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Abstract: Modeling turbulent transport is a major goal in order to predict
con�nement issues in a tokamak plasma. The gyrokinetic framework considers
a computational domain in �ve dimensions to look at kinetic issues in a plasma.
Gyrokinetic simulations lead to huge computational needs. Up to now, the
gyrokinetic code GYSELA performed large simulations using a few thousands
of cores. The work proposed here improves GYSELA onto two points: memory
scalability and execution time. The new solution allows the GYSELA code to
scale well up to 64k cores.
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Solveur Quasi-neutre extensible

pour les simulations gyrocinétiques

Résumé : La modélisation du transport turbulent est un point clef pour
prédire les propriétés de con�nement d'un plasma de fusion. La théorie gy-
rocinétique propose une description à 5 dimensions permettant de calculer et
comprendre les e�ets cinétiques dans un plasma. Les simulations gyrocinétiques
conduisent à des coûts en calcul réellement prohibitifs. Jusqu'à maintenant,
le code gyrocinétique GYSELA réalisait de grosses simulations en utilisant
quelques milliers de c÷urs de calcul. Le travail proposé ici améliore GYSELA
sur deux aspects: l'extensibilité mémoire et le temps d'exécution. La nouvelle
solution permet au code GYSELA d'être opérationnel et scalable jusque 64k
c÷urs au moins.

Mots-clés : Solveur quasi-neutre, Gyrocinétique, MPI, OpenMP
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1 Introduction

To have access to a kinetic description of the plasma dynamics inside a toka-
mak, one usually needs to solve the Vlasov equation nonlinearly coupled to
Maxwell equations. Then, a parallel code adressing the issue of modelling toka-
mak plasma turbulence needs to couple a parallel Vlasov solver with a parallel
�eld solver. On the �rst hand, a Vlasov solver moves the plasma particles for-
ward in time. On the other hand, the role of the �eld solver is to give the
electromagnetic �elds generated by a given particles setting in phase space. In
this paper, we focus on the study of the �eld solver embedded in a gyrokinetic
code, namely GYSELA. An algorithm is presented here that has excellent per-
formance up to a few thousands of cores. An adapted communication scheme
is introduced to optimize the communication costs for exchanging information
between the Semi-Lagrangian Vlasov solver and the �eld solver (the two main
parts of the code). Using 64k cores, the �eld solver tends towards an asymptotic
time cost. Nevertheless, its small computation cost compared to other parts of
the code, allows the GYSELA code to get good performance up to 64k core
with 78% of relative e�ciency. As a consequence, a well parallelized solution is
�nally obtained. In the last sections, performance is evaluated both in term of
execution time and in term of memory scalability.

2 Gyrokinetic model

2.1 Parallel solving of Vlasov equation

Our gyrokinetic model considers as a main unknown a distribution function f̄
that represents the density of ions at a given phase space position. This function
depends on time and 5 other dimensions. First, r and θ are the polar coordinates
in the shortest cross-section of the torus (called poloïdal section), while ϕ refers
to the angle in the largest cross-section of the torus. Second, the velocity space
is also discretized: v‖ is the velocity along the magnetic �eld lines (one has
v‖ = dϕ/dt), and µ the magnetic moment corresponds to the action variable
associated with the gyrophase. The time evolution of the guiding-center 5D
gyroaveraged distribution function f̄t(r, θ, ϕ, v‖, µ) is governed by the so-called
gyrokinetic equation [1, 3]:

∂f̄

∂t
+

dr

dt

∂f̄

∂r
+

dθ

dt

∂f̄

∂θ
+

dϕ

dt

∂f̄

∂ϕ
+

dv‖

dt

∂f̄

∂v‖
= 0. (1)

In this Vlasov gyrokinetic equation, µ acts as a parameter because it is an
adiabatic motion invariant. Let us denote by Nµ the number of µ values, we
have Nµ independant Eq. 1 to solve at each time step. The function f̄ is
periodic along θ and ϕ. Vanishing perturbations are imposed at the boundaries
in the non-periodic directions r and v‖.

GYSELA is a global nonlinear electrostatic code which solves the gyrokinetic
equations in a �ve dimension phase space with a semi-Lagrangian method [1, 2].
The Semi-Lagrangian time integration technique [8] couples the Lagrangian and
Eulerian points of view. The main advantage o�ered by the semi-Lagrangian
technique is that time steps are not restricted by the CFL condition. We com-
bine this scheme with a second order in time Strang splitting method. The
resolution of the Vlasov Eq. (1) is not the topic of this paper and we refer
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the reader to [1, 4] for detailed descriptions. We will only recall a few issues
concerning the parallel domain decomposition used by this Vlasov solver.

Large data structures are used in Vlasov and Field solver: the 5D data f̄ ,
and the electric potential Φ which is a 3D data (and also some of derivatives of
the gyroaverage of Φ along spatial dimensions as we will see). The sizes of these
structures are parametrized by the discretization along the dimensions. Let Nr,
Nθ, Nϕ, Nv‖ , Nµ be respectively the number of points in each dimension r, θ,
ϕ, v‖, µ. The size of 5D and 3D data are (Nr Nθ Nϕ Nv‖Nµ) and (Nr Nθ Nϕ).

In the Vlasov solver, as µ acts as a parameter, we give the responsibility of
each value of µ to a given set of MPI processes [4] (a MPI communicator). We
�xed that there are always Nµ sets of processes, such as only one µ value is
attributed to each communicator. Within each set, a 2D domain decomposition
allows us to attribute to each MPI Process a subdomain in (r, θ) dimensions.
Thus, a MPI process is then responsible for the storage of the subdomain de�ned
by

f̄(r = [istart, iend], θ = [jstart, jend], ϕ = ∗, v‖ = ∗, µ = µvalue) .

The parallel decomposition used in the Vlasov solver is initially set up thanks
to the locally owned parameters list (istart, iend, jstart, jend, µvalue). They are
derived from a classical block decomposition of the r domain of size Nr into pr

pieces, and of the θ domain of size Nθ into pθ subdomains. It ends up that the
numbers of MPI process used during one run is equal to pr × pθ × Nµ. Inside
each MPI process, OpenMP threads give access to �ne-grained parallelism.

2.2 Quasineutrality equation

The quasi-neutrality equation and parallel Ampere's law close the self-consistent
gyrokinetic Vlasov-Maxwell system. However, in an electrostatic code as GY-
SELA, the �eld solver reduces to the numerical resolution of the quasi-neutrality
Poisson equation (3) (see [3]). It requires the solving of a 3-dimensional equa-
tion. In the form we are working on, this equation involves a non local term, the
average of Φ along (θ, ϕ) dimensions, which penalizes the parallellization [5, 6].

One of the possible ways to numerically treat the quasi-neutrality equation
consists in the use of Fast Fourier Transform, other choices can be to use multi-
grid method or a direct solver for example. Even if the FFT approach is not
adapted to general geometries [7], if one has a periodic direction it remains a
fast, simple and accurate method. Hence, we propose here a new Quasineutral
solver based on FFT.

In tokamak con�gurations, the plasma quasineutrality (denoted QN) approx-
imation is currently assumed [1, 3]. This leads to ni = ne where ni (resp. ne) is
the ionic (resp. electronic) density. On the one side, electron inertia is ignored,
which means that an adiabatic response of electrons are supposed. On the other
side, the ionic density splits into two parts. Using the notation ∇⊥ = (∂r, 1

r∂θ),
the so-called linearized polarization density npol writes

npol(r, θ, ϕ) = −∇⊥ .
[
n0(r)
B0
∇⊥Φ(r, θ, ϕ)

]
,

where n0 is the equilibrium density, B0 the magnetic �eld at the magnetic
axis. Second, the guiding-center density nGi is

nGi(r, θ, ϕ) = 2π
∫
B(r, θ)dµ

∫
dv//J0(k⊥

√
2µ)f̄(r, θ, ϕ, v//, µ), (2)
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where B is the magnetic �eld, J0 is the Bessel function and k⊥ is the transverse
component of the wave vector and Te(r) the electronic temperature. Hence, the
QN equation can be written in dimensionless variables

− 1
n0(r)

∇⊥ .
[
n0(r)
B0
∇⊥Φ(r, θ, ϕ)

]
+

1
Te(r)

[
Φ(r, θ, ϕ)− 〈Φ〉θ,ϕ (r)

]
= ρ̃(r, θ, ϕ)

(3)
where the de�nition of ρ̃ is given by

ρ̃(r, θ, ϕ) =
2π
n0(r)

∫
B(r, θ)dµ

∫
dv//J0(k⊥

√
2µ)(f̄ − f̄eq)(r, θ, ϕ, v//, µ). (4)

In this last equation, f̄eq denotes an electronic local Maxwellian equilibrium,
and 〈〉θ,ϕ the average onto the variables θ, ϕ.

Our QN solver includes two computation parts. First, the function ρ̃ is
derived taking as input function f̄ coming from Vlasov solver. Speci�c meth-
ods [6] are used to evaluate the gyroaverage operator J0 on (f̄ − f̄eq) in Eq. (4).
Second, the 3D potential Φ is found in computing discrete Fourier transforms of
ρ̃, followed by solving of tridiagonal systems and inverse Fourier transforms. For
this step, several approaches have been foreseen [5, 6]. The novel algorithm pre-
sented in this paper retains components of [5], while improving its performances.

In the following, we will refer to some 3D data structures as 3D �eld data.
They are produced and distributed over the parallel machine just after the QN
solver, once we know the electric potential Φ. These �eld data set, namely:

Φ,
∂J0(k⊥

√
2µ)Φ

∂r
,
∂J0(k⊥

√
2µ)Φ

∂θ
,
∂J0(k⊥

√
2µ)Φ

∂ϕ
,

are distributed on processes in a way that exclusively depends on the parallel do-
main decomposition chosen in the Vlasov solver. Indeed, they are inputs for the

gyrokinetic Vlasov Eq. (1), and they play a major role in terms dr
dt
, dθ
dt
, dϕ
dt
,
dv‖
dt

not detailed here. In this paper, we will use 1 the domain decomposition in (r, θ)
described in [4]. So we need that the subdomain owned by each MPI process
has the form (r = [istart, iend], θ = [jstart, jend], ϕ = ∗) for the 3D �eld data.
The computation of 3D �eld data will be discussed in section 3.3.

3 Scalable algorithm for the QN solver

3.1 1D Fourier transforms method

The method that follows considers only 1D FFTs in θ dimension and uncouple
hardly all computations in the ϕ direction. This allows for loop parallelization
along this direction. The equation (3) averaged on (θ, ϕ) gives :

−
∂2 〈Φ〉θ,ϕ (r)

∂r2
− [

1
r

+
1

n0(r)
∂n0(r)
∂r

]
∂ 〈Φ〉θ,ϕ (r)

∂r
= 〈ρ̃〉θ,ϕ (r) (5)

1The 3D �eld data can be split across processes in another way in the GYSELA code.

Another Vlasov solver is available that uses transposition of distribution function. In this

Vlasov solver some 3D data are distributed along ϕ dimension. The technique shown here is

also applied in this di�erent setting, but it generates few more communications and is a little

bit more complex.
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A Fourier transform in θ direction gives:

Φ(r, θ, ϕ) =
∑
u Φ̂u(r, ϕ)ei u θ

ρ̃(r, θ, ϕ) =
∑
u ρ̂

u(r, ϕ)ei u θ
(6)

The equation (3) could be rewritten as:

for u > 0 :

−∂
2Φ̂u(r, ϕ)
∂r2

− [
1
r

+
1

n0(r)
∂n0(r)
∂r

]
∂Φ̂u(r, ϕ)

∂r
+
u2

r2
Φ̂u(r, ϕ) +

Φ̂u(r, ϕ)
Zi Te(r)

= ρ̂u(r, ϕ) (7)

for u = 0 :
∂2 〈Φ〉θ (r, ϕ)

∂r2
− [

1
r

+
1

n0(r)
∂n0(r)
∂r

]
∂ 〈Φ〉θ (r, ϕ)

∂r
+
〈Φ〉θ (r, ϕ)− 〈Φ〉θ,ϕ (r)

Zi Te(r)
= 〈ρ̃〉θ (r, ϕ) (8)

The equation (5) allows one to directly �nd out the value of 〈Φ〉θ,ϕ (r)
from the input data 〈ρ̃〉θ,ϕ (r). Let us de�ne the function Υ(r, θ, ϕ) as
Φ(r, θ, ϕ) − 〈Φ〉θ,ϕ (r). Substracting equation (5) to equation (8) leads to

−
∂2 〈Υ〉θ (r, ϕ)

∂r2
− [

1
r

+
1

n0(r)
∂n0(r)
∂r

]
∂ 〈Υ〉θ (r, ϕ)

∂r
+
〈Υ〉θ (r, ϕ)
Zi Te(r)

= 〈ρ̃〉θ (r, ϕ)− 〈ρ〉θ,ϕ (r) (9)

Let us notice that Φ̂0(r,ϕ)=〈Υ〉θ(r,ϕ)+〈Φ〉θ,ϕ(r). So, the solving of equations (5)
and (9) allows one to compute 〈Φ〉θ,ϕ(r),〈Υ〉θ(r,ϕ) and Φ̂0(r,ϕ) from the quantities
〈ρ̃〉θ(r,ϕ) and 〈ρ̃〉θ,ϕ(r).

Then, the equation (7) is su�cient to compute Φ̂u>0(r, ϕ) from ρ̃. The
di�erent equations are solved using a LU decomposition precomputed once.
Moreover, variable ϕ acts as a parameter in equation (7), allowing computations
to be parallelized.

3.2 Data distribution issues

We assume two main hypothesis concerning the data distribution in the QN
solver: 1) at the beginning of QN solver each process knows the values of a
subdomain f̄(r= [istart, iend], θ= [jstart, jend], ϕ= ∗, v// = ∗, µ=µvalue) (output
of the Vlasov solver), distributed over processes. In earlier works [5, 6], we used
to simplify the problem of data dependancies in broadcasting the entire Φ data
structure to all processes and to compute in each MPI process the derivatives
of gyroaveraged electric potential redondantly. Nevertheless, this strategy leads
to a bottleneck for large platforms (typically more than 4k cores). Indeed, the
broadcast involves a communication amount that grows linearly with the num-
ber of processes, and the sequential nature of derivatives computation becomes
also problematic. These two overheads are unnecessary, even they simplify the
implementation of various diagnostics and reduces also the complexity of data
management. In the version presented here, only a small subdomain of Φ is sent
to each process at the end of the QN solver. Also, a distributed algorithm com-
putes the derivatives of J0(k⊥

√
2µ)Φ, as you will see in Algo. 2 because these

quantites are inputs of Vlasov solver. Therefore, the domain decomposition for
this 3D �eld derivatives must match the needs of the Vlasov solver.

RR n° 7611
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3.3 Parallel algorithm descriptions

The algorithm presented in this paragraph describes a scalable parallel algorithm
of the QN solver2.

Algorithm 1: Parallel algorithm for the QN solver

Input : local block1

f̄(r = [istart, iend], θ = [jstart, jend], ϕ = ∗, v// = ∗, µ = µvalue)

2

(* task 1*)3

Computation : ρ̃1 by integration in dv// of f̄4

(parallelization in µ, r, θ)5

Send local data ρ̃1(r = [istart, iend]), θ = [jstart, jend], ϕ = ∗, µ = µvalue)6

Redistribute ρ̃1 / Synchronization7

Receive block ρ̃1(r = ∗, θ = ∗, ϕ = [sϕstart, s
ϕ
end

], µ = [sµstart, s
µ
end

])8

9

(* task 2*)10

for ϕ = [sϕstart, s
ϕ
end] and µ = [sµstart, s

µ
end] do11

(parallelization in µ, ϕ)12

Computation : from ρ̃1 at one ϕ, computes ρ̃2 applying J0(k⊥
√

2µ)13

(Fourier transform in θ, Solving of LU systems in r)14

∀µ ∈ [sµstart, s
µ
end]

Computation : ρ̃3 for a given ϕ by integration in dµ of ρ̃215

end16

if [sµstart, s
µ
end] 6= [0, Nµ − 1] then17

Send local data ρ̃3(r = ∗, θ = ∗, ϕ = [sϕstart, s
ϕ
end

])18

Reduce Sum ρ̃ += ρ̃3 / Synchronization19

Receive summed block ρ̃(r = ∗, θ = ∗, ϕ = [gstart, gend])20

end21

22

(* task 3*)23

for ϕ = [gstart, gend] do24

(parallelization in ϕ)25

Computation : accumulation of ρ̃ values to get 〈ρ̃〉θ (r = ∗, ϕ)26

end27

Send local data 〈ρ̃〉θ(r=∗,ϕ=[gstart,gend])28

Broadcast of 〈ρ̃〉θ / Synchronization29

Receive 〈ρ̃〉θ(r=∗,ϕ=∗)30

31

(* task 4*)32

Computation : Solving of LU system to �nd 〈Φ〉θ,ϕ from 〈ρ̃〉θ, eq. (5)33

for ϕ = [gstart, gend] do34

(parallelization in ϕ)35

Computation : 1D FFTs of ρ̃ on dimension (θ)36

Computation : Solving of LU systems for Φ̂ modes (∀u > 0), eq. (7)37

Computation : Solving of LU system for 〈Υ〉θ(r=∗,ϕ), eq. (9)38

Computation : Adding 〈Φ〉θ,ϕ to 〈Υ〉θ(r=∗,ϕ) gives Φ̂0(r=∗,ϕ)39

Computation : inverse 1D FFTs on Φ̂0 and Φ̂u>0 to get Φ(r=∗,θ=∗,ϕ)40

end41

Send local data Φ(r = ∗, θ = ∗, ϕ = [gstart, gend]) Nµ times42

Broadcast of values / Synchronization43

Receive global data Φ(r = ∗, θ = ∗, ϕ = [qstart, qend])44

Outputs : Φ(r = ∗, θ = ∗, ϕ = [qstart, qend])45

This algorithm improves previous ones [1, 5, 6] in introducing a better work
distribution, and also in reducing the �nal communication. At the end of the

2This formulation is not yet valid in toroïdal setting, cyclindrical geometry is used here.
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Scalable Quasineutral solver for gyrokinetic simulation 8

solver, we distribute the electric potential Φ among processes, instead of broad-
casting it.
The main idea of the algorithm is to get 〈Φ〉θ,ϕ for solving eq. (9), and then to

uncouple computations of Φ̂u along ϕ direction in the Poisson solver (task 4 in
the following list). Finally, each process send each locally computed Φ(r, θ, ϕ)
value to process that is responsible for it. The computation sequence is:

� Task 1: integrate f̄ over v‖ direction

� Task 2: compute righ-hand side ρ̃ in summing over µ direction

� Task 3: perform averages 〈ρ̃〉θ(r=∗,ϕ=∗) and 〈ρ̃〉θ,ϕ(r=∗)

� Task 4:

� get 〈Φ〉θ,ϕ from 〈ρ̃〉θ,ϕ thanks to eq. (5)

� For each ϕ value

� FFT in θ on ρ̃

� derive Φ̂u modes (∀u > 0) with eq. (7)

� compute 〈Υ〉θ(r=∗,ϕ) with eq. (9)

� add 〈Φ〉θ,ϕ+〈Υ〉θ(r=∗,ϕ) to get Φ̂0(r=∗,ϕ)

� inverse FFT in θ on Φ̂

The presented algorithm 1 has some parameters: the mappings s, g and q
that are detailed in the next subsection. They characterizes the e�ective data
and computation distributions on the parallel machine.

The Algo. 2 follows immediatly the QN solver. It applies the gyroaverage on
Φ and then computes its derivatives along spatial dimensions. These 3D �elds
(named A1, A2, A3 in the algorithm) are inputs of the Vlasov solver. Then,
they are redistributed in a communication steps in order to match the mapping
needed by the Vlasov solver. In the task 2, derivatives along ϕ direction are
computed; these computations have been delayed because it is much easier to
derive them having access to all values along ϕ direction.

Algorithm 2: Parallel algorithm to get derivatives of the potential

Input : local block Φ(r = ∗, θ = ∗, ϕ = [qstart, qend])1

2

(* task 1*)3

for ϕ = [qstart, qend] and µ = µvalue do4

(parallelization in µ, ϕ)5

Computation : A0(r = ∗, θ = ∗, ϕ) = J0(k⊥
√

2µ) Φ(r = ∗, θ = ∗, ϕ)6

A1(r = ∗, θ = ∗, ϕ) = ∂A0(r=∗,θ=∗,ϕ)
∂r7

A2(r = ∗, θ = ∗, ϕ) = ∂A0(r=∗,θ=∗,ϕ)
∂θ8

end9

Send local data A0|A1|A2(r = ∗, θ = ∗, ϕ = [qstart, qend])10

Redistribute A0|A1|A2 inside µ communicator/ Synchronization11

Receive blocks A0|A1|A2(r = [istart, iend], θ = [jstart, jend], ϕ = ∗)12

13

(* task 2*)14

for r = [istart, iend] and θ = [jstart, jend] and µ = µvalue do15

(parallelization in µ, r, θ)16

Computation : A3(r, θ, ϕ = ∗) = ∂A0(r,θ,ϕ=∗)
∂ϕ17

end18

19

Outputs : A1|A2|A3(r = [istart, iend], θ = [jstart, jend], ϕ = ∗)20

RR n° 7611



Scalable Quasineutral solver for gyrokinetic simulation 9

3.4 Mapping functions

The two presented algorithms use three di�erent mappings to distribute com-
putations and data on the parallel machine. These mappings concerns ϕ and µ
variables and are illustrated in Figures 1 and 2 for a large testbed and a small
one respectively. Let #C be the number of cores used for a simulation run and
#P be the number of MPI process. The number of threads #T per MPI process
is �xed (usually it corresponds to the number of cores inside a SMP node), so
we have #C = #P #T.
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Figure 1: Mappings of ϕ and µ variables (Nµ = 32, Nϕ = 16) on processes for
a large testbed (#P = 1024)
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Figure 2: Mappings of ϕ and µ variables (Nµ = 8, Nϕ = 16) on processes for a
small testbed (#P = 8)

Each rectangle on the Figures 1 and 2 represents a MPI process. Processes
�lled in dark gray or light gray have computations to perform, whereas the white
color denotes processes that are idle. These mappings also implicitly prescribe
how communication schemes exchange data during the execution of the two
algorithms. We give here a brief description of these mappings:
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� Mapping S - It de�nes the ranges ϕ ∈ [sϕstart, s
ϕ
end] and µ ∈ [sµstart, s

µ
end].

In the task 2 of QN solver, we use this mapping to distribute the compu-
tation of the gyroaverage J0. The maximal parallelism is then obtained
whenever each core has at most one gyroaverage operator to apply. We
have considered in the example shown in Fig. 1 that each MPI process
hosts #T = 8 threads, so that it can deal with 8 gyroaveraging simul-
tanously (sµend − sµstart + 1 = 8). This distribution is computed in es-
tablishing a block distribution of domain [0,Nµ − 1] × [0,Nϕ − 1] on #C
cores.

� Mapping G - It de�nes the range [gstart, gend] for the ϕ variable. A
simple block decomposition is used along ϕ dimension. For a large number
of cores, this distribution gives to processes 0 to Nϕ− 1 the responsability
to compute the Nϕ slices of Φ data structure (task 4 of the QN solver).
For a small number of cores (see Fig. 2), this mapping is identical to S
one ([sµstart, s

µ
end] = [0, Nµ− 1]). In such case, we save the communication

step in task 2 of QN solver.

� Mapping Q - The mapping Q de�nes the range ϕ ∈ [qstart, qend] in each
MPI process. We use inside each µ communicator a block decomposition
along ϕ dimension. It is designed to carry out the computation of the gy-
roaverage of Φ, together with the computation of its derivatives (Algo. 2).
These calculations depend on the value of µ. It is cost e�ective to perform
them inside a µ communicator: we need to only locally redistribute data
inside the µ communicator at the end of Algo. 2 in order to prepare the
input 3D data �elds for the Vlasov solver.

3.5 Communication costs analysis

Let us have a look on communication costs associated with the QN solver
(Algo 1). From line 6 to line 8, a 4D data ρ̃1 is redistributed (a global transposi-
tion that involves all MPI processes). The amount of communication represents
the exchange of NrNθ NϕNµ �oats. For the lines 18 to 20, the amount of com-
munication is strictly lower to NrNθ NϕNµ �oats, and tightly depends on the
mapping S. The broadcast of lines 28 to 30 corresponds to a smaller communi-
cation cost of NrNϕ min(#C,Nϕ). The �nal communication of lines 42-44 sends
Nµ times each 2D slice of Φ locally computed. It has a cost similar to the �rst
one with NrNθ NϕNµ �oats to send, but without the need of data transposition
(so less memory copies).

The computation of derivatives imply also communications. In Algo 2, a
communication step transpose three 3D data inside each µ communicator. The
overall cost is 3 Nr Nθ Nϕ Nµ �oats, but only local communications inside µ
communicators are realized.
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4 Performance analysis

4.1 Parallel computing scalability

Timing measurements have been performed on CRAY-XT5 Jaguar machine 3

(Department of Energy's, Oak Ridge, USA). This machine has 18 688 XT5 nodes
hosting dual hex-core AMD Opteron 2435 processors and 16 GB of memory. The
Table 1 reports timing of the QN solver extracted from GYSELA runs. The
smallest test case was run from 256 cores to 4096 cores. The parameters that
has been are the following (small case):

Nr = 128, Nθ = 256, Nϕ = 128, Nv‖ = 64, Nµ = 32 .

In Table 2, timings for a bigger test case are presented. Its size is

Nr = 512, Nθ = 512, Nϕ = 128, Nv‖ = 128, Nµ = 32 .

For this second case, the parallel testbed were composed of 4k cores to
64k cores. In tables, the io1, io2, io3, io4 steps states for communications
associated with task 1, task 2, task 3, task 4 respectively. Computation costs,
comp1, comp2, comp3, comp4 stands for computations relative to task 1, task 2,
task 3, task 4 respectively.

Note that the Vlasov solver of the GYSELA code uses a parallelization
based on a domain decomposition along dimensions µ, r and θ. The number
of processes #P is given by the product of Nµ the number of µ values with
pr × pθ the number of blocks along r and θ dimensions (#P = Nµ × pr × pθ).
The number of µ values in the considered cases is Nµ = 32, then GYSELA
requires a minimum of 32 nodes to run.

General observations The OpenMP paradigm is used in addition to MPI
parallelization (#T threads). All computations costs are lowered thanks to this
�ne grain parallelization. The main idea for this OpenMP parallelization has
been to target ϕ loops. This approach is e�cient for the computation task 1 of
QN solver (integrals in v‖). But in the tasks 3,4, this strategy competes with
the MPI parallelization that uses also variable ϕ for the domain decomposition.
Thus, above Nϕ cores, no parallelization gain is expected. This fact is not the
hardest constraint up to now: communication costs are the critical overhead,
much more than computation distribution (as you see in Table 2). A recent
improvement has been to add a parallelization along µ direction in task 2.
Even if this change adds a communication step that can be avoided (io2), it is
worthwhile on large platforms. We bene�t from this extra level of parallelism,
as soon as communication of task 2 (io2) remains low. Notably, we see that
comp2 scales beyond Nϕ = 128 cores in Table 2.

Comments for the small case In Table 1, the communication costs for ex-
changing ρ̃1 values (io1 - task 1) is reduced along with the involved number of
nodes. This is explained by the fact that the overall available network band-
width increases with larger number of nodes, while the total amount of data
exchanged remains the same. The communication cost associated with io3 is

3Many thanks to C.S. Chang for giving us acces to Jaguar, project reference FUS022.
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Nb. cores 256 1k 4k

Nb. nodes 32 128 512

QN solver

comp1 2300 ms 580 ms 100 ms

io1 300 ms 160 ms 90 ms

comp2 170 ms 43 ms 13 ms

io2 0 ms 0 ms 8 ms

comp3 0 ms 0 ms 2 ms

io3 17 ms 42 ms 43 ms

comp4 4 ms 3 ms 4 ms

io4 100 ms 40 ms 35 ms

Total time 2900 ms 870 ms 300 ms

Relative e�. 100% 83% 60%

Table 1: Time measurements for one call to

the QN solver - Small case

Nb. cores 4k 16k 64k

Nb. nodes 512 2k 8k

QN solver

comp1 2200 ms 570 ms 95 ms

io1 450 ms 300 ms 470 ms

comp2 320 ms 180 ms 180 ms

io2 30 ms 60 ms 70 ms

comp3 3 ms 2 ms 3 ms

io3 150 ms 140 ms 130 ms

comp4 30 ms 30 ms 30 ms

io4 180 ms 100 ms 65 ms

Total time 3400 ms 1400 ms 1000 ms

Relative e�. 100% 61% 21%

Table 2: Time measurements for one call to

the QN solver - Big case

mainly composed of synchronization of nodes and broadcasting the 2D data slice
〈ρ̃〉θ (r = ∗, ϕ = ∗). The io4 communication involves a selective send of parts
of the electric potential Φ to each node; and one can note the same decreasing
behaviour depending on number of cores also observed in io1 .

The comp1 calculation is one of the biggest CPU consumer of the QN solver;
it scales well with the number of cores, combining MPI and OpenMP paral-
lelizations. The comp3 is negligible time and comp4 is a small computation
step, time measurements are nearly constant for all number of cores shown. In
fact Nϕ cores is the upper bound of the parallel decomposition for these steps.
Then, between 1 and Nϕ cores the speedup increases, whereas the speedup and
computation time are constant above this limit (Nϕ=128 cores for the cases
shown here). The relative e�ciency for the overall QN solver is 60% at 4k cores
which is a good result for this computational problem that synchronizes and
redistribute information between all processesx.

Comments for the big case The relative speedups shown in Table 2 con-
siders as a reference the execution times on 4k cores, in order to have access to
enough memory. Communication costs are larger than in the small test case.
Badly comp2 and comp4 do not scale well. Only comp1 and io4 parts behave
as we wish. In future works, we expect improving the scalability of this algo-
rithm in lowering parallel overheads. The reduction of communication costs is
one candidate (we foresee to use a compression method). An alternative can
be to �nd a way to better distribute computations in the comp2, comp3, comp4
parts. Even if improvements can be found, a good property of this solver is that
execution time globally decreases along with the number of cores, and does not
explode at all (for example due to growing communication costs). We see in
Fig. 6 that this cheap cost of the QN solver brings to GYSELA code a good
overall scalability. GYSELA reaches 78% of relative e�ciency at 64k cores. In
Fig. 3 and 4, timings for short runs of GYSELA are presented. The �eld solver
and computation and derivatives of the gyroaveraged Φ are very low compared
to Vlasov solver and diagnostics costs. Then, their limited scalability at very
large number of cores, does not impact signi�cantly the scalability of the overall
GYSELA code.
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Also, Let us remark the excellent scalability of GYSELA for the small case
(Fig. 5) with a 97% of overall relative e�ciency at 4k cores.
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Figure 3: Small case - GYSELA timings
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Figure 4: Big case - GYSELA timings
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Figure 5: Small case, GYSELA e�ciency
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Figure 6: Big case, GYSELA e�ciency

4.2 Memory scalability

The algorithm 1 proposed for the Poisson solver avoids the caveat of the �nal Φ
broadcast to all MPI processes. The computation of the derivatives in spatial
directions of the gyroaveraged potential has also been parallelized, compared
to the previous version of GYSELA. It follows that we avoid the storage of
complete 3D data structures in memory on each node. We end up with a pair
of algorithms for Poisson and computation of the derivatives that only requires
distributed �eld 3D data structures. Each node owns only one MPI process that
himself hosts OpenMP threads. All threads inside of a single MPI process share
these 3D �eld data.

The Table 3 shows the memory consumption for growing number of cores
for a given problem size (strong scaling). The parameter Nµ remains constant
while both pr and pθ are increased. The main result concerns the overall memory
consumption that has diminished between the previous and the present version.
But, the memory scalability is also greatly improved: each time the number
of cores is doubling, the memory occupancy decreases better than previously.
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Nb. cores 4k 8k 16k 32k 64k

Nb. nodes 512 1k 2k 4k 8k

Previous version

4D data struct. 6.82 3.45 1.80 0.93 0.49

3D data struct. 2.79 2.75 2.73 2.72 2.72

2D data struct. 1.83 1.82 1.81 1.81 1.81

1D data struct. 0.09 0.04 0.02 0.01 0.01

All data struct. 11.55 8.07 6.38 5.48 5.02

Present version

4D data struct. 6.82 3.45 1.80 0.92 0.49

3D data struct. 1.07 0.82 0.58 0.39 0.24

2D data struct. 1.05 1.04 1.03 1.03 1.03

1D data struct. 0.55 0.52 0.51 0.51 0.51

All data struct. 9.50 5.83 3.93 2.86 2.27

Table 3: Memory consumption (in GB) on each node by GYSELA, big case

At 64k cores, there is more than a factor 2 of di�erence between the memory
consumption of the two GYSELA versions.

In addition to the splitting of 3D data structure previously described, other
modi�cations have occured in the new version. A set of 3D and 2D data bu�ers
have been removed and replaced by a unique large 1D array. It explains why
the new version exhibits a larger amount of memory of 1D data while 3D and
2D data are drastically reduced compared to previous version. Another bene�t:
limitation concerning the minimal number of cores required to run a given test
case. Further work can be done to cut down on remaining 2D and 1D data
storage. But it will imply to change existing algorithms to new ones that saves
memory.

5 Conclusion

We describe the parallelization of a quasineutral Poisson solver used into a full-f
gyrokinetic 5D simulator 4. The parallel performance of the numerical solving
method is demonstrated. It achieves a good parallel computation scalability up
to 64k cores combining several levels of parallelism and an hybrid OpenMP/MPI
approach. The coupling of the quasineutral solver and the Vlasov code has been
improved a lot compared to previous results [1, 4, 5, 6]. The modi�cations result
also in savings in the memory occupancy, which is a big issue when physicists
wish to run very large case.
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