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Stability control of nonlinear micromechanical resonators under simultaneous primary and

superharmonic resonances
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Fast effects of a slow excitation on the main resonance of a nonlinear micromechanical resonator are analyt-

ically and experimentally investigated. We show in particular how the bifurcation topology of an undesirable

unstable behavior is modified when the resonator is simultaneously actuated at its primary and superharmonic

resonances. A stabilization mechanism is proposed and demonstrated by increasing the superharmonic excita-

tion.

PACS numbers: 85.85.+j, 05.45.-a, 46.40.Ff, 46.15.Ff

Interests in nonlinear resonance have grown over the last

decade leading to many applications, for example, in para-

metric amplification3–5 and noise squeezing2 eventually with

bifurcation amplification4, switching of magnetization in sin-

gle nanoparticles5, electromagnetic cancer detection through

nonlinear resonance interaction6, spectroscopy to probe a

threaded interface7, pull-in retarding under secondary reso-

nances for MEMS resonators8 as well as ultralow superhar-

monic resonance for functional nanowires9.

Here, unlike previous schemes under primary or single non-

linear resonance excitation, the mechanical structure is si-

multaneously driven under primary and superharmonic res-

onances. The effect of adding an extra harmonic excitation

in a system has been investigated by very few authors, even

theoretically. In the quasi-static case of a beam, it is shown

that the axial buckling load can be increased by adding high-

frequency excitation10. An analytical study of a Van Der Pol-

Mathieu-Duffing resonator11 showed a way to tune the nature

of its nonlinear dynamic behavior by adding a fast harmonic

excitation. Nevertheless, the fast effects of a slow harmonic

excitation on the main resonance of a nonlinear system have

neither been studied nor experimentally shown.

This paper analytically investigates a strategy of stability

control based on an energy transfer within a single nonlinear

system through simultaneous (primary and superharmonic)

resonances. Furthermore, we employ this mechanism for the

first time in micromechanical resonators to demonstrate ex-

perimentally its stability enhancement.

In order to understand simultaneous resonances, let us con-

sider the following resonator equation, for a single degree-of-

freedom x:

ẍ+ µẋ+ ωnx+ α2x
2 + α3x

3

+α5x
5 = ζ1 cos (Ω) + ζ2 cos (2Ω) (1)

The dot denotes derivation with respect to time, ωn the natural

frequency, α2, α3, α5, the coefficients of the quadratic, cubic

and quintic nonlinearities respectively, µ the constant damp-

ing coefficient, ζ1, ζ2 the drive amplitudes of the first and the

second harmonic of the drive frequency Ω.

The effect of each nonlinear term has been experimentally

shown and explained, for both doubly clamped beams12 and

cantilevers13. The second-order term is due to the electro-

static force, but of course has no influence on the primary res-

onance like any even-order term. It is included here in the

purpose of showing the effect of a superharmonic resonance.

The third-order term is the well-known Duffing term, leading

to bistable softening or hardening behavior depending on its

sign. The fifth-order term is responsible for the amplitude re-

sponse to become another multivalued (5 possible amplitudes)

function of the frequency, a highly unstable so-called mixed

behavior14. Micromechanical resonators are very commonly

driven via the superposition of a static DC voltage Vdc and a

time varying AC voltage Vac. The electrostatic force being

proportional to the square of the voltage, this scheme involves

the presence of two harmonics Ω and 2Ω of Eq. (1), with am-

plitudes ζ1 and ζ2 proportional to VacVdc and V 2
ac respectively.

When Ω is tuned around ωn, the primary resonance at ωn

is mainly actuated by the first harmonic Ω, the effect of the

second harmonic being negligible. Experimentally, this cor-

responds to the ”1f mode” typically used via a lock-in am-

plifier in MEMS and NEMS electrical characterizations. It

has been previously shown that the onset of bistability of the

Duffing behavior can be tuned via electrostatic negative non-

linearity: the third order term coefficient can then eventually

be nulled so a stable and linear response is obtained13,15. This

is unfortunately true up to the onset of the mixed behavior

only. Worse, investigation of the bifurcation topology in this

”1f mode” showed the invariance of this onset, for a given

resonator14: the onset of the mixed behavior sets a strict upper

limit to the frequency stability of the resonator.

When Ω is tuned around ωn

2 , the resonant response at ωn is

provoked by both the first and the second harmonic 2Ω. More

precisely, in this ”2f mode” scheme also commonly used, the

2Ω harmonic mainly generates the primary resonance at ωn,

and the Ω harmonic actuates a superharmonic resonance at

ωn. The response at ωn is thus made of simultaneous primary

and superharmonic resonances. The latter one is generated via

a “slow” excitation compared to the resonant frequency.

In order to investigate the fast effects of a slow excitation,

we use the multiple scales method15 to solve Eq. (1). A first-
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order uniform solution is sought in the form

x(t, ε) = x0(T0, T1) + εx1(T0, T1) + · · · (2)

where ε is the small nondimensional bookkeeping parameter,

T0 = t and T1 = εt. Since both harmonics are linked by the

drive frequency Ω, in order to analyze the nonlinear response

under simultaneous primary and superharmonic resonances,

we express the nearness of Ω to ωn

2 by introducing the detun-

ing parameter σ according to

2Ω = ωn + εσ (3)

Substituting Eq. (2) into Eq. (1) and equating coefficients of

like powers of ε yields

for order ε0

ζ1 cos

(

σT1 +
T0ωn

2

)

+ ω2
nx0 + x0

(2,0) = 0 (4)

for order ε1

ζ2 cos (σT1 + T0ωn) + x2
0α2 + x3

0α3 + x5
0α5

+x1ω
2
n + cx0

(1,0) + 2x0
(1,1) + x1

(2,0) = 0
(5)

where x
(j,k)
i =

∂k

∂T k
1

(

∂jxi

∂T
j
0

)

.

The general solution of Eq. (4) can be written as

x0 = X cos (ωnT0 +Φ)−
4ζ1
3ω2

n

cos

(

ωnT0

2
+ σT1

)

(6)

Equation (6) is then substituted into Eq. (5) and the trigono-

metric functions are expanded. The elimination of the secu-

lar terms yields two first order non-linear ordinary-differential

equations which describe the amplitude X and phase β mod-

ulation of the response and allow for a stability analysis

Ẋ = −
4ǫζ21 sinβ

(

20Xα5ζ
2
1 cosβ + 9α2ω

4
n

)

81ω9
n

−
ǫµX

2
+O(ε2) (7)

β̇ = −
2ǫζ21

(

2α2 cosβ + 6α3X + 15α5X
3
)

9ω5
nX

+2σ −
40ǫα5ζ

4
1{6 + cos(2β)}

81ω9
n

−
6ǫα3X

2 + 5ǫα5X
4

16ωn

+O(ε2) (8)

where β = 2σT1 − Φ. The steady-state motions occur when

Ẋ = β̇ = 0, which corresponds to the singular points of

Eqs. (7) and (8). Thus, the frequency-response equation under

simultaneous primary and superharmonic excitations can be

written and plotted parametrically with respect to the phase β.

The resonator design considered for analytical simulations

is described in Fig. 1(a). It uses 2 electrodes: electrode 1 for

actuation and electrode 2 for sensing which allows for 2 port

electrical measurements.

All numerical simulations were carried out with the follow-

ing set of parameters: lr = 200µm, b = 4µm, h = 2µm,

la = 20µm, ga = 1µm, ld = 112µm, gd = 750nm, where

h and b are the width and thickness of the microbeam, ga and

gd are the actuation and sensing gaps. Vac and Vdc were used

for parametric investigations.

FIG. 1: (a): Optical microscope image of the device. 1 and 5: an-

chors, 2: microbeam, 3: actuation electrode, 4: sensing electrode.

(b): SEM image of the device. (c): Connection layout for the electri-

cal characterization.

Figure 2 shows the analytical nonlinear forced response

function (FRF) of the beam resonator on its fundamental mode

at ωn for Ω = ωn

2 (2f mode) for a fixed Vac = 0.3V (hence a

fixed 2Ω-excitation amplitude) and for different values of Vdc.

Vdc = 0 means no superharmonic resonance and an increased

value increases the superharmonic resonance effect. The lat-

ter exists when the second-order term becomes of significant

value, and hence also when the higher-order terms do. Like

Duffing primary resonance, bistability may be reached for si-

multaneous resonances at intermediate drive levels, and we

will call its onset the critical amplitude. At these levels, the

behavior is unchanged by simultaneous resonances: typical

Duffing-like hardening (or softening) behaviors are observed,

and the measured critical amplitude is equal to the primary

resonance-only case: the slow excitation has little or no effect

on the fast dynamics. When the drive level is still increased

(and the fifth-order terms become non negligible), the ques-

tion is wether or not simultaneous resonances response also

exhibits the mixed behavior like primary-only resonance, and

wether or not the onset of this mixed behavior can be tuned.

Figure 3 shows the response for different values of Vdc (6,

8 and 10 V), and for a fixed Vac = 1V , high enough to dis-

play a mixed behavior. The amplitude of the P bifurcation

point, called the onset of the mixed behavior is shown. As

opposed to the actuation under primary resonance only (see

Fig. 4), the P point amplitude is shifted up by the increase of

the AC voltage. This result opens up new ranges of resonator

operation, in terms of control, stability and drive amplitude.

Pr
od

ui
t p

ar
 H

AL
 - 

18
 S

ep
 2

01
4



3

FIG. 2: Analytical frequency responses under simultaneous primary

and superharmonic excitations at intermediate drive levels Vac =

0.3V , showing hardening behavior, with varying Vdc. Xmax is the

displacement of the beam normalized by the gap gd at its middle

point and is traced vs the detuning parameter σ to get rid of the fre-

quency tuning due to change in Vdc.

FIG. 3: Analytical frequency responses showing mixed behav-

iors under simultaneous primary and superharmonic excitations for

Vac = 1V ; the location of the different bifurcation points and the

effect of the DC voltage on the onset of the mixed behavior.

Both slow (superharmonic) and fast (primary) dynamics are

present in Eqs. (7) and (8), and modulate the amplitude X and

the phase β of the system, due to terms proportional to cosβ
or sinβ and to cos 2β respectively. Moreover, these terms are

proportional either to α5 or α2, coefficients of the quintic and

quadratic nonlinearities producing the mixed behavior or in-

ternal resonance into the system respectively. The AC voltage

sets the 2Ω excitation, while the DC voltage only amplifies

the Ω excitation. The alteration of the bifurcation topology

in the present simultaneous resonances configuration is thus

only due to the increase of the superharmonic resonance.

The experimental investigation was carried out by placing

the device in a vacuum chamber at ambient temperature. The

discrepancy between the theoretical and measured resonance

frequencies are explained by a residual stress of 15MPa. A

lock-in amplifier was used to measure the frequency response

as shown in Fig. 1(c).

FIG. 4: Frequency responses showing mixed behaviors measured un-

der primary resonance as well as under simultaneous primary and

superharmonic excitations, the location of the different bifurcation

points and the effect of the DC voltage on the P point.

For each 1f mode measurement, the traced voltage Vout

is the result of the vectorial substraction of the measurement

with zero DC voltage from the AC+DC overall measurement,

so the feedthrough voltage due to parasitics is gotten rid of

and Vout is only due to the mechanical motion of the res-

onator. For 2f mode measurements, the background due to

feedthrough is already at a negligible level. Figure 4 shows

six nonlinear mixed behavior peaks, dashed and solid curves

corresponding to ”1f mode” and ”2f mode” respectively. The

dimensionless voltage Ṽ = Vout

Vdc

is plotted in Fig. 4. On the

three 1f-mode curves where Vac = 0.5V , the P point verti-

cal location is unchanged with respect to the drive amplitude,

proportional to VacVdc. Incidentally, one can observe that the

shape of the peak changes as the quality factor slightly varies

with Vdc due to ohmic losses16. The onset of the mixed be-

havior is set only by the gap-to-width ratio of the device14.

The three 2f-mode curves were obtained for Vac = 1V ,

and a Vdc voltage increased from 6 to 10V. Since the Ω- and

2Ω-excitation amplitudes are proportional to VacVdc and V 2
ac

respectively, only the Ω-excitation amplitude was amplified.

This increases significantly the quadratic nonlinearity, propor-

tional to V 2
dc +

1
2V

2
ac

12, which in turn amplifies the superhar-

monic resonance. As a result, and due to the nonlinear interac-

tion between the two harmonics, the slow dynamics transfers

more energy into the resonance at ωn. The bifurcation topol-

ogy is thus modified, and the onset of the mixed behavior in

particular can be retarded as shown in Fig. 4: the slow Ω-

excitation allows one to tune it; the simultaneous resonance

shows the fast effect of a slow nonlinear resonance on the res-

onator bifurcation topology around the mixed behavior.

To conclude, generally the geometry of a resonator is de-

signed to satisfy some goals in terms of performances (mass

sensitivity, force sensitivity, frequency stability. . . ). These

performances are limited by the signal to noise ratio, and

hence the maximum vibration amplitude, usually set at the

onset of bistability for stable operation and noise mixing rea-
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sons. One can use a capacitive gate to cancel out the third

order nonlinear terms and operate linearly beyond the Duffing

critical amplitude, which is possible in a certain range of DC

and AC voltage, and width over gap ratio. This new stability

domain is small and is jeopardized by the onset of the mixed

behavior which cannot be tuned with only primary resonance.

The use of simultaneous resonances (pri-

mary+superharmonic) has been shown here to overcome

this limitation, by stabilizing the dynamic behavior of the

resonator when operated at high drives. In fact, the effect of

the high order nonlinearities can be retarded by an energy

transfer between fast and slow dynamics which enlarges the

stability domain beyond the onset of the mixed behavior.

As a result, a great gain in performance is expected via a

large increase of the carrier power of the device. This should

be particularly true with nanoscale devices which display

reduced dynamic ranges or signal to noise ratio.
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