Neutral composition of the Venus atmosphere measured by SPICAV/SOIR on board VENUS EXPRESS: A compendium

To cite this version:

HAL Id: insu-01297495
https://hal-insu.archives-ouvertes.fr/insu-01297495
Submitted on 4 Apr 2016
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ouprivés.
Introduction: The Solar Occultation in the Infrared (SOIR) instrument on-board Venus Express is an infrared spectrometer covering the 2.2 - 4.3 µm spectral region. This instrument allows the detection of several key species of the Venus atmosphere, including CO₂, CO, H₂O/HDO, HCl, HF and SO₂. From the CO₂ density measurements, temperature is inferred giving information on the thermal structure of the atmosphere. Here we described the kind of data (profiles, latitudinal average, etc.) that have been obtained during the complete duration of the mission.

SOIR dataset: The Royal Belgian Institute for Space Aeronomy (BIRA-IASB) was in charge of SOIR’s development and operations as well as its data pipeline.

BIRA-IASB carried out several studies on the composition of Venus mesosphere and lower thermosphere The retrieval method has been described in detail in several papers introducing the solar occultation method [1], deriving CO₂ densities [2, 3] and trace gases such as CO [4, 5], HCl and HF [6], SO₂ [7-9], H₂O and HDO [10]. Temperature and total density, and therefore structure, has been retrieved from the CO₂ observations [2, 3, 11, 12]. Density and temperature profiles of the upper atmosphere of Venus (60 km to 170 km) at the terminator have been retrieved from SOIR’s spectra using different assumptions, wherein the hydrostatic equilibrium and the local thermodynamical equilibrium in the radiative transfer calculations.

The SOIR spectra give also access to information on the aerosol content in the upper haze. Light extinction due to aerosols and cloud top altitudes have been obtained [13, 14] as well as the H₂SO₄ concentration in the droplets [15].

These results allow us to produce an Atmospheric model of Venus called Venus Atmosphere from SOIR measurements at the Terminator (VAST). Data obtained by SOIR will also contribute to update the Venus International Reference Atmosphere (VIRA) [16].

Recently, the treatment of the raw data to transmittance has been optimized, and a new dataset of spectra has been produced. All raw spectra (PSA level 2) as well as calibrated spectra (PSA level 3) have been delivered to ESA’s Planetary Science Archive (PDS). Consequently the re-analysis of all spectra has been undergone. We will describe in detail the new derivation of the transmittances, and the updated dataset.

Results: In the following of the paper, we will describe in detail the data derived from the SOIR instrument, their coverage in terms of latitude, local solar time and altitude. As a general comment, solar occultation observations provide information on a very important region of the atmosphere, i.e. the terminator, the limit between the day and night sides of the planet. As a consequence the observations of SOIR correspond either to 6 am or 6 pm, even if at high latitude the definition of time starts to be meaningless. This region is crucial because it is a place of large longitudinal gradients in temperature and density.

Acknowledgments: The research program was supported by the Belgian Federal Science Policy Office and the European Space Agency (ESA – PRODEX program). The research was performed as part of the “Interuniversity Attraction Poles” programme financed by the Belgian government (Planet TOPERS). The authors also recognize the support from the FP7 EuroVenus project (G.A. 606798) as well as that of the HiResMIR International Scientific Coordination Network (GDRI). A. Mahieux would like to thank the FNRS (Belgium) for his Chargé de Recherches position.

References:


