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Abstract 
 
Dendritic cells are known to be activated by a wide range of microbial products, leading to 
cytokine production, and increased levels of membrane markers such as MHC Class II 
molecules. Such activated dendritic cells possess the capacity to activate naïve T cells. We 
demonstrate here that immature dendritic cells secrete both the YM1 lectin and lipocalin2. By 
testing the ligands of these two poteins, respectively chitosan and siderophores, we also 
demonstrate that chitosan, a degradation product of various fungal and protozoal cell walls,  
induce an activation of dendritic cells at the membrane level, as shown by the upregulation of 
membrane proteins such as class II molecules, CD80 and CD86, via a TLR4-dependent 
mechanism, but is not able to induce cytokine production. This leads to the production of 
activated dendritic cells unable to stimulate T cells. However, costimulation with other microbial 
products overcomes this partial activation and restore the capacity of these activated dendritic 
cells to stimulate T cells. In addition, successive stimulation with chitosan and then by LPS 
induced a dose-dependent change in the cytokinic IL-12/IL-10 balance produced by the dendritic 
cells.  
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1. Introduction 
 
Appropriate sensing of pathogens is a critical step in launching an adequate immune response. 
The immune system has evolved to elaborate a complex system of pathogen surveillance, in 
which specialized molecules (called pathogen recognition receptors) and specialized cell types 
(e.g. dendritic cells) play important roles. Dendritic cells (DCs) are very potent antigen-
presenting cells. Upon stimulation by danger signals [1], including signals produced by external 
pathogens but also signals derived from abnormal cells [2], DC undergo activation/maturation to 
an active antigen-presenting phenotype. This phenotype includes transfer to the cell surface of 
antigen-laden MHC class II molecules (also called signal 1), up-regulation of co-stimulatory 
membrane proteins, such as CD80 and CD86 (also called signal 2), as well as secretion of pro-
inflammatory cytokines, such as TNFa, IL6 or IL12 (also called signal 3). Recent evidence has 
shown that all three signals are needed to induce T lymphocyte activation [3].  
Most danger signals are sensed through receptors belonging to the Toll-like receptors (TLR) 
family [4]. These receptors are able to bind a wide range of ligands, and most of the known 
ligands are bacterial products (e.g. glycolipids, lipopolysaccharides) or viral ones (e.g. double 
stranded RNA. However, a few endogenous  TLR ligands, such as anionic polysaccharides [5-7] 
are also known, and may explain part of the behavior of dendritic cells toward endogenous 
activation signals [2]. However, little is known about the danger signals coming from eukaryotic 
pathogens (e.g. fungi, protozoa etc…) that are sensed by dendritic cells. TLR have been 
implicated in the sensing of fungal polysaccharides by monocytes [8] [9] and dendritic cells [10]. 
However, there are only very few examples in which the TLR involved in fungal polysaccharide 
recognition has been characterized [11]. Moreover, there seems to be several pathways for 
polysaccharides sensing, leading to different DC phenotypes [12, 13].  
Moreover, sensing of danger signals sometimes involves other molecules than the ligand and the 
TLR, as shown by the complex sensing of LPS, in which protein mediators such as CD14 [14] 
and MD2 [15] are also implicated. 
To gain insights into danger sensing by DC, we decided to perform proteomics experiments on 
proteins secreted by immature dendritic cells, looking for secreted proteins binding putative 
danger signals. We found proteins able to bind bacterial siderophores and chitosans, and further 
characterized the effects of these ligands on dendritic cells.  
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2. Material and methods 
 
2.1. Cell cultures for proteomics experiments 
 
Murine dendritic cells were produced from bone marrow progenitors. C57BL/6 mice were 
purchased from Charles River (l’arbresle, France). DC were generated from bone marrow as 
described  [16], [17]. Briefly, bone marrow cells were isolated by flushing from the femurs. 
Erythrocytes and GR1 positives cells were removed by magnetic cell sorting. The remaining 
negatively sorted 
cells were resuspended at 5x105 cells/ml in complete Iscove’s modified Dubelcco’s medium 
(IMDM) supplemented with 1% of GM-CSF-transfected J558cell line supernatant (This cell line 
was a generous gift of Dr David Gray, London), 40ng/ml of mouse recombinant FLT-3L and 
5ng/ml of mouse recombinant Il6. At Day 3, the cellular supernatant was removed and the cells 
resuspended in the same conditions. From day 6 to day 11, IL6 was removed and FLT3-L was 
reduced to 20ng/ml. At day 11, the bone marrow cells are differentiated in DC and ready for the 
various experiments.  In some control experiments, dendritic cells were produced without FLT3-
L, resulting in a much lower yield of cells. The resulting cells are essentially CD8 positive, and 
their cytokinic profile upon LPS activation is [IL6/IL12/TNF]-high, [IL10/IFN]-low [18]., In 
some control experiments, dendritic cells were cultured without FLT3-L, leading to a much 
lower yield of cells. However, these cells had similar membrane markers and the same capacity 
to secrete cytokines.  The cells were washed (three times in PBS, and then three times in serum-
free  DMEM ) and transferred to serum- and phenol red-free medium(1 million cells /ml. When 
needed the dendritic cells were activated by the addition of  1 µg of E. coli lipopolysaccharide or 
40µg of chitosan per ml of culture medium for 24 hours. The cell supernates were then aspirated, 
collected ,and centrifuged at 1000g for 5 minutes (4°C) to pellet detached cells and large debris. 
The supernatant was collected and then centrifuged for 1 hour at 100,000g (4°C) to pellet smaller 
debris and vesicles. The final supernatant was saved and kept frozen (-80°C) until use. 
 
For protein concentration [18]  20 ml of conditioned medium were first cooled on ice in a high 
speed centrifuge tube. Sodium lauroyl sarcosinate  was then added to a final concentration of 
0.1%. After mixing, TCA was added to a final 7.5% concentration, and the solution was 
precipitated on ice for 2 hours. The mixed protein-detergent precipitate was collected by 
centrifugation (10,000g, 10 minutes at 4°C). The supernatant was carefully removed, 2 ml of 
tetrahydrofuran (precooled in ice)  were added to the pellet and vortexing was carried out until 
the pellet unstuck from the bottom of the tube, and dissolved almost completely. Centrifugation 
was carried out as described above. The supernatant was removed, and the nearly invisible pellet 
was washed again with 2ml of THF. Finally, the pellet was redissolved in 0.4 ml extraction 
solution (7M urea, 2M thiourea, 4% CHAPS, 0.4% carrier ampholytes (Pharmalytes 3-10) and 
5mM Tris-carboxyethyl phosphine) with the help of a sonicator bath (30 minutes extraction). 
 
All experiments were performed at least three times arising from different culture batches.  
 
Chitin (from crab shells), chitosan (>85% deacetylated) and oligochitosan lactate were purchased 
from Sigma-Adrich. The E. coli siderophore was prepared from a culture supernatant as 
described previously [19], starting from a fur- coli strain to maximize siderophore production. To 
take into account possible contaminants of the siderophore preparation, a control preparation was 
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made from a wild type coli strain with very low siderophore production.  
 
2.2. Flow cytometry 
The following mAbs were purchased from Pharmingen (San Diego, CA):  anti-CD11b (M1/70, 
FITC-conjugated), anti-CD11c (HL3, APC-conjugated), anti-CD80 (16-10A1, PE-conjugated), 
anti-CD86 (GL1, PE-conjugated), anti-I-Ab (1F6-120.1, FITC-conjugated), Dead cells were 
excluded from the analysis by the absence of 7-AAD (7-Amino-Actinomycin D) staining. The 
analyses were performed on a FACS Calibur and on a FACSAria (BD Bioscience) and the 
analysis with FCS Express V3 (De Novo Software, Thornhill, Ontario, Canada). 
 
2.3. Electrophoresis 
 
IEF 
 
Home made 160mm long  4-8 or 3-10.5 linear pH gradient gels were cast according to published 
procedures [20].  Four mm-wide strips were cut, and rehydrated overnight with the sample, 
diluted in a final volume of  0.6 ml of rehydration solution (7M urea, 2M thiourea, 4% CHAPS, 
0.4% carrier ampholytes (Pharmalytes 3-10) and 100mM dithiodiethanol [21, 22]).  
The strips were then placed in a multiphor plate, and IEF was carried out with the following 
electrical parameters 
 
100V for 1 hour, then 300V for 3 hours, then 1000V for 1 hour, then 3400 V up to 60-70 kVh. 
 
After IEF, the gels were equilibrated for 20 minutes in Tris 125mM, HCl 100mM, SDS 2.5%, 
glycerol 30% and urea 6M. They were then transferred on top of the SDS gels and sealed in 
place with 1% agarose dissolved in Tris 125mM, HCl 100mM, SDS 0.4% and 0.005% (w/v) 
bromophenol blue.  
 
SDS electrophoresis and protein detection 
 
10%T gels (160x200x1.5 mm) were used for protein separation.  The gel buffer system is the 
classical Laemmli buffer pH 8.8, used at a ionic strength of 0.1 instead of the classical 0.0625. 
The  electrode buffer is Tris 50mM, glycine 200mM, SDS 0.1%.  
 
The gels were run at 25V for 1hour, then 100V  until the dye front has reached the bottom of the 
gel. Detection was carried out by ammoniacal silver staining [23]. The spots of interest were 
excised by a scalpel blade and  transferred to a 96 well microtitration plate. Destaining of the 
spots was carried out by the ferricyanide-thiosulfate method [24] on the same day than silver 
staining to improve sequence coverage in the mass spectrometry analysis [25] 
 
2.4. Mass spectrometry 
 
In-gel digestion : 
Excised gel slice rinsing was performed by the Massprep (Micromass, Manchester, UK) as 
described previously [26]. Gel pieces were completely dried with a Speed Vac before digestion. 
The dried gel volume was evaluated and three volumes trypsin (Promega, Madison, US) 
12.5ng/µl freshly diluted in 25mM NH4HCO3, were added. The digestion was performed at 35°C 
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overnight. Then, the gel pieces were centrifuged for 5 min in a Speed Vac and 5µl of 29 100% 
H2O/ 69% acetonitrile/ 1% HCOOH were added to extract peptides. The mixture was sonicated 
for 5 min and centrifuged for 5 min. The supernatant was recovered and the procedure was 
repeated once. 
 
MALDI-MS 
 
MALDI-TOF mass measurements were carried out on Ultraflex™ TOF/TOF (Bruker 
DaltonikGmbH, Bremen, Germany). This instrument was used at a maximum accelerating 
potential of 25kV in positive mode and was operated in reflectron mode. The sample were 
prepared by standard dried droplet preparation on stainless steel MALDI targets using -cyano-
4-hydroxycinnamic acid as matrix. 
The external calibration of MALDI mass spectra was carried out using singly charged 
monoisotopic peaks of a mixture of bradykinin 1-7 (m/z=757.400), human angiotensin II 
(m/z=1046.542), human angiotensin I (m/z=1296.685), substance P (m/z=1347.735), bombesin 
(m/z=1619.822), renin (m/z=1758.933), ACTH 1-17 (m/z=2093.087) and ACTH 18-39 
(m/z=2465.199). To achieve mass accuracy, internal calibration was performed with tryptic 
peptides coming from autolysis of trypsin, with monoisotopic masses at m/z = 842.510, m/z = 
1045.564 and m/z = 2211.105 respectively. Monoisotopic peptide masses were automatically 
annotated using Flexanalysis 2.0 software.  
Peaks are automatically collected with a signal to noise ratio above 4 and a peak quality index 
greater than 30. 
 
LC-MS/MS 
 
Nano-LC-MS/MS analysis was performed either using a CapLC capillary LC system (Waters), 
coupled to a hybrid Quadrupole Time-Of-Flight mass spectrometer (Q-TOF II, Waters). 
From each sample, 6.4 µL was loaded on a precolumn, before chromatographic separation on a 
75 mm id, 150 mm length C18 column (LC Packings C18, 3µm bead size, 10nm mean pore 
size). The gradient was generated by the CapLC at a flow rate of 200 nL/min. The gradient 
profile consisted of a linear one from 90% of a water solution acidified by 0.1% HCOOH vol/vol 
(solution A), to 40% of a solution of CH3CN acidified by 0.1% HCOOH vol/vol (solution B) in 
30 min, followed by a second gradient ramp to 75% of B in 1 min. Data acquisition was piloted 
by MassLynx software V4.0. Calibration was performed using adducts of 0.1% phosphoric acid 
(Acros, NJ, USA) with a scan range from m/z 50 to 1800. Automatic switching between MS and 
MS/MS modes was used. The internal parameters of Q-TOF II were set as follows. The 
electrospray capillary voltage was set to 3.5 kV, the cone voltage set to 35 V, and the source 
temperature set to 90°C. The MS survey scan was m/z 300–1500 with a scan time of 1 s and an 
interscan time of 0.1 s. When the peak intensity rose above a threshold of 15 counts/s, tandem 
mass spectra were acquired. Normalized collision energies for peptide fragmentation were set 
using the charge-state recognition files for 1+, 2+, and 3+ peptide ions. The scan range for 
MS/MS acquisition was from m/z 50 to 2000 with a scan time of 1 s and an interscan time of 0.1 
s. Fragmentation was performed using argon as the collision gas and with a collision energy 
profile optimized for various mass ranges of precursor ions.  
 
MS data analysis for PMF 
Monoisotopic peptide masses were assigned and used for databases searches using the search 
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engine MASCOT 2.2 (Matrix Science, London, UK) [27]. All proteins present in the Uniprot KB 
release 12.8 (5503859 protein entries)  were used without any pI and Mr restrictions. One missed 
cleavage per  peptide was allowed and the following variable modifications 
carbamidomethylation for cysteine  and oxidation for methionine were taken into account. For 
Peptide Mass Fingerprint, a mass  tolerance of 70 ppm was allowed.  A protein was identified by 
at least 4 peptides and a 20% sequence coverage in addition to the probabilistic score provided 
by the Mascot algorithm  and used at the default threshold. 
 
MS/MS data analysis 

Peak lists were automatically created from raw data files using the ProteinLynx Global Server 
software (version 2.0; Waters) for Q-TOF spectra. The Mascot search algorithm (version 2.2; 
Matrix Science) was used for searching against the Uniprot KB release 12.8 (5503859 protein 
entries)  The peptide tolerance was typically set to 120 ppm and MS/MS tolerance was set to 0.3 
Da in the case of Q-TOF. Only doubly and triply peptides were searched for. A maximum 
number of one missed cleavage by trypsin was allowed, and carbamidomethylated cysteine and 
oxidized methionine were set as fixed and variable modifications, respectively. The Mascot score 
cutoff value for a positive peptide hit was set to 30. Peptides under the cutoff score were 
Individual checked manually and either interpreted as valid identifications or discarded.  
 
Immunoassay of cytokines 
The cytokines were measured in the cell supernatants by ELISA using the OptEIA set for mouse 
cytokines from Pharmingen according to the procedures recommended by the manufacturer 
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3. Results  
 
Immature dendritic cells secrete extracellular sensors 
 
Activated dendritic cells are known to synthetize many different proteins. In addition to the well 
known cytokine expression, which is even a test to check for dendritic cell activation with 
various stimuli [14], [6] [7], recent work has also shown that activated dendritic cells secrete 
many other proteins, such as proteases or complement proteins [18], [28]. 
Conversely, immature dendritic cells secrete very few proteins, as shown on figure 1. Among 
those, some proteins were quite not surprising, as the metalloproteases (e.g. MMP12) [18], which 
are likely used by the DC to make their way in and out the peripheral tissues. However, we were 
quite surprised to detect some proteins which can be viewed as extracellular sensors, such as 
lipocalin 2 and the YM1 protein. Figure 2  shows the mass spectrometry spectra securing these 
identifications (detailed data are shown on table 1) .  Lipocalin 2 is known to bind iron-loaded 
bacterial siderophores [29], while the YM1 protein is known to bind chitin and its derivatives, as 
well as heparan sulfates [30, 31]. We reasoned that these proteins could be synthetized to act as 
extracellular sensors of microbial products, using the same mechanism as soluble CD14 with 
LPS. To test this hypothesis, we checked the activation of DC by the ligands of these two 
proteins, namely bacterial siderophores and chitosan. 
 
Chitosan, but not bacterial siderophores, induce partial activation of dendritic cells 
 
To test this hypothesis, immature dendritic cells produced in culture were put in contact either 
with bacterial siderophores or with chitin degradation products, and the activation was measured 
by increased membrane expression of MHC class II molecules, stimulation with LPS being used 
as a positive control. Initial results (not shown) were obtained by co-culturing the DC with chitin 
powder and a chitinase, thereby mimicking the situation existing in vivo with fungi and protozoa. 
In order to gain further insight into this action, we also used various commercially-available 
chitin degradation products (chitosans). The results, shown on figure 3  clearly demonstrate that 
siderophores do not induce any DC activation, while chitin degradation products could induce 
this activation. We also tested whether a combination of siderophores and LPS, also offering a 
better mimick of the situation occurring with Gram-negative bacteria.  
This combination of LPS and siderophores, tested in various quantitative ratios, did not induce 
any modulation of differentiation compared to LPS alone, neither at the level of membrane 
activation nor at the cytokine levels (data not shown).  
Conversely, chitosan of medium molecular mass (greater than 40 kDa) but neither chitin alone 
nor oligochitosan ( lower than 10 kDa) was able to induce activation at the membrane level. This 
is in contrast with other polysaccharides [5] for which even oligosaccharides are efficient 
activators of DC.  
To gain further insight into this dendritic cell activation, we tested the membrane expression of 
the coreceptors, such as CD 80 and CD 86. The results, shown on figure 4, demonstrate that 
chitosan is able to induce a complete membrane activation of DC, including both the MHC class 
II and the coreceptors molecules. This remained true whether we used DC produced or not 
within the presence of or without FLT3-L. 
 
Activation of DC by chitosan uses TLR4 
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As chitosan is fairly different in its structure from other well-known activators of dendritic cells 
(for example it is strongly cationic, while most other DC activators are strongly anionic), it was 
of interest to determine whether the DC activation proceeded via a TLR-dependent mechanism 
or not, and if yes, which TLR was implicated. From the structure of chitosan, we selected TLR4 
as a primary candidate. TLR4 was of special interest, as heparan sulfate, which is the other 
ligand of YM1, is known to activate DC via a TLR4-dependent mechanism [7]. To test this 
hypothesis, DC derived from TLR4-deficent mice, were incubated in the presence of chitosan, 
LPS or pansorbin. The results, shown on figure 5, demonstrate that chitosan induced activation is 
impaired in TLR4 -/- DC. 
. 
 
Activation of DC by chitosan does not induce cytokine production 
 
Classical activators of DC induce both membrane activation and cytokine release [32]. We 
therefore tested the release of various cytokines upon activation with chitosan. As shown on 
figure 6, none of the tested cytokines were secreted upon chitosan treatment even when the 
incubation was prolonged to 48 hours and, whether we used DC produced or not in the presence 
ofwith or without FLT3-L (Figure 7) (ajouter aussi sur la figure les temps longs de stimulation, 
requete du referee). This showed in turn that the activation induced by chitosan cannot be due to 
bacterial products contaminating the preparation (e.g. LPS or glycolipids), as these products 
would induce both membrane activation and cytokine release. To cross check whether this 
absence of detected cytokines could be an immunological artefact  induced by the presence of 
chitosan in the culture medium, we added chitosan to the supernatant of LPS-activated dendritic 
cells just before the immunoassay for cytokines secretion. The results were similar with and 
without added chitosan indicating that chitosan did not impair the measurement of the cytokines. 
Further crosscheck was made by proteomics techniques, which do not use antibodies. The 
results, shown on figure 8, indicate the presence of TNF spots in LPS-activated cells only, but 
neither in unstimulated cells nor in chitosan-stimulated cells.  This absence of cytokine 
production turned us to check the functionality of chitosan-activated dendritic cells 
 
Chitosan-activated DC do not stimulate T cells 
 
In order to check the functionality of chitosan-activated DC, we decided to use the mixed 
lymphocyte reaction. Figure 9 shows that chitosan-activated dendritic cells, as well as immature 
DC, are unable to stimulate T cells, while LPS-activated dendritic cells stimulate T cells. In the 
case of double stimulation by both chitosan and LPS, the activated dendritic cells were able to 
stimulate T cells, showing that the chitosan-stimulated cells are not really anergic cells. At this 
stage, we decided to test the cytokine profile of such mixed T lymphocyte-DC cultures. This was 
intended to detect a partial activation of T cells, resulting in cytokine production but not cell 
proliferation. As shown in figure 10, mixed cultures of T lymphocytes with LPS-activated DC 
cells produced Il-10, IL-6, interferon gamma and IL-2, showing the typical activation of T cells 
(IL2 production) with the expected Th1 profile (interferon gamma producing). Oppositely, 
mixed cultures of T lymphocytes with chitosan-activated T cells produced neither TGF beta, nor 
IL-10, IL-4, IL-12  and IL-6, and both interferon gamma and IL-2 secretion remained at a very 
low level, although higher than the one obtained when using unstimulated cells 
As DCs  are not described to produce IL-2 nor interferon gamma, it can be reasonably inferred 
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that these cytokines arise from the T cells. In this case, the low production of these cytokines in 
mixed cultures of T cells with chitosan-activated T cells suggests that the T cells are not really 
anergic under these conditions. However, the lack of proliferation and of CD69 activation 
suggests that T cells are at most very weakly stimulated  by chitosan-activated T cells. 
 
Chitosan does not prevent restimulation of DCs, but reorient it 
 
At this point, it could be argued that chitosan, when present alone on dendritic cells, induces a 
general block in cytokine production or even a general block in the secretory pathway. To test 
this hypothesis, we treated dendritic cells first for 24 hours with various doses of chitosan, then 
with LPS. The results, displayed  on figure 11, show that chitosan does not block cytokine 
production. Surprisingly, we also observed a chitosan-dependent change in the IL10/IL12 
balance in the cytokinic profile of stimulated dendritic cells.  
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4. Discussion 
 
A very active area of research aims to understand how dendritic cells are activated or made silent 
by various signals. Most of the research effort has been devoted to the identification of DC-
activators, or danger signals [1, 2], and it is only recently that some insights have been given on 
how dendritic cells keep immunologically silent when facing apoptotic bodies [33].  
With the multiplicity of exogenous and endogenous danger signals identified to date, it appears 
that dendritic cells are very easily activated, and able to trigger an efficient immune response. 
This poses in turn the question on how pathogens can still be successful. While acute bacterial 
infections can be seen as the result of a speed race between pathogen multiplication and immune 
response, the persistence of chronic infections with slowly-dividing pathogens sets the question 
on how the pathogens can control the immune response down to a level where the chronic 
infectious state is reached. While many of such pathogens hide themselves inside the host cells, 
some (e.g. fungi, some protozoans) do not, and have to face the immune system during their 
lifetime in the host organism. Perturbing the DC differentiation and/or maturation is a strategy 
that is obviously followed by some slowly-dividing pathogens, as shown by the examples of M. 
leprae [34] and P. falciparum [35]. While the mechanism used by M. leprae is still not clear, 
recent work has shown that red blood cells infected by P. Falciparum are able to prevent both DC 
activation and the triggering of a Th1 response [35]. It has been shown that this effect can be 
mediated by the binding of an endogenous glycan, chondroitin sulfate A, to the surface of 
infected red blood cells [35].  
Our results on chitosan stand clearly in the same trend, although they are slightly different. 
While RBC-bound chondroitin sulfate suppresses both membrane activation and cytokine 
production by DC, chitosan does induce membrane activation but no cytokine production, 
resulting in inefficient T-cell priming.  
Such uncoupling of membrane activation and cytokine production by DC is not common, 
however it has been described on a DC cell line [36], suggesting that the two events are not fully 
linked and can be uncoupled. More recently it has been described that complement receptors are 
able to achieve such a partial activation, and this has been advocated to result into DC anergy  
[33]. While our T-cell activation experiments show that this is not real anergy in our case, 
activation-induced DC death by apoptosis also suggests that such a partial activation will shift 
the balance toward a less efficient immune system, just by decreasing the number of DC able to 
present antigens efficiently.  
On a more mechanistic point of view, the situation of complex glycans as DC modulators 
appears quite complex. Lipid-containing glycans (e.g. LPS, Lipoteichoic acids) are well known, 
fully potent DC activators, following the hydrophobic activator theory [37]. However, lipid-free 
complex glycans appear to induce very various phenotypes on DC, and this seems to depend on 
several parameters. 
The first one seems to be the type and size of the potential activating complex (e.g. particle of 
various sizes vs. soluble glucide). For example, large chitin particles have no effect on DC, while 
medium-size chitin particles have a stimulatory effect [38] and soluble chitosan has either an 
inhibitory effect at medium size, or no effect at all at low size (our present work). Another 
example of such an effect is represented by chondroitin sulfate, but in the reverse order. Soluble 
chondroitin sulfate mediates at least a membrane activation on DC [6] during a long term 
exposure, but not during a short exposure [7], while the presentation of chondroitin sulfate at the 
surface of a red blood cell induces DC inhibition [35]. 
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While keeping with soluble glycans only, the length of the sugar also appears to be a critical 
activation parameter. For example, short chains of hyaluronan have been shown to fully activate 
DC, while longer chain do not [5]. This has led to the theory in which only fragments of these 
complex saccharides can act as DC activators, and this has been interpreted as a mechanism for 
sensing tissue damage [7]. This theory has been extended to several glucan-containing activators, 
including bacterial products [37] leading to the idea that partial degradation of the cell walls or 
extracellular matrix complex glucans will increase the reaction of DC. The chitosan example, 
however, is a clear exception to this rule. Chitosan is produced during the degradation and/or 
remodeling of the chitin exoskeleton, and our work shows that this degradation product induces 
an incomplete and therefore inefficient DC reaction.  
Taken together with the literature, our results show that subtle differences in the glycans can lead 
to fairly different DC responses. For example, related anionic glucides, e.g. chondroitin sulfate, 
hyaluronic acid and heparan sulfate, have quite different effects on DC. It could be argued that 
this could be due to differences in the membrane receptors and/or soluble co-receptors 
(analogous to TLR4 + CD14 for LPS) sensing the various glucans. However, the situation seems 
more complex than that, as heparan sulfate, LMW hyaluronan (full DC activators) and chitosan 
(partial activator) share a common membrane receptor, TLR4, while heparan sulfate and chitosan 
share in addition a common soluble binding protein, YM1 [30, 31]. It is not known at the present 
time whether YM1 is an obligatory co-receptor for these ligands, but it appears quite likely that 
YM1 by itself does not orient the fate of dendritic cells. As a matter of facts, various YM1 
ligands induce different fates for dendritic cells: heparan sulfate leads to a Th1 response[7], 
simvastatin a Th2 response [39], and chitosan an inefficient response (this work). However, even 
if the precise role of YM1 in the response of dendritic cells to sugar ligands is unclear so far, the 
rationale of YM1 as a co-receptor led us to investigate the response of DC to chitosan and to find 
this peculiar partial activation. Maybe the most intriguing feature of this  chitosan response is its 
sensitivity to the context. While LPS alone induces the classical Th1 response. chitosan alone 
induces a phenotypic activationpartia without secretion of cytokine, thusl and inefficient to 
stimulate T cells effectively, at least at the scale of a immune system responseactivation.  
 
When integrating those results at a higher level, it must be kept in mind that we tested CD8+ 
dendritic cells. The results obtained on a whole organism upon chitosan administration [40] 
showing high IL10 levels, may result, at least in part, from the response of CD8- dendritic cells 
[41]. Another fungal cell wall component, zymosan [42], also induces a weak Th2 response of 
dendritic cells. As zymosan engages TLR2 and chitosan TLR4, which are known to be the major 
TLR engaged by fungi [43], this may explain, at least in part, the fair resistance of fungi to the 
immune system.  
 
 
 
 
Acknowledgments. 
 
Anne Marie Laharie is thanked for performing the cytokine immunoassays, Anne Papaioannou for expert 
assistance in cell culture, Sylvie Luche is thanked for her expert work in proteomics., and Jean Marc Strub 
for help in the preparation of this manuscript.   
David Gray (London) is thanked for the gift of the GM-CSF-producing cell line.  
A grant from the Région Rhone Alpes to TR is also acknowledged 



 14

 
5. References 
 
 
[1] Underhill, D.M. and Ozinsky, A. (2002) Toll-like receptors, key mediators of microbe 
detection. Curr Opin Immunol.14,103-10 
 
[2] Gallucci, S., Lolkema, M. and Matzinger, P. (1999) Natural adjuvants, endogenous activators 
of dendritic cells. Nat Med. 5,1249-1255. 
 
[3] Curtsinger, J.M., Johnson, C.M. and Mescher, M.F. (2003) CD8 T cell clonal expansion and 
development of effector function require prolonged exposure to antigen, costimulation, and 
signal 3 cytokine. J Immunol.171, 5165-5171. 
 
[4] Kawai, T. and Akira, S. (2005) Pathogen recognition with Toll-like receptors. 
Curr Opin Immunol. 17,338-344 
 
[5] Termeer, C., Benedix, F., Sleeman, J., Fieber, C., Voith, U., Ahrens, T., Miyake, K., 
Freudenberg, M., Galanos, C. and Simon, J.C. (2002) Oligosaccharides of Hyaluronan activate 
dendritic cells via toll-like receptor 4. J Exp Med.195, 99-111 
 
[6]  Yang, R., Yan, Z., Chen, F., Hansson, G.K. and  Kiessling, R. (2002) Hyaluronic acid and 
chondroitin sulphate A rapidly promote differentiation of immature DC with upregulation of 
costimulatory and antigen-presenting molecules, and enhancement of NF-kappaB and protein 
kinase activity. Scand J Immunol. 55, 2-13. 
 
[7] Johnson, G.B., Brunn, G.J., Kodaira, Y. and Platt, J.L. (2002) Receptor-mediated monitoring 
of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. 
J Immunol.168, 5233-5239. 
 
[8] Tada, H., Nemoto, E., Shimauchi, H., Watanabe, T., Mikami, T., Matsumoto, T., Ohno, N., 
Tamura, H., Shibata, K., Akashi, S., Miyake, K., Sugawara, S. and Takada, H. (2002) 
Saccharomyces cerevisiae- and Candida albicans-derived mannan induced production of tumor 
necrosis factor alpha by human monocytes in a CD14- and Toll-like receptor 4-dependent 
manner. Microbiol Immunol. 46, 503-512.  
 
[9] Wang, J.E., Warris, A., Ellingsen, E.A., Jorgensen, P.F., Flo, T.H., Espevik, T., Solberg, R., 
Verweij, P.E. and Aasen, A.O. (2001) Involvement of CD14 and toll-like receptors in activation 
of human monocytes by Aspergillus fumigatus hyphae. Infect Immun. 69, 2402-2406. 
 
[10] Bellocchio, S., Montagnoli, C., Bozza, S., Gaziano, R., Rossi, G., Mambula, S.S., Vecchi, 
A., Mantovani, A., Levitz, S.M. and Romani, L. (2004) The contribution of the Toll-like/IL-1 
receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. 
J Immunol.172, 3059-3069. 
 
[11] Bittencourt, V.C., Figueiredo, R.T., da Silva, R.B., Mourao-Sa, D.S., Fernandez, P.L., 
Sassaki, G.L., Mulloy, B., Bozza, M.T. and  Barreto-Bergter, E. (2006) An alpha-glucan of 



 15

Pseudallescheria boydii is involved in fungal phagocytosis and Toll-like receptor activation. 
J Biol Chem. 281, 22614-22623 
 
[12] Romani, L., Montagnoli, C., Bozza, S., Perruccio, K., Spreca, A., Allavena, P., Verbeek, S., 
Calderone, R.A., Bistoni, F. and Puccetti, P. (2004) The exploitation of distinct recognition 
receptors in dendritic cells determines the full range of host immune relationships with Candida 
albicans. Int Immunol.16,149-161 
 
[13] Chieppa, M., Bianchi, G., Doni, A., Del Prete, A., Sironi, M., Laskarin, G., Monti, P., 
Piemonti, L., Biondi, A., Mantovani, A., Introna, M.and  Allavena, P. (2003) Cross-linking of 
the mannose receptor on monocyte-derived dendritic cells activates an anti-inflammatory 
immunosuppressive program. J Immunol. 171, 4552-4560 
 
[14] Verhasselt, V., Buelens, C., Willems, F., De Groote, D., Haeffner-Cavaillon, N. and  
Goldman, M. (1997) Bacterial lipopolysaccharide stimulates the production of cytokines and the 
expression of costimulatory molecules by human peripheral blood dendritic cells, evidence for a 
soluble CD14-dependent pathway. J Immunol.158, 2919-2925. 
 
[15] Kennedy, M.N., Mullen, G.E., Leifer, C.A., Lee, C., Mazzoni, A., Dileepan, K.N. and  
Segal,D.M.  (2004) A complex of soluble MD-2 and lipopolysaccharide serves as an activating 
ligand for Toll-like receptor 4. J Biol Chem. 279, 34698-34704 
 
[16] Berthier, R., Martinon-Ego, C., Laharie, A.M. and Marche, P.N. (2000) A two-step culture 
method starting with early growth factors permits enhanced production of functional dendritic 
cells from murine splenocytes. J Immunol Methods. 239, 95-107 
 
[17] Faure, M., Villiers, C.L. and Marche, P.N. (2004) Normal differentiation and functions of 
mouse dendritic cells derived from RAG-deficient bone marrow progenitors. Cell Immunol. 228, 
8-14. 
 
[18] Chevallet, M., Diemer, H., Van Dorsselaer, A. Villiers, C. and Rabilloud, T. (2006) Toward  
a better analysis of secreted proteins, the example of the myeloid cells secretome. Proteomics 7, 
1757-1770. 
 
[19] Young, I.G. and Gibson, F. (1979) Isolation of enterochelin from Escherichia coli. Methods 
Enzymol. 56, 394-398. 
 
 [20] Rabilloud, T., Valette, C. and Lawrence, J.J. (1994) Sample application by in-gel 
rehydration improves the resolution of two-dimensional electrophoresis with immobilized pH 
gradients in the first dimension  Electrophoresis 15, 1552-1558 
 
[21] Rabilloud, T., Adessi, C., Giraudel, A. and Lunardi, J. (1997) Improvement of the 
solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. 
 Electrophoresis 18, 307-316 
 
[22] Luche, S., Diemer, H., Tastet, C., Chevallet, M., Van Dorsselaer, A., Leize-Wagner, E. and 
Rabilloud, T. (2004) About thiol derivatization and resolution of basic proteins in two-



 16

dimensional electrophoresis. Proteomics  4, 551-561. 
 
[23] Chevallet, M., Diemer, H., Luche, S., van Dorsselaer, A., Rabilloud, T. and Leize-Wagner, 
E. (2006) Improved mass spectrometry compatibility is afforded by ammoniacal silver staining. 
Proteomics 6, 2350-2354. 
 
[24] Gharahdaghi, F., Weinberg, C.R., Meagher, D.A., Imai, B.S. and Mische, S.M.  (1999) 
Mass spectrometric identification of proteins from silver-stained polyacrylamide gel, a method 
for the removal of silver ions to enhance sensitivity. Electrophoresis 20, 601-605 
 
[25] Richert, S., Luche, S., Chevallet, M., Van Dorsselaer, A., Leize-Wagner, E. and Rabilloud 
T. (2004) About the mechanism of interference of silver staining with peptide mass 
spectrometry. 
Proteomics. 4, 909-916 
 
[26] Rabilloud, T., Strub, J.M., Luche, S., van Dorsselaer, A., Lunardi, J. (2001) A comparison 
between Sypro Ruby and ruthenium II tris (bathophenanthroline disulfonate) as fluorescent 
stains for protein detection in gels Proteomics 1, 699-704. 
 
[27] Perkins, D.N., Pappin, D.J., Creasy, D.M. and Cottrell, J.S. (1999) Probability-based protein 
identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 
3551-3567 
 
[28] Peng, Q., Li, K., Patel, H., Sacks, S.H. and Zhou, W. (2006) Dendritic cell synthesis of C3 
is required for full T cell activation and development of a Th1 phenotype. J Immunol.176, 3330-
3341. 
 
[29] Goetz, D.H., Holmes, M.A., Borregaard, N., Bluhm, M.E., Raymond, K.N. and Strong, R.K. 
(2002) The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-
mediated iron acquisition. Mol Cell. 10,1033-1043. 
 
[30] Owhashi, M., Arita, H. and Hayai, N. (2000) Identification of a novel eosinophil 
chemotactic cytokine (ECF-L) as a chitinase family protein. J Biol Chem. 275, 1279-1286 
 
[31] Chang, N.C., Hung , S.I., Hwa, K.Y., Kato, I., Chen, J.E., Liu, C.H. and Chang, A.C. (2001) 
A macrophage protein, Ym1, transiently expressed during inflammation is a novel mammalian 
lectin. J Biol Chem. 276,17497-17506 
 
[32] de Saint-Vis, B., Fugier-Vivier, I., Massacrier, C., Gaillard, C., Vanbervliet, B., Ait-Yahia, 
S., Banchereau, J., Liu, Y.J., Lebecque, S. and Caux, C. (1998) The cytokine profile expressed 
by human dendritic cells is dependent on cell subtype and mode of activation. 
J Immunol. 160,1666-1676. 
 
[33]  Behrens, E.M., Sriram, U., Shivers, D.K., Gallucci, M., Ma, Z., Finkel, T.H. and Gallucci, 
S. (2007) Complement receptor 3 ligation of dendritic cells suppresses their stimulatory capacity. 
J Immunol. 178, 6268-6279 
 



 17

[34] Murray, R.A., Siddiqui, M.R., Mendillo, M., Krahenbuhl, J. and Kaplan, G. (2007) 
Mycobacterium leprae inhibits dendritic cell activation and maturation. J Immunol. 178, 338-
344.  
 
[35] Elliott, S.R., Spurck, T.P., Dodin, J.M., Maier, A.G., Voss, T.S., Yosaatmadja, F., Payne, 
P.D., McFadden, G.I., Cowman , A.F., Rogerson, S.J., Schofield, L., Brown GV. (2007) 
Inhibition of dendritic cell maturation by malaria is dose dependent and does not require 
Plasmodium falciparum erythrocyte membrane protein 1. Infect Immun. 75, 3621-3632 
 
[36] Jorgensen, T.N., Haase, C. and Michelsen, B.K. (2002) Treatment of an immortalized APC 
cell line with both cytokines and LPS ensures effective T-cell activation in vitro. Scand J 
Immunol. 56, 492-503 
 
[37] Seong, S.Y. and Matzinger, P. (2004) Hydrophobicity, an ancient damage-associated 
molecular pattern that initiates innate immune responses. Nat Rev Immunol. 4, 469-478 
 
[38] Shibata, Y., Metzger, W.J. and Myrvik, Q.N. (1997) Chitin particle-induced cell-mediated 
immunity is inhibited by soluble mannan, mannose receptor-mediated phagocytosis initiates IL-
12 production. J Immunol. 159, 2462-2467 
 
[39] Arora, M., Chen, L., Paglia, M., Gallagher, I., Allen, J.E., Vyas, Y.M., Ray, A. and Ray ,P. 
(2006) 
Simvastatin promotes Th2-type responses through the induction of the chitinase family member 
Ym1 in dendritic cells. 
Proc Natl Acad Sci U S A. 103, 7777-7782 
 
[40] Porporatto, C., Bianco, I.D. and Correa, S.G. (2005) Local and systemic activity of the 
polysaccharide chitosan at lymphoid tissues after oral administration. J Leukoc Biol. 78, 62-69. 
 
[41] Maldonado-Lopez, R., De Smedt, T., Michel, P., Godfroid, J., Pajak, B., Heirman, C., 
Thielemans, K., Leo, O., Urbain, J., Moser, M. (1999) CD8alpha+ and CD8alpha- subclasses of 
dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med.189, 587-592 
 
[42] Dillon, S., Agrawal, S, Banerjee, K., Letterio, J., Denning, T.L., Oswald-Richter, K., 
Kasprowicz, D.J., Kellar, K., Pare, J., van Dyke, T., Ziegler, S., Unutmaz, D. and Pulendran, B.  
(2006) Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting 
cells and immunological tolerance. J Clin Invest.116, 916-928. 
 
[43] Lewitz, S.M. (2004) Interactions of Toll-like receptors with fungi. Microbes Infect. 6,1351-
1355. 
 



 18

 
 
 
Figure 1: Proteins secreted by dendritic cells 
15 ml of medium conditioned by 1 million dendritic cells per ml were concentrated by 
precipitation. The proteins were then analyzed on two-dimensional gels (3-10 pH gradient in first 
dimension) and stained with silver�1A: proteins secreted by immature dendritic cells. 1B 
proteins secreted by dendritic cells activated with 1µg/ml LPS 
BSA: bovine serum albumin, arising from the serum used for DC cultivation until the secretion 
step. Prx1: peroxiredoxin 1 (SwissProt P35700); IL1-RA: interlukin1 receptor antagonist (SP 
P25085); TNF: TNF alpha (SP P06804); MMP12: macrophage metalloelastase (MMP12) (SP 
P34960); C3: mouse complement C3 protein, N-terminal fragment (SP P01027); IL12: 
interleukin 12 beta chain (SP P43432); Lcal2: lipocalin2 (SP P11672); YM1: chitinase3 like 
protein3 (SP 035744)  
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Figure 2: Identification of lipocalin2 and YM1 protein by mass spectrometry 
YM1 was identified by MS/MS with 14 different peptides (composite Mascot score 721) , and 
the MS/MS spectra for two of them are shown on panel A. Lipocalin2 was identified by peptide 
mass fingerprinting (Mascot score 131, sequence coverage 49%, 9 different peptides), and the 
corresponding spectrum is shown on panel B. On this panel, the italicized masses correspond to 
trypsin autolysis peptides. 



 20

 
Figure 3: Activation of immature dendritic cells. 
DCs were incubated in the culture medium supplemented with the different compounds for 17 
hours at 37°C, and then DC activation was assessed by double labelling using fluorescent 
monoclonal anti-Class II and anti-CD11c molecules. Chitosan (D) and LPS (E) induced 
activation of DC compared to normal incubation medium (A), to Chitine (B) or to N,N’ 
diacetylchitobiose (C). (F) represents the percentage of DC activation in the presence of various 
compounds: immature and activated cells were characterized as low and high class II molecules 
(as shown A box 1 and box 2 respectively), the percentage of activation of DC was calculated 
from the percentage of the activated cells assuming that the value obtained with the normal 
incubation medium (A) gave the 0% of activation and the one with LPS (E) gave the 100 of 
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activation.  
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Figure 4: Modification of DC phenotype after incubation in the presence of chitosan. 
DCs were incubated in the culture medium supplemented with the different compounds for 17 
hours at 37°C, then DC phenotype was assessed by double labelling using fluorescent 
monoclonal anti-Class II (upper panels) or anti-CD86 (lower panels). The addition of chitosan 
(grey lines, right panels) increase the expression of Class II and CD86 molecules at the surface 
of dendritic cells as compared to normal culture conditions (black filled curve), this results are 
comparable to what is observed in the presence of LPS (left panels). 
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Figure 5: Role of TLR4 in the activation of dendritic cells by chitosan. 
Dendritic cells were prepared from progenitors isolated from from wild type C57BL/6 (A) and 
TLR4-/- (B) mice and incubated with chitosan for 17 hours at 37°C; then expression of Class II 
molecules was measured to assess the activation. As seen from the disappearance of the low 
MHC II peak, chitosan (CHIT) increase the expression of class II on the wild type C57BL/6 and 
not on TLR4-/- DCs. Similar results were obtained in the presence of LPS whereas pansorbin 
(PSB) activated both type of DC. NA stands for no activator. 
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Figure 6: Cytokines secretion of dendritic cells after incubation in the presence of chitosan (chit 
column) and comparison induced by LPS or pansorbin (PSB). 
DCs were incubated with chitosan, LPS or PSB for 17hours at 37°C and the supernatants were 
measured for their content in cytokines: IL12, IL10, IL1beta, IL6 and TNF alpha and Il6. Similar 
values were obtained at 48 hours (data not shown). 
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Figure 7: 
 
 DCs were cultured in the presence or not of FLT3-L and incubated with chitosan or LPS at 37°C 
for 24 hours. The supernatants were measured for their content in IL-12 and IL-6  (in pg/ml) by 
ELISA 
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Figure 8: TNF identification by proteomics techniques 
25ml of conditioned media were concentrated and analyzed by two-dimensional electrophoresis 
techniques, as shown on figure 1. Only the inset zone shown on figure 1B is displayed. 
7A: immature dendritic cells; 7B dendritic cells activated by 1 µg/ml LPS; 7C: dendritic cells 
activated by 40µg/ml chitosan. The proteins identified in the inset zone are the following: eIF5A: 
eukaryotic translation initiation factor 5A (UniProt number P63242); TNF: TNF alpha precursor, 
C terminal fragment (P06804); MNPH1: mago-nashi protein homolog 1 (Q9CQL1).  
Three MS/MS spectra identifying the TNF protein (composite Mascot score 297)  are shown in 
panel D. The data for the other two proteins are shown in supplementary material.  
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Figure 9: Activation of T lymphocytes by chitosan-activated dendritic cells 
DCs were incubated with chitosan or/and LPS for 17hours at 37°C, then DC were washed and 
treated with mitomycin as described in Material and Methods. DC were then added to T 
lymphocytes and incubated for the indicated time. T lymphocytes activation was evaluated by 
measurement of CD69 expression (upper panels) and by their proliferation was measured by the 
Uptiblue fluorescence (lower panel). Results correspond to 3, 4 and 5 days of incubation of 
10 000 DC together with 10 000 T lymphocytes. 
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Figure 10: Cytokines secreted during T lymphocytes activation by chitosan-activated dendritic 
cells 
DCs were incubated together with T lymphocytes as described for Figure 8, then the 
supernatants were collected and their content in cytokines were measured by ELISA, Results 
correspond to 4 days of incubation of 10 000 DC together with 10 000 T lymphocytes.  
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Figure 11: Modification of cytokine production balance by chitosan 
DCs were incubated with chitosan at the indicated coincentrations (in µg/ml) at 37°C for 24 
hours, then, when indicated, LPS  (1 µg/ml) was added to the culture and cells were further 
incubated at 37°C for 24 hours. The supernatants were collected and the cytokines IL-12 and IL-
10 were quantified by ELISA. 
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