

From south to north, the MRU is composed of basaltic flows showing internal pillow-

lavas (Fig. 3A) implying a subaqueous emplacement, massive lava flows (or intrusions) 

with no internal structure, and volcaniclastic accumulations, the layers of which are rich 

in mafic volcaniclasts. 

 

4.1.1. Volcanic rocks 

The southern basalts (samples LP 22 to LP 24) are porphyritic. They are characterized 

by plagioclase and zoned clinopyroxene (augite displaying sometimes typical sector 

twinning; Fig. 3B, C) phenocrysts embedded in a destabilized glassy to microcrolitic 

groundmass containing plagioclase microcrysts (Fig. 3B) or microlites (Fig. 3C), opaque 
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mineral and clinopyroxene microcrysts. The samples display secondary cryptocrystaline 

to polycrystalline quartz veins and scattered xenomorphic spots, up to a millimeter in 

size, that also include chlorite and carbonate (calcite). 

Collected immediately to the north of the basaltic outcrops, sample LP 25 is a 

porphyritic microgabbro, also mostly constituted by plagioclase, augite and subhedral 

opaque minerals (Fig. 3D). One difference with the basalts concerns the quartz that is 

more abundant, and which mostly occurs as monocrystalline xenomorphic crystals 

containing apatite needle inclusions. This suggests that part of the quartz in this rock is 

primary. Cross-cutting veins filled up by polycrystalline secondary quartz are also 

present (Fig. 3D). 

The 4 volcanic samples from the MRU (LP 22 to LP 25) have been analyzed for 

major and trace elements (Appendix 3). These rocks plot as basalt and basaltic andesite 

in the total alkali versus silica diagram (TAS; Le Maitre et al., 2002), except sample LP 25 

that plots as a trachyandesite (Fig. 4A). The basaltic rocks are sub-alkaline (0.08 < Nb/Y 

< 0.16). The LOI for all samples but for sample LP 25 are however higher than the 

maximal value recommended for the use of the TAS diagram (i.e., above 2.5 wt.%). Using 

the classification diagram of Winchester and Floyd (1977), based on the relatively 

immobile trace elements Nb, Y and TiO2, we obtain consistent results for all the samples 

that plot as basalt or andesite (Fig. 4B). This suggests that sample LP 25, although 

slightly more differentiated than the basalts (i.e., richer in silica and primary quartz), has 

a particular location in the TAS diagram and could have been enriched in alkaline 

elements during fluid circulation. 

The chondrite normalized patterns of Rare Earth Elements (REE) and Y (Fig. 5A) 

show a moderate REE enrichment with a slight light REE (LREE) fractionation relative to 

heavy REE (HREE): (La/Yb)N ranges between 1.7 and 2.7 and (Gd/Yb)N ranges between 
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1.2 and 1.4. The absence of Eu anomaly (Eu/Eu* comprised between 0.96 and 1.03) 

suggests either that plagioclase was not extracted from the primary magma during 

differentiation or that the primary magma was oxidizing (Drake and Weill, 1975). Multi-

element patterns normalized to primitive mantle show significant negative anomalies 

for Nb and Ta with respect to neighboring U and La elements (Fig. 5B). These negative 

anomalies in mafic rocks may result from the partial melting of a mantle peridotite 

enriched in incompatible elements but depleted in Nb and Ta during selective mantle 

fertilization by aqueous fluid circulations. Indeed within the mantle, especially above 

subduction zones, aqueous fluids are likely depleted in Nb and Ta owing to the low 

solubility of these elements while they can be enriched in the other incompatible 

elements (e.g., Baier et al., 2008). With the exception of sample LP 25, the rocks also 

display significant positive Pb and small negative Ti anomalies (Fig. 5B). The latter 

possibly results from low-pressure fractional crystallization of opaque minerals (e.g., 

Briqueu et al., 1984), which is consistent with the presence of sub-euhedral opaque 

minerals in these basalts (Fig. 3D). The origin of the positive Pb anomaly in mafic rocks 

is more ambiguous because it can be generated either by crustal contamination, or by a 

secondary fluid circulation (e.g., Le Roex et al., 2003). Other anomalies, notably negative 

for K and Sr (except for sample LP 25) that are elements known to be highly mobile 

during alteration processes, will not be discussed any further. 

Overall, the geochemical characteristics displayed by the mafic volcanic rocks of 

the MRU (including the possible intrusive LP 25 sample) are consistent with an arc 

setting tectonic affinity (Fig. 6) as deduced from discrimination diagrams of Verma and 

Verma (2013). Indeed, this set of samples presents a relatively high probability (61.3%) 

to belong to an island arc setting. More classical tectonic discrimination diagrams yield 

similar and consistent results (Appendix 4). 
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4.1.2. Volcaniclastic rocks 

The volcanoclastic rocks of the MRU are tuffaceous arenites. They display various 

textures, with grain size ranging from fine- to coarse-grained sand (Fig. 3E, F) and a 

relatively good sorting. These tuffites are composed of volcaniclastic material, 

comprising both monocrystalline and rock fragments of volcanic origin, and epiclasts in 

variable proportion. The volcaniclasts are rounded and weathered basaltic rocks 

fragments, displaying microlithic to trachytic textures (Fig. 3E) that are sometimes 

porphyritic with greenish clinopyroxene (aegyrine augite?) and/or plagioclase 

phenocrysts. Isolated individual greenish clinopyroxene or plagioclase crystals or 

fragments are also common. Additional particles, of epiclastic origin, include rounded 

siltstone fragments, rounded quartz grains displaying undulatory extinctions and rare 

carbonate (calcite) grains. Epidote and opaque minerals are also present as individual 

grains or within the clasts. The matrix, which represents only a small proportion, is 

mainly constituted by chlorite and calcite. 

Eight tuffaceous arenites have been analyzed for major and trace elements 

(Appendix 3). The REE and Y chondrite normalized patterns of these volcaniclastic rocks 

(Fig. 5A) show an overall similarity with those of the basaltic rocks of the MRU, but are 

slightly more enriched in REE and more fractionated with (La/Yb)N ranging between 2.4 

and 5.2. Selected bivariate diagrams using chemical elements that are known to be 

immobile (Fig. 7) show that the volcaniclastic rocks define trends from a pole 

constituted by the volcanic rocks of the MRU. These trends reflect the mixing of 

volcaniclasts with epiclastic particles. They indicate that the tuffaceous arenites of the 
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MRU partly result from the dismantlement of the basaltic rocks similar to those of the 

MRU and/or are partly formed by pyroclasts made from similar magma compositions. 

Consistently with the derivation of the tuffaceous arenites from the basaltic rocks 

of the MRU type, for which an island arc tectonic setting was inferred (Fig. 6), a very 

high probability (98.1%, Fig. 8A) for an arc setting tectonic environment is also obtained 

for the tuffites when plotted in the tectonic discrimination diagram of Verma and 

Armstrong-Altrin (2013). The diagram proposed by Roser and Korsch (1986) gives 

similar results (Appendix 4). Indeed, even if the reliability of this diagram is 

questionable (e.g., Armstrong-Altrin and Verma, 2005; Ryan and Williams, 2007), the 

tuffaceous arenites of the MRU all plot, consistently, in the field of the “oceanic island arc 

margin”. 

 

4.2. Red Claystone (RCS) and the Luang Prabang Tuffite (LPT) formations 

 

4.2.1. Volcanic rocks 

The RCS and LPT fms., partly composed of conglomeratic layers, contain rounded felsic 

volcanic pebbles to boulders, mostly about 10 cm in size but sometimes up to 30 to 50 

cm. The sediments embedded within the Luang Prabang nappe are also conglomeratic 

and include felsic volcanic boulders. As the overall characteristics of the pebbles and 

boulders from the RCS and LPT fms. and from the Luang Prabang nappe were found to 

be similar, they are described together in this section. In doing so, we assume that the 

conglomerates of the Luang Prabang nappe either include boulders from the RCS and/or 

the LPT fms. or are lateral equivalents of these formations. Note also that, up to now, 

felsic volcanic rocks are only known as boulders in the Luang Prabang Basin and nappe. 
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The volcanic pebbles and boulders are mainly andesitic, dacitic to rhyolitic when 

looking at their mineralogical assemblages (Fig. 3G). The boulders display trachytic to 

microcrystalline and porphyritic textures. They are made up of plagioclase phenocrysts 

and contain aggregates, which are rich in opaque mineral and pyroxene (?), forming 

pseudomorphs after hydroxyl-bearing mafic phenocrysts, such as amphibole 

(hornblende?) and/or biotite (Fig. 3G). Classical in volcanic rocks, such pseudomorphs 

result from the destabilization of former phases due to pressure drop that enhances the 

exolution of the volatile elements during magma ascent and subsequent eruption. The 

dacitic rocks also contain a few corroded quartz crystals (Fig. 3H), which is another 

classical feature of felsic volcanic rocks that results from changes of the quartz-feldspar 

thermodynamic stability fields as the pressure drops during magma ascent. Usually the 

groundmass contains microlites of plagioclase and sanidine that often underline a fluidal 

texture. Apatite, opaque minerals, allanite and zircon are the classical accessory phases. 

Silica-rich cryptocrystalline to amorphous cross-cutting veins are rare. The rocks are 

slightly to significantly weathered, mostly showing sericite that develops from the 

feldspars, and chlorite and titanite that develop within the opaque mineral-rich 

pseudomorphs or within the groundmass. Sample LP 70 is more weathered than sample 

LP 68. 

Only two samples, LP 68 (RCS Fm.) and LP 70 (LPT Fm.), were analyzed for 

geochemistry. In the TAS diagram they plot as trachydacite and rhyolite (Fig. 4A) 

respectively. Rather consistently, they are classified as andesite and dacite-rhyodacite in 

the Winchester and Floyd (1977) diagram (Fig. 4B), respectively. They are characterized 

by a strong enrichment in LREE (Fig. 5A) and to a lesser extent in HREE with respect to 

the chondrite, with a (La/Yb)N of 16.6 for sample LP 68 and 37.1 for sample LP 70. Such 

a high degree of REE fractionation is compatible with the occurrence of amphibole 
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pseudomorphs (Fig. 3G). Sample LP 70 is also marked by a significant negative Ce 

anomaly (Ce/Ce* = 0.48) that may result from various mechanisms including partial 

melting of a protolith with a negative Ce anomaly, assimilation of marine sediments, 

post-eruptive contamination by sea water (Bohrson and Reid, 1997), soil formation 

(Braun et al., 1990, Ndjigui et al., 2009) or post-eruptive meteoric fluid-rock interaction, 

(Marsh, 1991; Cotten et al., 1995). Because a Y anomaly is lacking in sample LP 70, the 

negative Ce anomaly is interpreted as the result of alteration due to a post-eruptive 

hydrothermal or meteoric fluid circulations (e.g., Marsh, 1991; Cotten et al., 1995; Bau, 

1996). Multi-elements primitive mantle normalized spectra of these two samples (Fig. 

5B) show significant negative anomalies for Nb, Ta and Ti and a positive anomaly for Pb, 

only in the less altered sample LP 68. 

The overall geochemical characteristics displayed by the andesitic to dacitic 

boulders from the RCS and LPT fms. are consistent with an arc setting tectonic affinity. 

In the tectonic discrimination diagrams of Verma et al. (2013), the probability that these 

two samples belong to a continental arc setting is 65.1% (Fig. 9). Consistently, more 

familiar tectonic discrimination diagrams yield similar results (Appendix 4). 

 

4.2.2. Volcaniclastic rocks 

The samples of volcaniclastic rocks from the RCS and the LPT fms., tuffaceous arenites to 

tuffs according to their volcaniclast contents, have already been described in detail by 

Blanchard et al. (2013). Thus, only short petrographic descriptions of the samples used 

in this work for chemistry and geochronology are provided in Table 2. 

Four tuffaceous arenites have been analyzed for major and trace elements 

(Appendix 3). The REE and Y chondrite normalized patterns of these rocks (Fig. 5A) 
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show an overall similarity with those of the andesitic to dacitic boulders from the 

conglomeratic layers of the RCS and the LPT fms. They are however slightly less 

enriched in REE with a (La/Yb)N ranging between 10.6 and 17.4. Bivariate diagrams, 

using immobile elements as variables (Fig. 7), show that these volcaniclastic rocks 

define trends with a pole constituted by the andesitic to dacitic boulders from the RCS 

and LPT fms. These trends reflect the mixing of a volcanic source similar to that of the 

andesitic and dacitic boulders with some epiclastic material. Additionally, both bivariate 

diagrams and REE spectra show that the volcaniclastic rocks from the MRU and those 

from the volcaniclastic rocks of the RCS and LPT fms. were fed by distinct volcanic and 

epiclastic sources. 

Consistently with the derivation of these rocks from felsic rocks similar to those 

represented by the andesitic and dacitic boulders for which a continental arc setting was 

deduced (Fig. 9), a high probability (73.2%, Fig. 8B) for an arc setting is also obtained for 

the volcaniclastic rocks when plotted in the discrimination diagram of Verma and 

Armstrong-Altrin (2013). In the diagram proposed by Roser and Korsch (1986), the 

tuffaceous arenites also plot, consistently, in the fields of the “oceanic island arc margin” 

and “active continental margin” (Appendix 4). 

 

5. Geochronology 

Fourteen volcanic and volcaniclastic samples were analyzed in order to get new age 

constraints, complementary to those previously published by Blanchard et al. (2013). 

The new dating results are presented with emphasis on the Triassic detrital heritage. 

Older detrital zircon grains were found in most of the analyzed volcaniclastic rocks, but 

as the data that are older than the Triassic are essentially similar to the one discussed by 
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Blanchard et al. (2013), they are not presented here. Analytical results are provided in 

the supplementary material (Appendix 5). 

 

5.1. Purple Claystone Formation 

Three tuffaceous arenites (samples LP 03, LP 04 and LP 05) from this formation have 

been dated. As depicted in Fig. 2C, samples LP 04 and LP 05 are stratigraphically located 

65 m and 130 m above sample LP 03, respectively. Samples LP 03 and LP 05 come from 

layers encasing a dicynodont and a chroniosuchian skulls, respectively (Battail, 2009; 

Bercovici et al., 2012). The taxonomy and phylogenetic analysis of these fossils is 

beyond the scope of this paper. 

 

Sample LP 03 (Fig. 10B) 

One hundred and two zircon grains (105 individual analyses) were analyzed for the 

tuffaceous arenite sample LP03. Twenty-five zircons grains yielded dates with a 

probability of concordance ≥ 10%, implying rather low detection limits, ranging 

between 2.7% for 1 grain at a probability level of 50% (noted DL1(pL=0.5)) and 23.2% for 

3 grains at the probability level of 95% (noted DL3(pL=0.95)). These grains are 

characterized by variably pronounced pinkish colors and variable degrees of roundness. 

The Th/U ratio for the analyzed zircon grains ranges between 0.24 and 2.09 and most of 

the grains display well-defined magmatic zoning in cathodoluminescence (CL), 

suggesting a magmatic origin for all these grains (e.g., Rubatto, 2002). 

Six zircon grains, defining the youngest concordant cluster and displaying sub-

rounded to nearly euhedral shapes and a well-defined zoning in CL, give a concordia 

date of 252.0 ± 2.6 Ma with a MSWD of 0.89 and a probability of 0.55 (Fig. 10B). This 
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date is interpreted as the maximum depositional age for sample LP 03 (Fig. 10B, Table 

3). 

 

Sample LP 04 (Fig. 10C) 

A limited number of zircon grains (36) have been extracted from this sample and 41 

analyses have been performed. These grains display characteristics that are essentially 

identical to those observed in sample LP 03, except one grain with Th/U = 0.09, 

potentially of metamorphic origin (e.g., Rubatto, 2002). Only 7 zircons grains display a 

probability of concordance ≥ 10%, thus resulting in high detection limits: DL1(pL=0.5) is 

equal to 9.4% and the DL3(pL=0.95) is as high as 65.9% (Table 2). Given these high 

detection limits, only the detrital populations that are present in high relative 

proportions are likely to have been sampled. Conversely, there is a rather high chance 

that we missed detrital populations with only small relative proportions. 

Only one cluster of 4 grains meeting the 3 grains criterion used in this work 

allows calculating a concordia date of 300.5 ± 3.7 Ma (MSWD = 0.73; probability = 0.65; 

Fig. 10C). However, the sample also contains 3 concordant individual grains that are 

younger, among which the youngest is 251.6 ± 6.4 Ma old (MSWD of concordance only = 

1.1; probability of concordance only = 0.30). Given the high detection limits, it is likely 

that the youngest population of zircon grains was missed in this sample. As sample LP04 

is located 65 m above sample LP 03, which gives a similar young date within 

uncertainties, the 251.6 ± 6.4 Ma date possibly corresponds to a real geological age 

rather than an analytical artifact, and is therefore interpreted as the maximum 

depositional age for sample LP 04 (Table 3). 

 

Sample LP 05 (Fig. 10D) 
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Sample LP 05 is a tuffaceous arenite that yielded abundant, sometimes broken, zircon 

grains displaying rounded to euhedral shapes and variable pinkish colors. The detection 

limits are fairly low, with a DL1(pL=0.5) of 1.8% and a DL3(pL=0.95) of 15.3% (Table 3), 

ensuring that the main zircon populations have been analyzed. The Th/U of analyzed 

grains ranges between 0.28 and 1.04, suggesting a magmatic origin. 

A cluster of 21 grains characterized by rounded to euhedral shapes and well-

marked zoning (sometimes disturbed by local resorptions) gives a concordia date of 

251.0 ± 1.4 Ma (MSWD = 0.55; probability = 0.99; Fig. 10D), interpreted as the maximum 

depositional age for this sample. However, 4 independent concordant grains yielded 

concordia dates of 232.3 ± 5.9, 225.6 ± 5.6, 213.1 ± 6.1 and 180.6 ± 5.0 Ma (dashed 

ellipses in Fig. 10D, the latter plotting out of the field shown in the diagram) that do not 

meet the 3 grains criterion of Dickinson and Gehrels (2009). Accordingly, these younger 

concordant dates are interpreted as analytical and/or geological artifacts linked to lead 

losses in the grains. 

In summary, the dating of the 3 tuffaceous samples from the PCS Fm. indicates 

that the sedimentation of these volcaniclastic, braided-river to alluvial plain deposits is 

Early Triassic or younger. This result contradicts the late Permian age previously 

attributed to the PCS Fm. on the basis of Dicynodon biostratigraphy (Battail, 2009) and 

has potential implications on the stratigraphic range of these biostratigraphic markers 

of the Permian-Triassic boundary. Either the stratigraphic range of Dicynodon should be 

extended up to the Early Triassic, or the dicynodonts preserved within the PCS Fm. do 

not belong to the Dicynodon genus. Only a detailed taxonomic analysis of these fossils 

can provide a final answer between these two alternatives. Ongoing work on the 

taxonomy and phylogeny of these dicynodonts is nevertheless beyond the scope of this 

paper. 
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5.2. Mafic Rock Unit 

Several attempts were carried out in order to date the rocks from the MRU. These efforts 

were unsuccessful for the basaltic rocks and only one tuffaceous arenite (sample LP 42, 

Fig. 10J) from that Unit yielded enough zircon grains to derive a maximum depositional 

age (Table 3). Nineteen angular to sub-angular zircon grains displaying various internal 

structures in CL (oscillatory or patchy zoning, or devoid of any zoning) were analyzed, 

among which only 3 are concordant. The detection limits are consequently very high, 

with a DL1(pL=0.5) of 15.9% and a DL3(pL=0.95) of 90.3% (Table 3) so that the probability 

that most of the grain populations have been sampled, is very low. Nevertheless, 3 

concordant grains overlapping in age allow to calculate a maximum depositional age of 

219.3 ± 2.9 Ma (concordia date, MSWD = 0.85; probability = 0.52; Fig. 10J). Because of 

the high detection limits, we infer that the population of grains with such a rather young 

age exhibits a high relative proportion in the sample. 

 

5.3. Red Claystone and Luang Prabang Tuffite formations 

 

5.3.1. Volcanic rocks 

Five andesitic, dacitic to rhyolitic boulders sampled in conglomeratic layers in the RCS 

Fm. (sample LP 68, Fig. 11A), the LPT Fm. (samples LP 70, 71 and 72, Fig. 11B, 11C and 

11D respectively) and in the conglomerates from the Luang Prabang nappe (Fig. 2, 

sample LP 10, Fig. 11E) have been dated. As for to the petro-chemical results, these 

samples display similar characteristics regarding their zircon contents, and are 

presented together. 
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Most of the zircon grains have a short prismatic shape and an internal structure 

typified by well-marked oscillatory zoning. All grains also have Th/U ratios higher than 

0.1, evidencing their magmatic origin. 

Plotted in Tera-Wasserburg diagrams, the grains spread along the concordia line 

(Fig. 11) following the lead loss trends. This spreading is thus interpreted as the 

consequence of a lead loss suffered by a significant number of grains. To minimize the 

effect of lead loss on the date calculation, the Tuff Zirc dates were calculated from 

individual 206Pb/238U dates instead of using the weighted 206Pb/238U mean date. The 

obtained Tuff Zirc dates are 217.5 +1.7/-2.4 for sample LP 68, 225.8 +1.4/-2.2 for sample 

LP 70, 230.4 +0.9/-1.8 for sample LP 71, 225.4 +1.5/-3.4 for sample LP 72 and 232.7 

+2.8/-1.8 for sample LP 10. They are interpreted as the best estimates for the ages of 

emplacement for these volcanic rocks. Except in sample LP 10, a few zircon grains 

yielded significantly older dates, ranging from 251.2 ± 6.4 (206Pb/238U date, sample LP 

70) to 2047.6 ± 38.8 Ma (207Pb/206Pb date, sample LP 72). These dates are interpreted as 

corresponding to the ages of zircon xenocrysts that were incorporated from wall rocks 

into the intrusive ascending magma feeding the volcanism. These zircon xenocrysts 

evidence the presence of a substratum made of continental crust by the time the 

volcanic rocks emplaced, between ca. 233 and ca. 218 Ma. 

 

5.3.2. Volcaniclastic rocks 

Four tuffaceous arenites and lappilistones (samples LP 06, LP 08, LP 58 and LP 100) 

from the RCS and LPT fms. have been analyzed in addition to samples LP 44, LP 45 and 

LP 57 previously dated by Blanchard et al. (2013). In addition, a tuffaceous arenite 

forming the matrix of the conglomerates from the Luang Prabang nappe (Fig. 2, sample 
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LP 11, Fig. 10I) and sharing similar characteristics with the samples from the RCS and 

LPT fms. regarding its zircon content have been analyzed. These samples are thus 

presented together. 

The precise stratigraphic locations of samples LP 57, LP 58, LP 100, LP 44 and LP 

45 are depicted in Fig. 2C, from the base to the top of the log. The exact stratigraphic 

position of the other samples is not precisely known. Sample LP 100 was encasing a 

dicynodont skull provisionally identified as a kannemeyeriiform (Blanchard et al., 2013). 

 

Sample LP 58 (Fig. 10E) 

Sample LP 58 comes from the upper part of a grey tuffaceous arenite layer that is 

interbedded within red silty claystones, where sample LP 57 from Blanchard et al. 

(2013) was taken. It yielded abundant, sometimes broken, zircon crystals displaying 

rounded to euhedral shapes, variable pinkish to reddish colors and variable internal 

structures in CL. The dominant population is composed of zircon grains displaying an 

elongated, euhedral shape with a slightly pinkish color and a well defined oscillatory 

zoning, suggesting a magmatic origin. Twenty-four grains out of the 71 analyzed grains 

are concordant, giving detection limits ranging from 2.8% for the DL1(pL=0.5) to 24.0% for 

the DL3(pL=0.95) (Table 3). 

Among the analyses, the youngest cluster (4 grains) gives a concordia date of 

224.1 ± 2.8 Ma (MSWD = 0.41; probability = 0.90; Fig. 10E), which is interpreted as the 

maximum depositional age for this sample. Within the uncertainties this age is identical 

with the age obtained from sample LP 57 (224.9 ± 1.0 Ma; Blanchard et al., 2013). 

Sample LP 58 also contains 6 concordant grains displaying almost identical shapes, 

colors and internal structures to those from the youngest cluster, with individual 

concordia dates ranging from 232.1 ± 5.7 Ma to 250.8 ± 6.7 Ma. These results are in 
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agreement with a hypothesis of continuous volcanic production lasting about 26 my (see 

discussion). Older dates from the sample are comparable with those obtained in sample 

LP 57 by Blanchard et al. (2013). 

 

Samples LP 08, LP 06, LP 100 and LP 11 (Fig. 10F, 10G, 10H and 10I, respectively) 

These samples correspond to tuffaceous arenites, except sample LP 06 which is a 

lapillistone. They belong to the RCS Fm. (LP 100), the LPT Fm. (LP 08 and LP 06) and a 

conglomerate from the Luang Prabang nappe (LP 11). 

Numerous slightly pinkish, euhedral to sub-rounded zircon grains have been 

extracted from these volcaniclastic rocks. The grains exhibit well-marked oscillatory 

zoning with Th/U ratios higher than 0.1 (except one grain from sample LP 08), 

evidencing their magmatic origin. The detection limits for these samples are fairly low, 

with DL1(pL=0.5) and DL3(pL=0.95) bracketed between 1.7% and 2.6% and 15.0% and 22.3%, 

respectively (Table 3), ensuring that the main zircon populations have been analyzed. 

Concordia dates calculated from the youngest clusters of these samples are 224.8 

± 2.9 (sample LP 08; n=4, MSWD=0.62, probability=0.74), 222.0 ± 1.5 (sample LP 06; 

n=15, MSWD=0.89, probability=0.55), 220.9 ± 1.1 (sample LP 100; n=27, MSWD=0.62, 

probability=0.99) and 220.3 ± 2.9 (sample LP 11; n=4, MSWD=1.01, probability=0.42). 

They are interpreted as the maximum depositional ages of the layers from which the 

samples were extracted. Two individual concordant analyses give younger concordia 

dates of 208.7 ± 5.9 Ma and 206.7 ± 5.5 Ma in sample LP 06 (dashed ellipses in Fig. 10G) 

that do not fit the Dickinson and Gehrels (2009) 3 grains’ criterion. These younger dates 

are thus interpreted as analytical and/or geological artifacts linked to a slight lead loss 

in the grains. In addition, a few grains in each sample give older, mainly Proterozoic 

dates. Nonetheless, most of the concordant analyzed grains have individual dates that 
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spread continuously, ranging from ca. 250 Ma down to the individual maximum 

depositional ages of the samples (Fig. 10F, 10G, 10H, 10I). Again, this suggests that the 

volcanic production was active over this period. These latter zircon populations were 

not sampled by Blanchard et al. (2013), who provided maximum depositional ages using 

far less analyses per sample than in the present work. 

In summary, the sedimentation of the rocks from the RCS and LPT fms. occurred 

during the Norian from ca. 225 Ma to ca. 215 Ma, or after. Stratigraphically above these 

formations, the ML Fm. contains Norian conodonts and ammonites (e.g., Blanchard et al., 

2013), which indicates that the RCS and LPT fms. were deposited before the Rhaetian 

(starting from ca. 208.5 Ma). In addition, no difference was found between the results 

from the RCS and LPT fms. and those from the conglomerates within the Luang Prabang 

nappe. This suggests that these conglomerates are possibly lateral equivalents of the 

RCS and LPT fms. rather than a younger formation. 

 

6. Discussion 

 

6.1. Tectonic setting for the Triassic volcanism 

The prominent geochemical features of both mafic and felsic volcanic rocks documented 

in the Luang Prabang Basin point to magmas produced in subduction zones (e.g., 

negative anomalies in Nb, Ta, Ti and P, positive anomaly in Pb, Fig. 5). Various tectonic 

discrimination diagrams also suggest an arc setting (oceanic and continental for the 

mafic and felsic volcanism, respectively, Figs. 6 and 9). Additionally, and wholly 

consistent with their derivation from the dismantling of volcanic rocks and/or the direct 

incorporation of mafic or felsic pyroclasts and subsequent mixing with epiclastic 
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sources, both the mafic and felsic volcaniclastic rocks point to emplacements in an arc 

setting (Fig. 8). Magmatic rocks emplaced in late orogenic settings may, however, share 

very similar characteristics with those emplaced in arc settings (e.g., Hawkesworth et al., 

1995; Morris et al., 2000; Srichan et al., 2009). These two contrasted tectonic 

environments are thus difficult to distinguish from the geochemistry alone. The same 

statement also holds for the volcaniclastic rocks. 

To solve this problem, an argument may be provided considering the duration 

and the continuity of the volcanic activity. Indeed, a late orogenic setting is commonly 

characterized by pulsatile, short-lived (generally a few my within a single basin) and 

bimodal volcanism with gaps in intermediate compositions (e.g., Colgan et al., 2006; 

Ford et al., 2013) while subduction is usually typified by long-lived magmatic activity, 

forming a continuous series of mafic to felsic rocks. As already recognized by Blanchard 

et al. (2013), the maximum depositional ages in the RCS-LPT fms. are younger up the 

stratigraphic column (Figs. 2C, 10E and 10H), implying syn-sedimentary volcanic 

activity during the deposition of these formations (Fig. 12). Among all the available 

dates on these Norian formations, notice, however, that the Tuff Zirc date of sample LP 

68 (an andesitic boulder from the RCS Fm.) is younger than the oldest sample from the 

overlying LPT Fm. Given the spreading of a significant number of analyses following the 

lead loss trend (Fig. 11A), the Tuff Zirc date of sample LP 68 may confidently be 

interpreted as the result of lead loss suffered by the zircon grains present in this 

boulder. The exact age of the solidification of the corresponding volcanic rock is thus 

unknown and the interpretation of coeval volcanic activity and sedimentation can be 

maintained. 

Contrasting with the syn-sedimentary volcanism documented by the ages in the 

RCS and LPT fms., maximum depositional ages obtained from the samples of the PCS Fm. 
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(Fig. 10B, 10C and 10D) are identical within uncertainties, whatever their stratigraphic 

position (Fig. 2C). In that case, the uncertainties on the maximum depositional ages and 

the distance separating the most widely spaced samples (ca. 130 m between LP 03 and 

LP 05) do not prove a syn-sedimentary volcanic activity. Similarly, no statement 

regarding the contemporaneity of the volcanism with the sedimentation can be made for 

the volcaniclastic rocks of the MRU as only a single sample gave enough zircon grains to 

be dated. 

The dating of volcanic boulders sampled in the conglomeratic layers of the RCS 

and LPT fms. adds complementary evidence to constrain the duration of the volcanism 

in the vicinity of the Luang Prabang Basin. The comparison between the oldest age from 

a reworked volcanic boulder (232.7 +2.8/-1.8 Ma, Fig. 11E) and the youngest maximum 

depositional age available (215.9 ± 1.3 Ma, sample LP 45, recalculated after Blanchard et 

al., 2013, following the procedure adopted in this study for the sake of consistency) 

shows that the volcanism lasted, at least, ca. 15 my (with a maximum of 20.9 my and a 

minimum of 13.7 my if we take into account the 2σ level uncertainties). Further 

evidence about the duration of volcanism is finally provided by the large amount of 

euhedral to angular zircon grains spanning from ca. 250 Ma to the maximum 

depositional ages of the volcaniclastic samples (Fig. 12C). Therefore, the duration of the 

volcanism documented in the vicinity of the Luang Prabang Basin is ca. 35 my. In 

addition, petrographic and field observations point toward a volcanism including 

intermediate rocks (andesite, dacite) rather than a bimodal volcanism where 

intermediate compositions are missing or poorly represented. The rather long duration, 

the continuousness in the production of zircon crystals as well as the overall 

petrographical and geochemical characteristics of the volcanism documented in the 

Luang Prabang Basin are therefore more easily explained by its emplacement in a 
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subduction setting rather than in a late-orogenic setting. In addition, large extensional 

structures (e.g. low angle normal fault) commonly observed in late-orogenic extensional 

settings (e.g., Malavieille, 1993) especially when significant amount of magmas are 

produced, have not been documented in the Luang Prabang Basin. Also, the marine 

sedimentation at the end of the Norian, evidenced by the ML Fm. is at odds with the 

expected continental environment for a late-orogenic setting. The volcanic and 

volcaniclastic rocks of the Luang Prabang Basin thus reveal the occurrence of an active 

magmatic arc from the Early to the Late Triassic (at least, from ca. 250 to ca. 215 Ma) in 

the vicinity of the basin. 

Finally, the mafic volcanic rocks from the MRU display geochemical features that 

are markedly different from those shown by the late Carboniferous mafic rocks cropping 

out at ca. 35 km to the northeast of Luang Prabang (Qian X. et al., 2015a). For instance, 

the REE patterns displayed by the ca. 305 Ma basaltic pillow-lava are typical of N-MORB 

affinity, with a (La/Yb)N ranging between 0.45 and 0.87 while the (La/Yb)N for the 

basalts from the MRU ranges between 1.74 and 2.66. The REE patterns of the older 

dolerite (ca. 336 Ma) samples described by Qian X. et al. (2015a), with a (La/Yb)N ratio 

comprised between 1.55 and 1.77, are similar to those of the MRU (even though slightly 

lower), but numerous differences are evidenced when considering other major (e.g. SiO2, 

TiO2) and trace elements (e.g. Th, Co). These geochemical differences result in 

contrasting positions in discrimination diagrams, the late Carboniferous mafic rocks 

being N to E-MORB while the basalts of the MRU represent arc tholeiites. Therefore all 

the mafic rocks cropping out in the Luang Prabang area do not hold an unique 

geodynamic significance; some represent probable former oceanic crust (ophiolite) 

while others belong to a former volcanic arc. 
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6.2. Suture zone location and dip of the subduction zone 

The presence of a magmatic arc, attested by the volcanic and volcaniclastic rocks in the 

Luang Prabang Basin, implies the existence of a destructive plate margin, which was 

active in the area during, at least, the whole of the Triassic. The existence of late 

Carboniferous N-MORB cropping out to the northeast of the Luang Prabang Basin (Qian 

X. et al., 2015a) provides a straightforward explanation for locating this former margin 

to the west of the Luang Prabang Basin. 

The other suture zones (Fig. 1) appear to be far less appealing candidates to 

represent this former plate margin. Indeed, the Loei Suture zone, located ca. 200 km to 

the south of the Luang Prabang Basin (Fig. 1), when described as a suture, is considered 

as being closed before the late Permian (e.g., Qian X. et al., 2015b). Thus, it cannot 

account for the Triassic magmatic arc documented in the Luang Prabang Basin. The Song 

Ma Suture, located to the northeast (Fig. 1) also appears to be an unlikely candidate. 

Indeed, although the exact timing for the closure of the Song Ma Suture zone is 

controversial and the collision between the South China and the Indochina blocks could 

be as young as ca. 230 Ma (Liu J. et al., 2012), most authors proposed an Early to Middle 

Triassic collision (e.g., Zhang, R.Y. et al., 2013 and Faure et al., 2014 for a recent review). 

The involvement of a subducting “Song Ma slab” to account for the Norian volcanism 

evidenced in the Luang Prabang Basin thus appears unlikely. 

As a further matter, the present day outcrops that constitute the Nan Uttaradit 

Suture are located ca. 200 km southwest of the Luang Prabang Basin. They show the 

same structural direction as the Luang Prabang syncline and main fault strikes (Fig. 2, 

Blanchard et al., 2013), as already recognized by Qian X. et al. (2015a). Such structural 

alignments point to a “Nan Uttaradit – Luang Prabang Suture” as initially proposed by 

Hutchison (1975) and latter reassessed by Wu H. et al. (1995), Feng Q. et al. (2005), Barr 
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et al. (2006) and Qian X. et al. (2015a). Additionally, deep-sea sediments (cherts) that 

constitute the upper part of the Nan Uttaradit ophiolitic suite range from the early 

Permian to the Anisian on the basis of radiolarian biostratigraphy (Ueno and Hisada, 

2001; Saesaengseerung et al., 2008). Such duration of deep-sea environments is 

consistent with the occurrence of late Carboniferous N-MORBs and an Early to Late 

Triassic magmatic arc in the vicinity of the Luang Prabang Basin, giving further support 

for a “Nan Uttaradit – Luang Prabang Suture”. Conversely, the prolongation of the Nan 

Uttaradit to the Jinghong Suture (e.g., Sone and Metcalfe, 2008; circled number 3 in Fig. 

1B) does not follow structural trends displayed by either the Triassic or by the Jurassic 

structures, thus appearing unlikely. However it does not necessarily mean that the Nan 

Uttaradit Luang Prabang Suture correlates with the Ailaoshan Suture (e.g., Barr et al., 

2006; Qian X. et al., 2015a; circled number 4, Fig. 1B), and the cylindrical view (i.e., the 

lateral extension of observation made on a limited area), which prevails in most 

geodynamic interpretations in the area, should be treated with caution. Non-cylindrical 

interpretations such as the “Mediterranean-style” closure of the Paleotethys ocean with 

slab rollback, back arc development and subsequent arc closure put forward by Pullen et 

al. (2008) in central Tibet could also have occurred in the east Tethyan domain. 

The location of the Luang Prabang Suture to the west of the Luang Prabang Basin 

implies an east-dipping subduction. Also, the location of various calk-alkaline magmatic 

rocks dated from the late Permian to the Late Triassic (Salam et al., 2014; Kamvong et 

al., 2014; Zaw et al., 2014) that crop out to the east (present day coordinates) of the Nan 

Uttaradit Suture zone corroborate both an east-dipping subduction zone and a “Nan 

Uttaradit Luang Prabang Suture”. 
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6.3. Toward a geodynamical evolution model for the Luang Prabang area 

The report of a rather unexpected volcanic arc active up to and during the Late Triassic 

naturally leads to the proposal of a new geodynamic model for the Luang Prabang area 

(Fig. 13). The scarcity of available data from northern Laos makes the proposed 

geodynamic model speculative, but these speculations might in turn constitute a test for 

the model. 

The spreading of oceanic paleolithosphere (Fig. 13A) during the late 

Carboniferous is attested by the occurrence of N-MORB in northwest Laos (Qian X. et al., 

2015a). This oceanic domain was possibly linked, to the south, to the Nan Uttaradit 

ocean and corresponds to the Paleotethys or, more probably, to a branch of this ocean 

(Fig. 14A). This oceanic domain isolated the Simao Block from the Indochina Block, 

forming two independent continental domains. The exact boundary of the western edge 

of the Simao Block is still an open question: it could correspond to the yet speculative 

Jinghong Suture Zone (e.g., Heppe et al., 2007; Hennig et al., 2009) or to the 

unambiguous Changning-Menglian Suture Zone (e.g., Wu H., et al., 1995; Heppe et al., 

2007; Sone and Metcalfe, 2008). As the Changning-Menglian Suture Zone appears less 

controversial than the Jinghong Suture Zone, we favor this working hypothesis (Fig. 14) 

and follow the initial definition of the Simao Block proposed by Wu H. et al. (1995). To 

the south, the Changning-Mengliang Suture correlates with the Inthanon Suture (circled 

number 1 in Fig. 1B). Consequently, we consider – as a working hypothesis – that the 

Sukhothai arc is part of the Simao Block. The northern continuation of the Simao Block 

and possible links with the Qiangtang or Qamdo blocks (e.g., Metcalfe, 2011) will no be 

discussed here. Besides, the southern continuation of the Simao Block and possible links 

with the Chanthaburi arc terrane (e.g., Metcalfe, 2011) or the Klaeng terrane (e.g., Ridd, 

2012) is beyond the scope of this paper. 
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The Nan Uttaradit Suture and its prolongation to Luang Prabang are often seen as 

the remnants of small oceanic basins corresponding to back arc basins that developed 

coevally with the subduction of the Changning Menglian slab to the west (e.g. Qian X. et 

al., 2015a). However, two facts are at odds with the view of small back-arc basins. 

Firstly, this oceanic paleolithosphere persisted from the late Carboniferous up to the 

Norian (i.e. during ca. 90 my), as attested by the age of N-MORB (ca. 305 Ma – this age is 

even older if the E-MORB dated at ca. 336 Ma are assumed to represent an ophiolite as 

suggested by Qian X. et al., 2015a) and the deposition of cherts from the early Permian 

to the Anisian within the Nan Uttaradit Suture Zone (Ueno and Hisada, 2001; 

Saesaengseerung et al., 2008). Secondly, this oceanic paleolithosphere should have been 

large enough to account for a subduction that lasted ca. 35 my. As this oceanic domain 

was probably quite large and comprised remnants that are now located only ca. 140 km 

to the Song Ma Suture Zone and its correlative Ailoashan Suture Zone (e.g., Roger et al., 

2014), these oceanic domains were probably connected together (Fig. 14A). 

The connection between these domains potentially lasted until the Early to the 

Middle Triassic, when the South China Block collided with the Indochina Block after a 

south-dipping subduction (e.g., Faure et al., 2014 and references therein) resulting in the 

closure of the Song Ma branch of the Paleotethys ocean. Similarly, the Ailaoshan branch 

of the Paleotethys closed during the Early Triassic after a south-dipping subduction (e.g., 

Lai C.-K. et al., 2014a, b; Liu H. et al., 2014), leaving only a residual oceanic domain now 

represented by the Nan Uttaradit – Luang Prabang Suture Zone (Fig. 14B). 

From the early Triassic (and possibly from the late Permian, see below) to the 

late Triassic (Norian), the western margin of the Indochina Block experienced east-

dipping subduction (Fig. 13B). The subduction polarity is inferred from the location of 

calk-alkaline, subduction related, magmatic rocks that crop out to the east of the Nan 
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Uttaradit ophiolite and were emplaced from the late Permian to the Late Triassic (e.g., 

Kamvong et al., 2014; Zaw et al., 2014). This hypothesis is however not unanimously 

shared and a west-dipping slab is sometimes favored (e.g., Hirsh et al., 2006; Boonsoong 

et al., 2011). In the Luang Prabang Basin, the volcaniclastic sediments that constitute a 

substantial part of the PCS, the RCS, and the LPT fms. record the subduction related 

volcanism (Fig. 14B and C). From the Early Triassic and up to the beginning of the 

Norian (between ca. 250 and ca. 225 Ma) this volcanism is only documented as 

reworked elements (i.e., volcaniclasts, volcanic boulders). In the proposed model, an 

intra-arc position is tentatively ascribed to the Luang Prabang Basin, for instance, by 

comparison with the present day distribution of tholeiitic rocks that are intimately 

associated with calk-alkaline magmatic suites cropping out within the Japan arc (e.g., 

Ohba et al., 2009) or the Sunda-Banda arc (e.g., Wheller et al., 1987). 

During the Norian, between ca. 225 and 215 Ma (Fig. 13C), the volcanism is 

directly documented by syn-sedimentary deposits in the RCS and the LTP fms. The 

emplacement age of the arc tholeiites that constitute part of the MRU remains unknown 

from the present geochronological evidence. Despite this uncertainty, we assume that 

the mafic and felsic magmatisms are roughly coeval, as observed in some present-day 

magmatic arcs (e.g., Wheller et al., 1987; Ohba et al., 2009). At the end of the Norian, the 

Luang Prabang Basin was drowned as attested by conodonts and ammonites from the 

ML Fm. (Blanchard et al., 2013). This implies a yet unknown connection with an oceanic 

domain, the most probable being a connection with the residual Nan Uttaradit branch of 

the Paleotethys ocean (Fig. 14 C). 

After the Norian (Fig. 13D), the whole deposits of the Luang Prabang Basin 

experienced thrusting and folding, as evidenced by the Luang Prabang nappe (Bush et 

al., 1996) and the Luang Prabang syncline (Blanchard et al., 2013). These deformations 
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are tentatively attributed to a post-Norian collision between the Indochina and the 

Simao blocks (Fig. 14 D). Even though speculative given the present day remote location 

of the Luang Prabang Basin with respect to the Malay Peninsula, and the potential large 

tectonic offset between these areas (e.g., Ridd, 2012), there are some striking 

similarities regarding their Late Triassic geodynamic evolution. Particularly, the timing 

and the dipping of the subduction in the Luang Prabang area compare well with the Late 

Triassic subduction described in Peninsular Malaya (e.g., Searle et al., 2012; Metcalfe, 

2013). 

In the Luang Prabang area, if a collision really occurred after the Norian, it should 

have induced some tectono-metamorphic events. Such evidences are however faint: Late 

Triassic or Jurassic regional metamorphism and/or collisional granite are not reported, 

up to now, in northern Laos. The only perceptible manifestation of a potential 

collisional, or at least of a tectonic event inducing significant deformation, is an 

unconformity spanning from the Late Triassic to the Late Jurassic documented in 

northern Thailand and Laos (Stokes et al., 1996; Lovatt Smith and Stokes, 1997; Racey, 

2009). A nearly coeval unconformity, ending with the deposition of Middle Jurassic 

molasses, is also reported in Yunnan, south China (Zhang R.Y. et al., 1993). The 

significance of this unconformity has been a troublesome problem since its initial 

recognition by Stokes et al. (1996) in northern Thailand and Laos and has been 

tentatively attributed to a Late Jurassic orogeny, called the “Cimmerian event” (Stokes et 

al., 1996; Lovatt Smith and Stokes, 1997; Racey, 2009). In Yunnan, this unconformity has 

been attributed to the collision between the Simao and the Baoshan (i.e., part of the 

Sibumasu Block as depicted in Fig. 1A) blocks (Zhang R.Y. et al., 1993). The recognition 

of a long lasting, subduction related volcanism that spanned most of the Triassic (late 

Triassic included) in northern Laos re-emphasizes the significance of this unconformity. 
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7. Conclusion 

The east Tethyan domain is composed of several blocks that constitute a 

“paleogeographic jigsaw”. This “jigsaw” recently attracted a large number of models to 

account for the tectonic evolution in the area. The Luang Prabang Basin, located in the 

core of this “jigsaw”, is filled with volcanic and volcaniclastic series pointing toward an 

arc related volcanism. The long duration of this volcanic activity, assessed by U-

Pb/zircon dating on both volcanic and volcaniclastic rocks, confirms an active margin 

setting for this volcanism. Indeed, the inspection of the maximum depositional ages of 

the samples with respect to their known stratigraphic locations suggests that 

sedimentation and volcanic activity were coeval. Combined with the dating of reworked 

volcanic andesitic to dacitic boulders, as well as the dating of a large number of zircon 

grains enclosed within the volcaniclastic rocks, a continuous volcanic activity that lasted 

during ca. 35 my, between ca. 250 and 215 Ma, is evidenced in the vicinity of the Luang 

Prabang Basin. 

Together with the recent recognition of a Nan Uttaradit Luang Prabang Suture, 

the occurrence of this magmatic arc active from the earliest Triassic up to the Late 

Triassic provides new insights for the paleogeography, the timing and the overall 

geodynamic evolution of the northern Indochina and Simao blocks. There is thus a 

growing body of evidence to locate the western boundary of the Indochina Block along 

the Nan Uttaradit Luang Prabang Suture. This plate boundary was the locus of an active 

magmatic arc during most of the Triassic, before it merged with the Simao micro-plate, 

for which the exact limits remain to be clarified. 
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As the arc related volcanic activity lasted up to the Norian, a continental collision 

that classically follows an oceanic subduction happened after the Late Triassic. Evidence 

for such a collision are faint, the only potential manifestation being a major 

unconformity spanning from the Late Triassic to the Late Jurassic documented in 

northern Thailand, Laos and Yunnan. Complementary studies are needed to better 

characterize this unconformity, notably its spatial extent. Investigations in other basins 

filled up by volcaniclastic sediments that constitute a key target to document the 

volcanism, might help to unravel the complex, and still poorly understood, tectonic 

evolution of the east Tethyan domain. 
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Figures and tables caption 

 

Figures 

Figure 1. Tectonic subdivisions and simplified map of the Triassic and Jurassic deposits in 

South East Asia. 

A. Tectonic subdivisions of South East Asia, after Metcalfe, 2011. Other tectonic 

subdivisions have been proposed, see Ferrari et al., 2008; Barr et al., 2006; Ridd, 2014; 

Burrett et al., 2014; Zaw et al., 2014. Bold box refers to the area enlarged in Fig. 1B. 

B. Simplified regional tectonic map and distribution of Triassic and Jurassic sedimentary 

and magmatic rocks. Compilation after various sources; geological background after the 

geological map of Laos (1: 1 500 000; United Nations publication, 1990), the geological 

map of the Yunnan Province (1: 500 000; Bureau of Geology and Mineral Resources of 

Yunnan Province, 1990), the geological map of Thailand (1: 2 000 000, Ridd et al., 2011; 

Morley et al., 2011), and 5 geological maps of north Vietnam at the 1: 200 000 scale: 

Tuyet et al., 2005a (Khi Su – Muong Te); My et al., 2004 (Kim Binh – Lao Cai); Son et al., 

2005 (Muong Kha – Son La); Tuyet et al., 2005b (Phong Sa Ly – Dien Bien Phu); Bao et 

al., 2004 (Van Yen). 

Major Cenozoic faults: MYF: Mae Yuam Fault, MPF: Mae Ping Fault, MF: Menxing Fault, 

NUF: Nan Uttaradit Fault, LF: Lincang Fault, DBPF: Dien Bien Phu Fault, RRF: Red River 

Fault, SF: Sagaing Fault. Suture zones (definite or supposed): CM: Changning Menglian, 

JH: Jinghong, LP: Luang Prabang; SK: Sra Kaeo, NU: Nan Uttaradit, PK: Poko, TK: Tamky 

Metamorphic ages: a: 230.5 ± 8.2 Ma, U-Pb/zircon, Zhang R.Y. et al., 2013; b: 243 ± 4 Ma, 

Th-U-Pb/monazite, Nakano et al., 2010; c: 294 ± 1 Ma, Ar-Ar/phengite, Heppe et al., 

2007; d: 269 ± 12 Ma, K-Ar/actinolite; Barr and MacDonald (1987). 
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Circled numbers refer to various hypotheses proposed about the spatial continuity of 

suture zones in order to correlate the ophiolitic segments together. See text for 

explanation. 

 

Figure 2. Geological map of the Luang Prabang Basin. 

A. Geological map of the Luang Prabang Basin (after Blanchard et al., 2013) and location 

of the samples selected for whole rock geochemical analyses and U-Pb dating on zircon 

along with samples already dated by Blanchard et al. (2013). 

B. Cross section (after Blanchard et al., 2013). 

C. Simplified chronostratigraphic chart of the Luang Prang Basin. Samples are organized 

following their stratigraphic position. Stratigraphic chart is the International 

Chronostratigraphic Chart v2015/01 (Cohen et al., 2013, updated). Wuchia.: 

Wuchiapingian, Ch.: Changsingian, In.: Induan, Ole.: Olenekian, Rha.: Rhaetian. 

 

Figure 3. Outcrop and thin section photographs of the representative samples. 

A. Basaltic pillow-lava with hyaloclastic material embedded between pillow-lavas. 

B. Basalt from the Mafic Rock Unit (sample LP 22), plane-polarized light. 1: weathered 

clinopyroxene phenocrysts with typical sector twinning. 2: Secondary quartz and 

chlorite disseminated within a microlitic groundmass. 

C. Basalt from the Mafic Rock Unit (sample LP 24), cross-polarized light. 1: euhedral 

plagioclase phenocrysts. 2: pyroxene phenocyst, embedded in a groundmass rich in 

plagioclase microlites. 
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D. Basalt from the Mafic Rock Unit (sample LP 25), plane-polarized light. 1: weathered 

feldspar phenocryst. 2: quartz vein. 3: weathered plagioclase microlites and chlorite 

extensively disseminated within the groundmass. 4: sub-euhedral opaque mineral. 

E. Coarse to very coarse-grained tuffaceous arenite from the Mafic Rock Unit (sample LP 

34), plane-polarized light. 1: sub-rounded, weathered volcaniclast with a porphyritic 

microlithic texture. 2: monocrystalline, angular slightly weathered and slightly greenish 

clinopyroxene (aegyrine augite?). 

F. Well sorted, small-grained tuffaceous arenite from the Mafic Rock Unit (sample LP 

40), plane-polarized light. 1: sub-rounded, well sorted plagioclase, pyroxene and quartz 

(mainly monocrystalline). 2. Sparitic calcite. 

G. Dacitic boulder from the Red Claystone Formation (sample LP 68), cross-polarized 

light. 1: pseudomorph after a Fe, Mg rich mineral (possibly hornblende). 2: plagioclase 

phenocryst within a groundmass rich in plagioclase microlites. 

H. Dactic boulder from the Luang Prabang Tuffite Formation (sample LP 70), plane-

polarized light. 1: corroded quartz phenocryst. 2: pseudomorphs from former hydroxyl-

bearing mafic phenocrysts, such as amphibole (hornblende?) and/or biotite. 3: chlorite 

disseminated within the groundmass. 4: strongly seritized plagioclase phenocryst. 5: 

titanite. 

 

Figure 4. Chemical classification of volcanic rocks from the Luang Prabang Basin. 

A. Total alkali versus silica diagram (TAS, Le Maitre et al., 2002) with SiO2, Na2O and K2O 

recalculated to 100% on a volatile free basis. Note that the LOI is higher than 2.5% for all 

of these samples except LP 25; for that reason this classification is considered as 

provisional. 
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B. Zr/TiO2 versus Nb/Y diagram (Winchester and Floyd, 1977), with Ti recalculated to 

100% on a volatile free basis. 

 

Figure 5. Normalized Rare Earth Elements and multi-elements diagrams for the volcanic and 

volcaniclastic rocks of the Luang Prabang Basin. 

A. Chondrite normalized Rare Earth Elements and Y (inserted between Dy and Ho) 

spectra. Normalizing values: C1 chondrite, Sun S.-S. and McDonough (1989). 

B. Primitive mantle normalized multi-elements spectra. 

Normalizing values: primitive mantle, Sun S.-S. and McDonough (1989). Major elements 

concentrations are recalculated to 100% on a volatile free basis. 

 

Figure 6. Tectonic discrimination diagrams for the basaltic rocks of the MRU (after Verma 

and Verma, 2013). 

DF: Discriminant Functions. CA: Continental Arc; IA: Island Arc; Col: Collision; CR+OI: 

Continental Rift + Oceanic Island tectonic settings. Pie chart represents the calculated 

probabilities for the set of samples to belong to each field taken into account in the five 

discrimination diagrams. Shaded diagram: a posteriori determined inoperative diagram 

(island arc field absent in this diagram). 

 

Figure 7. Bivariate diagrams with immobile elements plotted as the variables. 

The arrows underline the mixing trends from the volcanic rocks to the epiclastic poles of 

unknown compositions. 
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Figure 8. Tectonic discrimination diagrams for the volcaniclastic rocks from the MRU (A), the 

RCS and the LPT fms. (B) (after Verma and Armstrong-Altrin, 2013). 

DF: Discriminant Functions. Pie charts represent the calculated probabilities for the set 

of samples to belong to each field taken into account in these diagrams. 

 

Figure 9. Tectonic discrimination diagrams for the dacitic boulders of the RCS Fm. and the LPT 

Fm. (after Verma et al., 2013). 

DF: Discriminant Functions. CA: Continental Arc; IA: Island Arc; Col: Collision; CR+OI: 

Continental Rift + Oceanic Island tectonic settings. Pie chart represents the calculated 

probabilities for the set of samples to belong to each field taken into account in the five 

discrimination diagrams. Shaded diagram: a posteriori determined inoperative diagram 

(continental arc field absent in this diagram). 

 

Figure 10. Tera-Wasserburg diagrams for volcaniclastics rocks from the Luang Prabang 

Basin. 

All the diagrams have been generated using Isoplot/Ex 3.00 (Ludwig, 2012). 

A. General key for the Tera-Wasserburg diagrams. 

B, C, D. Purple Claystone Fm. 

E. Red Claystone Fm. 

F, G, H. Luang Prabang Tuffite Fm. 

I. Undifferentiated Red Claystone-Luang Prabang Tuffite Fm. 

J. Mafic Rocks Unit. 
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Figure 11. Geochronological diagrams for volcanic boulders sampled in the RCS Fm., the LPT 

Fm. and the Luang Prabang nappe (undifferentiated RCS-LPT fms.). 

All the diagrams have been generated using Isoplot/Ex 3.00 (Ludwig, 2012). Error 

ellipses in the Tera-Wasserburg and Wetherill diagrams and boxes in the Tuff Zirc date 

diagrams are depicted at 1σ level, but uncertainties on Tuff Zirc dates are given at the 2σ 

level. Shaded ellipses and heavy grey boxes correspond to the analyses included in the 

calculation of the Tuff Zirc dates. 

A. Dacitic boulder sampled in the RCS Fm.  

B, C, D. Andesitic to dacitic boulders samples in the LPT Fm. 

E. Andesitic boulder samples in the Luang Prabang nappe (undifferentiated RCS - LPT 

fms.). 

 

Figure 12. Duration of the volcanism documented in the Luang Prabang Basin. 

A. Simplified chart for the stratigraphy and volcanism of the Luang Prabang Basin. 1. 

Revised chronostratigraphic chart. 2. Duration of the volcanism documented in this 

basin. 

B. Summary of the U-Pb/detrital and magmatic zircon dates available for the Luang 

Prabang Basin. U-Pb/detrital zircon dates correspond to the maximum depositional 

ages. Dates marked with a star correspond to samples discussed in Blanchard et al. 

(2013) and recalculated following the procedure described in section 3.2. for the sake of 

consistency. These dates are identical within uncertainties to those reported by 

Blanchard et al. (2013). The maximum depositional age reported for sample LP04 does 

not respect the 3 grain criterion adopted in this work, the strict application of this 

criterion give a maximum depositional date of 300.5 ± 3.7 Ma (see text for discussion). 
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C. Radial plot (generated using DensityPlotter 6.3, Vermeesch, 2012) for the concordant 

dates obtained on volcaniclastic samples ranging between ca. 250 Ma and ca. 215 Ma. 

Samples marked with a star correspond to those from Blanchard et al. (2013). 

 

Figure 13. Tentative schematic geodynamic evolution model for the Triassic northern 

Indochina Block. 

See text for explanation. 

 

Figure 14. Tentative schematic paleogegraphic evolution model for the Triassic east Tethyan 

domain. 

See text for explanation. The arrows (cartoon C) refer to the potential marine 

connections between the Luang Prabang Basin (as demonstrated by the occurrence of la 

Triassic marine fossils) and the residual Nan Uttaradit branch of the Paleotethys ocean. 

 

Tables 

 

Table 1. Main characteristics for the formations of the Luang Prabang Basin from literature 

data. 

 

Table 2. Main petrographic features of the analyzed samples. 
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Table 3. Detection limits and maximum depositional ages of volcaniclastic rocks from the 

Luang Prabang Basin. 

 

Appendices 

 

Appendix 1 

Detection limits and uncertainties for the geochemical analyses. 

 

Appendix 2 

Supplementary data on the methodology for U-Pb/zircon geochronology. 

 

Table S1. Comparison between the use of the probability of concordance and the percentage 

of concordance on detection limits and maximum depositional ages. 

 

Table S2. Comparison between the TIMS age of the secondary 91500 standard zircon and 

measurements performed during the course of the analyses. 

 

Appendix 3 

Analytical results of whole rock geochemical analyses. 

 

Appendix 4 

Comparison of various tectonic discrimination diagrams. 
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Appendix 5 

Analytical results of LA-ICP-MS U-Pb/zircon dating. 
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Table 1. Main characteristics for the formations of the Luang Prabang Basin from literature data. 
Formation 

(Fm.) 
Depositional 
environment 

Fossil content Geochronological data Inferred depositional age 

Marine 
Limestone Fm. 

(ML Fm.) 
Marine environment 

Cypridodella sp. conodont 
(Blanchard et al., 2013) 

 
Norian (Blanchard et al., 

2013) 

Nam Khan 
Sandstone Fm. 

(NKS Fm.) 

Bed-load fluvial 
system 

  
Norian (Blanchard et al., 

2013) 

Luang Prabang 
Tuffite Fm. 
(LPT Fm.) 

Alluvial fan and/or 
proximal braided 

river 
 

Maximum depositional 
ages: 220.7 ± 1.0; 219.0 ± 

1.2; 216.2 ± 1.1 Ma (U-
Pb/zircon; Blanchard et al., 

2013). 

Norian (Blanchard et al., 
2013) 

Red Claystone 
Fm. (RCS Fm.) 

Alluvial plain to 
braided river 

(Blanchard et al., 
2013) 

Dicynodont remains preliminarily 
identified as a kannemeyeriiform 
(Stahleckeria or a close relative, 

Blanchard et al., 2013). 

Maximum depositional age: 
224.9 ± 1.0 Ma (U-

Pb/zircon; Blanchard et al., 
2013) 

Norian (Blanchard et al., 
2013) 

Purple 
Claystone Fm. 

(PCS Fm.) 

Braided river 
environment to 

alluvial plain 
(Bercovici et al., 

2012) 

Dicynodont remains attributed to 
“Dicynodon sensu lato” (Battail, 

2009); chroniosuchian (Bercovici et 
al., 2012) 

 
Late Permian (Battail, 

2009) 

Limestone and 
Sandstone Fm. 

(LS Fm.) 

Coastal environment 
(Bercovici et al., 

2012) 

Paleoflora, Pseudotirolites sp. 
ammonoid (Bercovici et al., 2012) 

 
Changhsingian (upper 
late Permian, Bercovici 

et al., 2012) 
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Table 2. Main petrographic features of the analyzed samples. 
Sample Analyse(s) Petrography 

Mafic Rock Unit 

LP 22 Geochemistry 

Porphyritic basalt. 
Slightly weathered, euhedral plagioclase and zoned clinopyroxene phenocrysts with sector twinning. Euhedral 
opaque minerals. Secondary chlorite, quartz (quartz veins), carbonate (calcite) and epidote. Groundmass with 
plagioclase and opaque minerals microlites. 

LP 23 Geochemistry 

Porphyritic basalt. 
Slightly weathered, euhedral plagioclase and large clinopyroxene phenocrysts. Euhedral opaque minerals. 
Secondary chlorite with polycrystalline quartz and calcite (numerous quartz and calcite veins). Groundmass 
with plagioclase microlites. 

LP 24 Geochemistry 

Porphyritic trachytic Basalt. 
Mainly slightly weathered, euhedral plagioclase, rare alkaline feldspar and a few clinopyroxene phenocrysts. 
Secondary chlorite, cryptocrystalline to polycrystlline quartz and calcite (quartz and calcite veins). Groundmass 
rich in plagioclase microlites. 

LP 25 Geochemistry 

Porphyritic microgabbro. 
Weathered, sub-euhedral plagioclase and clinopyroxene phenocrysts. Xenomorphic quartz rich in inclusion, 
among which apatite needles. Secondary chlorite, quartz and calcite occurring mainly as veins. Secondary 
opaque minerals associated with titanite. 

LP 32 Geochemistry 
Fine-grained tuffaceous arenite. 
Angular, sericitized feldspar, among which plagioclase. Chlorite, a few (sometimes polycrystalline) quartz 
grains, amiboidal mineral. 

LP 34 Geochemistry 

Coarse-grained tuffaceous arenite. 
Weathered volcaniclasts with various textures (microlitic, porphyritic with a variable amount of phenocrysts). 
Silty lithic fragments. Strongly weathered monocrystalline feldspar and greenish clinopyroxene (aegyrine 
augite). Rounded quartz, chlorite, opaque minerals. 

LP 35 Geochemistry 
Coarse-grained tuffaceous arenite. 
Similar to sample LP 34. 

LP 38 Geochemistry 

Fine-grained tuffite arenite. 
Weathered, sub-rounded to sub-angular volcaniclast displaying microlitic or trachytic textures. Weathered, 
sub-rounded to angular monocrystalline feldspar among which plagioclase, and pyroxene. Quartz grain, 
sometimes with undulatory extinction. Calcite, epidote, chlorite, opaque minerals. Calcite veins. 

LP 40 Geochemistry 

Well-sorted tuffaceous arenite. 
Sub-angular to sub-rounded elements. Weathered volcaniclast displaying microlitic and/or porphyritic texture. 
Sub-rounded pyroxene, sometimes slightly greenish (aegyrine augite). Monocrystalline weathered feldspar 
(among which plagioclase), partly replaced by calcite, monocrystalline calcite, quartz and opaque minerals, 
chlorite, epidote. 

LP 41 Geochemistry 

Coarse-grained tuffite arenite. 
Weathered angular to sub-rounded volcaniclasts displaying microlitic porphyritic textures with strongly 
sericitized feldspar phenocryst. Composite lithic fragments (reworked volcaniclast embedded within a silty 
matrix). Silty and calcite rich lithic fragments. Monocrystalline weathered pyroxene and feldspar, among which 
plagioclase. Chlorite. 

LP 42 
U-Pb/zircon 
Geochemistry 

Tuffaceous arenite. 
Volcaniclasts with microlitic or porphyritic textures (with plagioclase as phenocrysts). Monocrystalline, 
weathered plagioclase and a few alkaline feldspars. Sedimentary silty lithic fragments, chlorite, quartz, epidote, 
opaque minerals. 

LP 66 Geochemistry 

Tuffaceous arenite. 
Slightly greenish, sub-rounded to sub-angular clinopyroxene (aegyrine augite) embedded in rounded to sub-
rounded porphyritic volcaniclasts or occurring as monocrystalline volcaniclasts. Sedimentary, silty to sandy, 
lithic fragment. Matrix rich in opaque minerals. 

Purple Claystone Formation 

LP 03 U-Pb/zircon 

Tuffaceous arenite 
Various, mostly sub-rounded lithic fragments: microgranular quartz clasts, microcrystalline quartz clasts partly 
calcitized, clasts with various igneous textures (microlitic to trachytic texture, often altered and weathered, or 
granular texture with quartz and strongly calcitized feldspar). Altered monocrystalline feldspars, plagioclases. 
Polycrystalline quartz grains. Rounded to sub-angular calcareous fragments with various textures (micritic to 
sparitic), sometimes encasing bioclastic elements. Rounded silicic sedimentary fragments. Opaque minerals, 
epidote, zircon. Calcite vein. 

LP 04 U-Pb/zircon 
Tuffaceous arenite. 
Thin section not realized. 

LP 05 U-Pb/zircon 

Tuffaceous arenite 
Various lithic fragments: rounded clasts of cryptocrystalline quartz, microgranular quartz clasts, clasts with 
various magmatic textures (porphyritic with feldspars among which plagioclases, strongly altered trachytic or 
glass-rich microlitic textures, spherolitic texture). Calcite in replacement of other minerals or coating other 
elements (calcrete). Calcite veins. Monocristalline feldspars, epidote, zircon. 

Red Claystone Formation 

LP 58 U-Pb/zircon 

Tuffaceous arenite 
Monocrystalline quartz grain, sometimes of rhyolitic type (e.g. with embayment against volcanic groundmass 
or sedimentary matrix). Pseudomorphs of hydroxyl-rich mineral filled by opaque minerals. Polycristalline quartz 
grain, altered feldspar (among which plagioclase, commonly replaced by calcite), biotite, muscovite, micritic to 
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sparitic calcite fragments, red claystone fragments. Apatite, zircon, tourmaline. 

LP 59 Geochemistry 

Laminated fine-grained quartz to lithic wacke. 
Mainly fine-grained rounded quartz grains displaying sometime embayment against the groundmass/matrix 
(rhyolitic quartz). Rounded polycrystalline quartz grains and intra-formational lithic fragments. Opaque 
minerals. Silty matrix. 

LP 100 U-Pb/zircon 

Tuffaceous arenite. 
Rounded to angular and variously sized (millimeter to centimeter) lithic fragments. Initial textures overprinted 
by calcitization, but microgranular (altered feldspars, quartz) clasts and volcaniclasts with subangular shape 
and microlitic to trachytic texture are recognizable. Rounded sedimentary elements and monocrystalline 
feldspars, zircon. Areas with undulant extinction, interpreted as silicified area. Minute grained matrix with 
opaque minerals, calcite, altered feldspars (among which plagioclases) and argillaceous minerals.  

LP 68 
U-Pb/zircon 
Geochemistry 

Trachytic porphyritic andesite. 
Plagioclase, phenocrysts, clusters of opaque minerals representing pseudmorph after a Fe, Mg rich mineral 
(amphibole, possibly hornblende according to its shape), allanite, titatnite, zircon, apatite, euhedral opaque 
minerals. Groundmass with opaque mineral, plagioclase and sanidine microlites, apatite microphenocryst. 

Luang Prabang Tuffite Formation 

LP 06 U-Pb/zircon 

Coarse-grained lapillistone arenite 
Rounded to angular volcaniclasts with trachytic, microlitic and microgranular textures and various weathering 
degrees enclosing sericitized plagioclase phenocysts. Weathered monocrystalline feldspar, mainly plagioclase. 
Opaque minerals, occurring in the volcaniclasts or within the matrix. 

LP 07 
U-Pb/zircon* 
Geochemistry 

Tuffaceous wacke. 
Monocrystalline, weathered, rounded to angular, feldspar, mainly plagioclase of andesine type. Rounded 
quartz grain, sometimes with undulant extinction. Silty, rounded rock fragments. Epidote, biotite, opaque 
minerals, zircon. 

LP 08 U-Pb/zircon 

Microconglomeratic tuffaceous arenite. 
Rounded to sub-rounded, altered rock fragments of various origins, igneous (microlitic and microgranular 
textures) and sedimentary (silty and sandstones fragments). Variously weathered (nearly fresh to strongly 
weathered) monocrystalline feldspar. Zircon. 

LP 44 
U-Pb/zircon* 
Geochemistry 

Tuffite arenite. 
Mainly angular but also sub-angular and rounded volcaniclasts with various degrees of weathering. 
Volcaniclasts are constituted by monocrystalline feldspar (mainly plagioclase), porphyritic, trachytic and 
microlitic rock fragments. Few rock fragments of sedimentary origin (microsparritic limestone, siltstone and 
fine sandstone). Monocristalline quartz grain, biotite, zircon, epidote, calcite and opaque minerals. 

LP 45 
U-Pb/zircon*  
Geochemistry 

Tuffite arenite. 
Very similar to sample LP 44 but slightly coarser and without microsparritic limestone fragments. 

LP 70 
U-Pb/zircon 
Geochemistry 

Weathered trachytic porphyritic dacite. 
Strongly weathered plagioclase phenocrysts, a few quartz with embayment against the groundmass, clusters of 
opaque minerals representing pseudmorph after a Fe, Mg rich mineral and pseudomorphic chlorite and 
epidote (after amphibole and/or pyroxene). Apatite, zircon. Groundmass with opaque mineral and plagioclase 
microlite. 

LP 71 U-Pb/zircon 
Trachytic porphyritic andesite. 
Plagioclase phenocrysts, slightly sericitized. Pseudomorphs after a Fe, Mg rich mineral. Opaque minerals and 
plagioclase underlining a fluidal texture within groundmass. 

LP 72 U-Pb/zircon 

Porphyritic dacite. 
Slightly weathered plagioclase phenocrysts and microphenocrysts, possibly a few alkaline feldspar phenocrysts, 
euhedral opaque minerals. Pseudomorphs after a Fe, Mg rich mineral. Quartz within groundmass, with 
evidence of devitrification (polycrystalline quartz). 

Undifferentiated Red Claystone - Luang Prabang Tuffite Formation 

LP 10 U-Pb/zircon 

Microgranular porhyritic microgranitoid. 
Mainly sericitized plagioclase, weathered euhedral, Fe, Mg rich mineral surrounded by an opaque minerals 
coronna. Apatite, allanite, zircon. Cryptocystalline groundmass with quartz and plagioclase microlites. Small 
quartz or amorphous silica sometimes associated with chlorite veins. 

LP 11 U-Pb/zircon 
Microconglomeratic tuffaceous arenite. 
Well rounded, variously weathered volcanoclasts with various, microlitic, trachytic, microgranular porphyritic 
and fluidal, glass rich textures. Biotite, monocrystalline quartz grains, opaque minerals, epidote. Calcite veins. 

*: U-Pb/zircon dating by Blanchard et al., 2013. 
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Table 3. Detection limits and maximum depositional ages of volcaniclastic rocks from the Luang Prabang 
Basin. 

Sample Na Nzr 

Probability of concordance ≥ 10%, decay constants errors included 

N 

Detection limits (%) Maximum depositional age 

DL1(pL=0.5) DL1(pL=0.95) DL3(pL=0.5) DL1(pL=0.95) 
concordia 

age 
± (2σ) n MSWD Probability 

Mafic Rock Unit 

LP42 19 19 4 15.9 52.7 61.5 90.3 219.3 2.9 3 0.85 0.52 

Purple Claystone Formation 

LP03 105 102 25 2.7 11.3 10.6 23.2 252.0 2.6 6 0.89 0.55 

LP04 41 36 7 9.4 34.8 36.5 65.9 300.5 3.7 4 0.73 0.65 

LP05 96 95 39 1.8 7.4 6.8 15.3 251.0 1.4 21 0.55 0.99 

Red Claystone Formation 

LP58 73 71 24 2.8 11.7 11.0 24.0 224.1 2.8 4 0.41 0.90 

LP100 102 98 40 1.7 7.2 6.7 15.0 220.9 1.1 27 0.62 0.99 

Luang Prabang Tuffite Formation 

LP06 79 76 28 2.4 10.1 9.5 20.9 222.0 1.5 15 0.97 0.51 

LP08 91 84 38 1.8 7.6 7.0 15.7 224.8 2.9 4 0.62 0.74 

Undifferentiated Red Claystone – Luang Prabang Tuffite formations 

LP11 87 81 26 2.6 10.9 10.2 22.3 220.3 2.9 4 1.01 0.42 

Na: number of analyses per sample; Nzr: number of zircon grain analyzed per sample; N: number of concordant zircon grain; n: 
number of analyses used to calculate the maximum deposition age; DL1: detection limit for at least one grain; DL3: detection limit for 
at least three grains; pL : probability level assigned to the detection limits; MSWD: mean square of weighted deviates. The MSWD and 
the probability given for the concordia ages are for both concordance and equivalence. 
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Graphical abstract 
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Highlights 

 Unexpected Triassic volcanic arc in northwest Laos 

 Continuous volcanic activity from the Early up to the Late Triassic (Norian) 

 Arc located on the western margin of the Indochina block 

 Related to an east dipping subduction of the “Nan Uttaradit - Luang Prabang slab” 

 

 


