How to obtain ocean turbulent dynamics at super resolution from optimal multiresolution analysis and multiplicative cascade?
Joël Sudre, Hussein Yahia, Oriol Pont, Veronique Garcon

To cite this version:

HAL Id: hal-01354909
https://hal.inria.fr/hal-01354909
Submitted on 25 Aug 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
How to obtain ocean turbulent dynamics at super resolution from optimal multiresolution analysis and multiplicative cascade?

Abstract

A fundamental challenge in oceanography is the synoptic determination of ocean circulation using the data acquired from space, with a coherent depiction of its turbulent characteristics. This determination has the potential of revealing all aspects of the ocean dynamic variability on a wide range of spatio-temporal scales and will enhance our understanding of ocean-atmosphere exchanges at super resolution, as required in the present context of climate change.

- New method based on an approximation of the energy of Microcanonical Cascade (MC), expressed in a Multiscale Microcanonical Formulation (MMF), associated to turbulent signals provided by different Sea Surface Temperature (SST) or Ocean Color (Ch-a) products.
- The approach offers the opportunity to infer different oceanic turbulent signals from Low Resolution (LR) to HR. Basic idea: optimal cascading to decrease the spatial resolution of the HR signal (dimensional critical transition informations of SST), - use the signal available at LR (GEKCO product at 1/4° [1]), transmit that information along the scales back to higher spatial resolution using the cascade to obtain a new HR signal.
- The process has been successfully used to obtain oceanic currents at 1/24° [2] and 1/64°.

1 General concept of the MMF/MC method

HR Signal with FDT

Microcanonical Cascade with its Optimal Wavelet:

New HR inferred signal

- Obtain a relevant signal with SST and MMF to carry through the resolution (ascent) a new signal only known at LR

Replace the approximation of the signal by LR information to make the inference

2 To obtain Oceanic current at HR : Separation of Norm and Direction (See [1,2] for full description)

SST° (Fluid Exponent)

Singularity Exponent of SST°C

Microcanonical Cascade

Stream Function (seen-Fontaine et al. 2007)

Singularity Exponent of SST°C

Microcanonical Cascade

Stream Function

Microcanonical Cascade

\[V(\text{Exp})_{\text{HR}} = \frac{1}{\text{HR}} \]

Direction Algorithm

Norm Algorithm

3 To validate oceanic current at HR (4 years period): Use drifters during the period January 1, 2006 to December 31, 2009. (more validation tests in [2])

Positions of the 373 drifters dropped at a 15 m depth coming from Global Drifter Program at the AOML (925712 points)

Computation of

- Recorded buoy and computed velocities

\[u_i = \sum_{j=1}^{n} \frac{v_{ij}}{w_i} \]

\[w_i = \sum_{j=1}^{n} v_{ij} \]

Comparison of

- SST & Chl-a or SSS & Chl-a inferred HR currents using Expt.

4 Examples of data obtained by the MMF/MC method

Maps of :

- a) absolute dynamic topography at 1/4° and the LR current (geostrophic and Ekman components) associated (02/08/2007)
- b) inferred HR current at 1/24° [2] with SST (02/08/2007)
- c) inferred HR current at 1/24° [2] with SST (02/08/2007)
- d) norm difference between b) and c)
- e) inferred HR current at 1/64° (only one per two calculated sectors is shown) with BLR SST (01/05/2015)

Conclusion and Future Work

- Evidencing multiscale geometric structures in synthetic ROMS data and satellite data through the Multiscale Microcanonical Formulation
- Validation of algorithms on synthetic ROMS data
- Application of the algorithms on satellite data
- Validation of the new HR satellite data with in-situ data
- Future Work: - Analyze the difference between SST and Chl-a inferred HR currents for the 4 years period - Process and validate SST HR currents at 1/64° on global area

References

Funding

This work is supported by ESA and CNES funding through the ESA Support to Science Element Grant #00014751/10-NB-OceanFlux: Upwelling and the GST-45/THESA ICARODE/C project.