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émanant des établissements d’enseignement et de
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The g factor of conduction electrons in aluminium: 
calculation and application to spin resonance 
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Abstract. We calculats the ;J factor at ever? point of the Fermi surface of aluminium by 
using a classical 'four orthogonalised plane haves scheme and by introducing the spin- 
orbit potential as a perturbation. An important difficulty remains. linked to the choice of 
the wavefunction phase. Moreoper \+e propose a phenomenological model based on the 
narrowing of the $/ distribution h! two types of motion: a random one corresponding to 
the diffusion of electrons on the crystalline imperfections and a coherent one around the 
cyclotron orbits. .A qualitatile model accounts relatilely well for the spin resonance ex- 
perimental data. 

1. Introduction 

The conduction electron spin resonance ( CESR) of aluminium has been studied exten- 
sively over the last few years. The main parameters of the resonance (y factor and 
linewidth) show a dependence with temperature and also with the frequency of the 
spectrometer which is not understood at present. In this paper we propose a 
phenomenological model accounting qualitatively for the experiments and based on a 
calculation of the g factor of AI at every point of the Fermi surface. 

In two previous papers (Beuneu and Monod 1978, Monod and Beuneu 1979) we 
compared the CESR properties of many metals. We pointed out that the linewidth due 
to phonons is anomalously broad for all the polyvalent metals. and we interpreted this 
fact as being due to inhomogeneous spin scattering of electrons depending on their 
position on the Fermi surface. Such an idea makes the detailed study of the behaviour 
of aluminium particularly attractive. because it can lead to more understanding of the 
CESR properties of many non-s (polyvalent) metals. 

We summarise here the main results concerning the anomalous magnetic proper- 
ties of aluminium. Static susceptibility measurements (Delafond et al 1973. Mimault et 
al 1973) give some unexplained results: the static susceptibility is 6.3 x lo-'  EMU^-' 
at 290 K. a value larger than the free-electron value for the Pauli susceptibility, 
namely 4.6 x lo- '   EMU^-'. This experimental susceptibility decreases by some 300,; 
between 10 IC and 300 K.  The same authors report considerable variations of suscepti- 
bility with alloying. CESR experiments in aluminium show interesting features. The 
t Present address 
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variation of the linewidth with temperature has been studied at a number of different 
frequencies: 1.27 GHz (Lubzens and Schultz 1976), 9.2 GHz (Lubzens et nl 1972, 
Sambles et al 1977b), 21 GHz (Janssens et a! 1975). 35 GHz (Lubzens et al 1972), 
60 GHz (Van Meijel et U /  1977) and 79 GHz (Dunifer and Pattison 1976). It appears 
from these experiments that : 

(i) the linewidth is frequency dependent at all temperatures; 
(ii) at a given temperature, the frequency dependence is linear, the slope decreasing 

by less than a factor of two from the low temperatures to 80 K (Sambles et a /  1977a); 
(iii) at frequencies larger than 10 GHz, the linewidth shows a minimum with tem- 

perature, between 20 K and 40 K. 
On the other hand, the g factor varies with frequency and temperature in the @50 K 
range. 

More precisely, at frequencies lower than 10 GHz the g value is frequency and 
temperature independent and is known to be 1.996 f 0.001. At higher frequencies. the 
g value is 1,996 near 50 K but increases with decreasing temperature, the increase 
being faster for larger frequencies. 

We have to mention here that in all these experiments there are important effects 
due to surface relaxation which are not understood clearly yet. Surfaces can influence 
CESR data in two ways: firstly, the momentum relaxation introduces motional narrow- 
ing, and secondly, the spin relaxation gives extra broadening of the lines; the two 
competing mechanisms give experimental data which are difficult to analyse. For a 
first study of surface spin relaxation in aluminium. see Sharp-Dent er a1 (1976). 

The linewidth data are generally believed to be due to a g factor anisotropy over 
the aluminium Fermi surface. A motional narrowing mechanism would be responsible 
for the decrease of the linewidth with decreasing frequency and for the minimum of 
the linewidth with temperature at high frequencies. However, this model is unsatisfac- 
tory, as it cannot account for: 

(i) the linear dependence of the linewidth with frequency (the simple motional 
narrowing model predicts a quadratic frequency dependence); 

(ii) the small variation of the slope of this dependence with temperature (at high 
temperature, where the momentum collisions are very frequent. the g factor distribu- 
tion should be completely narrowed, contrasting with the experimentally important 
variation of linewidth with frequency up to 80 K). 

A more complicated model, based on many-body effects, has been proposed (Fred- 
kin and Freedman 1972, Freedman and Fredkin 1975) but no agreement with the two 
points above has been obtained. From the linear frequency dependence of the line- 
width, it has sometimes been proposed that there should be no motional narrowing at 
all in aluminium. However this hypothesis requires a scattering time of the order of 
lO-'s, even at 80 K where the resistivity scattering time is about s. This dis- 
agreement of five orders of magnitude makes nonsense of the non-motional narrowing 
model. 

One may then consider the CESR properties of aluminium to be unexplained?. 
t Recent reports on the variations of CESR properties with frequency (in Ag and Na:  Braim et til 1979; in Cu 
Stesmans et ul 1979) seem to indicate an anomalous. aluminium-like behaviour of the linewidth with 
temperature and frequency. However the situation is not clear at present. as Dunifer (1980) gives results for 
copper which contradict those of Stesmans et til (1979). On the other hand, preliminary measurements on 
palladium metal (A Stesmans and P Monod. private communication) seem to be consistent with a very large 
frequency dependence of the linewidth. 



T h e  g fac tor  of conduction electrons in AI 2877 

It is the purpose of the present paper to give a tentative model for these properties. 
Our model is based on a detailed calculation of the g factor value at each point of the 
Fermi surface. g factor calculations are not very numerous in the literature, and most 
of them deal with semiconductors (Roth 1960) or semimetals (Cohen and Blount 
1960). For metals we can mention calculations in alkalis (Yafet 1957, 1963, Bienen- 
stock and Brooks 1964, Moore 1975b), iron and nickel (Singh et a /  1976) and palla- 
dium (Lenglart 1967, Rahman et a1 1978). Except in the last paper cited, no effort has 
been made to relate the calculated g factor distribution over the Fermi surface to the 
CESR linewidth. The only available model is that of Fredkin and Freedman (1972, 
see also Freedman and Fredkin 1975) which is only based on a phenomenological 
description of the g factor distribution. In this paper we present a model for the 
motional narrowing in aluminium taking into account the calculated g distribution. 
This phenomenological approach considers two types of motion: a random one, due 
to momentum scattering and a coherent one, the cyclotron motion. 

2. The wavefunction of conduction electrons in aluminium 

We use here a very simple method, due to Ashcroft (1963), for computing the Fermi 
surface of aluminium. The first step neglects the spin-orbit potential, this approxi- 
mation being justified by the fact that the 3p atomic splitting due to the spin-orbit is 
about Ryd, a value much lower than the typical band gaps in the metal. The 
introduction of the spin-orbit potential is made using perturbation theory, and consti- 
tutes the second step of the present section. 

Ashcroft’s method uses four orthogonalised plane waves (OPW) as basis func- 
tions for the description of the first conduction bands in aluminium (four is the 
minimum number of OPW that one must consider in order to give a satisfactory 
description of the Brillouin zone corner, called W, which is the point needing the 
greatest number of OPW). The pseudopotential is introduced phenomenologically by 
fitting its first Fourier components in such a way as to obtain a satisfactory picture of 
the Fermi surface compared with the data obtained in the de Haas-van Alphen 
experiments and the resulting secular equation is given in $4. At each point of the 
Fermi surface we compute: 

(1) the wavefunction at the Fermi level. written as a linear (and normalised to unity) 

(ii) the three other energies corresponding to the three other solutions of the 

(iii) the wavefunctions for these three energy bands. 

combination of the four OPW; 

secular equation: 

When determining this bandstructure, one finds that the point which has the 
coordinates k,  = 0.9649, k,  = 0.4115 and k ,  = 0 (in 2n/a units) is quite peculiar: at 
this point of the Fermi surface, two energy bands are degenerate; in other words the 
second and third zone of the Fermi surface are in contact. This degeneracy will be 
lifted only by the spin-orbit and the treatment of this peculiar point is given in the 
appendix. 

We arrive now at the point where spin-orbit perturbation must be considered. 
This interaction is written under the hypothesis that V(v) ,  the one-electron potential, is 
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spherically symmetric : 

where z is the quantisation axis and 

l i  = I ,  k il, sI- = s, f. is, 

We wish to determine how the wavefunction $i (of wavevector k )  is modified with 
the introduction of the spin-orbit. Vso couples $i with the other wavefunctions of the 
same k ,  which we denote by $j. Here we shall consider only the three other conduc- 
tion wavefunctions obtained above in the four OPW method as I)j; we neglect the 
influence of the bands of higher order as well as the underlying levels, this being 
justified in a perturbation treatment by the large energy denominators linked to these 
bands. Following Elliott (1954) we write the wavefunction, as modified in first order in 
the spin-orbit perturbation. as follows: 

where the symbol over $i denotes that this function includes the spin-orbit contribu- 
tion. The form for $i is no longer correct when a band j exists such that 1 Ei - Ej 1 is of 
the order of the 3p spin-orbit splitting ( = Ryd). This is the case only in the 
immediate neighbourhood of the point of degeneracy already mentioned (see the 
appendix). 

We have to determine the matrix elements of the spin-orbit between two OPW. Let 
us write: 

I O P W ~ )  = (1 - P ) i k i )  = lki)  - z I z ) ( u ~  k , )  
2 

where the x are taken to be the Is, 2s and 2p states of the A13+ ion. Using the fact 
that I ,  and (1 - P )  commute, we get: 

(OPWj/  i l ,  IOPWi) = (kjl ;./,(I - P)lki) 
= (kjl ;.I, l k i )  - z (kjj  ;.I, Iz) (2 1 ki ) .  

x 

The first term of the last expression is very small. This is rather intuitive because 
the spin-orbit acts principally on the core part of the wavefunction. This term will be 
neglected. 

Writing: 

where n, I and m are the classical quantum numbers associated with the core state tl, 
and defining 

i.,l = loz i ( r ) P ; ! ( r )  dr 
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we can immediately deduce the following equation from the fact that the a are a 
basis of eigenfunctions for the j.1, operator: 

(kjl j.1, I a n l m )  = mjmi ( k j  I r n ~ m ) .  

In the case of A13+. the only r to be considered, i.e. of non-zero m, are the 2p states 
of m = k l .  The i2p parameter will be chosen from the data corresponding to the 
atomic spin-orbit splittings as tabulated by Yafet (1963). 

The preceding treatment of the 2, matrix element is very similar to the one made 
by Asik et  a1 (1969). 

We have to compute the scalar products ( x l k )  between the 2p core states and the 
plane waves. The calculation is done easily (see for instance Harrison 1966) by 
expanding the plane wave in terms of spherical harmonics and using orthogonalisa- 
tion of these spherical harmonics. We obtain 

where Ro is the volume of the unit cell of the crystal. 
Defining 

I ( k )  = j1(!ir)rP2p(r) dr .lox 
we obtain by a straightforward calculation: 

1271 I ( k i )  I ( k j )  . . ( O P W ~ I  i l ,  ~ O P W ~ )  = i i Z p  __ __ ~ (k;k:  - k j k : ) .  
Ro ki k j  

The I ( k )  integral is calculated numerically using the values of Hartree (1935) for 
P2p(r) in A13+. Values of I ( k )  are tabulated by Beuneu (1979). 

3. Calculation of the g factor 

The problem of the Bloch electrons in a magnetic field is known to be a very compli- 
cated one: a field, even a small one. does not have a small effect on the wavefunctions 
because they extend to infinity throughout the crystal. and thus perturbation theory 
cannot be used. This difficult theoretical problem has been solved by Kohn (1959), 
Roth (1962) and Blount (1962). The general idea for the treatment of the magnetic field 
is that if the change in the wavefunctions is large, the change in the energy levels is 
small for ordinary fields, so that one can obtain an effective Hamiltonian where bands 
are decoupled. 

Yafet (1963) shows in detail how such a method can be used to obtain g factors in 
crystals, following the work of Cohen and Blount (1960) for bismuth. 

As a first step, consider the case of a band edge: the problem is somewhat simpler 
and it applies directly to semiconductors. It is useful to define a new operator, called 
X. which behaves as the periodic part of the position operator x. Consider two Bloch 
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waves Y,, and Y,, with periodic parts U ,  and U,.. By definition we write: 

where the integral is computed over the elementary cell of the crystal. The total 
magnetic moment can be given by 

p = -PEI(L + :Yon) 

where go = 2.0023 is the free-electron g value. The operator L is defined by 

L = r l - ’ X  X R 

where n: is given by 

L can be interpreted as the periodic part of the angular momentum I :  X being a 
periodic operator, its matrix elements between Bloch functions converge, and the same 
thing is true for L. On the contrary, neither x nor 1 have this property (this is clearly 
linked to the fact that the magnetic field cannot be treated by perturbation theory). 
Yafet (1957) showed that the difference between the matrix elements of X and those of 
x, taken over the unit cell between two Bloch functions, can be written as an integral 
over the surface of the unit cell; thus, if one moves the atoms of the crystal away from 
one another, L reduces to I in the limit of infinite interatomic distance. 

With these definitions, the g factor at a band edge is shown to be 

9 = 2 ( $ T  lL + 2s,l$.;) 

with the condition that the matrix element of L, + 2 s, between $T and $1 must be 
zero (or negligible). Consider now a solid where the spin-orbit is small: to first order 
in the spin-orbit the s, operator gives no deviation to g = 2, so that if we define Ag 
as g - go we can write 

Ag = 2($TiLLl$f). 

It must not be forgotten that such a formula, which neglects the non-diagonal 
terms in the magnetic (Zeeman) Hamiltonian, will give correct results only for 
I Ag 1 << 2 .  When the Ay is calculated at band i, it is classical to write 

where 9; is a condensed form of ( $ i l  X ”  
The j index describes all the energy bands with the same wavevector, and ‘j # i’ in 

the sum because < $ i l  T I  $i) is known to be zero at a band edge. 
We are now at the point when we have to consider the second step; namely, the 

case of the Fermi surface electrons which are not at a band edge in the metal. It is 
interesting to show qualitatively why this case is more complicated than the preceding 
one. Using a semiclassical picture, we can say that the electron velocity is zero at a 
band edge; on the contrary, away from a band edge, the electron has a velocity U; this 
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means that in a magnetic field H the electron has a cyclotron motion such that 

eH 
mc 

I ! = o x x = - x x  

which adds another contribution to the orbital magnetic momentum. The quantity 
X i i ( k )  represents a displacement of the electronic charge of a wave-packet centred in k ;  
the magnetic moment linked to this displacement may be written as a vectorial 
product of Xi, with the electron velocity x i i .  

Blount (1962) and Roth (1962) have separately shown that the L contribution to 
the magnetic moment can be written 

( & ) j r  = - p g h  - ' [ ( X  x 7 C ) i i  + xii x x i l ]  

which agrees with the qualitative argument given above. 

edge. One obtains 
This leads to the generalisation of the Ag formula given in the case of the band 

There is no a priori reason why one of the two terms of this sum should be 
dominant. Our computations in aluminium. in general, give contributions of the same 
order of magnitude. For a detailed comment on the possible appearance of very large 
g factor values by using such formulae, see appendix B of the paper by Yafet (1963). 

There are some important remarks which concern the Ag formula. A most surpris- 
ing one is that this Ag is not unique; this is because the diagonal matrix element 2fi 
depends on the (arbitrary) phase of the wavefunction 4,. This is clearly seen from the 
definition of 2:: 

If one changes the phase of 4, by a factor depending on k ,  one adds to Xii a 
quantity proportional to the gradient (in k )  of this factor. Thus A:i, and consequently 
Agi, are not uniquely defined. Roth (1962) and Yafet (1963) partially solved this diffi- 
culty by showing that the mean Ag over a cyclotron orbit is perfectly well defined (just 
because one has to integrate a gradient over a closed loop). However de Graaf and 
Overhauser (1969) remark that this argument is no longer satisfactory in the presence 
of scattering over the Fermi surface. As CESR can be observed in metal even when 
cos << 1 (for instance in molten Na) they deduce that g ( k )  must be well defined. We 
think that this statement is much exaggerated and does not constitute any proof (see 
$ 5 )  but it is certain that an important and unresolved problem still remains. 

As a second point, note that we shall use the approximation x z p ,  as many 
authors do. In particular Roth (1962) justified this by showing that the contribution of 
the much neglected term to the Ag is of the order of (p2/2m)/mcZ = (i?)/cZ << 1. 
With this approximation, we shall have no difficulty in computing the matrix elements 
of x between linear combinations of the OPW. 

The determination of the matrix elements of the X operator is as follows. The 
non-diagonal matrix elements are obtained by the formula: 

ih 
m E ,  - E j  where i # j .  X i .  = - - xij 
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This formula is demonstrated, in the zero spin-orbit case, by Wilson (1953) and the 
extension to the non-zero spin-orbit case is straightforward. The diagonal matrix 
elements are ambiguous, as discussed above, and we have to make an arbitrary choice 
for the phase of si. For computational simplicity, we preferred to choose +i, the 
wavefunctions without the spin-orbit. The explicit relations obtained will be given 
later. 

We have given above the expression of the g function relative to the wavefunction 
]$J, with quantisation along the z axis. Here we write Ag = Ay1 + Ag2 and com- 
pute the two terms separately. The above relation between X and II leads to 

which we can simplify by making the approximation II I p .  We must now write the 
iij as combinations of the pij; that is to say we introduce the spin-orbit terms 
explicitly. This is done by writing 

The term Ici>, to first order in the i. spin-orbit, was given explicitly above. Its 
effect on the g shift is of second order and will be disregarded here. The term j.6 is 
written 

and is a real quantity. To first order in j. one has 

fi?. I J  = p?. 1J + i j.ipTn - i 
n + j  m + i  

;.ip:j, 

It is easy to show (Beuneu 1979) that p c  is real. 
With a few manipulations we can write the expression for Agl as 

where ‘x 2 y’ symbolises the term obtained from the one explicitly found by permuting 
x and J .  The last formula can easily be shown to be the one obtained by Roth (1960) 
using a similar treatment though she needed no term like our Agz as her calculation 
was performed at a band edge for the cases of silicon and germanium. 

Consider now the term Agz : 

Although it is nor true to write: 
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because the X operator must be applied to i h  as well, which is k dependent, the 
following formula can be written, always to first order: 

2; = X: + i C i.k(X,X, - xz i ) .  
m t r  

This formula is true because X gives only quantities which are not x-dependent 
with the ;.& term; it gives no extra contributions to the x integrals calculated when 
determining RE. 

Xiz, is given by the formula 

ih pFm X ?  = --___ 
m Ei  - E m  im 

and thus is imaginary. The Xi term is determined only when we make an 
arbitrary choice for the phase of $ i .  Following Roth (1962), we impose that ui (v = 0 )  
is real. which leads to 

In our case, we have just mentioned that XGi is imaginary for m # i ;  the um(0) and 
ui(0)  terms being real by our imposed condition, we obtain X: = 0. The hypothesis 
ui(0) # 0 does not seem restrictive. For a point where uj(0) = 0, the property X :  = 0 
will be shown to be true by passing to the limit on a k space path where ui(0) # 0. 
Thus we have 

This expression carries no term of zero order in the spin-orbit. 
In our first-order calculation. this enables us to replace iifi by pfi, its zero-order 

estimate, giving: 

We must not forget that one major difference between Ay, and Ag2 is that the 
latter is somewhat arbitrary as its exact values depend on the choice of the phase, 
whereas Ag, is defined unambiguously. 

4. Numerical calculation and results 

The machine calculation was sufficiently simple to be performed on a desk-top calcu- 
lator: the Hewlett-Packard 9825 A. In the classical 1148th of the Brillouin zone, we 
have studied some 8000 points with maximum density at the places where the Fermi 
surface curvature is high. This Fermi surface was determined by resolving Ashcroft's 
equation in its reduced shape (Ashcroft 1963), taking 2 n j ~  = 1 and h2/2m = 1 and 
defining T ( k ,  E )  = ( k  - qi)' - E :  

(TOT3 - J"~oo)(TiG - V ~ O O )  - J';ii(To + T3 - 2J"200)(Ti + T2 - ~ J " ~ o o )  = 0 
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with go = 0; g1 = (i,i,i); g 2  = (l,i, - 1); g 3  = (2,0,0) and taking Ashcroft’s values (in 
Ryd) of EF = 0.85605; I/, 

The matrix elements for the spin-orbit were computed by using the formula given 
in 92, with the atomic value for i2p: iZp = 0.27 eV = 0.0196 Ryd. 

To determine the matrix elements of p ,  one has to calculate only the matrix 
elements between two OPW. It is reasonable to take 

= 0,0179 and = 0.0562. 

(OPW,I p x l  O P W ~ )  = hkydmn 

which is true in an effective mass model. Such a model is good, as the large Ag we 
shall obtain are due to the magnetism of intercellular currents circulating at large 
distances, and not to contributions inside one elementary cell for which the detail of 
the wavefunction’s core oscillations should be considered. 

Thus everything is determined in the formulae giving the values of Agl and Ag2. 
The only thing to be specified is the direction of the quantisation axis, here labelled 
the z axis. We made the computations for the three simple orientations of the (100) 
type. It is interesting at this stage to show this theorem: at each point of the Brillouin 
zone, the sum of the Ag obtained for three orthogonal axes of quantisation does not 
depend on the choice of these axes. Consider the formulae giving Agl and Ay,. They 
depend on the choice of the quantisation in two ways; the first is the spin-orbit matrix 
elements (given in $2) and the second is the terms such as prn p f ,  - x F? y .  The two 
types of term depend finally in the same manner on the choice of axes, through a term 
like ( k i  x k J , .  Let S = Ag, + Ag, + Ag, be the sum of the Ag with the quantisation 
axis along x, y and z .  S is proportional to 

(ki  x kj)z(km x kn)z = (ki  x k j ) * ( k m  x kn) 
3 a x e s  

which is a scalar product of vectors and thus independent of the axes chosen; the 
theorem is proved. This theorem has an important consequence: in a motional nar- 
rowing regime for which the observed Ag must be the mean of all the Ag around the 
Fermi surface, it cannot depend on the orientation of the magnetic field relative to the 
crystal. This is no longer the case in the event of an absence of motional narrowing. 

As we wish to obtain some means of Ag we must determine the relative weight of 
each point of the Fermi surface. This weight must clearly be proportional to the 
density of states at the point k considered. If we write the four OPW secular equation of 
Ashcroft asf(k, E) = 0, the density of states is given by 

which we estimate numerically. 
The numerical results for Ag were given elsewhere (Beuneu 1979) in the form of 

long tables. We prefer to give a more ‘visual’ presentation of our results. 
In figures 1-6, we show maps of the Ag values on the Fermi surface. Figures 1-3 

describe the second-zone points, and figures 4-6 the third-zone points. The projection 
procedure used here consists of defining two numbers, called U and T, such that 
k ,  = U k ,  and k ,  = T k x .  The restriction to 1/48th of the zone leads to the inequalities 
0 6 T 6 1 and T 6 U 6 1. These two numbers are the coordinates of the planar 
representations shown in figures 1-6. To be clearer, let us note that this mode of 
projection is obtained by taking the intersection of the vector radius TM (r being the 
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T 

0 0 2  0.L 0.6 0 8  1-0 
U 

Figure 1.  Reduced map of Ag in aluminium for second-zone conduction electrons at the 
Fermi level, in the I 48th of the zone chosen so that k ,  2 k,. > k ,  > 0. The coordinates U 
and T are described in the text. The magnetic field axis is taken along k,. The shaded part 
of the map corresponds to the positive Aq. Note the singular point at Li = 0.4265 and 
7 = 0 discussed in the appendix. 

centre of the Brillouin zone and M the Fermi surface point we want to represent) with 
the k ,  = 1 plane where the map is drawn. This mode of projection enables us to 
obtain (nearly everywhere) two distinct couples (U ,  T )  for two distinct points on the 
Fermi surface taken in the same zone. For each zone, the three maps correspond to 
the three principal orientations of the magnetic field. 

Due to the peculiar topology of the two- and three-zone volumes of the Fermi 
surface of aluminium, one can see that all the values of U and T correspond to a point 
in the second zone, and that this is not so for the ‘arms’ of the third zone. One 
property must be satisfied c( priori by the maps: for symmetry reasons, the points in 
the k ,  = k ,  plane must verify the relation Aq, = Ay, (where the index, x or y ,  indicates 

U 

Figure 2. Reduced map of Ay in aluminium for second-zone electrons. The magnetic field 
axis is along k,. The coordinates L’ and T are the same as for figure 1 and the projection 
scheme is explained in the text. 

M P I F I  in 1 2 - ~  
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0 0 2  O L  0 6  0 8  10 
U 

Figure 3. Reduced map of Ag in aluminium for second-zone electrons. The magnetic field 
axis 1s along k,. 

0 0.2 OL 0 6  08 1 0  

U 

Figure 4. Reduced map of Ag in aluminium for third-zone electrons. Note that not all the 
couples ( U ,  T )  correspond to a third-zone point. The magnetic field axis is taken along k,. 

OL 

T 

0 2  

0 0 2  O L  0 6  0 8  1.0 
U 

Figure 5. Reduced map of Ag in aluminium for third-zone electrons. The magnetic field 
axis is along k,. 
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Figure 6.  Reduced map of Ag in aluminium for third-zone electrons. The magnetic field 
axis is along kl. 

the orientation of the field). Similarly. those of the k ,  = k, plane must verify that 
Ag,. = Agz. In other terms, the maps with field axes x and y must show the same 
values on the U = 1 line. and those with axes J and z must show the same values on 
the U = T line. One can see in figures 1-6 that these conditions are quite well fulfilled 
by our calculations. 

One characteristic feature of all the g factor maps is the peculiar role played by the 
contact point between the two zones. which is k,  = 0.9649, k ,  = 0.4115 and k, = 0 (in 
our coordinates: C' = 0.4265 and T = 0). A lot of level lines converge at this point, a 
fact easily understood when looking at the formulae giving Ag, which include energy 
denominators that cancel at this point. Of course, near this point these formulae are 
no longer true and a special calculation concerning this is made in our appendix. 
However, such a treatment is needed only for a radius of approximately 2 x (in 
units of U and T) around the degeneracy point, which means that our maps are true 
within the precision of the drawing. One can remark that there are rather large 
regions on the Fermi surface where the absolute value of Ay is high (for instance larger 
than 0.1, a very high value for such a light metal). These regions are located in the 
( U .  T) plane. near the line of slope -1 passing by the degeneracy point just men- 
tioned; they correspond to parts of the Fermi surface where the arms of the third zone 
are near to the volume of the second zone, so that there are small energy denomi- 
nators involved. Also apparent on our maps is the high anisotropy of the g factor (for 
different field orientations, the maps are very different) and the general sign of the Ag, 
which is negative for most of the electrons in the second zone and positive for most in 
the third zone. 

Note that g(k)  is not a quantity directly measurable by experiments. We wish now 
to present some experimentally meaningful quantities that can be deduced from our 
calculations. In figures 7 and 8 histograms are drawn of the Ag distribution in the 
second and third zones. respectively. The ordinate is proportional to the weight (as 
determined above) of all the Fermi surface parts having the Ag given by the abscissa. 
One can remark on the considerable tails of these histograms, for the negative Ag in 
the second zone and for the positive Ag in the third zone; for instance, 6"/, of the total 
weight of the second-zone electrons have Ag < -0.1 and 26"" of the third-zone elec- 
trons have Ag > + 0.1. (The relative weights of the second and third zones are 76% 
and 24"; of the whole Fermi surface respectively. One can note here the important 
weight of the third-zone electrons.) These tails have considerable influence on the root 
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Figure 7. Histogram of Ag(k) for each point of the Fermi surface in the second zone of 
aluminium. For each Ag value in the abcissa the relative weight of the part of the Fermi 
surface giving this Ag value is given in the ordinate. Note the large tail of the histogram for 
the negative Ag. 

mean square (RMS) values of the Ag, which we give in the second column of table 1 for 
the two zones and for the whole Fermi surface, while in the first column we give the 
corresponding mean Ag values. 

These values need some comments. The lack of uniqueness of the Ag encountered 
in $3 has no influence on the mean values. On the other hand, the RMS values are not 
uniquely defined and one may at first suspect that their very high values are due to a 
non-physical artefact linked to our peculiar choice of the wavefunction phases. We 
believe that this is not the case, because when we consider the formula 
Ag = Ag, + Ag,, we note that only Ag2 is badly defined; on the other hand, our 
calculations have shown that the histograms taken for Ag, and Ag, separately have 
RMS values to the same order of magnitude. 

Ag 

Figure 8. Histogram of Ag(k) for each point of the Fermi surface in the third zone of 
aluminium. Note the large tail of the histogram for positive Ag. 
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Table 1. Mean and RMS values for Ag in aluminium. 

RMS Ag values 

Mean Ay Ag(k) Ag of orbits 

Second zone -0.023 0.272 0,042 
Third zone 0.078 0.815 0.071 
Whole Fermi OCQ13 0.469 0,067 
surface 

We have to comment on the mean Ag value obtained, which is +0*001. This value 
can be compared with the experimentally available Ag. For this comparison it seems 
coherent to consider the g value obtained when one is in a motional narrowing 
regime, i.e. at low frequency and ‘medium’ temperature (see for instance Lubzens er al 
1972): g = 1.996 or Ag = -0.006. 

The agreement with the calculation is very bad, as even the sign is not correctly 
predicted. However one must keep in mind that the total RMS value found here is 0.47 
which is considerably greater than the difference between the experimental and theor- 
etical results, making the calculated Ag rather unprecise. Furthermore, there is a 
contribution to Ag that has been forgotten so far: the formulae for Ag are written as 
sums over all the energy bands and we have restricted ourselves to the four lower 
conduction bands as given by the four OPW model. However one can estimate the 
extra contribution due to the deep-lying 2p levels of AI. For a rough order of magni- 
tude estimate, we take lAg2p( = i2p/AE2p--3s (Elliott 1954, Beuneu and Monod 1978) 
where ELZp is the spin-orbit splitting of the 2p states of atomic AI (see Yafet 1963) and 
AE is the energy difference between the 2p and 3s states for atomic Al. One obtains 
(Ag2pl z 5 x which is of the order of magnitude of the difference between the 
experimental and theoretical Ag. 

A lot of experiments in CESR in aluminium have been performed (see $1) at high 
frequency (and magnetic field) and low temperature. One is then in a regime where the 
momentum relaxation rate is much lower than the cyclotron frequency (which is equal 
to the Larmor frequency for g = 2 and m* = 1). In such a case the means of Ag over 
the cyclotron orbits are physically relevant. We have considered 100 such orbits on 
the Fermi surface, with the magnetic field taken along k,, varying k ,  from 0 to 1 in 
2nia units. The mean Ag value for a given orbit is plotted against k ,  in figures 9 and 
10, which are drawn for the second- and third-zone electrons respectively. The quasi- 
degeneracy near k ,  = 0.4 is related to the previously mentioned contact point between 
the two zones. In figure 11 we give new Ag histograms, which no longer concern the 
individual Ag ( k )  values (as in figures 7 and 8) but the mean Ag values over the 
cyclotron orbits. The striking difference between these histograms and those of figures 
7 and 8 is the absence of the high Ag tails, which implies much lower RMS values for 
the orbital g distributions: these values are listed in the last column of table 1. One 
must keep in mind that the Ag over cyclotron orbits, and the RMS values of these Ag, 
are not phase dependent and thus are defined unambiguously. 

Among the different cyclotron orbits, the extremum ones are particularly interest- 
ing. It is well known that only orbits with an extremum area can be observed by such 
techniques as the de Haas-van Alphen effect. These techniques sometimes allow the 
measurement of the mean g factor over extremum orbits, and a lot of work has been 



2890 F Beuneu 

Figure 9. Mean Ag values over cyclotron orbits versus k,, for the second zone. The full 
circles are calculated values and the broken curve is just to guide the eye. The disconti- 
nuity near k, = 0.4 corresponds to the degeneracy point discussed in the appendix. 

done in noble metals (see Randles 1972, Bibby and Shoenberg 1977, Crabtree et al 
1977). We know of no such measurements performed in aluminium, and have found it 
interesting to calculate the mean g value on some extremum orbits that have been 
studied by the de Haas-van Alphen effect. We use the notation taken from Anderson 
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Figure 10. Mean Ag values over cyclotron orbits versus k,, for the third zone. Note that 
some k,  values correspond to no third-zone points. The discontinuity near k ,  = 0.4 corre- 
sponds to the degeneracy point discussed in the appendix. 
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Figure 11. Histograms of the mean Ag values over cyclotron orbits, for (a)  the second and 
( b )  the third zone. The distribution tails of figures 7 and 8 are absent here. 

and Lane (1970), recalled in figure 12. In table 2 we give the results of the calculations 
for the extremum orbits, with the corresponding field orientation. 

To conclude this presentation of our calculations, we just mention that all our 
results are nearly unmodified by slight parameter modifications. For instance we tried 
the parameters proposed by Anderson and Lane (1970) which are EF = 0.8667 Ryd, 
V l i l  = 0.018 Ryd and V2,,,, = 0.062 Ryd and we obtained no significant changes in 
Ag values and means. 

Figure 12. Main extrema1 orbits which can be observed in aluminium by the de Haas-van 
Alphen effect (Anderson and Lane 1970) in (a) the second and (b)  the third zones. 
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Table 2. 

Orbit Orientation Mean Ag 

*1 100 - OCO28 
i l  I10 - 00405 
$1 111 - 0.0143 
B 100 0,094 1 

100 0.06 19 
7 5  110 0,1423 

5. Discussion 

We wish to return to the problem of the lack of uniqueness of the g ( k )  value, as this 
question is as yet very unclear. We saw that in the absence of collisions, cyclotron 
orbits were well defined and the relevant g factors were those of the orbits, which were 
unambiguous. The problem arises in the presence of collisions, as de Graaf and 
Overhauser (1969) pointed out, and especially when 0 7  << 1, i.e. when it is no longer 
possible to consider cyclotron orbits. These authors used a wave-packet treatment, 
leading them to g values which were independent of the wavefunction phase. Their 
calculation was corrected later by Moore (1975a) or, quite similarly, by Singh er a1 
(1976); these treatments suppress all g factor ambiguity coming from phase problems 
and would modify our Ag2 term. However this semiclassical wave-packet description 
was criticised by Lamb (1975) who claimed that such a model did not offer a good 
frame for the description of the CESR phenomena. The reason for considering this 
model is that one wishes to use the usual motional narrowing arguments in a regime 
where collisions are numerous; with the spin-orbit interaction these collisions are 
linked to spin-flip scattering, which becomes mixed in a complex fashion with the 
radio-frequency spin-flipping. Lamb's opinion is that any wave-packet approach im- 
plicitly ignores this problem and cannot account for the CESR in a rigorous way. This 
complicated controversy means that the problem is still open. However our feeling is 
that individual g ( k )  need nor be well defined, as they are not physically observable 
quantities. One has only to propose a narrowing mechanism such that the finally 
observable quantity be defined uniquely. The only tentative approach in this direction 
is that of Lamb (1975) and is restricted to the case when W T  >> 1. We shall not propose 
any answer to the problem in the general case. We believe that a way of approaching 
the 0 7  << 1 case is as follows. In a k -, k' collision the phaseshift is well defined and 
may be calculated for simple cases. This imposes one condition between the a priori 
arbitrary phases of the k and k' wavefunctions. As each collision introduces such a 
phase relation, we hope that it is possible to avoid the ambiguity problem even in the 
case where the collisions are numerous (UT << 1). 

From the above considerations, it is clear that the model which we present now 
cannot be considered as rigorous; we will give only qualitative arguments whose 
purpose is to explain most of the strange CESR properties of aluminium. As we 
explained in $1, we consider it obvious that aluminium electron spins are in a 
motional narrowing regime. A further argument can be taken from the RMS value of g, 
called og hereafter, that can be deduced from the slope of AH versus frequency, under 
the hypothesis of no motional narrowing: og = 0.0088. This value is considerably 
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lower than the 0.067 value computed here in the cyclotron motion regime, which does 
not seem to be understandable. In the simple motional narrowing theory (see for 
instance Pines and Slichter 1955) one can write: 

+AH = , ; - 'AC.O~T = y- 1 1  T o g o  2 2 T 

where T is the momentum relaxation time, which will be taken as the resistivity 
lifetime. Here AH is only the part of the CESR linewidth due to g factor anisotropy: the 
linewidth due to spin relaxation has been subtracted. We showed in $1 why this 
model cannot account for the CESR properties of aluminium: the experimental law is 
linear with frequency and shows only slight dependence on temperature (i.e. on 5). Our 
idea is that these difficulties are due to the cyclotron motion being forgotten in such a 
simple model, but it must cause some narrowing in a different way to a random walk 
motion. 

We found it simple to treat this problem as follows. Starting with the simple 
motional narrowing formula just given above, we suppose that og varies with oz. Note 
that we take in this extremely simplified model a unique cyclotron frequency, sup- 
posed to be equal to the Larmor frequency o. For WT >> 1, a conduction electron 
travels around its cyclotron orbit for a long time before being diffused, so that the g 
factor distribution of this orbit is completely narrowed. For this regime it is then 
natural to take og = 0.067, computed above for the Ag of the orbits. This is equivalent 
to the results obtained on a more rigorous basis by Lamb (1975). In the opposite 
regime, oz << 1, the cyclotron motion can be neglected because of the rapid random 
diffusion over the Fermi surface. We shall take og = 0.47 here which is the RMS value 
obtained for the individual g ( k ) .  We now choose a completely arbitrary interpolation 
law between the two regimes, imposing og = a(wz)-1'2 between the two extreme 
values for og. In this intermediate regime we obtain: 

1 a2  C O ~ T  a' = A H = - -  = - m  
4y oz 4y . 

We have chosen the law for og such that AH varies linearly with o. The interesting 
feature, which is not trivial, is the disappearing of T :  in this extremely simple model, 
AH does not vary with temperature (keeping in mind that here we forget the spin 
relaxation contribution adding to AH in practice). 

In figure 13 we give the variation of the CESR linewidth of aluminium (always 
forgetting the phonon spin relaxation) with frequency for a wide range of scattering 
time T, as can be predicted by our model. The linear parts of the curves have been given 
a reasonable slope by fitting the parameter a mentioned above. One can see that for T 

ranging from 3 x s to lo-" s the curves obtained show an important linear 
part. These T values have reasonable orders of magnitude over the 0-80 K 
temperature range. Moreover the parabolic rise above 50 GHz shown in figure 13 by 
the curve T = lo-" s agrees with the experimental deviation from linearity observed 
by Dunifer and Pattison (1976) at low temperature. 

There is a complementary method for testing our model?. In the motional narrow- 
ing formula 

$AH = &I- ' 5 ; o 2 T  

t We are indebted to Professor W Kohn who suggested this approach. 
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Figure 13. Predicted CESR linewidth of aluminium versus frequency. Spin relaxation has 
been omitted and should be added to the frequency-dependent width. Our model predicts 
different behaviour for different values of the scattering time T ;  the curves correspond to 
the following T values: A, l O - ' O s ;  B, lo-" s ;  C, s ;  D. s ;  E. s. 

every quantity except ag is accessible experimentally (with a large indeterminate u and 
7). It is thus possible to plot the experimental variation of a, with u and t. This is 
done in figure 14, taking the easily attainable parameter F/p as a representation of u7 
(where F is the CESR frequency and p the resistivity of the sample at different tempera- 
tures). The conclusions are that ag varies quite like (ut)- 'Iz, and figure 14 also shows 
that w t  is a good parameter with which to define a,; we obtain the same a, for 
different w and t having the same ut value. On the other hand, the regimes wt  >> 1 
and w t  << 1 are badly described, particularly for w t  << 1 where a, exceeds the calcu- 
lated maximum value (a, = 0.47). We note that this regime corresponds to the high- 
temperature range when the spin-flip due to phonons makes data analysis particularly 
difficult. 

It is interesting to note that Fredkin and Freedman (1972) have considered, as we 
did here, the influence of the cyclotron motion on the linewidth, which is expressed by 
their formula (4). However they probably considered the effect to be unimportant 
because they were not aware of the large difference between the two extreme values of 
0, found by us. The simplest form of their formula (4) gives: 

1 + u2t2 a,= GI + i 
This expression for ag has qualitatively the same behaviour as the empirical one 

used above: ag is constant for very high and very low values of ut, and there is an 
intermediate regime where 0, decreases with increasing wt .  However such a law will 
not ensure a linear AH versus frequency law. However one must keep in mind that t is 
a very badly defined quantity. Wegehaupt and Doezema (1978) measured a very high 
anisotropy of t over the Fermi surface, and this complication made any comparison 
difficult between the simple formulae obtained with the hypothesis that t is isotropic, 
and experiment. 

We have not discussed so far the experimental variation of g with temperature and 
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Figure 14. ug values taken from experiment and with the assumption of simple motional 
narrowing. versus the ratio of frequency to resistivity. This ratio approximately describes 
the product (UT. The curves relate the points corresponding to a given sample measured at 
a given frequency ( x .  1.27 GHz: 0, 9.2 GHz; @, 35 GHz; A, 79 GHz (27 pm); A, 79 GHz 
(132 pn)) and at different temperatures. The theoretical ug values in the two limits COT >> 1 
(narrowing by orbital motion) and OJT << 1 (narrowing by collisions) are included. 

frequency in aluminium. In principle, it is not necessary to invoke Fermi liquid effects 
to account for this variation, because the g factor distribution is not symmetric around 
its mean. However we shall show that these effects, described by Fredkin and Freed- 
man (1972) give a good order of magnitude for the g shifts. The authors find that 

X‘ (1 + B)’o; BOT 
Ag = ___ with X = ~ 

1 + X 2  2B l + B  

Again imposing og = % ( C U T ) -  and taking X 2  << 1 and B << 1 we obtain 

Dunifer et ul (1977) determined B = + 0.1 by observing spin waves in aluminium. 
For T = 2 x l o -”  s we find Ag = 0.004 at 35 GHz and 0.010 at 79 GHz; for samples 
of resistivity giving such a T value, one has Ag = 0.009 at 35 GHz and 0.012 at 
79 GHz (Lubzens and Schultz 1976, Dunifer and Pattison 1976). The agreement is 
qualitatively correct at both frequencies, although non-qualitatively correct at 35 GHz. 

In conclusion. we believe that the idea of a double type of motional narrowing 
(from a coherent and a random motion) is the relevant one for understanding the 
strange CESR properties of aluminium. We obtained, with very simplified models, 
qualitative agreement with experiments. We think that it would be necessary to take 
into account the anisotropy of T (and of the cyclotron frequency) in order to obtain 
quantitative agreement. However our model is unable to explain the anomalous value 
of the static susceptibility of aluminium. On the other hand we hope that the mechan- 
ism of narrowing described here will help to understand the CESR properties of other 
complex metals. 
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Appendix. Treatment of the point of degeneracy 

The point of reciprocal space with coordinates k ,  = 09649, k ,  = 0.4115 and k ,  = 0 is 
a point where two energy bands intercept at the Fermi level. As the spin-orbit lifts the 
degeneracy at this point, it cannot be treated by the perturbation scheme developed in 
42. We wish to give here, in the vicinity of this contact point between the second and 
third zones, some indications of the treatment leading to the g factor. For a detailed 
account, see Beuneu (1979). 

The part of the Fermi surface for which the general calculation of 52 is no longer 
valid is quite small; it corresponds to those points where the energy gap is smaller 
than the spin-orbit splitting of the 3p states, which is approximately Ryd. In 
such a region we can neglect the two bands (obtained in the four OPW model) which 
are not in the vicinity of the Fermi level. Let and i+h2 be the nearly degenerate 
wavefunctions calculated using the Ashcroft model (without the spin-orbit). Introduc- 
ing the spin-orbit leads to a secular equation which is a 4 x 4 determinant, with basis 

From this equation one can determine the wavefunctions (with the spin-orbit) and 
apply the Ag formulae given in 43. Let AE be the energy splitting due to the spin- 
orbit; its order of magnitude is Ryd. Defining 

functions G1T, $2f, lClll and $d. 

iA  = f(Y,I j .(r)lzlY2) 

with A real we get for Agl : 

The formula for Ag2 is more complicated and will not be reproduced here. 
We wish here only to estimate the order of magnitude of Ag around the contact 

point. Taking AE 2 Ryd near this point and considering all the matrix elements 
of p to be of the order of unity, we obtain a value of a few hundred for Ag, On the other 
side we have calculated the relative weight of those points on the Fermi surface for 
which - E(V2)1 < Ryd and found nearly 5 x for each zone. The 
variation of the mean Ag due to the degeneracy point is thus of the order of 
furthermore it should be noted that the signs of Ag are opposite for the two zones. 
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