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Internal frequency conversion extreme ultraviolet interferometer using
mutual coherence properties of two high-order-harmonic sources

S. Dobosz,® H. Stabile,* A. Tortora,* P. Monot,* F. Réau,* M. Bougeard,* H. Merdji,*
B. Carré,! Ph. Martin,* D. Joyeux,2 D. Phalippou,2 F. Delmotte,” J. Gautier,” and

R. Mercier?

'CEA, IRAMIS, Service des Photons Atomes et Molécules, F-91191 Gif- sur-Yvette, France
?|_aboratoire Charles Fabry de I’Institut d’Optique, CNRS et Université Paris Sud, Campus Polytechnique,

RD 128, F-91127 Palaiseau cedex, France

(Received 30 April 2009; accepted 11 October 2009; published online 3 November 2009)

We report on an innovative two-dimensional imaging extreme ultraviolet (XUV) interferometer
operating at 32 nm based on the mutual coherence of two laser high order harmonics (HOH)
sources, separately generated in gas. We give the first evidence that the two mutually coherent HOH
sources can be produced in two independent spatially separated gas jets, allowing for probing
centimeter-sized objects. A magnification factor of 10 leads to a micron resolution associated with
a subpicosecond temporal resolution. Single shot interferograms with a fringe visibility better than
30% are routinely produced. As a test of the XUV interferometer, we measure a maximum electronic
density of 3 10%° ¢cm™ 1.1 ns after the creation of a plasma on aluminum target. © 2009 American

Institute of Physics. [doi:10.1063/1.3257676]

I. INTRODUCTION

Interferometry in the visible domain has been exten-
sively used to directly access the electronic density in laser-
produced plasmas.1 However, mostly due to refraction in
high density gradients and reflection on overcritical
regions, only electron densities typically lower than
10 cm™3referred to as under critical-can be probed with
visible light. Since the critical density scales as A\~2, whereas
refraction increases with \, there is a strong interest for
transferring plasma interferometry in the extreme ultraviolet
(XUV) domain, where much higher densities can be probed.
In addition, for probing fast-evolving plasmas such as
plasma produced from picosecond or femtosecond laser
pulses, the probe pulse duration must be even shorter to get
snapshots of the density distribution at different times of the
plasma evolution. In this respect, a transient inversion soft
X-ray laser,® which delivers pulses of a few picosecond du-
ration, makes possible picosecond x-ray laser interferometry
of dense plasmas as demonstrated in Refs. 4—6. The high
order harmonic (HOH) generation, either in gas or in plasma,
offers another type of ultrashort-femtosecond down to
attosecond-and flexible XUV source for imaging. In addi-
tion, it is naturally synchronized with the driving laser pulse,
so that pump-probe type experiments with a (sub)femtosec-
ond time resolution are greatly facilitated.

The real challenge with interferometry in the XUV do-
main arises from the difficulty to produce two mutually co-
herent beams, by either amplitude or wavefront division of
one single XUV beam. In the first case, the manufacture of
good quality XUV beam splitters is very demanding. In the
second case, the XUV source should be highly spatially co-
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herent. Furthermore, in both cases, the dividing optic edges
can twist the fringe quality.7 In general, the manipulation and
transport of the XUV beam make it necessary to design dedi-
cated optics—e.g., multilayer mirrors—which depart from
grazing incidence geometry and which have thus a limited
reflectivity. To save these advanced and expensive develop-
ments, the challenge is the design of an interferometer made
of a minimum number of XUV optics. To that aim, a new
type of interferometer has been introduced, without any
beam division in the XUV.2° In this new scheme, the two
mutually coherent XUV sources were obtained by HOH gen-
eration, from two mutually coherent laser pulses focused in
one and the same generating medium. Based on the highly
coherent, laser-driven high harmonic generation, the fre-
quency conversion from infrared (IR) to XUV takes place
inside the interferometer, avoiding the use of XUV beam
splitters. The two XUV sources, i.e., the laser pulses, could
be either spatially separa’[ed8 or temporally delayed.9 Using
HOH (11th order) of a Ti:sapphire (Ti:Sa) laser generated in
gas, previous work performed by Descamps et al.2 have re-
ported the interferometric measurement of electron densities
higher than 2x10%° cm™. These techniques have demon-
strated the capability of unprecedented time resolution, of
few 10 fs when probing with narrow band coherent XUV
(200 fs demonstrated in Ref. 9). While the scheme with two
pulsed gas jets, spatially separated, has the potential for two-
dimensional (2D) imaging of plasma, it was not fully ex-
ploited in Ref. 8 where interferograms resulted from projec-
tion in the far field, i.e., did not really give an image of the
plasma object. Note that the generation of the two mutually
coherent sources in the same gas medium puts constraints on
the interferometer geometry—-the two arms are very close to
each other—thus on the size of the object which can be
probed.

© 2009 American Institute of Physics
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FIG. 1. (Color online) Experimental setup.

In this paper, we present an innovative XUV interferom-
eter free of XUV beam splitter specially based on HOH and
designed for 2D imaging with a micron spatial resolution. In
contrast with the previous schemes, the two mutually coher-
ent XUV sources are now produced in two independent spa-
tially separated gas jets, allowing for probing centimeter-
sized objects. In this paper, we demonstrate for the first time
that the two HOH sources generated in two different gas jets
are mutually coherent, validating the basis concept of the
instrument. We measure the coherence time of the HOH
sources and show in our experimental conditions that the
HOH signal level is sufficient to overcome the self-emission
of a plasma generated by irradiation of solid aluminum target
at maximum intensity of 3 10'® W/cm?, 50 fs laser pulse
duration. As an ultimate test, we measure a maximum elec-
tronic density of 3x10%° cm3 1.1 ns after irradiation at
3x10'® W/cm™? of the target.

Il. EXPERIMENTAL SETUP

The XUV interferometer, a schematic layout shown in
Fig. 1, was set up on the LUCA laser facility (SLIC facility
at CEA-Saclay, Ti:Sa laser at 800 nm, 50 mJ in 50 fs at
20 Hz). In the first stage, the division and frequency conver-
sion stage, the IR beam is focused with a f/=1 m lens and
then split into two identical arms, i.e., two mutually coherent
pulses, each containing 1-2 mJ. The two arms are then sepa-
rately focused in two identical pulsed argon gas jet, respec-
tively, under maximum intensity of 2 x 10 W/cm?, where
HOH generation takes place. This results in two phase-
locked HOH sources which are optimized, and XUV beams
which form the two arms of the interferometer following the
triangular geometry presented in Fig. 1. The dephasing ob-
ject to be probed, for example a dense plasma, can be easily
inserted with only weak constraints on its size, at distance
d=10 cm from one of the XUV point sources, thus defining
the object plane of the imaging optics. The high harmonic
beam passing through the object is defined as the sample
arm. The second one is called reference arm.

In a second stage, the recombination stage, the two arms
are redirected by reflection on two faces of a prism (top
angle y=12°): the role of the redirecting prism is to produce
two virtual XUV sources and one virtual object, in such a
way that the beams from the virtual sources cross and inter-
fere onto the virtual object, as illustrated in Fig. 2.

In the third last stage, the imaging stage, the virtual ob-
ject and fringe pattern are imaged through an ellipsoidal mir-
ror in the image plane where is the detector. Let us give some

Rev. Sci. Instrum. 80, 113102 (2009)

real XUV
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real optical

axis for imagery

source

FIG. 2. (Color online) Principle of interference construction. The virtual
sources, S; and S; from XUV point sources S; and S, (not reported here for
clarity). Part of the reference arm is not reported here and angle « is larger
than in reality for more readability. Virtual sources at a distance d from the
object plane, act as Young’s sources and generate interferences. A schematic
view of the interference in the virtual object plane is reported, where the
object and fringes are superimposed. Note that the virtual object/
interferogram plane is centered onto the optical axis of the imaging device.
Therefore, the real object is centered onto the image of the real optical axis
into the reflecting face (angle ), which is not the case of the real source
(angle 2+3).

more details on the second recombination stage in Fig. 2.
Each XUV point source (noted S; on Fig. 2) radiates a
spherical wave, which is reflected onto the prism surface
facing it, thus generating two virtual image sources. In the
arrangement, the physical sources are placed symmetrically
with respect to the reflecting prism bisector (which is also
the imaging device optical axis). They are adjusted in such a
way that the ray is incident onto the reflecting surface under
2+5 (grazing), where «a is a small angle (<1 mrad). The
two virtual sources are therefore separated by distance aD,
where D is the source to prism edge distance. Now, these
virtual sources act as Young’s sources, and generate interfer-
ences where the rays cross. The key principle of the instru-
ment is to have the rays crossing and interfering in the virtual
object plane, so that the object and the superimposed fringe
pattern are imaged simultaneously in the detector plane. Ac-
cording to the geometry, the spacing of the fringe pattern is
N X (source-fringe)/(source separation), that is %. This vir-
tual interference pattern with “embedded” object is then im-
aged into a real image with a magnification factor of 10.
Accurate time overlap is adjusted with a (femtosecond) delay
line on the reference arm. The recombination prism is a very
delicate optic, with a surface quality better than ﬁ at 800
nm. This element is made of silica and has been manufac-
tured by the Laboratoire Charles Fabry de [I’Institut
d’Optique. In the triangular geometry, the prism is used at
incidence close to grazing, which means no specific
multilayer coating to enhance the high reflectivity in the
XUV domain. The counterpart of the grazing incidence is the
large size of each side of the prism. One of the technical key
points of this device is certainly the sharpness of the prism
edge.

The imaging component is a high precision ellipsoidal
mirror, which is diffraction limited at 32 nm on a 8
X 8 mm? pupil, at 6°, close to normal incidence. It has been
made from a concave spherical surface of 1000 mm radius of
curvature in which a cube of 30 mm side has been removed.
An 8 X8 mm? fraction of the surface has been shaped by
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FIG. 3. (Color online) Photos of the silica prism (a) and of the “plane
mirror—ellipsoidal mirror” ensemble (b) manufactured by the LCFIO-Orsay.

ionic erosion to obtain the ideal ellipsoidal shape profile,
with an accuracy better than 0.5 nm rms on the surface pro-
file.

Figure 3(a) shows a picture of the prism, 50 mm long
and 10 mm base, with a sharp edge and a top angle of 12°.
Figure 3(b) shows the imaging optical assembly composed
of the plane mirror reflecting the two XUV beams toward the
ellipsoidal mirror. The XUV beams are then reflected toward
the folding mirror. The image axis is parallel to the object
one with a vertical spacing of 10.4 mm. The focal length of
the ellipsoidal mirror is f=497.13 mm. A final folding mir-
ror is used to compact the whole instrument. The ellipsoidal
imaging mirror is coated with B,C/Si** multilayers in order
to select the 25™ HOH (H,s) at 32 nm, with a reflectivity of
23+3% and high rejection (R=5%) of adjacent harmonics
H,3 and H,;. The same coating has been put on the folding
mirror and contributes to increase the rejection of H,s and
Hy;. The H,s harmonic gives the best compromise between
high generation efficiency in Ar, good transmission through
the aluminum filters (=10%), good reflectivity of the
multilayer coating, and measurable fringe spacing on the de-
tector. The image detector consists of a pair of microchannel
plates coupled to a phosphor screen, and has been placed at a
distance close to 5.5 m of the ellipsoidal mirror to get a
magnification of G=10.

The resolution of the optical device is given by the dif-
fraction limit of the ellipsoidal mirror at 32 nm, correspond-
iNg 10 Rejjipse =4 um in the object plane. As the final reso-
lution Ry, Of the instrument depends on both the optical

Intensity (a.u.)

Rev. Sci. Instrum. 80, 113102 (2009)

system and the detector, which spatial resolution is R,,,
~30 um in the image plane, it can be evaluated using the
following equation:

Riina = V(G 'Rellipse)2 + Ricp ~50 um.

The 50 wm spatial resolution in the image plane corre-
sponds to 5 um in the object plane. This resolution allows
for imaging an object with a typical size of 50— 100 wm,
with a sufficient sampling. In addition, the diameter of the
detector is 22 mm which should allow for working with an
effective field of ~2 mm in the object plane. This is well
above the XUV beam size in our experimental conditions, as
it will be seen in the following.

A typical single shot interferogram at 32 nm is reported
in Figs. 4(a) and 4(b) (one-dimensional cut). The maximum
visibility obtained reaches 30% for a fringe spacing of
12 um in the object plane, corresponding to @=0.3 mrad.
The reproducibility of the interferograms is very good as the
shot-to-shot visibility fluctuations are only of 15%. With this
measurement, we experimentally demonstrate, for the first
time, that the generation of two mutually coherent HOH
sources is possible by focusing two phase-locked laser pulses
into two different gas jets, thus pushing exploitation of the
laser-driven coherence in high-harmonic generation beyond
the results in Refs. 8-10 where the same jet was used.
Though this result could be anticipated, it was far from
granted that twin laser pulses could force phase-locking in
highly nonlinear processes, driven in two mechanically iden-
tical but otherwise independent media. The interference field
is 100X 250 um? in the object plane. The fringe spacing i
can be tuned quite simply from 5 up to 13 um by tilting the
mirrors reflecting respectively IR beams toward gas jets, thus
changing the angle « between the output XUV beams, re-
spectively between 0.7 and 0.3 mrad. It can be noticed that
the measured minimum fringe spacing of 5 um is consistent
with the ultimate theoretical spatial resolution of the interfer-
ometer, combination of the diffraction limit of the imaging
optic, and the spatial resolution of the detector.

lll. TEMPORAL COHERENCE MEASUREMENT

We have used this original interferometric instrument to
measure the mutual temporal coherence of the two 25" har-
1,04
0,84
0,61
0,4

0,2

0,0

100 150 200 250

Distance (um)

0 50

FIG. 4. Typical interferogram measured in the detector plane at 32 nm (left). The normalized intensity horizontal profile along the AB chord (right).
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FIG. 5. (Color online) Normalized visibility of H,s fringes as a function of
temporal delay A7 between the two XUV arms of the interferometer.

monic sources. The coherence time 7., Measures the
correlation between the electromagnetic fields in the pulse
temporal profile, and is directly related to the spectral width
Av(7eon-Av=0.44). A direct measurement of the coherence
time can be obtained from measuring the fringe visibility in
an amplitude division interferometer, that is as a function of
the delay between the two arms. Using our interferometer,
from the fringe patterns recorded over 30 fs time delay range
between the reference and sample arms, we numerically
extracted the normalized visibility over the whole
interferogram.12 The visibility function is plotted in Fig. 5.
Now, the coherence time identifies to the half width at half
maximum (HWHM) of the visibility function (also equal to
the module of temporal coherence degree); we obtain 7y,
=12+12 fs, that is 3*~2x 107,

The 7., Vvalue is consistent with the pulse duration
which can be estimated for HOH generated with 50 fs IR
pulses, roughly equal to %—fs~20 fs, where ge~5 is an
effective order of nonlineariscfyf/ for H25.13 This indicates that
the longitudinal coherence is maintained almost throughout
the full temporal profile.

The 7, value is also consistent with the previous stud-
ies performed on temporal coherence of HOH,***® on Ti:Sa
laser system delivering 100 fs IR pulses. The authors define
a temporal coherence for inner and outer part of HOH far
field spatial profile, the latter depending on the generation
conditions and particularly on the position of the laser focus
relative to the gas jet. In our case in Fig. 4, it can be noticed
that the H,s spatial profile is centered, corresponding to
on-axis phase matching when the IR laser is focused before
the generating medium.*® Finally, the coherence time deter-
mines the maximum group delay, i.e., of the order of 12 fs,
which can be introduced by the dephasing object under
study in our interferometer. Considering that the dephasing
object is a plasma of length L, the maximum product
(electron density) X (plasma length) which can be probed is
~7.8x10% cm™. Besides the group delay boundary, the
time resolution—that is the shortest characteristical time of
evolution in a transient dephasing object, probed in a pump-
probe type experiment—is given by the XUV pulse duration;
in our conditions, it is of the order of 20 fs.

IV. XUV INTERFEROGRAM IN PRESENCE OF
PLASMA

As the interferometer has been designed and set up to
diagnose dense and transient plasma, one crucial point to

Rev. Sci. Instrum. 80, 113102 (2009)

{ target
i/ position

L

FIG. 6. (Color online) Reference interferogram without plasma (a). Self-
emission from plasma created by irradiation of solid aluminum target at
maximum intensity of 3 101 W/cm?(b).

address is the probe beam brilliance with respect to the
plasma self-emission level. As a test case, a cylindrical alu-
minum target has been positioned in the object plane, i.e., in
the interference field (fringe spacing set to 12 um), and has
been irradiated by an IR pump pulse of 50 fs duration, fo-
cused at a maximum intensity of 3 X 10* W/cm?. In Fig. 6,
we compare (a) a typical reference harmonic interferogram at
32 nm obtained without plasma, and (b) the self-emission
from the laser-produced plasma on the aluminum target. The
target edge is materialized by a dotted vertical line.

In Fig. 7, we have extracted a horizontal profile from
each image (in black the reference signal, in red the self-
emission from Al plasma). As it can be seen clearly from
both figures, the level of the spatially resolved self-emission
is lower (by about a factor of 3) than the amplitude of the
fringe modulation, whereas the spatially integrated self-
emission is lower by one order of magnitude than the probe
signal. In these typical experimental conditions for plasma
studies, the plasma self-emission should thus not perturb the
interferometric diagnose.

If we want to scale this to plasmas generated in relativ-
istic regime,17 it is important to consider the maximum noise
level acceptable for analysis. First of all, we can mention that
the spectral selectivity is ensured by the multilayer coating,
B,C/Si, which rejects 95% of adjacent harmonic and whose
the ellipsoidal mirror and the folding mirror are covered
with. Moreover, a geometrical selectivity contributes to the
reduction in the noise level as the interferometer is imaging
the object plane with a solid angle, extremely low (2.6
X 107* sr). Finally, recent experiments show that it’s pos-
sible to generate up to 1 wJ of H25.18 Considering this en-

3500 Lreference signal

[ plasma
| self emission

Intensity (a.u)

L L L L Pl R n L N
0 200 400 600 800 1000
x( pum)

FIG. 7. (Color online) Profiles corresponding to reference signal from Fig.
6(a), without plasma, and to self-emission from plasma created by irradia-
tion of solid aluminum target at maximum intensity of 3x10% W/cm?,
from Fig. 6(b).
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FIG. 8. (Color online) 2D phase map reconstructed for 1.1 ns delays between IR pump and XUV probe (a) and experimental electron density profile associated
(b). The aluminum target is irradiated at 3 < 10'® W/cm?, the laser is incident from the left.

ergy in the probe beam, the condition on plasma is to emit
less than 2.6 X 10'° ph/mm? mrad?1%BW at 32 nm to keep
a signal-to-noise ratio lower than one, suitable for interfer-
ometer analysis.

As a proof of principle, we have tested the XUV inter-
ferometer on a plasma created by irradiation of solid alumi-
num target. The delay between the IR pump beam and XUV
probe beam has been adjusted with a temporal delay line up
to a few nanosecond after the creation of the plasma. The
interferogram is very similar to the one presented in Fig.
6(a). A numerical treatment has been used as the fringe shift
is not visible to the naked eye. A two-dimensional map of the
phase shift 8¢/2 between the two XUV beams (perturbed/
reference) is reported on Fig. 8(a) for 1.1 ns time delay,
directly extracted from fringe distortion, by performing a
2D-phase demodulation of the sinusoidal carrier by classical
Fourier transform technique.12 The fringe shift is related to
the refractive index, N, as 6p/2m=1/N[§(1-ny)dl, where
L corresponds to the path length across the plasma, N\ the
probe wavelength, and the refractive index n.; is given by
Ner=(1—-Na/Ne)Y?, with n, the critical density associated to
. Assuming a cylindrical symmetry of the plasma with re-
spect to the pump beam propagation direction, we can ex-
tract the electronic density by using a standard Abel
inversion, this is shown in Fig. 8(b). Fringe shifts of 0.6)
measured close to the target surface corresponds to density
of 3x10%° cm™ at 1.1 ns. Considering that the minimum
fringe shift is of the order of 1/10 fringe and that the probed
plasma length is of the order of 50 wm, the minimum elec-
tronic density measurable is 2x10%° cm™. In our specific
experimental conditions, the fringe shift is not clearly visible
because of the reduced size of our plasma, combined to its
low density.

V. CONCLUSION

In conclusion, we have presented a new scheme for a
2D-imaging interferometer based on amplitude division,

working in the XUV range (here at 32 mm), specially de-
signed to exploit the coherence properties of the HOH
sources generated in gas. The original geometry of the inter-
ferometer avoids the difficulty of dividing the XUV beam, by
dividing the IR driving beam and integrating the IR-to-XUV
frequency conversion inside the interferometer. We validate
the basic concept of the instrument by demonstrating the
mutual coherence of the two XUV beams generated in two
gas jets separated by a large distance (20 cm). Interferograms
at 32 nm are routinely obtained at 20 Hz repetition rate using
50 fs IR beam with only 2-4 mJ energy. The interference
field is close to 100 X 200 um? in the object plane and the
maximum contrast of the interferograms is 30%. Its ultimate
spatial resolution is 5 wm, whereas the time resolution given
by the XUV pulse duration is of a few 10 fs. The typical
triangular geometry of the interferometer offers the possibil-
ity to accommodate large-sized objects under study. In a test
case, we check that the brilliance of the HOH source makes
it possible to study dense plasma on a solid target and we
measure an electronic density of 3x10%° cm™ at 1.1 ns,
close to the target surface. Its compactness makes it a trans-
portable diagnostic. Considering all its advantages, this inno-
vative XUV interferometer could be well adapted for tempo-
ral diagnostics of high density plasma; it can be used also in
a reflection geometry, to study the temporal evolution of cra-
ter formation on a solid target. More generally, the instru-
ment can be adapted to any laser-driven XUV source, such as
HOH generated in plasma,® of high brilliance ultrashort du-
ration, and relatively compact. The XUV interferometry
based on laser-driven mutual coherence should open per-
spectives in the context of, for example, the fast ignition
scheme for energy production by inertial fusion.
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