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M. Sergio Caracciolo Rapporteur
M. Ilya Gruzberg Examinateur
M. Jesper Jacobsen Membre invité (co-directeur de thèse)
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Abstract

A fundamental property of the quantum Hall effect is the presence of edge states at
the boundary of the sample, robust against localization and responsible for the perfect
quantization of the Hall conductance. The transition between integer quantum Hall
plateaus is a delocalization transition, which can be identified as a strong-coupling fixed
point of a 1 + 1-dimensional supersymmetric sigma model with topological θ-term. The
conformal field theory describing this transition displays unusual features such as non-
unitarity, and resisted any attempt of solution so far.

In this thesis we investigate the role of edge states at quantum Hall transitions
using lattice discretizations of super sigma models. Edge states correspond to twisted
boundary conditions for the fields, which can be discretized as quantum spin chains
or geometrical (loop) models. For the spin quantum Hall effect, a counterpart of the
integer quantum Hall effect for spin transport (class C), our techniques allow the exact
computation of critical exponents of the boundary conformal field theories describing
higher plateaus transitions. Our predictions for the mean spin conductance are validated
by extensive numerical simulations of the related localization problems.

Envisaging applications to transport in network models of 2 + 1-dimensional disor-
dered electrons, and to quenches in one-dimensional gapless quantum systems, in this
thesis we have also developed a new formalism for dealing with partition functions of
critical systems in rectangular geometries. As an application, we derive formulas for
probabilities of self-avoiding walks.

Key words: Loop models, quantum spin chains, boundary conformal field theory, edge
states, supersymmetry, quantum Hall effect



Résumé

Une propriété fondamentale de l’effet Hall quantique est la présence des états de
bord. Ils résistent à la localisation et sont responsables de la quantification parfaite de
la conductance de Hall. La transition entre les plateaux d’effet Hall quantique entier est
une transition de délocalisation, qui peut être identifiée comme un point fixe de couplage
fort d’un modèle sigma supersymétrique en 1 + 1-dimensions avec terme topologique θ.
La théorie conforme décrivant cette transition présente des caractéristiques inhabituelles
telles que la non-unitarité, et a résisté à toute tentative de résolution jusqu’à présent.

Dans cette thèse, nous étudions le rôle des états de bord dans les transitions d’effet
Hall, en utilisant des discrétisations sur réseau de modèles sigma. Les états de bord
correspondent aux conditions aux bord pour les champs des modèles sigma, et peuvent
être discrétisés en terme de châınes de spins quantiques ou de modèles géométriques (de
boucles). Pour l’effet Hall de spin, un équivalent de l’effet Hall entier pour le transport
de spin (classe C), nos techniques permettent le calcul exact des exposants critiques
des théories conformes avec bord décrivant les transitions entre plateaux élevés. Nos
prédictions pour la moyenne de la conductance de spin sont validées par des simulations
numériques des problèmes de localisation correspondant.

Dans cette thèse, envisageant des applications au transport dans les modèles sur
réseau des électrons désordonnés en 2 + 1-dimensions, et aux trempes dans des systèmes
quantiques à une dimension, nous avons également développé un nouveau formalisme
pour calculer des fonctions de partition de systèmes critiques sur un rectangle. Comme
application, nous dérivons des formules de probabilités pour les marches auto-évitantes.

Mots clés: Modèles de boucles, châınes de spins quantiques, théories conformes avec
bord, états de bord, supersymétrie, effet Hall quantique
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Introduction

Conformal field theory (CFT) is an extremely powerful tool to study and classify possible
critical behaviors in two dimensions. Starting with the seminal paper [19], many exact
solutions of critical system have been obtained. Despite this success, there remain lattice
systems and conformal field theories which have not been understood, demanding the
development of new tools. Among those there are theories of Anderson transitions,
between localized and delocalized phases in 2+1-dimensional disordered non-interacting
electrons.

The study of Anderson transitions is one of the most active research area in the
context of disordered systems. In the last fifteen years, this field has witnessed a huge
progress [78], in particular thanks to the completion of the the symmetry classification of
disordered electrons [11,204]. Field theoretical approaches to the localization transitions
were developed during the eighties. The field theories associated to a d+ 1-dimensional
disordered quantum system are d-dimensional quantum field theories (sigma models)
describing disorder averaged products of (advanced and retarded) Green’s functions.
Although historically the first technique used to average over disorder was the replica
trick [194], the single particle character of the systems under consideration, makes the
supersymmetry method [75], leading to the study of rigorously defined super sigma
models, a well suited way to formulate the problem.

Anderson transitions in 2 + 1-dimensions exhibit a rich variety of critical behav-
iors [78]. On top of standard transitions separating insulating (localized) from metallic
(extended) phases, the integer quantum Hall (IQH) effect provides an example of local-
ization transition between two insulating phases, corresponding to different plateaus of
the Hall conductance. In field theoretic terms this possibility is given by the presence of
an additional topological θ-term in the action [163].

The perfect quantization of the Hall conductance has topological origin [188], and
the presence of non-trivial topological insulating phases in several symmetry classes, has
been by now fully understood in non-interacting systems in any dimension [128,136,179].
The research in this direction has been boosted by the recent theoretical [21, 123] and
experimental [133] discovery of the quantum spin Hall effect, a counterpart of the IQH
effect in time-reversal invariant systems. Other important cousins of the IQH effect are
the so-called spin quantum Hall effect [183] and thermal quantum Hall effect [56], which
may occur in disordered superconductors.

However, a good understanding of the field theories needed to describe the transitions
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between these phases is still lacking. An important role in this direction has been
played by network models discretizing the quantum dynamics, introduced by Chalker
and Coddington [55] for the IQH transition. Network models allow for efficient numerical
determination of the critical exponents, and from a theoretical perspective, they provide
lattice regularizations of sigma models. These lattice regularizations can be formulated
as non Hermitian spin chains, or as statistical mechanics models with non local degrees
of freedom (loops), representing Feynman paths contributing to the disorder averaged
Green’s functions [18, 50, 101, 103, 132, 168, 170, 203]. Loop models are familiar from
polymer physics [64], and, in their several variants (dense, dilute, colored, etc. ), provide
an intuitive and unifying geometrical language to approach critical phenomena, and a
lot of exact results are available for them, using a variety of techniques [16,17,117,153].
The lattice approach to the field theories has been very useful, and has allowed the exact
solution of the spin quantum Hall transition [101].

From a technical point of view, difficulties in the study of the field theories describing
the fixed points arise since one has to deal with so-called logarithmic conformal field
theories, a family of CFTs exhibiting unusual properties such as non-unitarity, far less
understood than ordinary unitary CFTs. In a more fundamental perspective, the lattice
discretizations have proved to be very useful since common algebraic structures are
shared between the lattice and the continuum [157], and this has allowed to improve our
understanding of logarithmic CFTs [39,92,158,170–172,191].

The study of fixed points in supersymmetric sigma models benefits also from their
relevance in high energy physics, in particular in the context of the AdS/CFT duality
[161, 197], and progress in understanding these theories has picked up pace recently.
Apart from the aforementioned lattice discretizations, other developments which made
this possible are a better understanding of algebraic aspects of superalgebras [36,98,145,
166] and the use of the mini superspace technology [100, 181]. In spite of these results,
finding the conformal field theory of the IQH transition remains an outstanding unsolved
problem of theoretical physics.

Different quantum Hall phases can be distinguished by the presence of edge states at
the boundary of the sample, which are robust against localization and responsible for a
non-zero value of the Hall conductance [107]. Edge states are more generally an hallmark
of topological character of phases of matter [108], and received a lot of attention recently.
(However examples where strongly correlated topological phases do not support gapless
boundary modes are known [31].) Among the several developments, the most exciting
are related to applications to quantum computation [149], though systems like some
fractional quantum Hall states, are usually proposed for that.

An interesting question of experimental relevance is then studying the boundary crit-
ical behavior at Anderson transitions. The role of edge states at the transitions manifests
itself as conformal boundary conditions in the sigma models. Boundary properties for
supersymmetric Wess Zumino Witten models are well understood [59,60], and there has
been recent progress for other models, such as the superprojective sigma models [38] of
relevance for the spin quantum Hall effect [101,170].

Boundary CFTs have also a broad range of applicability in several other areas of
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condensed matter. For example they are central to our understanding of the Kondo
effect [5], of the physics of quantum impurities or the Fermi edge singularity [7], and,
more recently, of local and global quenches in one dimensional quantum systems [34,72].
On the formal side boundary CFT plays also a fundamental role in the axiomatization of
CFT [160], understanding of logarithmic conformal field theory [89, 171], or in the rela-
tionship between conformal field theory and the Schramm-Löwner Evolution formalism
[16].

In this thesis we revisit the problem of edge states at quantum Hall transitions, by
studying boundary sigma models through their lattice discretizations. Further, moti-
vated by applications, we will present a new formalism of boundary states describing
rectangular boundaries in CFT. We now outline the organization of the manuscript.

In chapter 1 we review loop models and boundary conformal field theory. Loop mod-
els are introduced from an algebraic perspective, as representations of the Temperley-
Lieb algebra underlying the Potts model. We detail the relations between loops, the
XXZ chain, and supersymmetric lattice models, the latter formulated in terms of both
spin chains and coherent states path integrals. The Heisenberg chain is used as a useful
guiding example for understanding the basic symmetry properties. We also discuss issues
related to non-unitarity and indecomposable representations of the lattice algebras. We
then move the focus to the continuum description, reviewing the mapping of the super
spin chains introduced previously to sigma models on the complex projective superspace.
In a second part of the chapter we give an introduction to boundary conformal field the-
ory. After a brief general review of CFTs, and the definition of logarithmic CFTs, the
emphasis is on the formalism of boundary states and boundary condition changing oper-
ators, and we present the construction of Cardy’s states. Then we describe the boundary
theory of critical loop models, and discuss recent extensions of it using blob algebras.

Chapter 2 develops the formalism of boundary states for fully open boundary con-
ditions, introduced by the author in [26, 29]. There, we first discuss how conformal
mappings can be implemented in terms of the Virasoro algebra, and how these ideas
can be used to find the boundary states describing rectangular geometries for arbitrary
CFTs. Then we construct rectangular amplitudes (partition functions), deriving some
explicit results, and discussing their modular properties. Afterward, we turn to our
main motivation, the calculation of partition functions for loop models. We introduce
then lattice discretizations of the rectangle boundary states in loop models, and discuss
a geometrical interpretation of conformal blocks. As an application of these ideas, we
derive probability formulas for the logarithmic CFTs of self-avoiding walks.

In chapter 3, we introduce the network models for Anderson transitions and we
make the link with the topics developed in the previous chapters. After a review of
the phenomenology of the integer quantum Hall effect, and the formulation of quantum
transport in the Chalker-Coddington model, we describe the supersymmetry method
for computing disorder averaged Green’s functions, and discuss the resulting spin chains
and associated geometrical models. Then we provide the general framework of symmetry
classification of disordered system, and focus on the spin quantum Hall effect. We will
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discuss its phenomenology and how to employ network models to study the delocalization
transition, adapting the previously defined supersymmetric theories to this case. We
review how certain disorder averaged quantities can be mapped onto percolation, and
use this mapping to derive explicit exact results, in particular for the conductance in the
strip and cylinder geometries.

Finally, in chapter 4, we apply the tools developed previously to the study of edge
states at quantum Hall transitions, following the articles [27, 28] by the author. We
introduce new extensions of network models with extra edge channels, used to model
edge states. For the spin quantum Hall case, we generalize the mapping to a geomet-
rical model, this time being a model of loops intersecting at the boundary. The rest of
the chapter is occupied by the solution of this new loop model. In particular we for-
mulate the problem in terms of boundary conditions in super sigma models, discussing
the relation between the topological θ-term and edge states. Then we launch into the
technical problem of finding the critical exponents governing the decay of conductances
at higher spin quantum Hall plateaus. The outcome of the analysis is that the exponents
of percolation are modified to new irrational ones in the general case. These analyti-
cal predictions are finally compared to extensive numerical studies of the network model.

The material presented in this thesis in based on the following publications of the
author:

• R. Bondesan, J. L. Jacobsen, and H. Saleur, Edge states and conformal boundary
conditions in super spin chains and super sigma models, Nuclear Physics B 849
(2011), no. 2, 461–502.

• R. Bondesan, I. A. Gruzberg, J. L. Jacobsen, H. Obuse, and H. Saleur, Exact
exponents for the spin quantum Hall transition in the presence of multiple edge
channels, Phys. Rev. Lett. 108 (2012), 126801.

• R. Bondesan, J. Dubail, J. L. Jacobsen, and H. Saleur, Conformal boundary state
for the rectangular geometry, Nuclear Physics B 862 (2012), no. 2, 553–575

• R. Bondesan, J. L. Jacobsen, and H. Saleur, Rectangular amplitudes, conformal
blocks, and applications to loop models, Nuclear Physics B 867 (2013), no. 3, 913–
949.

Further, sections 1.1.2 (subsection “Coherent states path integrals”), 3.1.5, and 3.2.3
(subsection “Conductance of a cylinder”) contain material not published elsewhere.
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Chapter 1

Boundary conformal field theory
and loop models

The present chapter provides a review of some aspects of loop models and boundary
conformal field theory serving as reference for the original research material presented
in the next chapters. In section 1.1 we will introduce the algebraic approach to lattice
models in the case of the Potts model, and discuss supersymmetric formulations. Sec-
tion 1.2 contains an introduction to boundary conformal field theory, in particular to
the formalism of boundary states, and discusses the continuum limit of (ordinary and
blobbed) loop models.

1.1 The Potts model, loops and super sigma-models

The two dimensional Potts model provides an important laboratory to develop exact
techniques in statistical mechanics [17]. It presents also many interesting mathematical
aspects. Among those, the most fascinating are the relation to graph theory [185],
and its algebraic formulation in terms of the Temperley-Lieb algebra [187]. Interestingly
enough, Temperley-Lieb algebras appear also in the computation of the Jones polynomial
of knot theory [125], placing the Potts model at the intersection among several branches
of modern physics and mathematics.

We now define the Potts model. Consider a graph G with edge set E and vertex set V ,
and define a a spin configuration of the vertices by a map s : V → [Q], [Q] := {1, . . . , Q}.
We assign an energy J if two adjacent vertices have the same spin, zero otherwise. The
Potts model partition function is then

ZG(J,Q) =
∑

s:V→[Q]

exp

J ∑
(ij)∈E

δ(si, sj)

 ,

where the sum is over all spin configurations. It is illuminating to introduce v = eJ − 1,
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so that we can rewrite it as (high temperature expansion)

ZG(J,Q) =
∑

s:V→[Q]

∏
(ij)∈E

(1 + vδ(si, sj)) .

In this form, expanding out the product, we associate to each term an induced graph
H = (A, V ) where the vertices i, j are connected if we take the term δ(si, sj) in the
expansion. Performing the sum over the possible spin values produces a factor of Qk(H),
where k(H) is the number of connected components (clusters1) of H, leaving us with
Fortuin-Kasteleyn representation of the Potts model [82]:

ZG(v,Q) =
∑
A⊆E

v|A|Qk(H) . (1.1)

The partition function is now a polynomial in Q, which is then promoted to a complex
variable. The Potts model partition function encodes important properties of a graph
since eq. (1.1) coincides with the Tutte polynomial of graph theory after a change of
variables (v,Q)→ (x, y). We refer the interested reader to [185] for more details on this
connection. Varying the value of Q we cover a series of interesting models. For Q = 2
we get the Ising model, as evident from the initial spin formulation. The limit Q → 1
corresponds to bond percolation, since if we set v = p/(1 − p) and look at the rescaled
partition function

(1− p)|E|Z =
∑
A⊆E

p|A|(1− p)|E|−|A|Qk(H) ,

edges in A are percolating with probability p. Another limit giving rise to an interesting
geometrical model is Q→ 0. Let us first use the Euler relation k(H) = |V |− |A|+ c(H),
where c(H) is the cyclomatic number (i. e. , the number of linearly independent cycles)
in eq. (1.1). Now sending v,Q→ 0 keeping w = v/Q fixed, selects among the spanning
subgraphs, the forests, having c(H) = 0. Further when w → 0, one selects forests with
a single component, called spanning trees or dense polymers. Percolation and dense
polymers will play an important role in the coming developments.

We now restrict ourselves to planar graphs, for which there is a natural bijection
between cluster configurations on G and on its dual G∗. We take an edge of G∗ in A∗

only if the associated edge of G is not taken in A and vice versa. Let us now draw the
loops separating clusters from their duals. Such loops are non-intersecting and live on
another graph (medial graph). When the graph is the square lattice—the case on which
we focus below—the medial graph is the tilted square lattice, having vertices on links
of the original square lattice, see figure 1.1. Using that the number of loops is given by
l(H) = k(H) + c(H), together with the Euler relation, yields the partition function in
the loop representation:

ZG(v, β) = β|V |
∑
A⊆E

(
v

β

)|A|
βl(H) , (1.2)

1Note that for a given spin configuration, adjacent vertices with the same value of the spin can be in
different clusters.
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where we defined β :=
√
Q.

Figure 1.1: A cluster configuration on a 3 × 3 square lattice (thick black) and its dual
(thick gray). Gray vertices are identified. In red the medial lattice where the loops
(thick red) live.

The Potts model is called ferromagnetic if v ≥ 0, as it is then favored for adjacent
spins to take the same value; antiferromagnetic if −1 ≤ v ≤ 0, as it is then favored
for adjacent spins to take different values; and unphysical otherwise (v < −1), as the
weights are then no longer non-negative. We will mostly consider the ferromagnetic
regime here. For v large spins are aligned, while if it is positive but small, spins are
almost independent and one expects a phase transition at vc. This value can be obtained
by Kramers-Wannier duality [147] when G = G∗, like for the square lattice. A simple
argument goes as follows. Note that sending G to G∗ inverses v/β, since |A∗| = |E|−|A|.
If the graph is self-dual vc should be the same for G and G∗, implying vc = β. At the
critical point, the partition function counts the number of loops with a fugacity β:

ZG(β) = β|V |
∑
L
β#(loops) ,

L being the set of loop configurations on the medial lattice of G.

1.1.1 Transfer matrices and the Temperley-Lieb algebra

A powerful approach to the computation of partition functions is the use of the transfer
matrix, obtained by switching from a 2D to a 1+1D point of view. The partition function
will then be represented as a suitable trace or matrix element, depending on boundary
conditions, of a power of the transfer matrix. Let us focus now on the loop model on the
tilted square lattice of figure 1.2(a), where we have open reflecting boundary conditions
at the left and right boundaries of the strip. We use coordinates (i, j), i = 0, . . . , 2L− 1,
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j = 0, . . . , 2L′ − 1 on the links of this lattice and introduce the set of even and odd
column indices

IA = {0, 2, . . . , 2L− 2} , IB = {1, 3, . . . , 2L− 1} . (1.3)

M2

M1

t

(a)

A = (1− pA) +pA

B = pB +(1− pB)

= β

(b)

Figure 1.2: (a) The two-dimensional lattice on which we define the loop model. Chirali-
ties are associated to even and odd columns of links. The transfer matrix is a product of
two transfer matrices acting on two consecutive layers T = M1M2, imaginary time flows
from bottom to top. The number of sites is 2L = 6. (b) Vertices of the loop model.
Loops formed weight β.

Referring to figure 1.2(a), we have associated a chirality to links (i, j), up-going if
i ∈ IA, and a down-going if i ∈ IB

2. The transfer matrix T is diagonal-to-diagonal,
evolving quantum states on a row by two layers of the lattice in the vertical (imaginary,
discrete) time direction:

T = M1 ×M2 ; M1 =
∏
i∈I−B

TBi , M2 =
∏
i∈IA

TAi . (1.4)

I−B = {1, 3, . . . , 2L−3} is the appropriate set of sites for open (reflecting) boundary con-
ditions. Ti acts on two adjacent links and is given by the two possible events onto which a
vertex can be decomposed: either the bits of loops on sites i and i+1 go through without
interacting or they are contracted, see figure 1.2(b). Calling the operator implementing
this contraction Ei we have:

TAi = (1− pA) + pAEi

TBi = pB + (1− pB)Ei .

2We stress that this orientation is a property of the underlying lattice, not of the loop itself. In
particular, for a loop of a given position and shape, no sum over orientations is implied, and the states
entering the loop representation do not contain any orientational information. This choice of a directed
lattice is allowed since the interactions respect this chiralities, and thinking about a directed lattice is
useful to make contact with the topic of chapter 3, quantum network models.
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The sum over loop configurations in the partition function (1.2) is reproduced by the
vertex decompositions in TL

′
. See figure 1.3 for a typical loop configuration. When

periodic boundary conditions in the horizontal direction are imposed one replaces I−B by
IB adding an additional operator E2L−1 acting onto the last and first strand.

Figure 1.3: A typical loop configuration.

Above we allowed couplings with different strength in the vertical and horizontal
direction, respectively vA and vB in the previous notation, which are related to ps,
s = A,B by (1−ps)/ps = β/vs. When β = 1, pA and pB are the probabilities of vertical
and horizontal percolation bonds. The self-dual point at which the system is critical is
pA = 1 − pB, which in the isotropic case pA = pB gives v = β. It is useful to consider
the very anisotropic continuous-time limit pA → 0 with ε =

√
pA/(1− pB) fixed, when

T ' exp(−
√
pA(1− pB)H), where the quantum Hamiltonian H 3 is

H = −ε
∑
i∈IA

(Ei − 1)− ε−1
∑
i∈I−B

(Ei − 1) . (1.5)

This is the Hamiltonian of a quantum mechanical system in one-dimension, a quantum
spin chain. When ε 6= 1 the chain is said to be staggered, and it is gapped, describing a
massive integrable quantum field theory [81]. We anticipate here one of the key concepts
which we will develop in several places below: the two extreme limits ε = 0 and ε =
∞ of dimerized spin chains, correspond in an open system to two different situations
distinguished by the presence or not of a dangling edge state at the boundaries. See
figure 1.4.

At the critical coupling ε = 1 the gap between the ground state energy and the first
excited state closes in the continuum limit (the chain is said to be gapless). In particular
the dispersion relation of this chain is linear, characteristic of a conformal field theory,
as we will see below.

3Note this is not the conserved Hamiltonian associated to an integrable system [200], but we expect
the transfer matrix and the Hamiltonian to conceal the same physics.
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ε =∞ :

0 2L− 1

ε = 0 :

0 2L− 1

Figure 1.4: Schematic representation of the Hamiltonians in the extreme limits ε = 0
and ε =∞. Dots denote sites and links are the couplings in the Hamiltonian.

We comment now on the algebraic properties of the transfer matrix (or Hamiltonian)
for open boundary conditions. The operators used to construct the transfer matrix sat-
isfy the Temperley-Lieb (TL) algebra TLβ2L [187], which due to the graphical represen-
tation is in fact a diagram algebra. The TL algebra is generated by the identity I and
the operators Ei, i = 0, 1, . . . , 2L− 2, subject to the relations:

(Ei)
2 = βEi

EiEi±1Ei = Ei (1.6)

[Ei, Ej ] = 0, for |i− j| ≥ 2 .

In the loop representation of the Potts model, these relations are faithfully represented,
meaning that the important information is the topology of connectivities of configura-
tions. These connectivities are encoded in non crossing pairings on a rectangle with
2L points on opposite sides. The composition operation of the algebra w ◦ w′ = ww′,
w,w′ ∈ TLβ2L, is obtained by stacking the diagram w on top of w′. See figure 1.5 for
an illustration. With this point of view each configuration contributing to the partition
function is a word in TL.

Supposing periodic boundary conditions in the vertical direction, the partition func-
tion will be given by

Z = TrM TL
′
, (1.7)

where the symbol TrM is the so-called Markov trace (for a related discussion see [70]),
standing for the operation of gluing the strands on the bottom and the top of the strip,
to obtain the geometry of the annulus, and weighting each configuration according to
the number of loops.

XXZ representation

In the algebraic framework introduced above, the spin and the cluster formulations of
the Potts model correspond simply to different representations of the Temperley-Lieb

10



I = · · · Ei = · · · · · ·

i i+ 1

= β =

Figure 1.5: On top, the identity and the Temperley-Lieb generators in the diagrammatic
(loop) representation. Below, the diagrammatic equations (Ei)

2 = βEi and EiEi+1Ei =
Ei.

algebra. We refer to [142] for details. Another important representation we would like
to discuss is the six-vertex/XXZ model.

It is possible to trade the Q-dimensional space of the spin representation for a 2-
dimensional one, associated to dynamical orientations of loops, to obtain the six-vertex
model [17]. This model is defined for arbitrary Q and has local, albeit complex, Boltz-
mann weights. The Hilbert space onto which the transfer matrix acts is (C2)⊗2L, and
the action of TL generators Ei can be written as:

Ei = −1

2

(
σxi σ

x
i+1 + σyi σ

y
i+1

)
− q + q−1

4
σzi σ

z
i+1 −

q − q−1

4

(
σzi − σzi+1

)
+
q + q−1

4
, (1.8)

where
σai = 12 ⊗ · · · ⊗ 12 ⊗ σa︸︷︷︸

i

⊗12 ⊗ · · · ⊗ 12 ,

σa, a = x, y, z, being Pauli matrices. Then the non trivial part of Ei in the basis
{↑, ↓} ⊗ {↑, ↓} of sites i, i+ 1 is

Ei =


0 0 0 0
0 q−1 −1 0
0 −1 q 0
0 0 0 0

 . (1.9)

This operator satisfies relations (1.6) if q is related to β by β = q+ q−1. We will discuss
later the representation theory of TL, but let us anticipate that the structure of modules
(representation spaces) will change drastically if q is a root of unity. The six-vertex
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model is then defined by using the above expression of Ei in the transfer matrix of
eq. (1.4). The associated Hamiltonian is the XXZ Hamiltonian with boundary fields (up
to an irrelevant constant):

H =
1

2

2L−2∑
i=0

(
σxi σ

x
i+1 + σyi σ

y
i+1 +

q + q−1

2
σzi σ

z
i+1

)
+
q − q−1

2

(
σz0 − σz2L−1

)
. (1.10)

We remark that for q = 1 (β = 2) this reduces to the celebrated XXX antiferromagnetic
Heisenberg chain:

H =
1

2

2L−2∑
i=0

(
σxi σ

x
i+1 + σyi σ

y
i+1 + σzi σ

z
i+1

)
. (1.11)

Further we mention that another particularly important representation of the TL
algebra is the RSOS one [12], on which there has been recently a renewal of interest for
applications to anyonic chains [79,112].

1.1.2 Replicas and supersymmetry

In the previous section we have seen the XXZ representation of TL, deforming the
Heisenberg chain and keeping a two-dimensional space on every site. In this section we
will describe other generalizations of the Heisenberg chain, where the sl(2) symmetry
becomes sl(M) and sl(N + M |N). These models will furnish new representations of
TL, and will correspond to a replica and a supersymmetric version of the loop model
introduced above.

gl(M) vertex models

We begin by recalling the definition of gl(M). Introduce the matrices Eab, a, b = 1, . . . ,M
having 1 in row a and column b and zero otherwise. The Lie algebra gl(M) is then the
span of the Eab, and is defined by the commutation relations

[Eab, Ecd] = δbcEad − δdaEcb .

We follow [4, 172] and associate to every up-going link of the tilted lattice of figure
1.2(a), the fundamental representation V of gl(M), and to every down-going one the
dual fundamental V ?. The transfer matrix of this vertex model will act on the space of
states:

H = (V ⊗ V ?)L . (1.12)

We introduce bosons bai , i ∈ IA and b̄ai , i ∈ IB, (recall def. (1.3)), a = 1, . . . ,M ≥ 2, sat-

isfying canonical commutation relations, the non-trivial ones being [bai , b
†b
j ] = [b̄ai , b̄

†b
j ] =

δijδ
ab. V and V ? are defined by the constraint that there is a single particle on a site

(sum over repeated indices a will always be understood):

b†ai b
a
i = 1 , i ∈ IA (1.13)

b̄†ai b̄
a
i = 1 , i ∈ IB , (1.14)
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on which the generators of gl(M) are represented in terms of oscillators as Jabi = b†ai b
b
i ,

i ∈ IA, Jabi = −b̄†bi b̄ai , i ∈ IB. The tensor product V ⊗ V ? (resp. V ? ⊗ V ) decomposes as
the adjoint plus the singlet. The most general (non-trivial) coupling can then be written
as the projector onto the singlet, realized by pairwise contracting indices4. In terms of
oscillators this projector can be written as the Hermitian operator:

Ei = b̄†ai+1b
†a
i b

b
i b̄
b
i+1 , i ∈ IA

Ei = b̄†ai b
†a
i+1b

b
i+1b̄

b
i , i ∈ IB .

Thanks to the single particle constraint, one can verify that these furnish a faithful
representation of TL, eq. (1.6) with β = M . Note that b̄†ai+1b

†a
i b

b
i b̄
b
i+1 = −Jabi+1J

ba
i , and

the bilinear JabJba is the quadratic Casimir invariant of gl(M). Moreover the vertex
model defined by the transfer matrices (1.4) with Ei as above, enjoys a global sl(M) or
gl(M) invariance, since the difference between the two algebras is the central element
Jaa, and the global action is defined by Jab =

∑
i J

ab
i .

The operator Ei acting on sites i, i + 1 describes the annihilation of the particles
on layer j, and the creation of new ones on layer j + 1 with the same spin. Then the
relation of this model with the loop model introduced above in section 1.1.1 should
become apparent if we interpret the latter as a scattering process, and look at Ei as the
contraction of wordlines of bosons. The partition function then is

Z = TrH T
L′ ,

where the trace is over the space of states of eq. (1.12). The fundamental representation
flows on (contractible and not-contractible) loops, which thus get a weight TrV I = M .

Supersymmetric formulation

The most interesting limits of loop fugacity equal to zero or one (dense polymers and
percolation) are clearly ill-defined in the above formulation. This problem can be cured
by introducing on top of bosons also fermions, an idea going back to Parisi and Sourlas
[156]. We generalize then the above procedure and introduce oscillators bai ,f

α
i and b̄ai ,f̄

α
i

for i ∈ IA (even) and i ∈ IB (odd) respectively. We take the set of bosonic indices
a = 1, . . . , N + M and fermionic ones as α = 1, . . . , N , where N,M + N ≥ 0. Let us
now consider the creation of two particles out of the vacuum and their annihilation on
neighboring sites i (even) and i + 1. This event produces a closed loop and will give a
contribution

〈0|
(
bai b̄

a
i+1 + fαi f̄

α
i+1

) (
b̄†bi+1b

†b
i + f̄ †βi+1f

†β
i

)
|0〉 = N +M −N = M , (1.15)

4To relate the particle basis to the spin one, one has to define |spin = a〉 = εabb
†b|0〉 on odd sites due

to our choice of the dual representation. For the case of sl(2) for example, one has Jzb†1|0〉 = b†1|0〉 and
Jzb†2|0〉 = −b†2|0〉 for even sites but Jz b̄†2|0〉 = b̄†2|0〉 and Jz b̄†1|0〉 = −b̄†1|0〉 for odd ones. With this
translation one finds b†1i b̄

†1
i+1|0〉+ b†2i b̄

†2
i+1|0〉 = | ↑↓〉 − | ↓↑〉 as expected.
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only if we choose the commutation relation of one species say f̄ to be [f̄α, f̄ †β] = −δα,β
and those of the other species as canonical ones (i. e. without minus signs). This extra
minus sign will clearly produce some odd feature (e. g. the presence of negative norm
states) but this is a necessary choice if we want to make sense for example of loops with
fugacity zero, as demanded by physical applications. The presence of both bosons and
fermions and interactions between the two, calls for a supersymmetric formulation of the
problem which we will now review following [170,172], where now M = 0 or M = 1 are
well defined.

We introduce oscillators api , i ∈ IA, āpi , i ∈ IB and define the Z2 grade of ap and
āp as the grade | · | of the superindex: |p| = 0 if p = 1, . . . , N + M and p = 1 if
p = N +M + 1, . . . , 2N +M , that is

ap =

{
bp if |p| = 0

fp−(N+M) if |p| = 1
; āp =

{
b̄p if |p| = 0

f̄p−(N+M) if |p| = 1
.

Introduced the supercommutator [a, b] = ab−(−1)|a||b|ba, a and ā satisfy the following
super-commutation relations (on top of trivial ones):

[api , a
†q
j ] = δpqδij

[āpi , ā
†q
j ] = (−1)|p||q|δpqδij .

The minus sign if the two oscillators are fermionic is motivated by the cancellation of
loops discussed above. Generalizing the bosonic construction of the previous section, we
attach to every link (i, j) of the lattice the Z2-graded vector space CM+N |N , being the
fundamental V of the Lie superalgebra gl(M +N |N) for i ∈ IA and its dual V ? (which
is different from the conjugate representation due to negative norm states) for i ∈ IB.
These spaces are constructed by imposing single particle constraints to the oscillators
(repeated indices are summed over with Euclidean metric)

a†pi a
p
i = 1 , i ∈ IA

(−1)|p|ā†pi ā
p
i = 1 , i ∈ IB .

and defining the generators of gl(M +N |N) as

Jpqi = a†pi a
q
i , i ∈ IA

Jpqi = (−1)|p||q|+1ā†qi ā
p
i , i ∈ IB .

They satisfy:

[Jab, Jcd] = JabJcd − (−)(|a|+|b|)(|c|+|d|)JcdJab

= δbcJad − (−)(|a|+|b|)(|c|+|d|)δdaJcb .

The transfer matrix eq. (1.4) acts on the space of states for a horizontal layer

H = (V ⊗ V ?)L , (1.16)
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where now the tensor product is of course the graded one, and

Ei = ā†pi+1a
†p
i a

q
i ā
q
i+1 , i ∈ IA

Ei = ā†pi a
†p
i+1a

q
i+1ā

q
i , i ∈ IB .

Note that the TL generator is given by the quadratic Casimir Ei = −Str JiJi+1. The
partition function on an annulus is then given by:

Z = StrH T
L′ ,

with the supertrace Str(·) := Tr((−1)F ·), F the number of fermions. The fundamental
representation V flows in closed loops, which then get a weight StrV 1 = M as desired.

Coherent states path integrals

We will now derive the coherent state path integral representation of transfer matrices
of gl(M) and gl(N + M |N) vertex models. We will give more details in this section,
since this approach has not been explicitly discussed in the literature.

We first deal with the gl(M) case. Let us focus on two adjacent sites V ⊗ V ?. Since
we are working in spaces fulfilling eq. (1.13)-(1.14), we introduce the projector onto the
single particle subspace:

P = b†ab̄†b|0〉〈0|b̄bba ,

where ba|0〉 = b̄a|0〉 = 0. We project now the site transfer matrix onto this subspace

T̃ = P
(

(1− p) + pb̄†ab†abbb̄b
)
P

= b†ab̄†b|0〉 ((1− p)δacδbd + pδabδcd) 〈0|b̄dbc .

T̃ is the operator we want to express in the coherent state basis.
Coherent state quantization is a standard method for deriving path integrals for

quantum problems, we refer to [83] for reference. Given the bosonic Fock space associated
to the harmonic oscillators ba, we introduce complex variables xa and define the coherent
states

|x〉 = exp
(
xab†a

)
|0〉 , (1.17)

such that
ba|x〉 = xa|x〉 , b†a|x〉 = ∂xa |x〉 .

The important point is that coherent states are (over-)complete and the resolution of
the identity can be written as

1 =

∫
dµ(x)|x〉〈x| ,
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where we introduced the Gaussian measure:

dµ(x) =
∏
a

d<(xa)d=(xa)

π
e−x

ax∗a . (1.18)

We express now T̃ in coherent state basis. We introduce variables x0,0, x̄0,0 and x0,1, x̄0,1

attached to the links meeting at the vertex under consideration, as in figure 1.6.

x0,0

x̄1,1x0,1

x̄1,0

Figure 1.6: Labeling of bosonic variables at a vertex. The first index refers to columns,
the second to rows. Overbars in x̄i,j are used to stress the relation with dual represen-
tations V ? in the transfer matrix formulation.

We have:

〈x0,1, x̄1,1|T̃ |x0,0, x̄1,0〉 = x∗a0,1x̄
∗b
1,1 ((1− p)δacδbd + pδabδcd)x

c
0,0x̄

d
1,0 . (1.19)

The deltas have a clear graphical interpretation, imposing the propagation of particles
in the top direction, first term, or their contraction, second term.

We now consider the whole lattice and introduce on every link (ij) a complex variable
xij , i ∈ IA and x̄ij , i ∈ IB (recall that IA and IB refer respectively to even and odd
columns). Then we write the transfer matrix projected onto the single particle subspaces
M̃1M̃2 acting say on horizontal layer j as

T =

∫
dµ(x, x̄)|(x, x̄)j+2〉〈(x, x̄)j+2|M̃1|(x, x̄)j+1〉〈(x, x̄)j+1|M̃2|(x, x̄)j〉〈(x, x̄)j | , (1.20)

where dµ(x, x̄) denotes integration over all variables with coherent state measure (1.18)
and

|(x, x̄)j〉 =
∏
i∈IA

|xi,j , x̄i+1,j〉 .

Since oscillators on different sites commute we have

〈(x, x̄)j+1|M̃2|(x, x̄)j〉 =
∏
i∈IA

〈xi,j+1, x̄i+1,j+1|T̃i|xi,j , x̄i+1,j〉 ,

and analogously for M̃1. For the L′-th power of the transfer matrix we just have to insert
resolutions of the identity for each layer, and we then find (J = {0, 2, . . . , 2L′ − 2})

TL
′

=

∫
dµ(x, x̄)

∏
j∈J

∏
i∈I′
T Ai,j(x, x̄)

∏
i∈I
T Bi,j (x, x̄)|(x, x̄)2L′〉〈(x, x̄)0| ,
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where we defined

T Ai,j(x, x̄) := (1− pA)x∗ai,j+1x
a
i,j x̄

b
i+1,j x̄

∗b
i+1,j+1 + pAx

∗a
i,j+1x̄

∗a
i+1,j+1x̄

b
i+1,jx

b
i,j

T Bi,j (x, x̄) := pBx
∗a
i+1,j+1x

a
i+1,j x̄

b
i,j x̄
∗b
i,j+1 + (1− pB)x∗ai+1,j+1x̄

∗a
i,j+1x̄

b
i,jx

b
i+1,j .

Note now that the single particle constraint (1.13) when applied on coherent states
imposes the variables to live on the real sphere S2N−1, xax∗a = 1, since:

〈x|x〉 = 〈x|b†cbc|x〉 = x∗cxc〈x|x〉 . (1.21)

The partition function on an annulus Z = TrTL
′

is then obtained by tracing onto the
single particle states on a layer giving

〈0|
∏
i∈IA

baii b̄
ai+1

i+1 |(x, x̄)2L′〉〈(x, x̄)0|
∏
i∈IA

b†aii b̄
†ai+1

i+1 |0〉 =
2L−1∏
i=0

xai,2L′x
∗a
i,0 = 1 ,

where we used the periodic boundary conditions xai,0 = xai,2L′ and eq. (1.21). In the
end the partition function of the Potts model in the coherent state representation is the
following Gaussian integral:

Z = TrTL
′

=

∫
dµ(x, x̄)

∏
j∈J

∏
i∈I′
T Ai,j(x, x̄)

∏
i∈I
T Bi,j (x, x̄) ,

where xai,0 = xai,2L′ is understood. We should also constrain the particles to live on a
sphere, but since in this path integral we have only terms xx∗ whose Gaussian integral
is one, the result is the same also without imposing this. The index a = 1, . . . ,M is
conserved along the wordlines of particles, and those wordlines close into loops. Each
loop thus formed can be colored in M ways, so that it will get a weight M , and then we
end up with the partition function of the loop model.

Further, note that alternatively we could have imposed the single particle constraint
only at the end to find a less explicit formula:

Z = TrTL
′

=

∫
dµS(x, x̄)

∏
j∈J

∏
i∈IA

(1− pA + pAx̄
∗p
i+1,j+1x

∗p
i,j+1x

q
i,j x̄

q
i+1,j)e

x∗pi,j+1x
p
i,jex̄

q
i,j x̄
∗q
i,j+1

×
∏
i∈IB

(pB + (1− pB)x̄∗pi,j+2x
∗p
i+1,j+2x

q
i+1,j+1x̄

q
i,j+1)ex

∗p
i+1,j+2x

p
i+1,j+1ex̄

q
i,j+1x̄

∗q
i,j+2 ,

where
dµS(x, x̄) = dµ(x, x̄)

∏
j

∏
i∈IA

δ(x∗aij x
a
ij − 1)

∏
i∈IB

δ(x̄∗aij x̄
a
ij − 1) .

This formula is more standard since in general one has 〈x|F (b, b†)|x′〉 = F (x′, x∗)ex
∗x′ .

In our formula (1.19) the exponential is killed by the single particle requirement.
We would like now to derive a supersymmetric path integral representing the parti-

tion function. The generalization is straightforward. This time the projector onto single
particle subspaces for adjacent sites V ⊗ V ? is

P = (−1)|p|a†qā†p|0〉〈0|āpaq ,
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due to the extra minus-sign in the commutation relations of the fermions f̄ . We then
project as before the transfer matrix

T̃ = P
(

(1− p) + pā†pa†paqāq
)
P

= a†qā†p|0〉
(

(1− p)δprδql(−1)|p| + pδpqδlr(−1)|p|+|r|
)
〈0|āral .

Recall now that fermionic coherent states |η〉 for a fermion f , {f, f †} = 1, are defined
by demanding f |η〉 = η|η〉:

|η〉 = e−ηf
† |0〉 = (1− ηf †)|0〉 ; 〈η| = 〈0|eη∗f = 〈0|(1 + η∗f) . (1.22)

η and η∗ are Grassmann variables anticommuting with f, f †. The resolution of the
identity reads

1 =

∫
dη∗dηe−η

∗η|η〉〈η| .

Introduce now the ordinary Grassmann variables η̄, η̄∗. Since {f̄ , f̄ †} = −1, we choose

to define coherent states |η̄〉 with an extra minus sign, |η̄〉 = eη̄f̄
† |0〉, so that we still have

f̄ |η̄〉 = η̄|η̄〉. However, the identity in the Fock space of f̄ is 1 = |0〉〈0| − f̄ †|0〉〈0|f̄ (one
can verify that the minus sign is needed to be idempotent), so that the relation

1 =

∫
dη∗dηe−η̄

∗η̄|η̄〉〈η̄| ,

can only holds if 〈η̄| = 〈0|eη̄∗f̄ . In particular this implies that 〈η̄|f̄ † = −〈η̄|η̄∗.
Putting together bosonic and fermionic coherent states we define the super coherent

states as

|φ〉 = exp(a†pφp)|0〉 ; 〈φ| = 〈0| exp(φ∗pap) ,

|φ̄〉 = exp((−1)|p|ā†pφ̄p)|0〉 ; 〈φ̄| = 〈0| exp(φ̄∗pāp) .

φ, φ̄ ∈ CN+M |N are supervectors (similarly for φ̄)

φp =

{
xp if |p| = 0

ηp−(N+M) if |p| = 1
,

and we have the completeness relation

1 =

∫
dµ(φ)dµ(φ̄)|φ, φ̄〉〈φ̄, φ| ,

with

dµ(φ) =
M+N∏
a=1

d<(xa)d=(xa)

π
e−x

∗axa
M+2N∏

b=M+N+1

dη∗bdηbe−η
∗bηb , (1.23)
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and analogously for φ̄. We express now the operator T̃ in the coherent state basis:

〈φ0,1, φ̄1,1|a†qā†p|0〉〈0|āral|φ0,0, φ̄1,0〉
(

(1− p)δprδql(−1)|p| + pδpqδlr(−1)|p|+|r|
)

= φ∗q0,1φ̄
∗p
1,1

(
(1− p)δprδql + pδpqδlr(−1)|r|

)
φ̄r1,0φ

l
0,0

= (1− p)φ∗q0,1φ
q
0,0φ̄

∗p
1,1φ̄

p
1,0 + pφ∗q0,1φ̄

∗q
1,1φ

p
0,0φ̄

p
1,0 .(1.24)

We have the same graphical interpretation as in the bosonic case, and loops formed from
inserting this decomposition at every vertex will weight M as wanted, thanks to correct
ordering of fermions. Indeed let use compute for example the weight of the smallest loop
one can have for the case of M = 0, N = 1. With the labeling of figure 1.7 one has to
integrate over Gaussian measures (1.23) the following polynomial:

φ∗p0,1φ̄
∗p
1,1φ

∗q
0,2φ

q
0,1φ̄

∗r
1,2φ̄

r
1,1φ

s
0,2φ̄

s
1,2 =

(
x∗0,1x̄

∗
1,1 + η∗0,1η̄

∗
1,1

) (
x∗0,2x0,1 + η∗0,2η0,1

)
×
(
x̄∗1,2x̄1,1 + η̄∗1,2η̄1,1

)
(x0,2x̄1,2 + η0,2η̄1,2) ,

producing 0 as a result.

φ0,1

φ0,2

φ̄1,1

φ̄1,2

Figure 1.7: Labeling of edge variables.

Finally as in eq. (1.20) we insert coherent states on different links to have (J ≡
{0, 2, . . . , 2L′ − 2}):

TL
′

=

∫
dµ(φ, φ̄)

∏
j∈J

∏
i∈IA

T Ai,j(φ, φ̄)
∏
i∈IB

T Bi,j (φ, φ̄)|(φ, φ̄)2L′〉〈(φ, φ̄)0| ,

where we defined

T Ai,j(φ, φ̄) := (1− pA)φ∗qi,j+1φ
q
i,jφ̄
∗p
i+1,j+1φ̄

p
i+1,j + pAφ

∗q
i,j+1φ̄

∗q
i+1,j+1φ

p
i,jφ̄

p
i+1,j

T Bi,j (φ, φ̄) := pBφ
∗q
i+1,j+1φ

q
i+1,jφ̄

∗p
i,j+1φ̄

p
i,j + (1− pB)φ∗qi+1,j+1φ̄

∗q
i,j+1φ

p
i+1,jφ̄

p
i,j ,

and

dµ(φ, φ̄) =

2L′∏
j=0

∏
i∈IA

dµ(φi,j)
∏
i∈IB

dµ(φ̄i,j) .

Taking the supertrace in eq. (1.16), amounts to evaluate the following expression∏
i∈IA

〈0|apii ā
pi+1

i+1 |φi,2L′ , φ̄i+1,2L′〉〈φi,0, φ̄i+1,0|ā†pi+1

i+1 a†pii |0〉(−1)pi

=
∏
i∈IA

φpii,2L′ φ̄
pi+1

i+1,2L′ φ̄
∗pi+1

i+1,0φ
∗pi
i,0 (−1)pi = 1 .
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We do not have (−1)pi+1 in the product because the factor (−1)pi+1 from the supertrace
is killed by the identical one coming from conjugation of ā†|0〉. Further in the last
equality we used periodic boundary conditions in vertical direction together with the
single particle constraint. This last indeed gives the real supersphere S2N+2M−1|2N

φ∗pφp = x∗axa + η∗αηα = 1

φ̄∗pφ̄p = x̄∗ax̄a + η̄∗αη̄α = 1 .

The expression of the partition function of the supersymmetric vertex model will then
be

Z = StrTL
′

=

∫
dµ(φ, φ̄)

∏
j∈J

∏
i∈IB

T Bi,j (φ, φ̄)
∏
i∈IA

T Ai,j(φ, φ̄) ,

with periodic boundary conditions of the fields in the vertical direction. As in the
bosonic case, one should implement the supersphere constraint but since only factors
of φ∗φ appear, this will not change the result of the integral. If we started from the
transfer matrix not projected onto single particle subspace and imposed the supersphere
constraint only in the end, we would have obtained:

Z = StrTL
′

=

∫
dµS(φ, φ̄)

∏
j∈J

∏
i∈IA

(1− pA + pAφ
∗p
i,j+1φ̄

∗p
i+1,j+1φ

q
i,jφ̄

q
i+1,j)e

φ∗pi,j+1φ
p
i,jeφ̄

∗q
i,j+1φ̄

q
i,j

×
∏
i∈IB

(pB + (1− pB)φ∗pi+1,j+2φ̄
∗p
i,j+2φ

q
i+1,j+1φ̄

q
i,j+1)eφ

∗p
i+1,j+2φ

p
i+1,j+1eφ̄

∗q
i,j+2φ̄

q
i,j+1 ,

where
dµS(φ, φ̄) = dµ(φ, φ̄)

∏
j

∏
i∈IA

δ(φ∗pij φ
p
ij − 1)

∏
i∈IB

δ(φ̄∗qij φ̄
q
ij − 1) .

1.1.3 Algebraic analysis of the spectrum

The diagonalization of Hamiltonians (or transfer matrices) of a model is in general a
problem demanding high computational resources since the dimension of the space of
states grows exponentially with the system size. This very concrete problem motivates
then an algebraic understanding which allows to diagonalize much smaller matrices by
restricting to symmetry sectors. In this section we will discuss the algebraic aspects of
the Heisenberg spin chain, and how to decompose more generally the spectrum of the
loop model introduced above.

Heisenberg chain

At β = 2 (q = 1) the TL generators of eq. (1.9) are simply related to the permutation
operator Pi,i+1, generating the symmetric group SN , by

Pi,i+1 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 = 14 − Ei .
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TLβ=2
N is isomorphic to the projection of the group algebra of SN onto representations

occurring in H = (C2)N . Recall that irreducible representations of SN (so-called Specht
modules) are indexed by Young diagrams with N boxes [175]. Those occurring in the
Heisenberg spin chain have at most two rows5. We label these Specht modules by the
difference in length between the two rows 2j = 0, 2, . . . , N (recall N = 2L), and call them
Sj . Sj has basis given by standard tableaux (Young diagrams whose boxes are labeled
with numbers 1, . . . , N increasing to the right and to the bottom) and its dimension is
readily computed using the hook-length formula [175]:

dj =

(
N

N/2 + j

)
−
(

N

N/2 + j + 1

)
. (1.25)

Then we have the following decomposition of H onto irreducibles of TL2
N :

H|TL2
N

=

N/2⊕
j=0

DjS
j .

The multiplicities Dj ’s correspond to the number of states in the spin chain for each
given standard tableau in Sj , Dj = 2j + 1. Let us now look at the action of sl(2) on the
chain. This action commutes with permutation of sites, and irreducible representations
ρj of dimension Dj are labeled by the same Young diagrams as before, where now j has
the interpretation of spin sector. Then we have the decomposition onto irreducibles of
sl(2):

H|sl(2) =

N/2⊕
j=0

djρj .

The multiplicity of spin j in the chain is known from standard Clebsh-Gordan formula
and equals eq. (1.25). We have finally that the Hilbert space has a multiplicity-free
decomposition as a (TL2

N , sl(2))-bimodule:

H|TL2
N⊗sl(2) =

N/2⊕
j=0

Sj ⊗ ρj . (1.26)

The Hamiltonian algebra, the TL algebra, acts on the first factor, while symmetries,
sl(2), act on the second one. This decomposition is well-known and is implied by the
Schur-Weyl duality for sl(2). This is a manifestation of the double-commutant theorem
which we now state.

Consider the semisimple (or fully reducible as direct sum of irreducibles) action of
the algebra A on V , with dim(V ) finite. Let B = Z(A) be the commutant algebra
(centralizer) of A in V (the algebra of linear transformations of V commuting with A).
The theorem states that

5For example, when N = 3 one cannot have the fully antisymmetric representation (associated to a
Young diagram with a single column and three rows) using ea⊗ eb⊗ ec, with ea, eb, ec being basis of C2,
so that a, b, c = 1, 2.
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i. B acts also semisimply on V

ii. Z(B) = A (double commutant property)

iii. V has the multiplicity-free decomposition

V =
⊕
j

RAj ⊗RBj ,

where j indices the (isomorphism classes of) irreducible representations RAj , RBj of
A and B, which are in one-to-one correspondence.

If the dimension of RAj , RBj are respectively Nj , Mj , then clearly dim(V ) =
∑

j NjMj ,

and dim(A) =
∑

j N
2
j , dim(B) =

∑
jM

2
j , since A and B act on V as matrix algebras

with blocks of dimension Nj and Mj . In a typical example of physical application of this
theorem, A is the algebra of symmetries and B is that of Hamiltonians, as seen above
and as will be discussed in section 3.1.6. This result can be expressed pictorially as in
figure 1.8. The power of the theorem is that knowing the representations of an algebra,
automatically determines representations of the dual one.

V = ⊕
. . .⊕

⊕
. . .⊕

j

B

A

Figure 1.8: Decomposition of the space V under the semisimple action of the doubly
commuting algebras A (symmetries) and B (Hamiltonians), acting on irreducible rect-
angular blocks j, vertically and horizontally respectively. To have commutativity, the
action of A has to be the same on each column of the block, while that of B on each
row.
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We remark that for the Heisenberg chain we have

dim(H) =

N/2∑
j=0

djDj = 2N

dim
(
TL2

N

)
=

N/2∑
j=0

d2
j =

1

N + 1

(
2N

N

)

dim
(

U(sl(2))(N)
)

=

N/2∑
j=0

D2
j =

(N + 1)(N + 2)(N + 3)

6
,

which are respectively the (expected) dimension of the Hilbert space, the dimension of
the TL algebra, the N -th Catalan Number, and the dimension of the commutant algebra
U(sl(2))(N), which is the image of the representation of sl(2), or better, of its universal
enveloping algebra U(sl(2)), in H (usually called Schur algebra).

In the next section we will see how these ideas apply to the other models of interest.

Representations of TL at generic q

The considerations above apply directly to the TL model with β = q + q−1 for q =
eiπ/(p+1), p 6∈ Z≥1 (generic case). This condition rules out the cases which are most
interesting physically, but however conclusions about these cases can be still drawn by
taking limits of generic formulas, as we will discuss later. Further, what happens at
roots of unity will be discussed briefly in the next section.

The XXZ Hamiltonian (1.10) commutes with the generators of a quantum deforma-
tion of sl(2), the quantum group Uq(sl(2)) 6 [157], and this symmetry reduces to sl(2)
when q = 1 (Heisenberg chain). Uq(sl(2)) (or more precisely the image of its repre-
sentation on the chain) is the commutant of TL in H. The problem of studying the
representations of TL is equivalent to study those of the quantum group. The important
point is that as long as q is not a root of unity its irreducible representations are one
to one with those of ordinary sl(2), and labeled by the spin j. For example C4 is de-
composed onto ρ0 the singlet q−1/2| ↑↓〉 − q1/2| ↓↑〉 and the triplet ρ1, spanned by | ↑↑〉,
q1/2| ↑↓〉+q−1/2| ↓↑〉, | ↓↓〉. TL generators (1.8) are projectors onto the singlet as can be
readily verified. Let us now describe the corresponding irreducible TL representations
Sj . We use a “valence bond” basis where each basis state of the module indexed by j
corresponds to a link state, with (N − 2j)/2 arcs and 2j non-contractible lines, like the
one in figure 1.9(a).

6The algebra Uq(sl(2)) is generated by q2SZ , q−2SZ , S+, S− subject to the relations [124]:

q2S3

S+q−2S3

= q2S+ , q2S3

S−q−2S3

= q−2S−

[S+, S−] =
q2S3

− q−2S3

q − q−1
.

In the classical limit q → 1 we get the commutation relations of sl(2) [S3, S±] = ±S±, [S+, S−] = 2S3.
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P2

(a)

1 2 3 4

8 7 6 5

1 2 3 4 5 6 7 8

(b)

Figure 1.9: (a) A link state with 2j = 2 non-contractible lines for a chain of length
N = 8. The through lines are projected by the operator P2 to be non-contractible. (b)
Unfolding a diagram to a link pattern.

The states in the chain corresponding to such diagrams are given by contracting the
sites associated to arcs to form a singlet. Two states associated to two non-contractible
lines are chosen such that application of the projector onto the singlet Ei gives zero.
This is enforced by the projector P2 in figure 1.9(a), as explained below. At q = 1 basis
states with 2j non-contractible lines map to the Specht modules of the symmetric group
introduced above. Then a decomposition like eq. (1.26) holds also in the generic case
replacing sl(2) by Uq(sl(2)). In particular the dimensions dj and Dj of the algebras are
the same as in the q = 1 case. That the dimension of TL is the Catalan number for
every value of q is actually obvious if one thinks about the diagram representation of
the algebra and unfold each diagram to produce a link pattern7, as in figure 1.9(b)

The operators projecting onto a sector with a given number of non-contractible
lines (sites) are called Jones-Wenzl projectors Pk. P2j is an element of the TL algebra
projecting onto the j-th sector with spin j (2j non-contractible lines), satisfying P 2

k = Pk
and EiPk = PkEi = 0 for every i < k. The solution for such a Pk can be easily found
recursively[142]:

Pk+1 = Pk −
[k]q

[k + 1]q
PkEkPk ,

7Counting link patterns is a well known combinatorial problem. Denote Cn the number of link
patterns with n arcs (C0 = 1). Given a configuration with n > 0, remove the rightmost arc. Then we
are left with two smaller link patterns, leading to the following convolutional formula for Cn:

Cn =

n−1∑
n1=0

Cn1Cn−1−n1 .

Introducing the generating function C(z) =
∑
n≥0 Cnz

n, the above relation implies C(z) = 1 + zC(z)2,
whose solution is

C(z) =
1−
√

1− 4z

2z
.

The coefficient Cn are thus:

Cn =

∮
dz

2πi
z−n−1C(z) =

1

n+ 1

(
2n

n

)
.

24



with P1 = 1 and where the quantum integers [n]q are [n]q = qn−1 +qn−3 + · · ·+q−(n−1) =
(qn − q−n)/(q − q−1). For example one finds for the projector onto spin 1:

P2 = − 1

[2]q

Note [2]q = q + q−1 = β. Clearly the results above apply also to the gl(M) and gl(N +
M |N) spin chains of section 1.1.2 when M = q + q−1 ≥ 2, so that q is real. What
changes however is the commutant of TL for these chains, so the multiplicities Dj in
the decomposition of the spectrum. This commutant has been constructed in details in
[172]. The value of Dj can be understood by a simple argument. Clearly D0 = 1 and
also D1 = M2 − 1, the dimension of the adjoint. Then we have the recursion relation

D1Dj = Dj+1 +Dj +Dj−1 ,

which can be interpreted graphically as the fusion of 2 plus 2j non contractible lines on
the left hand side to give either 2(j+1) non contracted lines, or 2j non contracted and 1
contracted, or 2(j− 1) non contracted and 2 contracted. The solution of this recurrence
relation with initial conditions D0 and D1 is

Dj = [2j + 1]q . (1.27)

The results obtained so far allow to write down the decomposition of the 2L × 2L′

annulus partition function of the Potts model with β = q + q−1 generic for the six-
vertex/XXZ representation:

Z = TrH T
L′ =

L∑
j=0

Dj TrSj T
L′ . (1.28)

For the XXZ chain Dj = 2j + 1 corresponds to weight non-contractible loops as δ = 2.
Indeed, to give a different weight δ = t + t−1 = [2]t to non-contractible loops winding

around the annulus, one introduces t2S
Z

into the trace, resulting in a different multiplicity
Dj = [2j + 1]t [170], consistent with the expression given for the gl(N + M |N) spin
chains. We have then expressed the Markov trace of the TL algebra introduced in
eq. (1.7) for computing the partition function in the loop representation as a sum over
the various sectors with fixed number of non-contractible lines. By continuity of the
partition function of loop models with respect to the loop weight, this formula should
be valid also at roots of unity. In this case, when both contractible and not-contractible
loops are weighted the same, Z is trivial for dense polymers (Z = 0) and percolation
(Z = 1), in the latter case after trivial rescaling of Z.

Scalar products and unitarity

We now introduce natural scalar products in the space of states of the TL models,
and comment about unitarity. Consider first the XXZ chain. It is natural to define
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a scalar product as in the sl(2) case, treating the variable q as a formal parameter
(i. e. no complex conjugation). For example, the norm associated to the Uq(sl(2)) singlet
q−1/2| ↑↓〉− q1/2| ↓↑〉, is q+ q−1. More generally, for some values of q, there are states in
the representation spaces which have negative or zero norm (e. g. q = i in the formula
above). One can show that this does not happen for q real (β ≥ 2), so that the irreducible
modules introduced before are unitary in the case of gl(M) spin chains. Otherwise, for
β < 2, the scalar product is not positive-definite, spoiling unitarity of the representations
[157]. Further, when q is a complex number of modulus one, the Hamiltonian of the XXZ
chain eq. (1.10), is not Hermitian (however its eigenvalues are real).

The diagrammatic representations of TL can be also endowed with a scalar product.
If |s〉 is a link state, we define its dual 〈s| by turning it upside down and the bilinear
form 〈s1|s2〉, which we call loop scalar product, by associating to the link states the
diagram obtained by gluing |s2〉 with 〈s1|. The result is given by βn, with n the number
of loops thus formed, and we get zero if we contract two strings, as natural for our choice
of basis. For instance we have

〈 | 〉 = = β2 .
(1.29)

One comes to the same conclusion as for the XXZ chain, that the loop scalar product is
not positive-definite, so that representations are not unitary.

We recall also that negative norm states appear in the super spin chains to ensure
cancellations of closed loops, see eq. (1.15). The final moral is that non-unitarity of the
theory is deeply related to the geometrical nature of problems (like polymers, percola-
tion) we want to describe.

We will see below how these remarks are directly translated to the conformal field
theories describing the continuum limit of these lattice models.

A look at indecomposability

To understand what happens in the more complicated case when q is a root of unity, it is
instructive to proceed by examples, and here we will discuss the case of dense polymers
β = 0. Specifically we consider the simplest case of the gl(1|1) spin chain following [176].

We use the following convenient basis of gl(1|1) w.r.t our notation of section 1.1.2:
E = 1/2(J11 + J22), N = 1/2(J11 − J22), F+ = J12, F− = J21. E is central, and the
other defining relations are

[N,F±] = ±F±, {F−, F+} = E .

In particular N counts the number of fermions. The choice of the Lie superalgebra gl(1|1)
is motivated by the fact that its representation theory is rather simple [99]. When
dealing with the irreducible representations of superalgebras, we have to distinguish
between typical or atypical representations. For gl(1|1) typical representations are the

26



two-dimensional representations 〈e, n〉, e 6= 0, n ∈ R, which read in matrix notation:

N =

(
n− 1 0

0 n

)
F− =

(
0 1
0 0

)
F+ =

(
0 0
e 0

)
E =

(
e 0
0 e

)
.

The state annihilated by F− is a boson. Atypical representations are the one-dimensional
irreducible representations 〈n〉, which have F+ = F− = E = 0, N = n. This exhausts
all irreducibles (up to isomorphism).

We are in a position to introduce the most important concept distinguishing the
cases of roots of unity: indecomposability. Consider what happens for 〈0, n〉: the vector
|0〉 = (1, 0)T generates a one-dimensional invariant subspace, but there is not an invariant
complement of the representation. Indeed |1〉 = (0, 1)T cannot be decoupled from the
representation since F−|1〉 = |0〉. 〈n, 0〉 is indecomposable but not irreducible. To
visualize this structure we write it in terms of the linking of its atypical constituents:
〈n〉 → 〈n−1〉, where the arrow represents the action of the algebra. Note that the largest
proper submodule (radical) 〈n − 1〉 is irreducible, and the quotient by this submodule,
〈n〉, is irreducible too.

Let us now look at the gl(1|1) spin chain. It is built by alternating the fundamental
V = 〈1, 1/2〉 and the dual V ? = 〈−1,−1/2〉. The TL generators can be written as
quadratic in the fermions8:

Ei = (F−i + F−i+1)(F+
i + F+

1+1) . (1.30)

If we try to define a scalar product where F+ is the conjugate of F− we see that the
scalar product is not positive-definite, since in V ?, {F+, F−} = −1. Further, if we take
the natural basis |0, 0〉, |1, 0〉, |0, 1〉, |1, 1〉 in V ⊗ V ?, then

E0(|0, 1〉 − |1, 0〉) = 0

E0(|0, 1〉+ |1, 0〉) = 2(|0, 1〉 − |1, 0〉) ,

so that E0 (the Hamiltonian) is not diagonalizable in the tensor product, it can only be
brought to a Jordan form in this two-dimensional subspace:(

0 1
0 0

)
.

Note that P1 := V ⊗ V ? is an indecomposable corresponding to the adjoint of gl(1|1) 9.
Indeed using the usual coproduct formula (with graded tensor product) Jab = Jab0 ⊗1⊕

8The free fermionic character of the theory of dense polymers, or spanning trees, can be understood
more directly from the matrix-tree theorem. See [116] for a discussion of that in the context of CFT,
and [40] for the generalization to an interacting fermionic theory describing spanning forests.

9More generally the spin chain decomposes as [99]

(V ⊗ V ?)⊗l '
l−1⊕
i=1−l

(
2l − 2

l − 1 + i

)
Pi .

where Pn is an indecomposable four-dimensional representation playing the role of the projective cover
of 〈n〉, that is it can never appear as a subrepresentation of a larger indecomposable and contains 〈n〉.
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1⊗ Jab1 , the action of the generators in P1 is:

E = 0 , N =


−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , F+ =


0 0 0 0
−1 0 0 0
1 0 0 0
0 1 1 0

 , F− =


0 1 1 0
0 0 0 1
0 0 0 −1
0 0 0 0


From the expression ofN , we read that P1 is made up of atypical irreducibles 〈1〉,2〈0〉,〈−1〉,
corresponding to the subspaces |1, 1〉, |0, 1〉± |1, 0〉, |0, 0〉, and has the following diamond
structure:

〈1〉

〈0〉 〈0〉

〈−1〉

F+

F+

F−

F−

H

The arrows stand for the action of the elements of the algebra, and the red one cor-
responds to the action of the Hamiltonian H = −E0, which can be also written as
H = −2C, where C is the quadratic Casimir10 of gl(1|1) C = (2N − 1)E + 2F−F+, as
can be readily verified using the expression of generators above.

Note that we could have discussed the case of the XX chain (q = i) instead of the
gl(1|1) one, which after a Jordan-Wigner transformation is equivalent to (1.30). More
generally, at roots of unity semisimplicity is lost and the TL algebra exhibits features
similar to those discussed above. For example (for sufficiently large sizes) the tensor
product of 1/2 representations does not decompose into irreducibles of TL and Uq(sl(2))
no more, although it can still be written as a direct sum (of so-called tilting modules).
The general theory is quite intricate and we refer to [171] for a discussion of these
features.

There are however interesting quantities which do not need a detailed study of the
algebraic structure to be computed. For example, as we have already remarked the
annulus partition function of (1.28) being a trace of the transfer matrix does not see the
Jordan cell structure at roots of unity. We will discuss this point further when studying
rectangular amplitudes in chapter 2.

1.1.4 From spin chains to non linear sigma models

In this section we will derive the low energy effective field theories describing the vertex
models introduced above. We will first illustrate the general procedure in the familiar
case of the Heisenberg spin chain leading to the O(3) non-linear sigma model, and then
generalize to the gl(N +M |N) spin chains of interest for the Potts model.

10The quadratic Casimir is obviously defined up to any function of the central element E.
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Spin coherent states

We have discussed in section 1.1.2 the path integral formulation of gl(N +M |N) vertex
models in terms of oscillator coherent states. It is useful to introduce a different basis
of coherent states, which we will call spin coherent states. Our exposition follows [83],
for the general theory of coherent states see [159].

Consider a single quantum mechanical spin and denote the highest weight of the
(2s + 1)-dimensional spin s representation |0〉: S+|0〉 = 0, S3|0〉 = s|0〉. The coherent
state basis is defined by rotating |0〉 with the SU(2) matrix:

|~n〉 = eiθ(~n0×~n)·~S |0〉 .

Here ~n is a three-dimensional vector of unit length and ~n0 · ~n = cos(θ). If we choose
~n0 = ẑ = (0, 0, 1) only S1 and S2 act on |0〉, so that coherent states are in one-to-one
correspondence not with the whole group SU(2), but with its right coset SU(2)/U(1),
where U(1) is the phase generated by the diagonal generator S3. More generally coherent
states differing by multiplications by rotations around the z-axis will differ by a phase,
which in quantum mechanics is not observable, and are identified. Coherent states are
(over-)complete:

1 =

∫
dµS(~n)|~n〉〈~n| ,

where dµS(~n) = (2s+1)/(4π)d3~nδ(~n2−1). We use now the Trotter formula to represent
the partition function of the spin as:

Z = Tr e−βH = lim
N→∞

lim
δt→0

(e−δtH)N ,

and introduce resolutions of identity at every intermediate time step. From the definition
of coherent states we have [83]:

〈~n(tj)|~n(tj+1)〉 = eisΩ(~n(tj),~n(tj+1),~n0)

(
1 + ~n(tj) · ~n(tj+1)

2

)s
〈~n(t)|~S|~n(t)〉 = s~n(t) .

Ω(~n(tj), ~n(tj+1), ~n0) is the area associated to a spherical triangle with vertices in the
three points. The term eisΩ is usually referred to as Berry phase (see e. g. [10]). Then
the resulting Euclidean path integral has action:

S = −is
∑
j

Ω(~n(tj), ~n(tj+1), ~n0)− s log

(
1 + ~n(tj) · ~n(tj+1)

2

)
+ sH(~n(tj)) ,

where H(~n) is obtained by replacing every occurrence of ~S with ~n in the Hamiltonian
H. Note that the first term is complex (even thought we work in imaginary time),
and in the limit of continuous time gives Ω(~n), the total area of the cap on the sphere
S2 whose boundary is the trajectory ~n(t), see figure 1.10. Note that the ambiguity of
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taking the upper or lower cap does not manifest itself since the difference of the two is
the solid angle 4π, weighting e4πis = 1 in the partition function, thanks to quantization
of the spin. The second term in the action becomes : ∼ m/2

∫ β
0 dt(∂t~n)2, with the mass

m = sδt/2 tending to zero.

~n(t)

Ω

Figure 1.10: The area Ω enclosed by the trajectory ~n(t) on the sphere.

Consider now a spin chain of length L, (C2)⊗L, with antiferromagnetic Heisenberg
coupling J > 0, see eq. (1.11):

H = J
∑
i

~Si · ~Si+1 ,

and assume periodic boundary conditions. Introducing spin coherent states for each site,
we find the action of the associated path integral to be:

S = −is
∑
i

Ω(~ni) +
m

2

∫ β

0
dt
∑
i

(∂t~ni)
2 + s2J

∫ β

0
dt
∑
i

~ni(t) · ~ni+1(t) . (1.31)

Semiclassical approximation

The action (1.31) is dominated by the stationary points as s→∞ 11. In this section we
will derive the effective field theory in that limit, which was originally derived by Haldane
[106]. Our arguments will be mostly heuristic, while one can obtain the same final result
in a more controlled way by decomposing the field ~n into a soft mode becoming the
sigma model field, and a hard mode which is integrated out [3, 83].

We first note that the large spin expansion is a perturbation around the classical
solution [3, 106]. Indeed the commutator of quantum spins [Sa, Sb] = iεabcSc is of order
s, much smaller than the square of spin variables, of order s2, so the commutator vanishes
as s → ∞ and the spins behave classically. This is an intuitive argument which can be
made rigorous by expressing spins in terms of bosons and performing a 1/s expansion
[3]. The ground state of the classical antiferromagnet is the Néel state with alternating
up and down classical spins on neighboring sites, Si = (−1)iẑ. Then, since we expect
antiferromagnetic order in the large-s limit, we redefine the fields as:

~ni → (−1)i~ni ,

11The method is applicable since Js stays finite as s→∞.
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producing a staggering in the Berry phase term12:

S = −is
∑
i

(−1)iΩ(~ni) +
m

2

∫ β

0
dt
∑
i

(∂t~ni)
2 +

s2J

2

∫ β

0
dt
∑
i

(~ni(t)− ~ni+1(t))2 .

We want now to write an effective theory in the long wavelength, low energy limit.
The second and third terms of the action give after appropriate rescaling of spacetime
coordinates, the O(3) (or rather the O(3)/O(2)) non-linear sigma model action:

S0 =
1

2g2
σ

∫
d2x(∂µ~n)2 ,

with sigma model coupling

g2
σ =

2

s
.

Further, note that in the limit of large number of spins, the area difference can be
approximated as:

Ω(~ni+1)− Ω(~ni) '
∫ β

0
dt~ni · ((~ni+1 − ~ni)× ∂t~ni) ,

since the width of the ribbon |~ni+1 − ~ni| is supposed to be small (here is where we
use the antiferromagnetic character of the large-s expansion), and recall that |~n| = 1.
Performing the sum over sites yields the topological θ-term:

Stop =
iθ

8π

∫
d2xεµν~n · (∂µ~n× ∂ν~n) ,

where εµν is the Levi-Civita symbol, µ, ν are indices of worldsheet coordinates, and the
θ angle is

θ = 2πs . (1.32)

Requiring finiteness of the action is equivalent to demand that at infinity ~n takes
constant values in all directions in the plane:

lim
|~x|→∞

~n(~x) = ~n0 .

Thus topologically the worldsheet is compactified to a sphere and field configurations
are maps from S2 to S2, thus falling into homotopy classes, indexed by integer values
since π2(S2) = Z. The topological character of Stop comes from the fact that

Q =
1

8π

∫
d2xεµν~n · (∂µ~n× ∂ν~n) ,

12The transformation ~ni → (−1)i~ni changes the sign of the exchange term to a ferromagnetic one, and
it is the Berry phase term which distinguishes ferromagnets from antiferromagnets. In the ferromagnetic
case, the low energy field theory is not a sigma model, having quadratic dispersion relation [3].
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counts the number of times ~n(t) wraps around the target space S2 (it is called winding
number or Pontryagin index of the field configuration ~n(~x)). Configurations with a
given topological charge Q are called instantons. Clearly the physics will depend on θ
(mod 2π) 13, thus the name of θ-angle. The topological action Stop has zero variation
(it can be written as a total derivative, see below), so it does not enter the equations of
motion. It does have however an important non-perturbative effect.

Recall first that if θ = 0, the O(3) sigma model is massive and exhibits asymptotic
freedom in g. In particular, since we are in 1+1D, massless particles cannot be produced
from spontaneous breaking of the continuous O(3) symmetry (Mermin-Wagner theorem),
and the particles acquire a mass under renormalization, due to infrared fluctuations.
Instead masslessness emerges at θ = π, as proved in [184]. The θ = π sigma model
corresponds to the RG flow between the unstable fixed point at gσ = 0, described by
two free bosons14 with central charge c = 2, and the non-trivial fixed point at strong
coupling (gc of order unity) with enhanced symmetry and described by the SU(2)1 WZW
model with c = 1. The proposed phase diagram is represented in figure 1.11. For further
details see the discussion in [3].

1/g2
σ

θ

π

Figure 1.11: Phase diagram of the O(3) sigma model. The fixed point is governed by
the SU(2)1 WZW model. The diagram repeats itself in the θ-direction.

Masslessness of the θ = π sigma model was first proposed by Haldane [106], by
assuming validity of the large-s mapping of the spin chain to the sigma model also for
s = 1/2, in which case the microscopic theory can be solved exactly by Bethe Ansatz,
and is massless. An important outcome of the analysis in [106] was the conjecture from
the identification (1.32) that spin chains with s integer are gapped, while those with s
half integer, are gapless. We note also that introducing a staggering in the spin chain,
ε 6= 1 in (1.5), is a relevant perturbation, changing the value as θ = 2πs+O(ε− 1) [1].

It is finally useful to represent the O(3) sigma model using the spinor representation
~n = z†~σz, where ~σ are Pauli matrices and z ∈ CP1, that is, za is two-component complex
vector satisfying z†z = 1 modulo U(1) phase transformations. Introducing also the non-
dynamical Abelian gauge field

aµ =
i

2

(
z†a∂µza − (∂µz

†
a)za

)
,

allows to write explicitly the topological term as a total derivative. Then the Lagrangian

13Things change for a worldsheet with boundary, see chapter 4.
14Note that by rescaling the fields we can set g2

σ = 1 and working with non-trivial radius of the sphere
~n2 = ρ2, ρ = 1/gσ.
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of the CP1 sigma model with topological θ-term is:

L =
1

2g2
σ

(
(∂µ − iaµ)z†a(∂µ + iaµ)za

)
+
iθ

2π
εµν∂µaν .

CPN+M−1|N sigma models

The above mapping of the Heisenberg chain to the O(3) sigma model can be generalized
[1] to other antiferromagnetic spin chains, that is, spin chains built by alternating an
highest weight representation and its dual representation, with coupling favoring the
singlet states. Spin coherent states associated to a given highest weight state can be
constructed [169], and the associated field of the path integral, being the expectation
value of the “spins” (generators of the group) in the coherent state basis, will now
be an element of the manifold swept out by acting with all group elements on the
highest weight. The resulting target space where the sigma models field Q lives, is
then the symmetry group of the spin chain modulo the isotropy subgroup fixing the
highest weight state |hw〉, Q = g|hw〉〈hw|g−1. We have seen that for a representation of
SU(2) of arbitrary spin this was SU(2)/U(1) ' CP1. In the case of U(N), the elements
fixing the highest weight state are products of factors U(mi) for each mi rows of the
Young tableau with the same (possibly zero) length [1,169]. Considering a representation
whose Young tableau is made of a single row of length nc, the target space will be
U(N)/U(1)×U(N − 1) ' CPN−1. This consideration directly applies to the gl(M) spin
chains of section 1.1.2, and the mapping to the sigma model can be rederived [1, 169],
this time the semi-classical limit being associated to large representation nc. Analogous
discussions can be done for the supersymmetric case [170, 203]. The target space of the
sigma model for the gl(N+M |N) spin chains is then found to be the complex projective
superspace CPN+M−1|N .

We now define the sigma model on CPN+M−1|N , which is a direct generalization of
that on CP1 discussed above. We first begin with superspace CN+M |N ; the N + M
complex bosonic coordinates are denoted by za and we use ξa for the N fermionic direc-
tions. Within this complex superspace, consider the odd (real) dimensional supersphere
defined by the equation

N+M∑
a=1

zaz
∗
a +

N∑
a=1

ξaξ
∗
a = 1 .

The supersphere S2N+2M−1|2N carries an action of U(1) by simultaneous phase rotations
of all bosonic and fermionic coordinates,

za −→ ei$za , ξa −→ ei$ξa . (1.33)

Note that this transformation indeed leaves the constraint invariant. The complex pro-
jective superspace CPN+M−1|N is the quotient space S2N+2M−1|2N/U(1).

Functions on the supersphere S2N+2M−1|2N carry an action of the Lie supergroup
U(N +M |N). These transformations include the phase rotations (1.33) which act triv-
ially on CPN+M−1|N . The stabilizer subalgebra of a point on the projective superspace
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is given by u(1)×u(N+M−1|N) where the first factor corresponds to the action (1.33).
We conclude that CPN+M−1|N is the following symmetric superspace:

CPN+M−1|N =
U(N +M |N)

U(1)×U(N +M − 1|N)
.

Their simplest representative of interest to us is CP0|1, i.e. the space with just two
real fermionic coordinates. The sigma model with this target space is equivalent to the
theory of two symplectic fermions [126,127].

The construction of the sigma model on CPN+M−1|N closely parallels this geometric
construction. The model involves a field multiplet Zα = Zα(z, z̄) with N + M bosonic
components Zα = zα, α = 1, . . . , N + M and N fermionic fields Zα = ξα−N−M , α =
N + M + 1, . . . , 2N + M + 1. To distinguish between bosons and fermions we use a
grading function as before, | · |, which is 0 when evaluated on the labels of bosonic and
1 on the labels of fermionic quantities. In addition we also need a non-dynamical U(1)
gauge field a. With this field content, the action takes the form (with a summation
convention on the index α)

S =
1

2g2
σ

∫
d2z (∂µ − iaµ)Z†α(∂µ + iaµ)Zα −

iθ

2π

∫
d2z εµν∂µaν (1.34)

and the fields Zα are subject to the constraint Z†αZα = 1. This model is a direct
generalization of that for M = 2, N = 0 discussed above. The integration over the
Abelian gauge field can be performed explicitly and it leads to the replacement

aµ =
i

2

[
Z†α∂µZα − (∂µZ

†
α)Zα

]
.

We recall also that the topological term multiplied by θ does not contribute to the
equations of motion for aµ. The manifold CPN+M−1|N is homotopically equivalent to its
bosonic base manifold CPN+M−1, whose second homotopy group is Z, then the θ-term
is not trivial. Note however that for symplectic fermions, the base manifold reduces to a
point, and no theta term is present. As its bosonic counterpart, the CPN+M−1|N sigma
model on a closed surface possesses instanton solutions, whose corresponding instanton
number is computed by the topological term Q that multiplies the parameter θ and is
integer-valued. Then the parameter θ = θ + 2π can be considered periodic as already
noted before.

The target supermanifold being a symmetric superspace, the metric on the target
space is unique up to a constant factor, so g2

σ and θ are the only coupling constants. The
perturbative beta function is the same as the one for CPM−1 [195]

dg2
σ

dl
= β(g2

σ) = Mg4
σ +O(g6

σ) . (1.35)

The beta function for θ is zero in perturbation theory, and that for g2
σ is independent of

θ.
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For M > 0, the coupling is weak at short length scales, but flows to strong values
at large length scales. For θ 6= π (mod 2π) the U(N + M |N) symmetry is eventually
restored, and the theory is massive. When θ = π (mod 2π) and M ≤ 2, the model
flows to a non-trivial fixed point, whose bulk conformal field theory has been studied in
[170, 171]. For M > 2 there are arguments supporting that the transition is first order
using an 1/M expansion [62], and this fact can be also understood from the mapping
of the Q-states Potts model to the sigma model with M = Q2. For M = 2 and N = 0
we recover the flow in the O(3) sigma model. For M = 0, the beta function is in fact
exactly zero, and the sigma model exhibits a line of fixed points [22, 37, 38, 170, 207]
parametrized by g2

σ
15. The case M = 1 is particularly interesting, because it is related

with percolation as we have already discussed, and with the spin quantum Hall effect
[101] (see section 3.2 below).

So far we have discussed the field theory for periodic boundary conditions. When
open boundary conditions are imposed, the worldsheet of the sigma models is replaced
with the strip (or the upper half plane). In this case the role of the θ-angle is affected
by boundaries, but we postpone this discussion to section 4.1.3.

1.2 Boundary conformal field theory

The aim of this section is to give an introduction to the formal aspects of boundary
conformal field theory (BCFT) and its applications to loop models.

1.2.1 The stress tensor and conformal data

When the continuum limit of a statistical system at the critical point is taken, the corre-
lation length diverges and the critical fluctuations are described by a massless quantum
field theory. The scale invariance gets generally promoted to invariance under conformal
transformations, which preserve angles but not necessarily lengths [84] (see figure 1.12
for an example of conformal map).

In two dimensions, local conformal transformations coincide with holomorphic func-
tions, so that conformal symmetry implies invariance under an infinite dimensional al-
gebra, and it has proven to be extremely powerful.

15The critical theory of dense polymers, describing the continuum limit of the gl(N |N) spin chains
defined in section 1.1.2, corresponds to a particular value of g2

σ (= 1). Other values can be obtained
[37] by adding an exactly marginal interaction corresponding to the exchange of next nearest neighbors
degrees of freedom V or V ∗ (since the products V ⊗ V or V ∗ ⊗ V ∗ decompose generically on two
representations, this is the most generic next nearest neighbor coupling). In the Hamiltonian language,
this means

H = −
2L−2∑
i=0

Ei + w

2L−3∑
i=0

Pi,i+2 ,

where Pi,i+2 is the operator permuting states in sites i and i + 2. Note that the Pi,i+2 terms do not
break the gl(N +M |N) symmetry [37], i.e., it does not mix up the V and V ∗ spaces.
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Figure 1.12: Example of a conformal transformation.

CFT in the complex plane

A prominent role in conformal field theory (CFT) is played by the stress tensor Tµν ,
a local field defined classically as the response of the action S under the infinitesimal
transformation xν → xν + εν :

δS = − 1

2π

∫
d2xTµν(x)∂µεν(x) .

We consider first a CFT in the whole complex plane, and as customary we use com-
plex coordinates z, z̄. Then the only non-zero components of the stress tensor are a
holomorphic one T (z) and an antiholomorphic one T̄ (z̄). We define the modes of T by

T (z) =
∑
n∈Z

Lnz
−n−2 ,

and analogously for T̄ . Ln’s are the generators of conformal transformations of fields at
the quantum level and satisfy the the celebrated Virasoro algebra (Vir):

[Ln, Lm] = (n−m)Lm+n +
c

12
n(n2 − 1)δm+n,0 ,

where c is the central charge of the CFT, and analogously for L̄n, generators of another
copy of Vir. The subalgebra L0, L±1 generates the global conformal transformations
SL(2,C). The conformal transformations acting on functions rather than fields, are
represented by `n = zn+1∂, which satisfy the Witt algebra:

[`n, `m] = (m− n)`m+n .

As every quantum field theory, a CFT is defined in terms of correlation functions
〈
∏
i φi(zi, z̄i)〉C of fields φ(z, z̄). The fields are elements of a vector space F , which can

be written as a direct sum of subspaces with given scaling dimension ∆. Generically F
admits a decomposition into irreducible representations of Vir⊗Vir:

F =
⊕
i,j

NijVi ⊗ V̄j , (1.36)

with multiplicities Nij . However there are important exceptions to that in the case
of logarithmic CFTs, when indecomposable but not irreducible Vir modules appear
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(see discussion in section 1.2.2). If the sum above is finite, the theory is said to be
rational16. The correlation functions are completely fixed once we know the operator
product expansion (OPE) of the fields:

φ1(z1, z̄1)φ2(z2, z̄2) =
∑
α

fαφ1,φ2
(z12, z̄12)φα(z2, z̄2) , (1.37)

where z12 = z1 − z2. The OPE allows us to reduce the computation of a correlation
function of N fields to the that of a single one, and since we have translational invariance
of correlators, one has 〈φ〉 = 0 unless φ has ∆ = 0. One demands also that the OPE is
associative, and that correlators are invariant under permutations of fields.

We distinguish primary fields, whose correlators, as a consequence of conformal in-
variance, satisfy the conformal Ward identities (see e. g. [52])

〈T (z)
∏
j

φj(zj , z̄j)〉 =
∑
j

(
hj

(z − zj)2
+

1

z − zj
∂zj

)
〈
∏
j

φj(zj , z̄j)〉 ,

and a similar one for T̄ , implying in particular that fields are factorized into a holomor-
phic φ(z) and an antiholomorphic φ̄(z̄) component.

From an operator point of view, the space of states of the theory coincides with
F , thanks to the state-fields correspondence |φ〉 := φ(0)|0〉, where |0〉 is the SL(2,C)-
invariant vacuum of the theory. In the scheme of radial quantization [147] concentric
circles in the plane correspond to surfaces of equal-time, and the Hamiltonian for this
evolution is the dilatation operator L0 + L̄0, whose (generalized) eigenvalues ∆ organize
the space of states. The primary fields can then be characterized as being highest weight
vectors of (not necessarily irreducible) representations of the Virasoro algebra, such that
L0φ = hφ, L̄0φ̄ = h̄φ̄, and Lmφ = L̄mφ̄ = 0 if m ≥ 1. Other states (descendant states)
are then organized in conformal towers generated by acting with negative modes of Vir
onto primary states.

In case eq. (1.36) holds, the OPE of primaries φ1(z1, z̄1), φ2(z2, z̄2) with dimensions
(h1, h̄1), (h2, h̄2) takes the familiar form

φ1(z1, z̄1)φ2(z2, z̄2) =
∑
k

Cφkφ1,φ2
zhk−h1−h2

12 z̄h̄k−h̄1−h̄2
12 φk(z2, z̄2) + . . . ,

where φk is a primary of dimension (hk, h̄k) and Cφkφ1,φ2
are bulk OPE structure constants.

Since subleading terms (descendants) are determined only by conformal invariance, this
can be stated also in terms of fusion product as:

φ1 ⊗f φ2 =
∑
k

φk .

Primaries transform under the conformal map (z, z̄) → (w, w̄) as tensors of conformal
weight h, h̄:

φ(z, z̄)dzhdz̄h̄ = φ(w, w̄)dwhdw̄h̄ . (1.38)

16Sometimes an irrational theory can be organized into a finite number of representations of another
chiral algebra, e. g. Kac Moody algebras or W-algebras. In this case the theory is still called rational.
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The stress tensor is a field of conformal dimension h = h̄ = 2, and is not a primary
(except for c = 0). Under a conformal mapping z → w, T transforms as

T (z) = T (w)

(
dw

dz

)2

+
c

12
{w; z} , (1.39)

where {w; z} is the Schwarzian derivative

{w; z} ≡ d3w/dz3

dw/dz
− 3

2

(
d2w/dz2

dw/dz

)2

.

From an axiomatic point of view, CFTs on C are then fully determined by a small
amount of data, a space of fields F , and their OPE. A CFT has thus the structure of
an associative algebra with a product depending on a complex number, called a vertex
operator algebra [121].

CFT on H

Given a CFT in the complex plane C, one can implement a boundary with the require-
ment that there is no energy flow across it, that is T‖⊥ = 0 along the boundary. If we
choose as domain the upper half plane H = {z ∈ C|=(z) > 0}, then this implies the
constraint

T (z) = T̄ (z̄) , for z ∈ R . (1.40)

This is the condition which every CFT on H should respect, being equivalent to de-
mand that a conformal transformation is constrained to respect the boundary. The
consequence of eq. (1.40) is that chiral and antichiral sectors of the theory are no longer
independent: T̄ (z̄) on H can be regarded as the analytic continuation of T (z) on the
lower half plane, and only a single Vir algebra organizes the theory.

The dependence on anti-holomorphic coordinates z̄’s in the correlator 〈
∏
i φi(zi, z̄i)〉

of N fields on H, are regarded as holomorphic dependence on z∗ = z̄ on the lower half
plane (method of images [41]). Then this correlator coincides with the chiral correlator
of 2N fields 〈

∏
i φi(zi)

∏
i φi(z

∗
i )〉C in the whole plane. Correlators of primaries are

constrained by the conformal Ward identity in H

〈T (z)
∏
j

φj(zj , z̄j)〉 =
∑
j

(
hj

(z − zj)2
+

1

z − zj
∂zj +

h̄j
(z̄ − z̄j)2

+
1

z̄ − z̄j
∂z̄j

)
×〈
∏
j

φj(zj , z̄j)〉 .

In a BCFT on H one distinguishes bulk fields which live inside H and which we have
already encountered, from boundary fields, living on the boundary R, see figure 1.13,
where we can put several different conformal boundary conditions.

We introduce then a vector space of boundary fields B, which is a direct sum of
subspaces distinguished by (generalized) eigenvalues h of L0. Clearly B depends on the
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φ(z, z̄)

ψ(x)

Figure 1.13: Bulk φ(z, z̄) and boundary ψ(x) fields in a BCFT on H. The boundary
support two different boundary conditions, red and blue.

boundary conditions chosen, and there are in general many boundary spaces for a given
bulk theory. If we consider for instance a conformal boundary condition labeled a on
R<0 and b on R>0, we denote the associated primary boundary fields as ψa,bi . If the bulk
theory contains only irreducible representations i of Vir, Bab decomposes as

Bab =
⊕
i

niabVi ,

We have also a boundary OPE associating to two boundary fields their short distance
expansion, in a similar way to the bulk case (1.37). Suppose that a, b, c are labels
associated to conformal boundary conditions, and call the primary boundary fields living
at the interface between a, b and b, c, ψa,bi (x), ψb,cj (y). If we assume that the labels i, j
correspond to Vir irreducibles (of conformal dimensions hi and hj), then the boundary
OPE takes the form of a sum of irreducibles ψa,ck (x > y) :

ψa,bi (x)ψb,cj (y) =
∑
s

(x− y)hs−hi−hjCabcijs ψ
a,c
s (y) + . . . , (1.41)

where Cabcijs are called boundary OPE coefficients.
In a BCFT one considers in general correlators of mixed boundary and bulk fields

〈φ1(z1, z̄1) · · ·ψ1(x1) · · · 〉. The interaction between boundary and bulk fields is given by
the bulk-boundary OPE, associating to a bulk field its short distance expansion near the
boundary in terms of boundary operators [53]. For φi(z) a primary transforming as the
Vir irreducible i, and a uniform boundary condition a on the boundary, it is:

φi(z) =
∑
k

aCki (2=(z))hk−2hiψaak (<(z)) + . . .

where aCki are the bulk-boundary OPE structure constants. We summarize in figure
1.14 the possible OPEs in a BCFT. Note that the one-point functions of bulk fields are
not trivial like in the case of a CFT on C (the boundary breaks translational invariance)
and depend on boundary conditions imposed, see discussion in section 1.2.3.

To summarize, a CFT on H is specified by the following data: a bulk CFT, a space of
boundary fields B, the boundary OPE, and the bulk-boundary OPE. For a more precise
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φ1

ψ2 ψ3

φ2

φ3

Figure 1.14: Different types of OPE in a boundary conformal field theory: bulk (blue),
bulk-boundary (red), boundary (green).

discussion of the role between boundary and bulk CFTs, in particular in the case of
logarithmic CFTs, we refer to [174].

We find notationally convenient to introduce here a parametrization of the central
charge for CFTs which we will often consider in the following:

c = 1− 6

p(p+ 1)
, (1.42)

with p arbitrary and we will use standard Kac table notation to denote the conformal
weights:

hr,s =
((p+ 1)r − ps)2 − 1

4p(p+ 1)
. (1.43)

A canonical example of CFTs is that of unitary minimal models, the only unitary CFTs
with c < 1. They have central charge (1.42) with p ∈ Z≥2. The field content is given by
Vir irreducibles whose highest weights are in Kac notation φr,s, 1 ≤ r < p, 1 ≤ s < r
[85].

1.2.2 Logarithmic conformal field theories

In this section we discuss some aspects of logarithmic CFTs. This subject is quite
technical and here we limit ourselves to the main concepts and examples. We refer the
reader to the review [87] for more details.

General aspects

In a unitary CFT, the generator of dilatations is Hermitian L†0 = L0, hence can be diag-
onalized, leading to usual power law behavior of correlation functions. For unitary CFTs
the space of states is a direct sum of irreducible representations of Vir. In non-unitary
theories instead non irreducible (indecomposable) representations for which diagonaliz-
ability of L0 is lost, may appear, resulting in logarithmic singularities of correlators.

Consider the two-point function 〈φ1(w)φ2(0)〉 of two fields which do not need to be
primary. Invariance of the out vacuum under SL(2,C), 〈0|L±1,0 = 0, implies in particular
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[174]

0 =

∮
C∞

dzz〈T (z)φ1(w)φ2(0)〉

=

∮
Cw

dzz〈T (z)φ1(w)φ2(0)〉+

∮
C0

dzz〈T (z)φ1(w)φ2(0)〉

= 〈((L0 + wL−1)φ1)(w)φ2(0)〉+ 〈φ1(w)(L0φ2)(0)〉 ,

where we expanded T around w and 0 in the two pieces. In turn this gives the differential
equation:

−w d

dw
〈φ1(w)φ2(0)〉 = 〈(L0φ1)(w)φ2(0)〉+ 〈φ1(w)(L0φ2)(0)〉 . (1.44)

If φ1 and φ2 are ordinary primary fields, L0φi = hφi, i = 1, 2, then the solution to this
equation is the familiar one: const × w−2h. Instead a nilpotent part in L0 produces
logarithmic singularities. Indeed suppose now that L0 has the following Jordan form in
the subspace with basis the two states φ, ψ:

L0 =

(
h 1
0 h

)
.

Solving eq. (1.44) gives:

〈φ(w)φ(0)〉 = 0

〈φ(w)ψ(0)〉 =
b

w2h

〈ψ(w)ψ(0)〉 =
θ − 2b log(w)

w2h
.

φ must be a null field, and ψ is called its logarithmic partner. The parameter θ is not
fundamental and can be reabsorbed in a redefinition of the fields, while b is called the
indecomposability parameter [105] characterizing the the Jordan cell of L0

17.

Examples

We discuss now how logarithms appear in correlation functions using as an example the
chiral four point function of primary fields degenerate at level two. Consider

C(z1, z2, z3, z4) = 〈φ(z1)φ(z2)φ(z3)φ(z4)〉 ,

with φ being φ1,2 or φ2,1 in Kac notation (1.43). The computation of this correlator is a
standard exercise [84]. First invariance under global conformal transformations fixes it
up to a function of a single parameter, the anharmonic ratio

ζ =
z12z34

z13z24
.

17See [71,190,191] for recent developments regarding the measure of b on a lattice for the logarithmic
CFTs describing loop models.
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Called h the conformal weight of φ, one has

C(z1, z2, z3, z4) =

(
z13z24

z12z23z14z34

)2h

G(ζ) .

Further φ has a null state at level two, (2(2h + 1)L−2 − 3L2
−1)φ = 0. Its decoupling in

correlation functions gives a differential equation after rewriting the action of Vir modes
as differential operators. In this case one finds the hypergeometric equation:

ζ(1− ζ)G′′ + {γ − (1 + α+ β)ζ} G′ − αβG = 0 .

with parameters

α = −4h, β =
1

3
− 4

3
h, γ =

2

3
− 8

3
h .

Looking for solutions in the form of power series (say around ∼ 0) produces the two
solutions:

G0(ζ) = 2F1

(
1

3
− 4h

3
,−4h;

2

3
− 8h

3
; ζ

)
(1.45)

G1(ζ) = ζ
8h
3

+ 1
3 2F1

(
1

3
− 4h

3
,
4h

3
+

2

3
;
8h

3
+

4

3
; ζ

)
. (1.46)

The OPE of φ fields is (for simplicity we have absorbed the OPE coefficients in the
definitions of fields):

φ(z)φ(0) = z−2h
(
φ0(0) + zh1φ1(0)

)
+ . . . ,

where φ0 is the identity and φ1 is degenerate at level three and has weight h1 = 8h/3 +
1/3. Substituting in the correlation function, we see from the behavior as z12, z34 → 0
(ζ → 0), that G0(ζ) and G1(ζ) correspond respectively to the fusion channels of the
identity and of φ1. We call these functions conformal blocks.

The important remark now is that the validity of these solutions is for γ = 1−h1 6∈ Z.
If γ is integer either the solutions coincide or one is ill defined. We want to discuss two
cases of interest for applications, c = −2 and φ = φ1,2, h = −1/8 (dense polymers),
and c = 0 and φ = φ2,1, h = 5/8 (dilute polymers). The reason for these names
will become clear when we will discuss the continuum limit of loop models in section
1.2.4. In these cases, we have the following behavior of conformal blocks (parametrize
c = 1− 6/(p(p+ 1)), ε = p− 1 in (1.47), ε = p− 2 in (1.48)):

lim
ε→0
G0(ζ) =

2

π
K(ζ) ; lim

ε→0
G1(ζ) =

2

π
K(ζ) ; (1.47)

G0(ζ) =
15

16ε
S2(ζ) +O(ε) ; lim

ε→0
G1(ζ) = S2(ζ) . (1.48)

K is the complete elliptic integral of the first kind of parameter ζ and

S2(ζ) := ζ2
2F1

(
−1

2
,
3

2
; 3; ζ

)
. (1.49)
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For dense polymers, due to the degeneracy G0 → G1, one has to replace one conformal
block with the missing solution of the differential equation which generally is given by a
derivation procedure, and here can be written as (ε = p− 1)

lim
ε→0

G1(ζ)− G0(ζ)

ε
∝ K(1− ζ)− log(16)

π
K(ζ) .

Now standard identities give

K(1− ζ) = log(ζ)K(ζ) +H(ζ)

with H(ζ) regular at ζ = 0, so that the solution contains a logarithm. In terms of fusion
rules this behavior is stated as the degeneracy of the two fields φ0 and φ1, which are
replaced by the identity Ω and its logarithmic partner ω under the Virasoro algebra
[104]:

φ1,2(z)φ1,2(0) = z1/4 (ω(0) + Ω(0) log(z)) + . . . .

From the discussion above Ω has vanishing two-point function and that of ω contains
logarithms. The description of this indecomposable module can be found in [87].

For dilute polymers, G0 here has to be replaced by the logarithmic conformal block,
which can be written as (ε = p− 2)

lim
ε→0

1

F02

(
G0(ζ)− F00G0(1− ζ)

)
= (1− ζ)2

2F1

(
−1

2
,
3

2
; 3; 1− ζ

)
= S2(1− ζ) .

Fij are the fusing matrices of four φ fields at generic central charge which relates con-
formal blocks in different basis Gi(ζ) =

∑
j FijGj(1 − ζ). These fusing matrices can be

derived from standard hypergeometric identities, and read as:

(
F00 F02

F20 F22

)
=


1
β

Γ
(
−8h

3 −
1
3

)
Γ
(

2
3−

8h
3

)
Γ
(

1
3−

4h
3

)
Γ(−4h)

Γ
(

8h
3 +

1
3

)
Γ
(

8h
3 +

4
3

)
Γ
(

4h
3 +

2
3

)
Γ(4h+1)

− 1
β

 , (1.50)

where we defined β = 2 sin (π(8h+ 1)/6) = 2 cos(π/(p+ 1)), if we parametrize as usual
c = 1− 6/(p(p+ 1)). β plays the role of the weight of loops in the study of loop models.

Also in this case the z ∼ 0 expansion of S2(1− ζ) contains logarithmic singularities.
From the point of view of OPE this is stated as the degeneracy of the stress tensor T (z)
and the field φ3,1. Indeed the c→ 0 limit in the OPE is ill-defined (this is general for a
field with h 6= 0 fusing in the identity)

φ2,1(z)φ2,1(0) = z−2h

(
φ1,1(0) +

2h

c
z2T (0) + zh3,1φ3,1(0)

)
+ . . .

The way out to this “catastrophe” proposed in [105] was to suppose that φ3,1 diverges
in a way to make the limit meaningful. The result of the limit procedure is

φ2,1(z)φ2,1(0) = z−2h

(
φ1,1(0) +

h

b
z2 (T (0) log(z) + t(0))

)
+ . . .

t is the logarithmic partner of T and the indecomposability parameter b = 5/6 shows up
in the expansion of the logarithmic conformal blocks.
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1.2.3 The annulus partition function

So far the discussion has been rather abstract. It will be the purpose of this section to
make it more concrete by computing the partition function of a CFT on an annulus.
The results presented are standard, and mostly derived by J. Cardy in [41] in the con-
text of rational unitary conformal field theory. Very good reviews on this subject and
classification of boundary conditions exist, see e. g. [86, 160,180].

Boundary states

The first object we want to introduce are boundary states. States in a bulk CFT are
defined in radial quantization on concentric circles in the plane. Calling z the coordinate
on H, we map then H to the complement of the unit disk {ζ ∈ C, |ζ| > 1} by ζ =
(z + i)/(z − i), ζ̄ = (z̄ − i)/(z̄ + i). Using the transformation law of the stress tensor
eq. (1.39), the conformal boundary condition (1.40) becomes

ζ2T (ζ) = ζ̄2T̄ (ζ) , for |ζ| = 1

Going to a mode expansion, it implies that a boundary state |B〉 lies in the subspace
satisfying the following gluing condition(

Ln − L̄−n
)
|B〉 = 0 . (1.51)

We now look for a basis of states, solutions of these conditions. We assume the
decomposition (1.36) of the space of bulk fields F , then we can solve the condition
(1.51) in each direct summand separately. Taking n = 0 gives i = j, and the unique
solution in Vi ⊗ V̄i is given by so-called Ishibashi states [115]. Each term Vi corresponds
to a highest state (primary) |i〉, and other states in Vi are given by an orthonormal basis
|i;N〉 of descendants, and similarly for V̄i. The Ishibashi states |i〉〉 are associated to
each diagonal bulk field:

|i〉〉 =
∞∑
N=0

|i;N〉 ⊗ |i;N〉 , (1.52)

A generic boundary state |a〉 corresponding to a boundary condition a, can then be
decomposed onto Ishibashi states:

|a〉 =
∑
i

cia|i〉〉 , (1.53)

with some constants cia. The formalism of boundary states is used in the computation
of correlators and partition functions in BCFT. For example the one-point function of
the bulk field φ1(ζ, ζ̄) in {ζ ∈ C, |ζ| > 1} can be computed using invariance of |a〉
and 〈0| under conformal transformations generated by Ln − L̄−n (explicitly using the
commutator of Vir generators with primary fields, see eq. (2.5) below):

〈φ(ζ, ζ̄)〉a = 〈0|φ(ζ, ζ̄)|a〉 =
cia

(ζ̄ζ − 1)2h
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where φ has dimension h, h̄ = h. This result can be transformed to the geometries of
interest, for example to H to yield

〈φ(z, z̄)〉a =

(
dζ

dz

)h(dζ̄

dz̄

)h̄
〈φ(ζ, ζ̄)〉a

=
cia

|z − z̄|2h
.

The cia are thus related to bulk-boundary OPEs [53].
To determine the cia’s, below we will rederive Cardy conditions [44] and draw their

consequence on the spectrum of the boundary theory.

Boundaries in free theories

We turn now to the concrete example of free bosons and free fermions theories, for which
a Lagrangian description is possible and boundary conditions can be obtained by varying
the action.

We start from the CFT of a (not-compactified) free boson φ. This theory has chiral
i∂φ and anti-chiral i∂̄φ(z̄) fields of dimension one, having the mode expansions

i∂φ =
∑
n∈Z

anz
−n−1

i∂̄φ =
∑
n∈Z

ānz̄
−n−1 ,

where an, ān, are harmonic oscillators generating a U(1) current algebra (Heisenberg
algebra):

[an, a−m] = mδm+n,0

[ān, ā−m] = mδm+n,0

[an, ā−m] = 0 .

The space of states of the theory is the Fock space generated by acting with negative
modes of J, J̄ on the vacuum |0〉, annihilated by non-negative modes. The Virasoro
generators admit the representation

Ln =
1

2

∑
m∈Z

an−mam , if n 6= 0 ,

L0 =
1

2
a2

0 +
∑
m≥1

a−mam .
(1.54)

From variation of the U(1)-invariant action

S =
1

4π

∫
d2z∂φ∂̄φ ,
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with z = x+ iy, coordinates on say a semi-infinite cylinder with boundary at y = 0, one
finds two types of boundary conditions, Neumann (N) and Dirichlet (D):

N : ∂xφ|y=0 = 0 ; D : ∂yφ|y=0 = 0 .

The map w = e−iz sends the cylinder to H, allowing to rewrite the above conditions in
terms of the modes of the U(1) currents and as conditions for the boundary states:

(an + Ωā−n)|BΩ〉 = 0 , n ∈ Z

N corresponds to Ω = 1 and D to Ω = −1. Note that both imply the conformal boundary
condition for the stress tensor since Vir generators are bilinears in an, eq. (1.54). Taking
n ≥ 1 above we see that the solution is an eigenvector of the annihilation operator an,
which has the form of a bosonic coherent state, eq. (1.17). Then the solution to this
constraint is18

|BΩ〉 ∝ exp

(
−Ω

∞∑
k=1

1

n
a−nā−n

)
|0〉 .

Further, after some algebraic manipulations [25] the states can be cast in the form of an
Ishibashi state, not for the Virasoro algebra but for the extended chiral U(1) algebra19.
More general conformal boundary conditions breaking this symmetry are also understood
[86].

We consider next the case of a Majorana fermion described by the action

S =
1

4π

∫
d2z

(
ψ∂ψ + ψ̄∂φ̄

)
,

with ψ and ψ̄ analytic and anti-analytic components. The fermionic modes are defined
via the expansion of the bulk fermionic fields

ψ(z) =
∑
r∈I

ψr

zr+1/2
, ψ̄(z̄) =

∑
r∈I

ψ̄r

z̄r+1/2
,

18More generally the quantization of free bosons leads to Fock spaces labeled by the momentum π0,
such that a0|π0〉 = ā0|π0〉 = π0|π0〉. In this case one has a D boundary state for every real value of π0,
while π0 = 0 for N.

19More generally, in a theory with an extended symmetry generated by currents J, J̄ with dimension
hJ one can look for a subset of the conformal boundary conditions which preserve the extended chiral
algebra. In this case the left- and right-moving fields corresponding to unbroken symmetries are related
on the real axis by

J(z) = Ω
(
J̄(z̄)

)
,

where J and J̄ are generators of the symmetry that is preserved by the boundary, and Ω denotes an
automorphism of the algebra of fields that leaves the stress tensor invariant[180]. The gluing relation is
then (

Jn − (−1)hJΩJ̄−n
)
|B〉Ω = 0 .

Considering extended symmetry is important since often a theory is rational with respect to the extended
symmetry and not with respect to Vir, for which the only rational theories are the minimal models c < 1.
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where we consider for simplicity only the Neveu-Schwartz sector I = Z + 1/2, where
fermions are periodic in the plane, and antiperiodic on the cylinder. The Hilbert space
of the theory is the fermionic Fock space generated by ψ−r, ψ̄−s, r, s ≥ 1/2 acting on
|O〉, where ψp+1/2|O〉 = ψ̄p+1/2|O〉 = 0, p ∈ Z≥0. The OPEs

ψ(z)ψ(w) =
1

z − w
, ψ̄(z̄)ψ̄(w̄) =

1

z̄ − w̄

lead to
{ψr, ψs} =

{
ψ̄r, ψ̄s

}
= δr+s,0 .

Considering the cylinder geometry, variation of the action leads as in the free boson
case to two types of boundary conditions, Dirichlet (D) and Neumann (N) [35]. We set
coordinates w = x + iy on the cylinder, and using the mapping to the plane as above,
the mode expansion now reads

ψ(x, y) = (−i)1/2
∑
r

ψre
irx−ry ,

ψ̄(x, y) = i1/2
∑
r

ψ̄re
−irx−ry .

The boundary conditions are then

ψ̄(x, y = 0) = εψ(x, y = 0) , (1.55)

where ε = 1 for N and −1 for D. The boundary state associated to these equations has
now the form of (fermionic) coherent states, see eq. (1.22),

|Bp
ψ〉 ∝ exp

εi ∞∑
p=0

ψ−p−1/2ψ̄−p−1/2

 |O〉 .
Now imagine doing the same problem in a geometry rotated by ±π/2, obtained by

the mapping w′ = ±iw. Majorana fermions are objects of dimension 1/2, and thus
under a conformal mapping transform as ψ(w′)(dw′)1/2 = ψ(w)(dw)1/2, and similarly
for ψ̄. Hence the equations characterizing the boundary state now would read ψ̄ = ±εiψ
instead of (1.55): when dealing with fermions, the D or N boundary condition is not
represented by a unique equation, but depends on the orientation of the boundary[35].

We remark that this fermionic theory describes the Ising CFT c = 1/2, and D and
N boundary conditions correspond to fixed and free conditions of Ising spins.

After these examples, we will discuss in the next sections how the computation of
the annulus partition function allows to compute boundary states and classify boundary
conditions in more complicated CFTs.
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Boundary condition changing operators

Consider now the case of an infinitely long strip with boundary conditions a, b at the
left and right boundary. The upper half plane can be mapped conformally onto this
geometry by z → iL/π log(z), and if a 6= b, the change of boundary condition may be
though of as produced by the insertion of a boundary condition changing (BCC) field
at the origin and at infinity [44]. BCC operators are defined by demanding that their
correlation function be equal to the ratio of partition functions for a given domain, with
and without change of boundary condition. For example, consider the case of figure
1.15, where one has three boundary conditions a, b, c on the boundary of the domain,
and BCC operators are inserted where they change. Calling Z(a, b, c) and Z the partition
functions when there are three different boundary conditions and when there is a uniform
boundary condition, one has

〈ψa,bi (x1)ψb,cj (x2)ψc,ak (x3)〉 :=
Z(a, b, c)

Z
.

a

b c

ψa,bi (x1)ψb,cj (x2)

ψc,ak (x3)

Figure 1.15: Boundary condition changing operators.

This remark is a powerful one since the BCC operators ψa,b are primaries correspond-
ing to the fields of lowest dimension in the boundary spectrum of a strip with boundary
conditions a, b.

Cardy states and bulk-boundary correspondence of BCFT

We will see now how to relate the two concepts of BCC operators and boundary states.
Consider a strip of length L′ and width L, supporting boundary conditions a and b
on left and right boundaries. We assume periodic boundary conditions in the other
direction to form an annulus. We will show following [44] how equating the description
of the partition function in the open and closed channel, see figure 1.16, will constrain
the possible boundary conditions.

Call Hab the Hamiltonian on the strip

Hab =
π

L

(
L0 −

c

24

)
.
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a b

Hab = π
L

(
L0 − c

24

)
|a〉

|b〉

HP = 2π
L′

(
L0 + L̄0 − c

12

)

=

Figure 1.16: Open (left) and closed (right) channels. Arrows indicate the direction of
imaginary time.

The partition function for the annulus is then

Zab(τ) = TrBab q̂
L0−c/24 ,

where we recall that Bab is the space of states of the boundary theory under consideration
and we introduced the following notation for the modular parameter:

q̂ :=
√
q ; q = e2πiτ ; τ = iL′/L .

We assume now that Bab has the form of eq. (1.36), a direct sum of Vir irreducibles Vi
with positive or zero integer multiplicities niab, and we introduce the Vir character of the
representation i:

χi(τ) = q−c/24 TrVi q
L0 .

Further we assume that there is a modular S matrix (which is the case for at least rational
CFTs [84]), allowing to transform characters under modular inversion τ → −1/τ :

χi(τ) =
∑
j

Sijχj
(
− 1
τ

)
.

Then the partition function on the annulus can be written as

Zab(τ) =
∑
ij

niabSijχj
(
− 2
τ

)
.

When we switch the role of L and L′ by a modular inversion, it is more natural
to describe the partition function as a matrix element of the evolution operator of the
periodic system

HP =
2π

L′

(
L0 + L̄0 −

c

12

)
,
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between boundary states. That is, defining the inverse modular parameter

q̃ := e−2πi/τ ,

we can write the partition function as

Zab(τ) = 〈b|q̃L0+L̄0− c
12 |a〉

=
∑
ij

(cjb)
∗〈〈i|q̃L0+L̄0− c

12 |j〉〉cia

=
∑
j

cja(c
j
b)
∗χj

(
− 2
τ

)
.

Here we used the decomposition of boundary states (1.53), and that from the explicit
form of Ishibashi states eq. (1.52) one has that their overlap gives the chiral character

〈〈i|q̃L0+L̄0− c
12 |j〉〉 = δij

∑
N

di(N)∑
p=1

q̃2(hi+N−(c/24)) = δijχi
(
− 2
τ

)
.

Now consistency of the two expressions we have derived implies (assuming that characters
are linearly independent):

niab =
∑
j

Sijc
j
a(c

j
b)
∗ . (1.56)

This is a very restrictive constraint for determining the allowed boundary conditions.
The states satisfying it are called Cardy states20. Note that (1.56) contains information
about the bulk theory since the index j runs over bulk Ishibashi states onto which the
boundary states are decomposed.

In some cases one can also go further and solve completely the boundary theory [44],
as we now explain. One set of solutions to Cardy constraint can be found by associating
a boundary state to each irreducible representation Vi as

|̃i〉 =
∑
l

Sil√
S0l
|l〉〉 .

From eq. (1.56), we see that the associated multiplicities nkij are exactly the fusion

multiplicities of the Verlinde formula for for a bulk rational CFT21:

Nk
ij =

∑
l

SilS
∗
jlSkl

S0l
.

20We remark however that Cardy states are not automatically guaranteed to be the right physical ones
satisfying other sewing constraints from the associativity of OPE, whose validity should in principle be
verified [86].

21Note that Nk
ij are not positive for some non-unitary CFTs and we exclude them from the present

discussion.
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Nk
ij are the fusion multiplicities defined by φi ⊗f φj =

∑
kN

k
ijφk, with ⊗f the fusion

product of two bulk chiral primary fields φi, φj . Then in this case the fusion of boundary
conditions gives precisely which representations occur in the strip with boundary con-
ditions i, j, see figure 1.17. In particular we can construct a state (called Cardy brane)
|0̃〉 =

∑
l

√
S0l|l〉〉 for which only the identity (vacuum) representation occurs and this

provides the simplest example of a boundary conformal field theory: B = V0. More
generally if we put 0 on one side and i on the other side of the strip, then the spectrum
consists of only the irreducible i, B = Vi.

The above solutions are exhaustive if one assumes that the set of boundary conditions
|a〉 is complete [160]: ∑

a

cia(c
j
a)
∗ = δij ,

because then one can interpret eq. (1.56) as the eigenvalue equation
∑

b(ni)abc
j
b = Sijc

j
a,

implying in particular that the number of boundary states equals that of Ishibashi’s ones,
so that of bulk primaries via the correspondence exhibited above. We remark further
that the classification of boundary conditions above applies only to the “fundamental”
boundary conditions, which are orthogonal, while in general one has to deal with linear
combinations of those [86].

i j

ψi,jk ∝ N
k
ij

Figure 1.17: The Cardy case: the boundary fields ψi,jk which can propagate in the strip
with boundary conditions corresponding to representations i, j are given by the fusion
multiplicities Nk

ij .

The above procedure applies directly to the case of the unitary rational conformal
field theories, like the minimal models M(p, p+ 1), giving the full answer for the classi-
fication of conformal boundary conditions. The prototype of this is the Ising CFT, the
minimal model with p = 3, c = 1/2. In the bulk one has

F =
(
VI ⊗ V̄I

)
⊕
(
Vε ⊗ V̄ε

)
⊕
(
Vσ ⊗ V̄σ

)
,

where the L0 eigenvalues of I, ε, σ are 0, 1/2, 1/16. Using the S-matrix [84], one finds
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three possible boundary states:

|0̃〉 =
1√
2
|0〉〉+

1√
2
|1
2
〉〉+

1

21/4
| 1

16
〉〉

| 1̃
2
〉 =

1√
2
|0〉〉+

1√
2
|1
2
〉〉 − 1

21/4
| 1

16
〉〉

| 1̃

16
〉 = |0〉〉 − |1

2
〉〉 ,

corresponding respectively to fixed ±1 and free boundary conditions of Ising spins.

Beyond the Cardy case

We question now the applicability to more general CFTs. In particular the assumption
that the space of states is given by irreducible representations i with positive coefficients
(multiplicities) is violated in logarithmic CFTs, see section 1.2.2. Some work has been
done in the past to understand what happens in these cases, for both rational [88,89,174]
and irrational [60,158,171] logarithmic CFTs. Recall that in the logarithmic case, fusion
of two irreducible representations can produce an indecomposable but irreducible one.
It has been found in the above examples that again the spectrum of the boundary theory
agrees with the fusion rules, where now indecomposable representation are allowed to
be generated by the fusion process.

Further the bulk-boundary correspondence valid for unitary rational CFTs, does not
need to hold for more complicated theories. A striking example of the richness of non-
unitary irrational cases is given by the conformal boundary loop models of section 1.2.5
for which boundary labels are arbitrary real numbers. In the approach to boundary loop
models we will discuss below, we focus only on the boundary theory. Reconstructing
the bulk theory from the boundary data in the non-unitary (logarithmic) case remains
in general an interesting open question [174].

1.2.4 Continuum limit of loop models

In this section we will first recall how conformal invariance constrains the eigenvalues of
the transfer matrix of a critical lattice model, and then discuss in particular the BCFT
describing the continuum limit of the loop models introduced in section 1.1.1.

Finite size scaling of transfer matrices

Conformal invariance fixes the scaling of eigenvalues of transfer matrices of a two-
dimensional critical lattice model [42]. Consider now a lattice system with boundary,
say an infinite vertical strip of width L with boundary conditions labeled a and b. A
correlation function of local lattice observables φlat(x, y) (e. g. magnetization in the Ising
model) can be expressed in a transfer matrix Tab formalism as

〈φlat(x1, y1)φlat(x2, y2)〉 = 〈0|φ̂lat(x1)(Tab/Λ0)y2−y1 φ̂lat(x2)|0〉 . (1.57)
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Here |0〉 is the ground state with eigenvalue Λ0 and on the right hand side φ̂lat denotes
a local operator acting onto the Hilbert space of the transfer matrix. If we insert now a
complete basis {|n〉} of eigenstates of T the correlation function decays as (Λn/Λ0)y2−y1 ,
for 〈0|φ̂lat|n〉 6= 0. In the continuum limit L→∞, the lattice observables become scaling
fields φ = Lhφlat, with h dictating the change under a dilatation, coinciding thus with
the conformal dimensions of fields introduced above. In the continuum only states with
log(Λn/Λ0) scaling like 1/L are kept (low-energy states). The proportionality constant
in the scaling formula can be obtained from conformal invariance. Indeed consider now
a two-point function of boundary fields on the upper half plane H:

〈ψ(u1)ψ(u2)〉 ∝ |u1 − u2|−2h .

Mapping it to the infinite strip via z = u+ iv → w = x+ iy = iL/π log(z), it transforms
as

〈ψ(y1)ψ(y2)〉 ∝

(
π

2L

1

sinh
(
π

2L |y1 − y2|
))2h

.

In the limit |y1−y2| � L one recovers the upper half plane result, while for |y1−y2| � L
one finds exp(−πh

L |y1 − y2|). Comparing with the previous discussion, we get to first
order

log

(
Λn
Λ0

)
' πh

L
. (1.58)

By taking the limit y1 → −∞ in (1.57), the only state |n〉 which survives is the one asso-
ciated to the boundary operator ψ (lowest eigenvalue such that 〈0|φ̂lat|n〉 6= 0). One can
also associate to each eigenvector |n〉 an operator by computing the correlation function
in this excited state so that upon transforming back to H an operator with dimension
L/π log(Λn/Λ0) is inserted at the origin. We come to the important conclusion that,
as far as low-lying states are concerned, there is a one-to-one correspondence between
eigenvectors of the transfer matrix in the strip and boundary operators. In particular
the lowest eigenvector is associated to the BCC operator.

The ground state energy itself contains important information [2, 24]

log(Λ0) = Lfb + 2fs −
cπ

24L
+O

(
1

L2

)
,

where fb, fs are bulk and surface free energies, and c the central charge of the CFT. The
above reasoning can be generalized to anisotropic lattices and in particular to quantum
spin chains. In this case one has the following scaling for the energy of the n-th excited
state:

En = Lfb + 2fs −
vceffπ

24L
+O

(
1

L2

)
. (1.59)

ceff = c − 24hn and v is the so-called Fermi velocity, appearing in the linear dispersion
relation of the quantum chain22. Note that bulk and surface energies do not depend on
n, so they cancel in (1.58).

22For the Potts model v = (p+ 1) sin
(

π
p+1

)
if β = 2 cos

(
π
p+1

)
.
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The above results provide a way to extract universal quantities of the CFT from
finite size scaling of eigenvalues of the transfer matrix or Hamiltonian.

BCFT of loop models

The Potts model has a second order phase transition for Q ≤ 4 and a first order one
for Q > 4. The conformal field theory description of the critical region, parametrizing
β =
√
Q = q + q−1 = 2 cos(π/(p+ 1)) can be obtained by studying finite size scaling of

eigenvalues as discussed above. Indeed the XXZ model is amenable to exact solution by
Bethe Ansatz [8], and finite size scaling of eigenvalues gives the dimension of fields present
in the CFT. Further the six-vertex model can be mapped to a height model and then to a
free boson theory with background charge (Coulomb gas method) allowing to deduce the
exponents of the CFT [51,177]. We will not reproduce here the calculations, but rather
directly give the results and comment about the algebraic features. It is important to
distinguish the cases q root of unity or not, as we have discussed for the lattice model
in section 1.1.3. Here we take q generic. Using the parametrization above, the central
charge of the CFT is (1.42). For p ∈ Z≥3 this coincides with that of the minimal models
M(p, p + 1), unitary and rational conformal field theories. However in our setting p is
arbitrary and we expect in general non-unitary non-rational CFTs. When p is integer,
the continuum limit of loop models is described by so-called logarithmic minimal models
[158, 172]. The case of minimal models M(p, p + 1) is recovered by restricting to the
RSOS representation of TL [12].

The boundary spectrum of the continuum loop model is given by boundary pri-
mary operators ψj , j ∈ Z≥0, with j standing for the representation of Vir with weight
hj = h1,1+2j , using Kac label notation (1.43). ψj are highest weight states and the
general theory [84] associates a Verma module to them, obtained by acting freely with
negative modes of the algebra L−γ1 · · ·L−γLψj , γ a partition of n, n ∈ Z≥1. However this
construction gives for the values hj we are considering null states, that is, states which
have zero norm and thus have to be removed to obtain an irreducible representation.
The null vector for generic q occurs at conformal weight h1,−1−2j . In particular this
implies the following fusion rules [84]:

j1 ⊗f j2 =

j1+j2⊕
j=|j1−j2|

j . (1.60)

Despite the theory is irrational, fusion produces only a finite number of terms (quasira-
tionality). The Vir character of this representation is computed by subtracting the null
vector and its descendants:

χj(q̂) = TrVj q̂
L0 =

q̂h1,1+2j − q̂h1,−1−2j

P (q̂)
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with P (q) the generating function of partitions

P (q̂) =

∞∏
n=1

(1− q̂n) .

We have then the space of boundary states

B =
∞⊕
j=0

Vj

associated to the homogeneous reflecting R boundary condition in the lattice model23.
The set of boundary labels one can use as boundary conditions is {j}j∈Z≥0∪R. Specifying
at the boundaries of the strip two representations j1, j2 of Vir as boundary conditions,
the resulting boundary fields ψj1,j2j can be obtained by the fusion of j1, j2, eq. (1.60), as
in the Cardy case.

These results can also be understood by taking the continuum limit of the XXZ spin
chain algebraically. Indeed the fusion rules can be implemented on a finite system by
joining two chains, say in sector j1 and j2 to form a unique representation j [172]. This
geometry, see figure 1.18, is quite natural also from the BCFT point of view, where this
corresponds to inserting the fields ψj1 , ψj2 at bottom in the two half-strips. If we interpret
those fields as changing boundary conditions from j1 to 0 and 0 to j2, respectively, we
know that at the tip of the slit these have fused to ψj1,j2j .

j1 j2

ψj1,0j1
ψj2,0j2

ψj1,j2j

Figure 1.18: Fusion of boundary operators in the strip-slit geometry.

Going back to the lattice model and called two irreducible representations of Uq(sl(2))
ρj1 , ρj2 their tensor product at generic q is the same as the usual one for sl(2):

ρj1 ⊗ ρj2 =

j1+j2⊕
j=|j1−j2|

ρj ,

reproducing exactly the fusion rules of ψj ’s. Further, thanks to the centralizing property
of Uq(sl(2)) and TL, the same formula must apply also for tensoring TL representations.
As the system size is increased TL irreducibles Sj grow and in the continuum limit they

23We refrain from adding pedantically the boundary labels ψR,Rj .
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(more precisely, their low-lying parts) become exactly the Vir modules Vj . Further, on
top of the identification of L0 with the lattice Hamiltonian, also appropriate combinations
of TL become the Vir generators [134]. In the same spirit one expects that the lattice
scalar product converges to the bilinear form of the CFT, as we will discuss in more
details in section 2.3.

The continuum limit of the annulus partition function of eq. (1.28) can now be taken.
Note that the multiplicities Dj given by eq. (1.27) do not depend on the system size,
and that according to the previous discussion

TrSj T
L′ → χj(q̂) ,

where q̂ = e−πL
′/L and the arrows indicates the universal part of the quantity on the

left when the limit L,L′ → ∞, L/L′ fixed is taken. Then the CFT annulus partition
function is

Z =
∞∑
j=0

Djχj(q̂) . (1.61)

Parametrized q = eiγ , Dj = [2j + 1]q can also be written as Dj = sin((2j+1)γ)
sin(γ) = U2j(β),

β = q + q−1 and Ui(x) is the Chebyshev polynomial of the second kind. Although we
derived the CFT annulus partition function assuming that q was generic, we remark
that the result applies also when q is a root of unity by continuity.

The algebraic way of taking the continuum limit of a lattice model [172] is a general
and powerful one, and has been applied to other models based on diagram algebras
similar to TL, like the blob algebra [118], and the Brauer algebra [39], and it will be the
guiding principle for the analysis of the models of edge states in section 4.2.1. The major
point is that there are symmetry considerations which do not depend actually on the
system size and carry on to the CFT. In particular these considerations are useful for the
study of logarithmic CFTs [158,172]. We stress that the above results for the continuum
limit of critical loop models, can be used to study the conformal field theories governing
non-trivial fixed points of CPN+M−1|N sigma models introduced in section 1.1.4.

1.2.5 Boundary loop models

According to the discussion of the Cardy case of section 1.2.3, one would expect that
irreducible summands of the space of states of the bulk CFT will correspond to admis-
sible boundary conditions. The torus partition function of loop models, from which the
operator content of the bulk fields can be read [43], has been constructed in [65,170], and
the representations j’s (first column of the Kac table) obtained in the BCFT above are
only a subset. We will see now how to construct from the lattice an infinity of conformal
boundary conditions using the blob algebra.

The blob algebra

Consider a loop model on a strip of size 2L, and choose to mark the loops touching say
the left boundary, with a blob, see figure 1.19. Fugacities of unblobbed and blobbed
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loops are denoted by β and β1.

Figure 1.19: A configuration of the loop model based on the blob algebra.

This lattice model is based on a boundary extension of the TL algebra, called the
blob algebra [141], or one-boundary TL algebra (1BTL). It is defined by adding to the
TL algebra an extra generator b1, marking the leftmost strand with a filled circle as
depicted in figure 1.20. The relations satisfied in addition to the TL relations (1.6) are

b21 = b1

E0b1E0 = β1b1

[Ei, b1] = 0 , for i > 0 ,

where E0 is the TL generator acting on strands 0, 1 of the lattice. Analogously, we
introduce a blob operator b2 marking the rightmost strand of the lattice with a filled gray
circle, see figure 1.20, and we choose to weight loops touching only the right boundary
as β2. When b1 and b2 are both present we call the algebra the two boundary TL
algebra (2BTL). In this case we have to choose how to weight loops touching both
boundaries, allowing to reduce words of the algebra containing both b1 and b2. We
impose the following additional relation, which gives a fugacity β12 to loops touching
both boundaries: ( ∏

i even

Ei

)
b1b2

(∏
i odd

Ei

) ∏
i even

Ei = β12

∏
i even

Ei .

The transfer matrix of the model is defined by

T = b1b2T0 ,

where T0 is the transfer matrix of the Potts model, eq. (1.4). A more general case would
be to consider T = (1 + λ1b1)(1 + λ2b2)T0, but we anticipate that as long as λ1,2 > 0
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b1 = · · · b2 = · · ·

Figure 1.20: The two additional generators b1, b2 of the two boundary TL algebra.

the values of the critical exponents do not depend on this parameter24 and we make the
choice λ1,2 =∞ [118]. The associated Hamiltonian reads

H = −b1 − b2 +H0 ,

H0 being the TL Hamiltonian (1.5). Again we could have considered a general boundary
coupling, but we set it to one thanks to the universality of the result.

The TL algebra is recovered by setting β1 = β2 = β12 = β. Also in 2BTL there
are exceptional values of the parameters at which the algebra is not semisimple and
indecomposable modules appear, but the structure is clearly richer. For example in the
one boundary case, given the usual parametrization β = 2 cos(π/(p + 1), they occur at

β1 = sin((r1+1)π/(p+1))
sin(r1π/(p+1)) , when r1 is integer [118,141]. We will discuss the generic case only

here.
Irreducible representations will still be indexed by the number of through lines 2j as

in the case of TL. The leftmost (rightmost) through line of a link state can carry black
(resp. gray) blobs, being an eigenstate of the projector b1 (resp. b2). But it can also be
unblobbed, that is eigenstate of the projector 1−b1 (1−b2). When j > 0, we distinguish
then four subsectors, according to the fact that the leftmost and rightmost lines are
blobbed or unblobbed. Another way to state this is that since the blob operators are
projectors, once a through line is blobbed, it cannot be unblobbed, so that the transfer
matrix has a tridiagonal block structure indexed by the number of through lines and the
blobbed/unblobbed characters of leftmost and rightmost through lines.

Boundary TL algebras admit a representation as XXZ chains with boundary terms,
we refer to [151] for that and for a discussion of the symmetry properties.

Operator content

For any values of β1, β2, β12 the loop model based on 2BTL flows in the continuum limit
to a boundary CFT whose central charge is given by β in the same way as for the usual
loop model. The boundary spectrum present very interesting features and it was fully
conjectured for the one boundary case in [118] and the two boundary case was solved
in [70]. More than that, the authors of [70,118] were able to conjecture the full annulus
partition function, which is given similarly to that of the Potts model (1.61), by the

24This arbitrariness’s on the boundary coupling can also be understood from the Yang-Baxter equa-
tions of the model. Indeed writing the boundary matrix as B(u) = 1 + g(u)b, u the spectral parameter
and b the blob operator, the Sklyanin equation gives rise to a solution for g(u) that depends on an
arbitrary parameter ζ, see eq. (40) of [67], analogously to the arbitrariness of the boundary coupling.
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sum of characters of each sector weighted by non-trivial “multiplicities” depending on
the weight of loops winding around the annulus. Here we limit ourselves to report the
spectrum of primary operators.

Using the parametrization

β1 =
sin
(

(r1 + 1) π
p+1

)
sin
(
r1

π
p+1

) , β2 =
sin
(

(r2 + 1) π
p+1

)
sin
(
r2

π
p+1

)
β12 =

sin
(

(r1 + r2 + 1− r12) π
2(p+1)

)
sin
(

(r1 + r2 + 1 + r12) π
2(p+1)

)
sin
(
r1

π
p+1

)
sin
(
r2

π
p+1

) ,

(1.62)

it was found that in the sector with no non-contractible lines, the conformal weights
appearing are [70]

hr12−2n,r12 , (1.63)

with n ∈ Z, while with 2j > 0 non-contractible lines they are

hε1r1+ε2r2−1−2n,ε1r1+ε2r2−1+2j . (1.64)

The sign ε1 = ±1 indicate whether the leftmost non-contractible line is required to
touch the left boundary (for ε1 = +1, referred to as the blobbed sector), or forbidden
from doing so (for ε1 = −1, referred to as the unblobbed sector). The sign ε2 similarly
describe the choice of blobbed/unblobbed sectors at the right boundary, and n ∈ N.
The parameters r1, r2 and r12 are related to the weight of marked loops through the
formulas (1.62). The case β2 = β and β12 = β1 corresponds to the one-boundary loop
model (1BLM), where the exponents reduce to [118]

hr1,r1+2jε1 . (1.65)

We stress that the findings above are valid for arbitrary real values of r1, r2, r12.
They are mostly the result of an educated guess based on numerical diagonalizations of
transfer matrices and algebraic considerations. When r1 is integer, the 1BTL model can
be realized in terms of the TL algebra [118], and the spectrum can be computed [177].

The spectrum of the boundary theory is very complicated, and clearly encodes a lot of
possible boundary critical phenomena in 2D statistical mechanics models. In particular
the arbitrariness of choosing β12 and the presence of an infinite number of primaries
in the sector j = 0 reveals the difficulty in understanding the fusion in this irrational
theory.
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Chapter 2

Fully open boundaries in
conformal field theory

In this chapter we will discuss the computation of CFT partition functions on a rectan-
gle, using a new formalism of “fully open” boundary states. In section 2.1 we outline
the formalism, discussing the differences with respect to the usual concept of cylinder
boundary states and giving explicit results for the case of free theories. In section 2.2
we study amplitudes (partition functions), and compare the approaches using the open
boundary states with the approach using conformal mappings and conformal blocks. In
section 2.3 we address the discretization of boundary states introduced previously in
terms of lattice boundary states in loop models. Correspondingly, the amplitudes are
related to partition functions of loop models with lines inserted at the corners, and we
use this geometrical interpretation to derive probability formulas for self-avoiding walks.
This chapter contains material published by the author in [26,29].

2.1 Conformal boundary state for the rectangular geome-
try

2.1.1 Gluing condition

A boundary condition in conformal field theory has to preserve conformal symmetry. We
have seen in section 1.2.1 the conformal boundary condition gluing left- and right-moving
modes of the stress tensor (1.40). This allowed to define boundary states |Bp〉 describing
in radial quantization, a circular boundary at radius |z| = 1. Here the subscript p stands
for periodic since the boundary is defined on a circle, in contrast to the “fully open”
boundary states to be defined below. Recall that the constraint for the disk was(

Ln − L̄−n
)
|Bp〉 = 0 ,

and that a basis of solutions was given by the so-called Ishibashi states (1.52).
Using the transformation law of the stress tensor, also more complicated boundaries

can be described by gluing conditions. In this section we will discuss the geometry of
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the bottom of the rectangle, see figure 2.1. In the 1 + 1D Hamiltonian description of
the CFT, the boundary state now lives in the Hilbert space of the 1D theory defined
on a segment instead of a circle. To proceed, we choose coordinates z = x + iy in the
plane and consider the semi-rectangular region 0 ≤ x ≤ L, y ≥ 0 of Fig. 2.1, where we
allow different boundary conditions on the sides, and derive the gluing condition for the
stress-energy tensor in this geometry (for analogous discussions see [113,114,199]).

0 L

a

b

c

Figure 2.1: The semi-rectangular geometry defining the boundary state.

Conformal invariance of the boundary on the bottom side is Txy = 0, and at the
boundaries z = iy and z = L+ iy, y > 0 is realized by setting

T̄ (z̄) = T (2L− z̄) ,

and imposing periodic boundary conditions in the x direction of period 2L: T (z+2L) =
T (z) (same for T̄ ).

Care is needed to treat properly the effect of corners. The stress tensor T has a
singularity as its argument approaches the corners. To see this we start more generally
by the singularity in the upper half plane when an operator of weight h is inserted at
the origin. In this case the most singular term is

T (w) ≈ h

w2
.

We then fold the upper half plane by the mapping z = w1/2 to have a corner in z = 0.
After using the transformation law of the stress tensor (1.39), we get

T (z) ≈
(

4h− c

8

) 1

z2
. (2.1)

Also if h = 0, at a corner there is an anomaly, which reflects itself in a non-trivial
scaling dependence of physical quantities [54], as will be discussed in section 2.2.1 in
more details.

As a consequence the condition on T defining the boundary state |Bo〉 at y = 0 is(
T (x)− T (−x) + 4πi

(
h̃lδ
′(x) + h̃rδ

′(x− L)
))
|Bo〉 = 0 ,
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where we have used

1

(x− iε)2
− 1

(x+ iε)2
≈ 4iεx

(x2 + ε2)2
→ −2πiδ′(x) ,

and defined the “effective conformal weight” at the corners

h̃ := 2h− c

16
,

hl (hr) being the weight of the operator inserted at the left (right) corner. Since the
system is periodic with period 2L, we can go to a mode expansion

T (x) = −π
2

L2

(∑
n

Lne
−iπnx/L − c

24

)
,

to get the gluing condition (for n ∈ Z>0)(
Ln − L−n − 2n

(
h̃l + (−)nh̃r

))
|Bo〉 = 0 . (2.2)

Note in particular that in this case one not only identifies Ln and L̄−n, but also relates
Ln to L−n, since the semi-rectangular geometry is obtained by two consecutive folding
of the plane.

2.1.2 Computation of the boundary states

Let us consider the rectangle bottom of figure 2.1 and call the condition on the left
side a, that on the bottom b and that on the right c. Boundary condition changing

(BCC) operators φ
a|b
i , φ

b|c
j , will then sit at the left and right corners. We choose for

convenience the corners to be in ζ = −1, 0 in the ζ-plane. To discuss boundary states
in radial quantization it is more appropriate to map the rectangle bottom to the region
D = {z ∈ C : =(z) > 0, |z| > 1}, left of figure 2.2, by z = e−iπζ . The gluing condition (so
the boundary state) is not changed. We denote the boundary state we want to determine
|Bb

ac〉, which is thus associated graphically to:

|Bb
ac〉 =

a

b

c

If X = Φ(z1, z̄1) · · ·φ(x) · · · is a chain of arbitrary bulk and boundary operators, the
boundary state

∣∣Bb
ac

〉
is defined by

〈X〉D = 〈0|X|Bb
ac〉 ,

where 〈X〉D is the correlator in the geometry D. On the other hand, we can map D to
H using the Joukowsky map f(z) = z + z−1, see figure 2.2. Suppose now that at the
operator level, this conformal map can be implemented by conjugation by an operator
Ĝf , then

〈X〉D = 〈0|Ĝ−1
f XĜfφ

a|b
i (−2)φ

b|c
j (2)|0〉 ,
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D

−1 1

w = f(z)

H

−2 2

Figure 2.2: Mapping of semicircular region D to the upper half plane H f(z) = z + z−1

(Joukowsky map).

(if Ĝf = e
∑
n εnLn , then Ĝ−1

f = e−
∑
n εnLn), and the right term is a correlation function

on the upper half plane. Since the out-vacuum 〈0| is invariant under the mapping f , one
has

|Bb
ac〉 = Ĝfφ

a|b
i (−2)φ

b|c
j (2)|0〉 . (2.3)

The problem of finding the boundary state is then reduced to that of constructing
the operator Ĝf . This can be done using standard methods of CFT [15,137,182] which
we discuss in the next section.

Conformal maps

A primary φ(z) of dimension h transforms under the conformal map z → f(z) as

φ(z) =
(
f ′(z)

)h
φ(f(z)) . (2.4)

In radial quantization, the equal-time commutator of Ln with the primary φ(z) is [147]

[Ln, φ(z)] =
(
h(n+ 1)zn + zn+1∂

)
φ(z) . (2.5)

From (2.4) we interpret this action of Ln as the infinitesimal variation

Ln ↔ z → f(z) = z + εzn+1 .

Then under an infinitesimal transformation z → z+ε(z), ε(z) =
∑

n εnz
n+1, φ(z) changes

as [
∑
εnLn, φ] = hε′φ+ ε∂φ.

We now exponentiate the infinitesimal action of eq. (2.5) and construct the operator
Ĝf implementing the finite transformation (2.4) by conjugation demanding(

f ′(z)
)h
φ(f(z)) = Ĝ−1

f φ(z)Ĝf .

Such operators have been discussed in the context of open string field theory [137, 182]
and SLE [15]. Since this is not a very standard result, we give some details. We first
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ask what is the conformal map associated to Ĝf = exp (−εLn) (n positive or negative),
which acts as:

Ĝ−1
f φ(z)Ĝf = exp (ad (εLn))φ(z)

=
∑
k≥0

εk

k!

(
h(n+ 1)zn + zn+1∂

)k
φ(z) (2.6)

with the adjoint action ad(Ln)φ = [Ln, φ] of eq. (2.5). The map f is [137] (Ĝf is called
U−1
f there)

f(z) = exp
(
εzn+1∂

)
z =

z

(1− εnzn)1/n
, (2.7)

as can be readily verified by comparing the ε expansions of (f ′(z))h φ(f(z)) with eq. (2.6).
More generally the operator

Ĝf = exp

−∑
n≥1

εnLn

 , (2.8)

will then implement the map

f(z) = exp

∑
n≥1

εnz
n+1∂

 z

= z + ε1z
2 +

(
ε21 + ε2

)
z3 +

(
ε31 + 5

2ε1ε2 + ε3
)
z4 + . . .

Given a map f(z) analytic inside a disk around the origin, the above result allows to
associate by determining the ε’s, the corresponding Hilbert space operator to insert in
correlation functions. Instead considering the operator

Ĝf = exp

− ∑
n≤−1

εnLn

 , (2.9)

will implement the map

f(z) = exp

∑
n≤−1

εnz
n+1∂

 z

= z + ε−1 + ε−2
1

z
+
(
ε−3 − 1

2ε−2ε−1

) 1

z2
+ . . .

which allow to associate Hilbert space operators to conformal maps analytic inside a disk
containing z = ∞. If a map f is well defined in a region containing both 0 and ∞ and
f(0) = 0 and f(∞) =∞, then eq. (2.8) and (2.9) associate to the same map two different
operators in the Hilbert space. This is because in the two regions of convergence of the
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−→
N→∞

Figure 2.3: The geometry D emerging as the N →∞ limit of the multi-slit geometries.

formulas for Ĝf , f has different power series expansions, respectively f(z) =
∑

n≥1 anz
n

and f(z) =
∑

n≤1 bnz
n.

We now come back to the problem of finding Ĝf , where f(z) = z + z−1. Let us first
remark that from eq. (2.7) we have

Ĝgk = e−
2
k
L−k , gk(z) =

(
zk + 2

)1/k
.

which for k > 0 has the correct asymptotic behavior as z → ∞. Then note that
composing g2N yields the map f(z) in the limit N →∞ (and |z| > 1) :

g2 ◦ g4 ◦ · · · ◦ g2N (z) =

√√
. . .

√√
z2N + 2 + 2 · · ·+ 2 + 2

= z +
1

z
+O(z1−2N+1

) .

Since Ĝf Ĝg = Ĝf◦g by definition, the operator Ĝf will be then given by the following
product formula:

Ĝf = lim
N→∞

e
− 1

2N−1L−2N . . . e−
1
2
L−4e−L−2 .

This formula has an appealing geometrical interpretation [26, 69]. Let us define the
half-plane minus k − 1 slits of size 21/k

Hk = H \
{
z|zk ∈ [−2, 2]

}
.

We now note that g2N is a conformal mapping from H2N onto H2N−1 , so that g2◦g4◦· · ·◦
g2N is a mapping from H2N onto the half-plane H. Then the geometry D can intuitively
be though as the limit of infinite slits, as in figure 2.3.

Solution for homogeneous boundaries

After the above preparations, we can give the general formula for the boundary state
solving the rectangular gluing condition, eq. (2.2). Let us discuss first the case of homo-
geneous boundary conditions hl = hr = 0, no BCC in (2.3). We have

|Bo〉 = Ĝf |0〉 (2.10)

= |0〉 − L−2|0〉 −
1

2
L−4|0〉+

1

2
L2
−2|0〉+ . . . .
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One can actually show explicitly that this state solves the gluing constraint, see [26].
We will comment below in section 2.2.1 about the normalization of the state |Bo〉. In
the following we will continue to use the normalization fixed in equation (2.10). The
conjugate state 〈Bo| is defined as (recall that if |Φ〉 = Φ(0)|0〉, 〈Φ| = 〈0|I ◦ Φ(0), with
I(z) = −1/z):

〈Bo| = 〈0|Ĝ†f = 〈0|ĜI◦f ,

where I ◦ f = − z
1+z2 .

We note now that a very similar expression appeared in the open string field theory
literature to describe the so-called identity string field [76]. That object is a boundary
state defined as [167]:

〈I| := 〈0|ĜfI ,

where fI is the conformal map sending the upper half disk {|z| ≤ 1,=z ≥ 0} to the
upper half plane H:

fI(z) =
z

1− z2
= I ◦

(
z − 1

z

)
.

In [76] it was found
〈I| = 〈0|ĜhĜf2Ĝf3Ĝf4 · · ·

with
h(z) =

z

(1− 2z2)1/2
; fn(z) =

z

(1 + 2z2n)1/2n
,

and
Ĝh = eL2 ; Ĝfn = exp

(
− 1

2n−1L2n
)
.

The expression of 〈Bo| can be obtained from that of 〈I| by noting that

h−1 ◦ h−1 ◦ fI = I ◦ ff ,

with h−1(z) = z/
√

1 + 2z2 = f1(z), which implies

ĜI◦f =
(
Ĝ−1
h

)2
ĜfI .

This gives a consistency check of our result for the rectangular boundary state with that
of [76] for the identity string field.

General solution and basis states

From eq. (2.3) we now have the solution for the more general case of BCC insertions in
the corners. Using boundary OPE (1.41) it can written

|Bb
ac〉 =

∑
s

Cabcijs

√
Cacass0 |

s
i j〉 , (2.11)
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where we defined the basis states | si j〉 by

| si j〉 := Ĝf 4hs−hi−hj
∑
n≥0

∑
γ`n

4nβs,γi,j L−γ |φs〉 (2.12)

= 4hs−hi−hj
[
|φs〉+

∑
n≥1

∑
γ`n

αs,γi,j L−γ |φs〉
]
, (2.13)

where γ ` n is a partition (γ1, . . . , γL) of n, and we used the shorthand L−γ :=
L−γ1 · · ·L−γL . The coefficients βs,γi,j , appear in the OPE of chiral fields φi, φj in the
term corresponding to the descendant of φs, L−γφs. Recursion relations for these co-
efficients can be obtained [84]. The term

√
Cacass0 in the eq. (2.11) is needed in order

to define the basis state as an element of the Verma module of the primary φs with-
out any information about the boundary conditions. The knowledge of boundary OPE
coefficients Cabcijs is equivalent to that of the F -matrices of the theory since [80,173]:

Cabcijs = Fbs

[
a c
i j

]
. (2.14)

The F -matrices relate conformal blocks F building correlation functions in the following
way [146]:

Fsij;kl(ζ) =
∑
r

Fsr

[
i l
j k

]
Fril;jk(1− ζ) . (2.15)

We will see below several examples of this relation. Here we would like just to point out
that they are a priori known data.

The basis states | si j〉 span the space of boundary states solving eq. (2.2) and are the
analogues for the rectangular geometry of Ishibashi states (1.52). For determining the
coefficients α’s in eq. (2.13) one could work out the algebra in (2.12) or directly solve the
constraint (2.2) for different values of n. It is well known however that the combinatorics
of the Virasoro algebra is complicated and does not allow to get a closed formula for
the coefficients in the above expansions, be it βs,γi,j or αs,γi,j . An exception is the case
of free theories, when the Virasoro generators admit an expression in terms of bosonic
or fermionic oscillators, see the discussion in section 2.1.3. We note then the following
difference between Ishibashi states for the cylinder geometry and the basis states for
the rectangle: rectangle basis states depend on the boundary operators inserted at the
corners, so on their fusion, which does not give access to an explicit expression. Instead
Ishibashi states are known explicitly from eq. (1.52).

Note that the normalization of the identity φ0 (0 is the label for the identity) is fixed
by demanding φaa0 φabi = φabi , which implies

Caab0ij = δij (2.16)

for every a, i. Note also that taking different OPEs of the three point function 〈φabi φbcj φcak 〉
one has the cyclic relation

CabcijkC
aca
kk0 = CbcajkiC

aba
ii0 .
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The state |Bb
ac〉 is directly given by a basis state if the fusion φa,bi ⊗f φ

b,c
j produces

only one channel. This is of course the case for homogeneous boundary conditions, when
no BCC operators are present:

|Ba
aa〉 = (Caaa000 )3/2| 0

0 0〉 = Ĝf |0〉 ,

where |φ0〉 ≡ |0〉, and we used (2.16). This is also the case when there is only a single
BCC operator. Indeed, if a = b, calling the BCC operator φa,cs , one has

|Ba
ac〉 = Caac0ss

√
Cacass0 |

s
0 s〉

=
√
Cacass0 Ĝfφs(2)|0〉 =

√
Cacass0 Ĝf exp(2L−1)|φs〉 ,

since L−1 generates translations and |φs〉 inserts the operator at the origin. Cacass0 is not
fixed by (2.16) and could be set to one, see [173].

The discussion presented so far solves implicitly the problem of finding the boundary
states for the rectangular geometry. Before moving on, let us define the conjugate states
of eq. (2.11)

〈Bb
ac| =

∑
s

Cabcijs

√
Cacass0 〈

i j
s | ,

which is associated graphically to

〈Bb
ac| =

a

b

c

〈i js | is the adjoint of | si j〉, and we introduce also the following graphical notation for the
basis states:

| si j〉 =
φi φj

s

2.1.3 Free theories

While the expression (2.10) is general, there are more natural ways to think of the
boundary state in the case of free theories. There, like when the boundary is a circle
instead of a segment, expressions as coherent states over the bosonic/fermionic modes
are possible, this time however involving only the chiral half of oscillators.

Free boson

The simplest case is the free boson. The BCFT and the boundary states for the disk
geometry have been discussed in 1.2.3. In the case of homogeneous boundary conditions,
the gluing equation (2.2) takes the following simple form expressing Virasoro modes in
terms of bosonic oscillators (see (1.54)):(∑

m∈Z
an−mam −

∑
m∈Z

a−n+ma−m +
n

4
[1 + (−1)n]

)
|Bo

φ〉 = 0 .
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The solution is of the form:

|Bo
φ〉 = exp

(
−
∑
n>0

1

2n
a2
−n

)
|0〉 ,

as can be verified using twice

(am + a−m) |Bo
φ〉 = 0 , m > 0 .

Alternatively one could also express Ln in (2.10) using (1.54) and check that the two
expressions agrees for c = 1.

Open boundary states for the free boson have been discussed in more generality in
[26,113,199].

Ising model

The case of the Majorana fermion describing the Ising model is less straightforward.
Going through the derivation of the gluing conditions for fermions using the doubling
trick of section 2.1.1, produces a step function (say for D boundary conditions along the
rectangle)[26]:

[ψ(x, y = 0) + sign(x)iψ(−x, y = 0)] |Bo
ψ〉 = 0 .

The sign function can be traced back to the transformation properties of fermions in-
volving a purely imaginary factor, see the discussion of free theories of section 1.2.3. The
solution to this can again be written as the coherent state

|Bo
ψ〉 = exp

 ∞∑
0≤m<n

Gm,nψ−m−1/2ψ−n−1/2

 |O〉 . (2.17)

The matrix Gm,n can be easily computed using a different strategy involving corre-
lation functions. As done in section 2.1.2 we define the boundary state in the geometry
denoted by D (fig. 2.2 (left)), and consider the mapping to the upper half plane H (fig. 2.2
(right)), viz. w = z + z−1. We thus consider D boundary conditions on all sides of the
boundary of D, so that |Bo

ψ〉 should be the state representing this boundary. Calling |O〉
the ground state of the model at infinity in H we have

〈ψ(z1)ψ(z2)〉D = 〈O|ψ(z1)ψ(z2)|Bo
ψ〉 (2.18)

=

(
∂w1

∂z1

∂w2

∂z2

)1/2

〈ψ(w1)ψ(w2)〉H ,

where on the rhs the correlator is evaluated in H with the usual D boundary condi-
tions. Using that this correlator must simply be 1/(w1 − w2) (since it involves only
right movers, which are not affected by the boundary), and evaluating derivatives, gives
straightforwardly that

〈O|ψ(z1)ψ(z2)|Bo
ψ〉 =

1

z1 − z2

√
1− 1

z2
1

√
1− 1

z2
2

1− 1
z1z2

.
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From the result (2.17) we can write the boundary state as

|Bo
ψ〉 = : exp

(∮
dz

2iπ

∮
dz′

2iπ
ψ(z)G(z, z′)ψ(z′)

)
: |O〉 ,

where G(z, z′) corresponds to the generating function of the numbers Gm,n introduced
above. Evaluating eq. (2.18) using Wick’s theorem, we find in the end that

G(z1, z2) =
1

2(z2 − z1)


√

1− 1
z2
1

√
1− 1

z2
2

1− 1
z1z2

− 1

 .

We consider this expression in the domain |z1|, |z2| > 1 (because of the geometry of our
problem), and expand it as

G(z1, z2) =
1

2z1z2

∞∑
m,n=0

Gmn
zm1 z

n
2

.

(Observe that on top of Gmn = −Gnm, we have Gmn = 0 if m+ n is even.) As a result,
we now have the generating function for the the quadratic form appearing in (2.17). The
first few values of Gm,n read:

G01 =
1

2

G03 =
1

8
, G12 =

5

8

G05 =
1

16
, G14 =

3

16
, G23 =

5

8

G07 =
5

128
, G16 =

13

128
, G25 =

25

128
, G34 =

81

128
.

We can then compare the result for the boundary state found in this section with
the specialization at c = 1/2 of formula (2.10) by expressing the Virasoro modes in a
standard way in terms of fermionic ones:

Ln =
1

2

∑
k ∈ Z+ 1

2

k : ψ−k+nψk : , n ∈ Z .

We have verified the agreement for the first few descendants up to level 8 in the Virasoro
modes.

The computation of the boundary state can be generalized to the case of different
boundary conditions on the sides of the rectangle by considering correlators involving
BCC operators and the spectator fermions used above. This can be done since for
the Ising model higher point correlation functions are known explicitly [13]. Without
entering details of the derivation, we present here the solution for the boundary state
describing free Ising spins on the left and right sides and fixed say + in between, |B+

ff 〉.
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This change of boundary conditions is mediated by σf,+. From the fusion rules of these
BCC operators

σf,+ ⊗f σ+,f = If,f + ψf,f ,

we know that this state is composed of two basis states, one in the sector of the identity
| Iσ σ〉 and one in that of the energy | ψσ σ〉:

|B+
ff 〉 ∝ |

I
σ σ〉+ C| ψσ σ〉 .

The numerical value of C is

C = 4hψ
Cf,+,fσ,σ,ψ

Cf,+,fσ,σ,I

= 4−hψ
√

2 , (2.19)

following using F -matrices for the Ising model (see e. g. [138]) after identification of
boundary conditions with Virasoro representations f ≡ σ, + ≡ I and normalizing two
point functions to one.

For the basis state one has a coherent state form (2.17), where in | ψσ σ〉 the vacuum
must be replaced by the energy ψ−1/2|O〉. The first few terms read:

| Iσ σ〉 = 4−2hσ

[
1 +

3

2
ψ−1/2ψ−3/2 +

7

8
ψ−1/2ψ−7/2 +

3

8
ψ−3/2ψ−5/2 + . . .

]
|O〉

| ψσ σ〉 = 4hψ−2hσ

[
1− 1

2
ψ1/2ψ−5/2 −

3

8
ψ1/2ψ−9/2 −

5

16
ψ1/2ψ−13/2−

9

8
ψ−3/2ψ−5/2 −

5

8
ψ−3/2ψ−9/2 + . . .

]
ψ−1/2|O〉 .

The full expression for the generating functions G(z1, z2) for these two basis states is
quite lengthy and we refer the interested reader to [29] for that.

We have also verified the expressions for the above boundary states and the coeffi-
cients (2.19) from the solution of the Ising spin chain, as reported in [26,29].

2.2 Rectangular amplitudes

Having discussed in details the construction of boundary states for the bottom of the
rectangle, we study now the partition functions resulting from the overlap of such bound-
ary states. Recall that generically we expect the partition function of a critical system
to behave as

Z = efbLL
′
efs(L+L′)ZR(L,L′) ,

where fb and fs are bulk and surface energies, and ZR(L,L′) should be described by
the CFT. We stress that this formula holds in the continuum limit of lattice models
L,L′ →∞, L′/L fixed.
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2.2.1 Homogeneous boundary conditions

We first consider the amplitude associated to the boundary state with no BCC field
insertions, eq. (2.10), for a generic CFT. Since we have the same boundary condition on
each side, we note that the partition function for a rectangle of length L and width L′

will have to be a modular form

ZR(L,L′) = ZR(L′, L) . (2.20)

Define as usual τ := iL′/L, q := e2πiτ and the Dedekind eta function as

η(τ) = q1/24
∞∏
n=1

(1− qn) .

The partition function ZR(L,L′) was computed in [129]:

ZR(L,L′) = Lc/4η(τ)−c/2 (2.21)

= Lc/4q−c/48

(
1 +

c

2
q +

c(c+ 6)

8
q2 + . . .

)
. (2.22)

Each corner contributes c/16 log(L) to the free energy (corner free energy) [54] due to
the anomalies of the stress tensor, and the non-trivial scaling Lc/4 is the sum of these
contributions1.

Equation (2.20) then follows from the transformation properties of the η function:

η(−1/τ) =
√
−iτη(τ) (2.23)

η(τ + 1) = eiπ/12η(τ) . (2.24)

1As an illustrative example of this fact we consider a semi-infinite rectangular geometry of width
L in the y-direction and uniform boundary conditions. If we perform the transformation x → x, y →
y+ δLΘ(y− y0), 0 < y0 < L, the response of the system is given by the change in free energy F as [65]:

δF =
1

2π

∫
d2r〈Tµν〉∂µαν = −δL

π

∫ Λ

0

dx 〈T (y0)〉 ,

with Λ a cutoff, set to ∞ at the end, α the coordinate transformation, and we used T22 = −T11 =
−(T + T̄ ). The mapping to H (where 〈T (z)〉 = 0) is z = cosh(wπ/L), so using (1.39):

δF

δL
=

cπ

24L2

∫ Λ+iy0

iy0

dw

(
1 +

3

sinh(wπ/L)2

)
=

cπ

24L2

(
Λ− 3iL

π
cot
(πy0

L

)
− 3L

π
coth

(
π(Λ + iy0)

L

))
.

When Λ→∞, y0 → 0 the corner free energy predicted by CFT is:

∆F = − c
8

log(L) .

As expected, we have a logarithmic dependence on L and the result is in agreement with the presence
of an exponent −c/16 associated to the corner. A similar computation gives the partition function for
a rectangle (2.21), and note that when BCC operators φ1 · · ·φn are present, the variation of the free

energy is given by replacing 〈Tµν〉 with
〈Tµνφ1···φn〉
〈φ1···φn〉

.
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As it was observed in [130], this partition function can actually be derived only from
modularity arguments.

In the limit of very tall rectangle L′ � L (q → 0) we note from the expansion (2.22)
that the free energy per unit length has the correct behavior [84] of that for the infinite
strip:

− log(ZR(L,L′))

L′
∼ − cπ

24L
.

Further, we remark that for the c = 1 and c = −2 CFTs of free bosons and symplectic
fermions (related to spanning trees via matrix-tree theorem [185]), the partition function
is simply given by the Laplacian of the rectangle, whose expression [73] agrees with that
given above.

Now we can take the scalar product of the boundary state with itself to form the
amplitude

AR(τ) := 〈Bo|q̂L0−c/24|Bo〉 = q̂−c/24
∑
n≥0

cnq̂
n , (2.25)

where q̂ :=
√
q is the relevant combination of L′/L appearing in the transfer matrix on a

strip, and the arrow is the direction of imaginary time. The following relation between
this amplitude and the partition function ZR(L,L′) should hold

AR(τ) = L−c/4ZR(L,L′) = η(τ)−c/2 . (2.26)

We have verified this relation by computing the first coefficients cn in (2.25) using the
commutation relations of the Virasoro algebra and comparing them with the power series
of η−c/2, confirming the validity of our derivation up to a very high order (n = 52) in
q̂. We note that as expected from the left-right symmetry of the boundary conditions
of the problem, the boundary states couple only to descendants of the identity of even
level (so that c2n+1 = 0 in eq. (2.25)).

We comment now on the normalization of the boundary state |Bo〉 and of rectangle
partition functions. First we note that the state |Bo〉 is not normalizable. Indeed from
(2.26), we have that

〈Bo|Bo〉 = lim
q→1

η(τ)−c/2 =


∞ if c > 0,

0 if c < 0,

1 if c = 0.

A similar situation happens for the Ishibashi states in the cylinder geometry. However in
the case of cylinder states, one can fix a possible multiplicative constant in the definition,
which is not fixed by the gluing condition on the disk (1.51), by requiring the equality
of the cylinder amplitude to the annulus partition function, as discussed in section
1.2.3. We do not know how to fix a possible multiplicative constant α in the definition
|Bo〉 = αĜf |0〉. This issue is related to the very definition of a partition function on a
rectangle, containing the factor Lc/4 in (2.21), which depends on the unit of measure of
length we adopt.
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(

0
1/2
1/2 a

)
= 0 a

1/2

1/2

φ
0,1/2
1/2 (z2)

φ
1/2,0
1/2 (z1)

φ
1/2,a
1/2 (z3)

φ
a,1/2
1/2 (z4)

Figure 2.4: The partition functions for one-leg insertion at the corners zi.

2.2.2 Conformal blocks and modular properties

Example: one-leg insertions

We discuss the general properties of rectangular amplitudes starting with an example,
that of the partition function of a loop model with one-leg operators inserted at the
corners. Using the labels i ≡ (1, 1 + 2i) where (1, 1 + 2i) is Kac notation (1.43), we

would like to compute the partition functions Z
(

0
1/2
1/2 a

)
, see figure 2.4, where a = 0, 2,

so that the BCC operators in the corners are φ0,1
1/2 or φ2,1

1/2.
We note that this partition function is the same as that of the Q-states Potts model

with fixed boundary conditions on left and right boundaries and free on the top and
bottom sides. In this language the two values a = 0, 2 correspond to the two situations
of fixed spins in an equal state (a = 0) or fixed spins in different states (a = 2). This
is consistent with the known fusion rules [48] since 1/2 ⊗f 1/2 = 0 ⊕ 1. The partition

functions Z
(

0
1/2
1/2 a

)
have been already computed in [48] and here we reproduce the

results and comment about boundary states and modular properties.

If a = 0, at the corners on the bottom sit BCC operators φ
0,1/2
1/2 and φ

1/2,0
1/2 , whose

OPE coefficients are clearly C
0,1/2,0
1/2,1/2,s ∝ δs,0 so that only the identity channel propagates.

For a = 1 we insert instead φ
0,1/2
1/2 and φ

1/2,1
1/2 whose OPE coefficients are C

0,1/2,1
1/2,1/2,s ∝ δs,1

so that only the φ1-channel is left. Called zi the position of the corners, by definition of
BCC operators, the partition functions will be

Z
(

0
1/2
1/2 a

)
= ZR(L,L′)〈φ1/2,0

1/2 (z1)φ
0,1/2
1/2 (z2)φ

1/2,a
1/2 (z3)φ

a,1/2
1/2 (z4)〉 ,

where ZR(L,L′)(τ) is the partition function for no field insertion (2.21), and the correla-
tor is in the rectangle geometry. For computing a correlator of the fields on the rectangle,
we map it to the upper half plane w using a Schwarz-Cristoffel transformation:

z =

∫ w

0
dt

1√
(1− t2)(1− k2t2)

.
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It maps the points on the real line (−1/k,−1, 1, 1/k) to the corners of a rectangle with
L = 2K and L′ = K ′, (−K + iK ′,−K,K,K + iK ′), where K is the complete elliptic
integral of the first kind of modulus k and K ′ the complementary one, see figure 2.5.

− 1
k
−1 1

1
k

−K K

K + iK′K − iK′

Figure 2.5: The Schwarz-Cristoffel transformation sending the upper half plane to the
rectangle.

The Jacobian J of this transformation is singular at the corners, but when the
boundary operators sit at the corners, the transformation law of primary fields, eq. (1.38),
continues to hold since as the argument of the field approaches the corner in zc, the field
itself goes to zero as (z − zc)hφ(zc), where h is the dimension of the field. Then we look
at the Jacobian as the coefficient of the first term in the expansion around the position
of the corners. The result for general field insertion is

J = k−hi−hl(1− k2)hi+hj+hk+hl , (2.27)

so that in the case we are after:

J = k−2h(1− k2)4h .

The correlator on the upper half plane can be written using the fusion procedure depicted
as:

1
2

1
2

1
2

1
2

1
2 0 1

2
a 1

2

0
a

a

giving:

〈φ1/2,0
1/2 (w1)φ

0,1/2
1/2 (w2)φ

1/2,a
1/2 (w3)φ

a,1/2
1/2 (w4)〉 =

(
w13w24

w12w23w14w34

)2h

×C0,1/2,a
1/2,1/2,aC

0,1/2,a
1/2,1/2,aC

0a0
aa0Ga(1− ζ) .
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The explicit expressions for the blocks Ga were given in eq. (1.45), (1.46), and recall that
the anharmonic ratio ζ is defined as

ζ =
w12w34

w13w24
,

with wij = wi − wj . We now let (w1, w2, w3, w4) = (−1/k,−1, 1, 1/k) and express
everything in terms of τ ,

k =

(
θ2(2τ)

θ3(2τ)

)2

ζ =

(
θ4(τ)

θ3(τ)

)4

. (2.28)

After a little algebra we finally get (recall L = 2K):

Z
(

0
1/2
1/2 a

)
= N aLc/4−8hη−c/2θ16h

3 Ga(1− ζ) . (2.29)

An important feature is the presence of c/4− 8h, the modular weight of the rectangular
partition functions [54] already discussed in section 2.1.1. In the above formula we wrote
a normalization factor N a, which will be fixed by a physical requirement below.

Before doing that, we express this partition function using the formalism of boundary
states introduced above. The relevant boundary states are (omitting the OPE coefficients
appearing in the general formulas (2.11))

|B1/2
0a 〉 ∝ |

a
1/2 1/2〉

Parametrizing c as in (1.42) the first few terms of these basis states have the complicated
explicit form

42h1/2 | 0
1/2 1/2〉 = |0〉+

(
7− 24

p+ 3

)
L−2|0〉

+

(
− 40

3p+ 5
+

24

p+ 3
− 1

2

)
L−4|0〉+

(
200

9p+ 15
− 48

p+ 3
+

19

6

)
L2
−2|0〉+ . . .

and

42h1/2−h1 | 1
1/2 1/2〉 = |φ1〉+

5p− 1

3p+ 1
L−2|φ1〉 −

2(p+ 1)

3p+ 1
L2
−1|φ1〉

+
34p3 + 21p2 + 44p− 3

60p3 + 86p2 + 40p+ 6
L−4|φ1〉 −

16(p− 2)p(p+ 1)

(2p+ 1)(3p+ 1)(5p+ 3)
L−3L−1|φ1〉

− p2 + 34p− 3

30p2 + 28p+ 6
L2
−2|φ1〉+

20p3 + 58p2 + 44p+ 6

30p3 + 43p2 + 20p+ 3
L−2L

2
−1|φ1〉

− 2(p+ 1)2(2p+ 3)

30p3 + 43p2 + 20p+ 3
L4
−1|φ1〉+ . . .
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One can now take the overlap of the basis states to compute the rectangular amplitudes:

〈1/2 1/2
0 |q̂L0−c/24| 0

1/2 1/2〉 = 4−4h1/2q−c/48

(
1 +

(3− 7p)2(−2 + p)

2p(1 + p)(3 + p)
q + . . .

)
〈1/2 1/2

1 |q̂L0−c/24| 1
1/2 1/2〉 = 42h1−4h1/2q−c/48+h1/2

×
(

1 +

(
9

2
− 3

p
− 45

1 + p
+

80

1 + 3p

)
q + . . .

)
.

We have verified that this small-q expansion matches the exact expression (2.29) up to
order q̂10. Note that only even powers of q̂ (even and odd of q, recall q̂ =

√
q) appear,

since only even level descendants are present in the boundary states due to the left-right
symmetry of the problem (odd level descendants are odd under left-right reversal, so do
not appear).

Finally, we fix the normalization N a following Cardy [48]. We demand that in the
limit ζ → 0 of an infinitely long rectangle, the normalized conformal blocks2 behave as

N aGa(1− ζ) = 1 +O(ζ) . (2.30)

This because for a very long rectangle, one has in both cases a = 0, a = 1, the partition
function of a horizontal strip with free boundary conditions on the sides. Both conformal
blocks should give one in that limit. We have:

N 0 =
1

F00
= 2 sin

(π
6

(8h+ 1)
)

= β (2.31)

N 1 =
1

F20
=

Γ
(

4h
3 + 2

3

)
Γ(4h+ 1)

Γ
(

8h
3 + 1

3

)
Γ
(

8h
3 + 4

3

) .
Here β is the fugacity of loops and Fij are the F-matrices, eq. (1.50).

The results derived so far are valid for both dense and dilute loops, where in the first
case the relation between the BCFT labels i and the Vir representations in Kac notation
is i ≡ (1, 1 + 2i), while in the second is i ≡ (1 + 2i, 1).

We have seen in section 1.2.2 that at logarithmic points describing polymers (dense
polymers h = −1/8, c = −2 and dilute polymers h = 5/8, c = 0) some conformal blocks
are ill defined. The presence of a divergence is clearly a difficulty for the interpretation of
the partition function as that of a statistical model. We will see in section 2.3.2 what is

the precise geometrical interpretation of the partition functions Z
(

0
1/2
1/2 a

)
. One expects

physically that these partition functions should be well defined for every value of loop
fugacity β, also at β = 0, which is the case we are after for polymers. The solution to
this is simply hidden in the normalization of the partition function, eq. (2.29). In the
case of dense polymers N 0 = N 1 = 0. This does not come as a surprise, and should

2The relation between OPE coefficients and F -matrices (2.14) holds for a certain choice of normal-

ization of fields [173]. Redefining φabi → λabi φ
ab
i and |0〉 → α|0〉 we can eventually fix λ

0,1/2

1/2 and λ
1,1/2

1/2

so that the OPE structure constants satisfy the behavior of eq. (2.30)
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be traced back to the presence of a single loop on the rectangle. Factorizing this trivial
zero, one then gets for dense polymers the result:

Z
(

0
1/2
1/2 1

)
(h = −1/8) = Z

(
0

1/2
1/2 0

)
(h = −1/8) =

√
Lηθ−2

3

2

π
K(1− ζ)

=
√
Lη ,

K is the complete elliptic integral of the first kind of parameter ζ and we used the
identity 2K(1 − ζ(τ)) = πθ(τ)3. This result agrees with the Laplacian of the rectangle
with D,N,D,N boundary conditions [29]. For dilute polymers one has

N 0 → π

2
ε+O(ε2)

N 1 → 15

32
π +O(ε) .

Note that the indecomposability parameter b = 5/6 [105] is present explicitly in the
coefficient, h2/b = 15/32. The zero of N 0 kills the divergence of G0, and finally we
predict again degeneracy of both partition functions

Z
(

0
1/2
1/2 1

)
(h = 5/8) = Z

(
0

1/2
1/2 1

)
(h = 5/8) = L−5θ−10

3 S2(1− ζ) ,

with S2 defined in (1.49). The degeneracy we have observed could be understood more
fundamentally as the gluing of the two sectors φ0 and φ1 in an indecomposable module
corresponding to a single boundary condition.

We now discuss transformation properties of the partition function

Z
(

0
1/2
1/2 a

)
(τ) =

1
2

1
2

a0

under modular inversion, S : τ → −1/τ . Modular inversion interchanges length and
width. At the same time a partition function can obviously be described either using
time flowing say up or right, without changing the result. Then we expect that under S
we have:

Z
(

0
1/2
1/2 a

)
(−1/τ) = a0

1
2

1
2

=

a

0

1
2

1
2 =

a

0

1
2

1
2 = Z

(
1/2

0
a 1/2

)
(τ) .

One can then check that our result (2.29) satisfy this relation using standard transforma-
tion properties of theta functions under modular inversion (see e. g. [84]). In particular
one uses that under S:

Ga(1− ζ)→ Ga(ζ) ,
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Z
(
a db c
)

(τ) = a c

b

d

φa,bj (z2)

φd,ai (z1)

φb,ck (z3)

φc,dl (z4)

L

L′

Figure 2.6: The partition function with different boundary conditions and operator
insertion at the corners zi.

and standard hypergeometric identities to write:

Ga(ζ) =
∑
b=0,1

FabGb(1− ζ) .

For explicit expressions of the the matrices Fab = Fab

[
1/2 1/2
1/2 1/2

]
, see eq. (1.50).

General result

We now generalize the discussion presented above to the case of arbitrary boundary
conditions a, b, c, d around the rectangle, see figure 2.6. We present here the results and
refer for details to [29].

A partition function with generic boundary conditions can be written as:

Z
(
a
d
b c

)
=

b

d
ca = Lw(i,j,k,l)〈Bd

ac|q̂L0−c/24|Bb
ac〉 (2.32)

= Lw(i,j,k,l)
∑
s

Cadcils C
abc
jksC

aca
ss0Ai,j,k,ls (τ) . (2.33)

The modular weight w(i, j, k, l) is determined by general arguments [54] and is given by
the anomaly at the corners (2.1):

w(i, j, k, l) =
c

4
− 2(hi + hj + hl + hk) . (2.34)

We defined the amplitudes involving basis states as:

Ai,j,k,ls (τ) = s
φi φl

φj φk
: = 〈i ls |q̂L0−c/24| sj k〉

= q̂hs−c/24
∑
n≥0

cnq̂
n .
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Inserting expressions of boundary states (2.12) in practice allows to obtain only the first
few coefficients cn of the power series. As shown in the example above, closed formulas
can be obtained using CFT correlators. Now the amplitude contains only the channel s
of the correlator of BCC fields at the corners, and has the following expression [29]:

Ai,j,k,ls (τ) = 4−
1
3

(hi+hj+hk+hl)η(τ)−2w(i,j,k,l)Fsil;jk(1− ζ(τ)) , (2.35)

where ζ(τ) is given in eq. (2.28), and the conformal block3 Fsil;jk behaves for small
argument as

Fsil;jk(z) ∼ zhs−
1
3

(hi+hj+hk+hl) ,

so that the normalization is consistent with that of our boundary states (2.13). We note
that in the case of four φ1/2 fields discussed above, we found it convenient to introduce
the functions Ga, which are related to the functions Fa by:

Ga(ζ) = (ζ(1− ζ))4h/3Fa1/2,1/2;1/2,1/2(ζ) .

We now discuss the modular properties of rectangular amplitudes in the general
case. We have already encountered the F-duality stating the associativity of the fusion
product, relating conformal blocks singular near ζ = 0 to those singular near ζ = 1,
eq. (2.15), which we recall:

Fsij;kl(ζ) =
∑
r

Fsr

[
i l
j k

]
Fril;jk(1− ζ) .

Another transformation acting in the space of conformal blocks is braiding, exchanging
the position of φj and φk:

Fsij;kl(ζ) =
∑
r

Bsr

[
i l
j k

]
Frik;jl

(
1

ζ

)
.

Let us remark now that the space of conformal blocks furnishes a representation of the
modular group Γ = PSL(2,Z) with the following natural action:

M ◦ F(ζ(τ)) = F(ζ(Mτ)) , M ∈ Γ .

3A four point function can always be written as

〈φ1(w1)φ2(w2)φ3(w3)φ4(w4)〉 =
∏
i<j

w
µij
ij G(ζ) , µij =

1

3

(
4∑
k=1

hk

)
− hi − hj ,

where the function G(ζ) is a linear combination of conformal blocks. There several well-known ways
for representing conformal blocks. There is a representation in terms of power series determined only
by Virasoro algebra [84], and there is an integral representation in terms of Dotsenko-Fateev integrals
[68]. Further, conformal blocks form a basis of solutions to null-vector differential equations associated
to degenerate fields in the correlator as exploited above in the case of fields degenerate at level two.
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Indeed one can relate ζ(Mτ) to ζ(τ) using the explicit expression of the anharmonic
ratio in terms of the modular parameter, eq. (2.28). For the generators S : τ → −1/τ
and T : τ → τ + 1, one has

ζ(Sτ) = 1− ζ(τ) ; ζ(Tτ) =
1

ζ(τ)
,

so that the action of T and S on conformal blocks is

S ◦ Fsij;kl(ζ) =
∑
r

Fsr

[
i l
j k

]
Fril;jk(ζ)

T ◦ Fsij;kl(ζ) =
∑
r

Bsr

[
i l
j k

]
Frik;jl(ζ) .

This action transfers immediately into modular covariance of rectangular amplitudes
using eq. (2.35). Modular inversion S acts in an obvious way on the rectangle by inter-
changing its length and width:

S ◦ Ai,j,k,ls (τ) = Al,i,j,ks (−1/τ)

= τ−w(i,j,k,l)
∑
r

Fsr

[
i l
j k

]
Ai,j,k,lr (τ) ,

where Al,i,j,ks (−1/τ) = 〈l ks |ˆ̃qL0−c/24| si j〉, ˆ̃q = e−iπ/τ . Note the appearance of the modular
weight w(i, j, k, l) from the transformation of η (2.23) (not present if considering the
modular inversion of the full CFT partition function). Modular translation T instead
deforms a rectangle to a rhombus, and its meaning could be understood from:

T ◦ Ai,j,k,ls (−1/τ) = Ai,j,k,ls (−1/(τ + 1))

= eiπw(i,j,k,l)/3(τ + 1)−w(i,j,k,l)η(τ)−2w(i,j,k,l)Fsij;kl
(

1

ζ(τ)

)
= eiπw(i,j,k,l)/3

(
τ + 1

τ

)−w(i,j,k,l)

×
∑
r

Bsr

[
i l
j k

]
Ai,k,j,lr (−1/τ) ,

(2.36)

where we used the transformation of η (2.24). Note that the amplitude Ai,k,j,lr (−1/τ)
can be thought as the r-channel amplitude of a rectangle whose bottom, where operators
φa,bj and φb,ck sit, has been twisted by π:

φk φj

φi φl
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Recall that for the torus a Dehn twist by 2π at fixed time is exactly T ; here we have q̂
so the twist is the half. This should be the way to understand modular translation of
rectangular amplitudes. In particular if the twisted amplitude is equal to the original
one, as happens when k = j, we expect to have invariance (in the sense of equation
(2.36)) under modular translations.

More generally modular transformations are powerful tools for constraining the ob-
jects we want to compute, and their usefulness are well appreciated for CFTs on cylinders
and tori [43,44]. For example we have seen in section 1.2.3 that for the cylinder geome-
try it gives the so-called Cardy states. The natural constraint for the rectangle4 comes
from imposing the consistency of the partition function upon switching the direction of
imaginary time from vertical to horizontal:

b

d
ca =

b

d
ca .

The resulting consistency equation∑
s

Cdabijs C
bcd
klsC

dbd
ss0Fsr

[
i l
j k

]
= Cadcilr C

abc
jkrC

aca
rr0

is simply stating the associativity of the fusion product of boundary fields, the so-called
sewing constraint coming from crossing symmetry of correlators[138]. It has been shown
in [173] that its solution is given by (2.14). Then, since we defined directly our boundary
states in terms of physical boundary OPEs, consistency under modular inversion does
not give any additional constraint.

2.3 Geometrical description of conformal blocks

2.3.1 Lattice boundary states

We now use the loop models to discretize the rectangular boundary states. The BCFT
of loop models was discussed in section 1.2.4, and we recall that the primary fields are
given by {φj}, j ∈ 1

2Z
≥0, where the boundary labels are related to the Kac labels (1.43)

by j ≡ (1, 1 + 2j).
Define the normalized link state | si j〉L as:

| si j〉L :=
1√

L〈i js | si j〉L

· · · · · · · · · · · ·· · ·
nc ncnl nr

(2.37)

with
nl + nc = i ; nr + nc = j ; nl + nr = s .

4The action of the modular group on a rectangle has been discussed in [66, 130] in the case of
percolation.
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The norm of the state
√
L〈i js | si j〉L is computed using the loop scalar product, see the

discussion around eq. (1.29). The link state has s = nl + nr through lines, which as
before, are supposed to be non-contractible, that is, the state is projected to the sector
with exactly s non-contractible lines. The nc lines inserted at the left corner are paired
with the nc ones inserted at the right corner, and during the time evolution of the state,
these lines can propagate through the system or being contracted. Then we claim that
| si j〉L flows in the continuum limit to the following basis state:

| si j〉L
(FP)−→ αsij | si j〉 .

The limit to be taken is L→∞ with i, j, s fixed, and we keep only the finite part (noted as
(FP)) which is supposed to be described by the CFT, as will be discussed more precisely
below. This identification corroborates the interpretation of the boundary operators φj
and φi as inserting respectively j = nr +nc lines at the right corner and i = nl+nc lines
at the left corner. In the simplest case of no line insertion the boundary state is simply

| 0
0 0〉L := 1√

βL

∣∣ . . . 〉
(FP)−→ α0

00| 0
0 0〉 .

The precise sense in which these lattice boundary states are discretization of the
CFT ones is the following. Denote by |k〉L the k-th eigenvector (normalized according
to the loop scalar product) of the Hamiltonian of the loop model restricted to the sector
with s through lines. Due to the anomaly at the corners (see eq. (2.34)), scalar products
between a lattice rectangular boundary state |B〉L and |k〉L, are expected to scale as:

− log(L〈B|k〉L) = a0L+ a1 logL+ a2 +
a3

L
+
a4

L2
+O

(
1

L3

)
,

with
a1 = 2(hl + hr)−

c

8
,

hl, hr being the weights of BCC operators in the corners. The value of the CFT scalar
product 〈B|k〉 is then extracted from

a2 = γ − log(〈B|k〉) ,

γ determined normalizing 〈B|0〉 = 4hs−hi−hj , see eq. (2.13). In [26, 29] we reported the
details of the numerical computations for first few excited states |k〉, supporting the
above identification of lattice boundary states. Finally, we note that the state defined
in (2.37) is of course not the only microscopic state giving rise to | si j〉 in the continuum
limit. Any similar state obtained via local modifications (e. g. by allowing a finite number
of arches between the through lines etc. ) would obey the same property, albeit with
a different value of the coefficient αsij . Then these coefficients are then expected to be
non-universal and cannot be predicted by the CFT.
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Given a CFT rectangle boundary state |Bb
ac〉 =

∑
sC

abc
ijs

√
Cacass0 | si j〉, and the dis-

cretization of basis states introduced above in eq. (2.37), we can define the more general
lattice boundary state as combination of lattice basis states

|Bb
ac〉L =

∑
s

Dabc
ijs | si j〉L .

We expect then that |Bb
ac〉L

(FP)−→ |Bb
ac〉 if

Dabc
ijs := Cabcijs

√
Cacass0

1

αsij
. (2.38)

With these objects by construction one discretizes CFT rectangle partition functions.
Note indeed that |Bb

ac〉L are normalized in order to obtain in the continuum the CFT
states |Bb

ac〉, and the CFT partition functions (2.32), when taking overlaps. In partic-
ular they provide a way to impose conformal boundary conditions on the lattice, so to
discretize in generality correlators of BCC operators. Conformal boundary conditions
from loop models were discussed in particular in [158].

Using the lattice boundary state one can obtain more explicit results. We just men-
tion that as the crossing symmetry of correlation functions (or rectangular amplitudes)
is a powerful tool for constraining OPE structure constants in the continuum theory, also
lattice crossing symmetry allows to derive constraints for the coefficients D’s appearing
in eq. (2.38) and to compute ratios of the coefficients α’s from a lattice computation.
See figure 2.7 for an illustration of lattice crossing symmetry. The details can be found
in [29].

|Bi+1/2
i,i 〉L

|Bi±1/2
i,i 〉L

=

|B
i i±

1
/
2
,i

+
1
/
2
〉 L
′ |B

ii±
1
/
2
,i+

1
/
2 〉
L
′

Figure 2.7: Example of lattice crossing symmetry for the case of one-leg insertions at
the corners (boundary labels change by ±1/2) for a lattice of size L× L′.

Always referring to the CFT of loop models, we note that the BCC operator be-

tween two boundary conditions labeled by j, j′ is φj,j
′

|j−j′| (lowest eigenstates of the strip

Hamiltonian), and the fusion rules of these operators are:

φi,j|i−j| ⊗f φ
j,k
|j−k| =

∑
s∈I′

φi,ks .
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The allowed fusion channels, those for which the OPE coefficients are not zero, are I ′ =
({|i− k|, |i− k|+ 2, . . . , i+ k} ∩ {||i− j| − |j − k||, ||i− j| − |j − k||+ 2, . . . , |i− j|+ |j − k|}). This restric-
tion comes from the compatibility of the number of lines inserted by the fields in the
corners and that which is allowed by the boundary conditions. We depict in figure 2.8
the geometric interpretation of the two-point function of BCC operators as the contrac-
tion of |i−j| lines originating from the point in which the boundary condition is changed
from i to j and terminating at the point in which we change from j to i.

〈φi,j|i−j|(x1)φj,i|i−j|(x2)〉 i ij
x1 x2

|i− j|

Figure 2.8: Geometric interpretation of the two-point function of BCC operators.

2.3.2 Probabilistic interpretation

Given the geometrical interpretation of boundary states in terms of lines insertions
in the loop model, we can now push the discussion further and associate a geometric
picture in terms of loop configurations to conformal blocks building the correlator of
BCC operators. The amplitude Ai,j,k,ls (τ) = 〈i ls |q̂L0−c/24| sj k〉 is associated to

L〈i ls |TL
′ | sj k〉L

(FP)−→ αsjkα
s
ilAi,j,k,ls (τ) .

T is the transfer matrix of the loop model and | sj k〉L are the discretizations of the basis
states | sj k〉 discussed above. We depict in figure 2.9 two configurations contributing to

the lattice amplitude L〈1 1
1 |TL

′ | 1
1 1〉L, and one to the amplitude L〈1 1

2 |TL
′ | 2

1 1〉L, drawing
only lines inserted at the corners.

s = 1 :

i = 1

j = 1

l = 1

k = 1

,

i = 1

j = 1

l = 1

k = 1

s = 2 :

i = 1

j = 1

l = 1

k = 1

Figure 2.9: Configurations contributing to the lattice amplitudes L〈1 1
s |TL

′ | s1 1〉L for
s = 1, 2.
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We see that Ai,j,k,ls (τ) is then associated to the continuum limit of lattice amplitudes
where we insert 2i lines in the top left corner, 2l in the top right, 2j in the bottom left
and 2k in the bottom right. 2s of the lines at the bottom and at the top (the most
exterior ones) are forced to propagate. The other lines instead can or not be contracted.
Only if s = i+ l = j+k (s = 2 in the example of figure 2.9), the amplitude is associated
to configurations where all lines inserted at the corners are forced to propagate. For
example, the CFT partition function of figure 2.10 will be Z

(
0 ii i+j

)
∝ LwAi,i,j,ji+j .

i j

Figure 2.10: A schematic illustration of the partition function for a loop model where
we insert i lines in the bottom left corner and j in the bottom right one, and we impose
that s = i+ j lines propagate vertically.

The only term in the amplitude sensible to the changing of the number of through
lines (associated to different fusion sectors) is the conformal block. Then we are led to
the geometrical identification of conformal blocks which we schematically represent as

Fsil;jk(1− ζ)←→

where the diagram on the right has a fixed number s of through lines and the bubble
stays for the possibility of contracting or not the other lines inserted at the corner.

We recall that a partition function Z is given in general by a sum of amplitudes from
the relation (2.33), and its geometric interpretation follows from that of the amplitude.

We can easily obtain interesting results from the discussion above as follows. Let us
now specify to the case of one line insertion at every corner, i = j = k = l = 1/2, for
which explicit expressions of the amplitude has been given in section 2.2.2. The partition
function

Z
(

0
1/2
1/2 1

)
(τ) = N 1η−c/2(τ)θ16h

3 (τ)G1(1− ζ) ∝ LwA1(τ)

is unambiguously the (universal part of the) continuum limit of a loop model where the
two lines inserted at left and right bottom corners are constrained to propagate in the
vertical direction. Consequently

Z
(

1/2
0
1 1/2

)
(τ) = N 1Lwη−c/2(τ)θ16h

3 (τ)G1(ζ(τ)) ∝ (L′)wA1(−1/τ) ,

is then the partition function of a loop model with the two lines inserted at left bot-
tom and left top corners constrained to propagate in the horizontal direction. Then
one can interpret the conformal blocks Ga as in the top of figure 2.11. The geo-
metric interpretation of every other amplitude involving boundary states with φ1/2
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insertions at the corners will follow from the decomposition in terms of A1(τ) and
A1(−1/τ). For example for A0(τ), we can use the hypergeometric identity G0(1− ζ) =
1/F10G1(ζ) − F11/F10G1(1 − ζ) ∝ G1(ζ) + 1/βG1(1 − ζ), Fij F-matrices (1.50), see the
bottom of figure 2.11.

G1(1− ζ) G1(ζ)

G0(1− ζ) + 1
β

Figure 2.11: Geometric interpretation of the conformal blocks G1 and G0. Thick lines
represent the non-contractible lines created by the one-leg operators in the corners prop-
agating or not through the system (time is flowing upwards).

We have seen that the two elementary events which can happen when inserting a line
in each corner are described by G1(1 − ζ) and G1(ζ). Then, the probability of having
these two lines flowing vertically is:

P (τ) =

+

=
Z
(

0
1/2
1/2 1

)
(τ)

Z
(

0
1/2
1/2 1

)
(τ) + Z

(
1/2 0

1 1/2
)

(τ)
=

G1(1− ζ)

G1(1− ζ) + G1(ζ)
(2.39)

and horizontally it is 1 − P (τ). Note that whatever normalization drops out since it is
common to both partition functions.

We first consider the case of percolation, for which β = 1, corresponding to c = h = 0.
We have:

Pc=0,dense(ζ) =
(1− ζ)

1
3 2F1

(
1
3 ,

2
3 ; 4

3 ; 1− ζ
)

(1− ζ)
1
3 2F1

(
1
3 ,

2
3 ; 4

3 ; 1− ζ
)

+ ζ
1
3 2F1

(
1
3 ,

2
3 ; 4

3 ; ζ
)

=
Γ(2

3)

Γ(4
3)Γ(1

3)
(1− ζ)

1
3 2F1

(
1

3
,
2

3
;
4

3
; 1− ζ

)
=

Γ
(

2
3

)
Γ
(

1
3

)
Γ
(

4
3

)(1− ζ)
1
3

(
1− 1

6
(1− ζ) +

5

63
(1− ζ)2 +O

(
(1− ζ)3

))
.

This quantity is precisely the crossing probability computed by Cardy [45, 48], that
is, the probability that there is at least one Fortuin-Kasteleyn (FK) crossing cluster
spanning the rectangle in the vertical direction. We now comment on this relation.
Microscopically, the configurations of loops contributing to the numerator of our formula
are those where the two lines inserted at the corners propagate from bottom to top. In
terms of FK clusters (for the relation between loops and clusters see figure 1.1), this
corresponds to count cluster configurations with “wired” boundary conditions on top
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and bottom rows, and to the constraint that there is at least one spanning cluster
crossing the rectangle, see figure 2.12. Call such ensemble of cluster configurations Sw.

τ = 0

τ = L′

Figure 2.12: A configuration of loops (black) and the corresponding configuration of
Fortuin-Kasteleyn clusters (gray). The through lines inserted at the bottom corners
are forced to propagate to the top, and wired boundary conditions (all bonds open)
are imposed on the links of the bottom and top rows of the lattice where the Fortuin-
Kasteleyn clusters live. τ = 0 and τ = L′ are initial and final discrete imaginary times
of the transfer matrix evolution in the vertical direction.

Instead the configurations counted by Cardy’s formula, which we denote by S, are
simply those with at least one spanning cluster, without imposing wired boundary con-
ditions. We now show that

#(S) = 2L × 2L ×#(Sw) , (2.40)

where #(E) is the number of elements of the set E. First note that changing the status
(open or closed) of links in the bottom and top rows of the lattice where FK clusters live,
transforms a configuration s ∈ S into another s′ ∈ S. Then we can group the spanning
configurations S in classes whose elements differ only by the status of bottom and top
links, and for each class we choose the representative with all the bottom and top links
open. Since there are 2L×2L (first factor for the possible status of top links and second for
those of bottom links) elements in each class, eq. (2.40) follows. Now note that also the
set of all possible (not only spanning) cluster configurations can be divided in classes with
elements differing by the status of top and bottom links as before. Then, if we compute
the crossing probability by dividing the number of spanning configurations #(S) by the
number of all possible configurations, the multiplicative factor 2L×2L drops out, and the
equality of our formula with Cardy’s one is established. The above argument does not
work anymore when we have generic weight of clusters β, since spanning configurations
cannot be regrouped then due to the different powers of β weighting each configuration.
Crossing probabilities for generic fugacity β have been computed using SLE methods,
see [16].

We assume now that the geometric interpretation of boundary states goes through
also in the dilute case, then in particular (2.39) should also be valid, where now the value
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of h in (1.46) is h2,1. It is of interest to see then what is the behavior of probabilities
(2.39) at the logarithmic points discussed above, c = −2 dense and c = 0 dilute. The
outcome is that probabilities are well defined but their expansion shows logarithmic
terms. For a tall rectangle 1− ζ → 0 we have (K is the complete elliptic integral of the
first kind)

Pc=−2,dense(ζ) =
K(1− ζ)

K(1− ζ) +K(ζ)

=
π

π − log
(

1−ζ
16

) +
π(1− ζ)

2
(
π − log

(
1−ζ
16

))2 +O
(
(1− ζ)2

)
.

and (S2 is the hypergeometric function defined in (1.49))

Pc=0,dilute(ζ) =
S2(1− ζ)

S2(1− ζ) + S2(ζ)

=
15π

32
(1− ζ)2 +

15π

32
(1− ζ)3

+
75π

(
12 log

(
1−ζ
16

)
+ 12π − 1

)
4096

(1− ζ)4 +O
(
(1− ζ)5

)
.

We are not aware of a previous derivations of these probability formulas for for self
avoiding walks.

Note that since P (1 − ζ) = 1 − P (ζ), the same series plus the constant term holds
for a very long rectangle (ζ → 0) replacing 1 − ζ by ζ. We have already seen how
rectangular amplitudes contain the OPE structure constants, and now we see that for
logarithmic CFTs the indecomposability parameters [105] (contained in the F -matrices),
here b = 5/6 for dilute polymers, show up in geometric observables.

Note also that expressing the anharmonic ratio in terms of the modular parameter
q through eq. (2.28)

log(1− ζ) = log(16) + log(
√
q)− 8

√
q + . . .

integer powers of τ enter explicitly the expression of the probability. This feature is a
consequence of the Jordan form of the transfer matrix in these cases.

More generally one could replace the ill-behaved conformal blocks in the logarith-
mic cases by a combination of them which has probabilistic interpretation and which is
expected to be well defined even if the conformal blocks themselves are singular or de-
generate. Unfortunately writing down explicitly such a probabilistic basis in the space of
conformal blocks does not seem to be simple for higher number of line insertions. Indeed
we do not know how to associate precisely a conformal block to a given propagation of
lines (as discussed at the beginning of section 2.3.2), but more importantly, we do not
know how to fix the normalization.
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Chapter 3

Quantum network models and
classical geometrical models

This chapter is a review chapter where we relate the geometrical models and the con-
formal field theories introduced previously to the network models describing quantum
Hall transitions. Section 3.1 contains a description of the integer quantum Hall effect
and of the Chalker-Coddington model. After a pedagogical discussion of the bosonic
representation of quantum transport observables in the network model, we develop the
supersymmetry method for performing disorder average, and we establish the relations
to geometrical models of 2D statistical mechanics. The emphasis is put on symmetry
aspects of the various theories. Then we describe the general framework of symme-
try classes of disordered fermions, and introduce the spin quantum Hall effect, studied
in section 3.2. There we adapt the tools developed before to the spin quantum Hall
network model and derive the mapping of certain disorder averaged quantities to per-
colation. This mapping is used to infer several exact properties for the spin quantum
Hall transition, in particular we derive the exact conductance for the strip and cylinder
geometry using conformal field theory.

3.1 The Chalker-Coddington model

3.1.1 Integer quantum Hall effect

The experimental discovery

The classical Hall effect predicts that in the presence of a magnetic field, the passage
of a current induces a voltage perpendicular to the direction of the current flow (or
alternatively that current flows in a direction perpendicular to an applied electric field).
The experimental setup is as in figure 3.1. The Hall resistivity is then predicted to be
proportional to the intensity of the magnetic field.

Von Klitzing discovered in 1980 that at low temperature and high magnetic field, the
Hall resistance (equal in 2D to the resistivity) of a two-dimensional electron gas shows
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Figure 3.1: Setup for measurement of the Hall resistance. B is the magnetic field
perpendicular to the two-dimensional sample, I is the current and VH is the measured
Hall voltage. The Hall resistance is RH = VH/I.

very well defined plateaus at integer fractions ν of h/e2 [193], see figure 3.2:

RH =
1

ν

h

e2
. (3.1)

Equivalently, the Hall conductance σH = 1/RH is quantized. In the plateau region
the longitudinal conductance σxx = Rxx vanishes. This phenomenon is called the integer
quantum Hall effect (IQHE), and its discovery had such an impact that Von Klitzing
was awarded the Nobel prize in 1985. The quantization of the Hall conductance does
not depend much on the microscopic details of the sample and its accuracy is so high
that it is used as a standard method in metrology.

Phenomenological theory of the IQHE

From a theoretical perspective the IQHE is a very interesting problem. Here we will
discuss the basic explanation of the effect, on which several good reviews exist, such as
[63,96,119,162].

The starting point for a theoretical approach is the quantum mechanical Hamiltonian
for a single spinless electron in two dimensions in a perpendicular magnetic field

H0 =
1

2m

(
~p+ e ~A

)2
.

~A is the vector potential (chosen in the gauge A = B(0, x, 0)), m is the effective mass
containing the effect of lattice atoms and interactions, −e is electron charge. The system
is translational invariant along y, and the problem takes the form of a harmonic oscillator
(along x) whose solution is well known. The energy levels (Landau levels) are quantized

En =

(
n+

1

2

)
~ωc , n = 0, 1, . . .
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Figure 3.2: Experimental curves of Hall resistance RH = ρxy and longitudinal resistivity
ρxx as a function of the magnetic field at fixed carrier density. Increasing the magnetic
field the resistance departs from the classical linear behavior. Picture taken from [193].
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with ωc = eB/m called the cyclotron frequency. The spatial extension of Landau states
is governed by the magnetic length ` =

√
~/eB, and since En does not depend on k, the

momentum along y, they have huge degeneracy. The number of occupied Landau levels
is given by the filling fraction ν:

ν = 2π`2ρ =
ρ

B/φ0
,

with ρ the density of states, and φ0 the flux quantum. Integer values of ν correspond to
the Hall resistance of (3.1). However this does not explain the plateau, since changing
ρ we provide additional particles able to carry current continuously. The explanation of
the IQHE requires two more ingredients, disorder and edge states. Disorder is induced by
impurities in the sample and is modeled as a random potential V (~r) in the Hamiltonian:

H = H0 + V (~r) .

Its qualitative effect on the energy spectrum is to broaden Landau levels into bands as
in figure 3.3.

Extended

Localized

Figure 3.3: Broadening of Landau levels into bands (here plotted energy versus density
of states) as disorder is switched on. At the band center extended states exist, while in
the tails states are localized.

The band tails correspond to states whose wavefunctions are exponentially localized
to the extent of the localization length ξ:

|ψ2(~r)| ∼ exp (−|~r|/ξ) .

This is the phenomenon of Anderson localization. Exponentially decaying functions
cannot contribute to electrical transport, meaning that in particular for filling fractions
corresponding to the energy regions of localized states, the longitudinal conductance
vanishes. Near the band center however extended states appear, which spread across
the entire system and contribute to transport. At this point the localization length ξ
diverges and the system undergoes the plateau transition.

Clearly this picture still does not explain what are the states responsible of carrying
current contributing to the Hall conductance. The answer is given by the presence of a
boundary in the real sample, where there are edge states escaping Anderson localization.
In a clean system, the presence of a confining potential at a boundary modifies the
Landau levels [107] as in figure 3.4.

The Fermi energy intersects a given number of edge states N corresponding to the
bulk Landau level N . Edge states acquire longitudinal velocity [33]:

vnk =
1

~
dEnk

dk
=

1

~
dEnk
dx0

dx0

dk
,
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x

En

n = 0

n = 1

n = 2

xl xr

x0

EF

Figure 3.4: Energy levels En in a system with confining potential (walls at xl and xr).
x0 is the center of cyclotron motion. EF is the Fermi energy intersecting the number of
edge states contributing to transport.

whose sign depends on the slope of the energy as a function of the position x. We have
then chiral counter propagating edge states at the two boundaries which are responsible
of carrying the current. Note that at the band center x0 (x0 = −k`2 from the wave
functions of the harmonic oscillator) the electrons do not carry any current. When
disorder is considered, the final picture we have is that electrons in the bulk do not
contribute to transport (are localized), while at the boundaries chiral edge states occur,
see figure 3.5.

ν = 2

Figure 3.5: In an integer quantum Hall sample bulk states are localized due to disorder
(loops), while there are extended chiral edge states at the boundary contributing to
transport. The conductor is connected to reservoirs at the extremities.

Assuming that the width of the sample is big enough to have suppression of backscat-
tering (destructive interaction between the edge states at the two boundaries), one can
show [33] using the Landauer-Büttiker formalism for quantum transport, that the pres-
ence of ν edge states in a disordered conductor gives in the experimental setup (four-
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terminal measurement) the observed Hall resistance (3.1).
We concentrate now on the physics of the plateau transition and discuss first an

appealing semiclassical description of the quantum Hall effect based on a percolation
model.

The percolation model

We consider now the motion of an electron in a smooth random potential. We assume
that the magnetic field is very large so that the magnetic length is very small compared to
the scale over which the potential varies. This assumption corresponds to a semiclassical
limit where the wave functions live on contour lines of constant energy in the landscape
of the random potential, thick lines in figure 3.6. The motion is directed due to the
presence of the magnetic field. Low lying states will be along contours in “deep valleys”
(minus signs in figure 3.6), while high energy levels will encircle high “mountains top”
(plus signs in figure 3.6). At an intermediate energy, isopotential lines percolate, and
there will be extended states, corresponding to the plateau transition. It is useful to
think about the Fermi energy as the level of water poured in the random landscape [96].
If the system has boundaries, the confining potential will allow trajectories (edge states)
for electrons which connect the contacts.

Figure 3.6: Landscape of a disordered potential whose minima and maxima are denoted
by + and −. Thick lines are contour levels at given potential V0 and arrows stand for
the directed motion of electrons. Figure taken from [55].

Then we may argue that the plateau transition occurs at a critical energy Ec corre-
sponding to the classical percolation threshold. The localization length would coincide
with the correlation length in percolation, which implies [189]

ξ ∼ |E − Ec|−ν ,

with ν = 4/3. This picture although being useful as intuition, is wrong, since the critical
behavior observed by direct study of disordered Schrödinger equations has an exponent ν
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larger, of the order of ∼ 2.3, which agrees with the value determined experimentally (see
references in [63] for example). The above picture neglects quantum tunneling between
different isopotentials, occurring at circular regions in figure 3.6, corresponding to the
saddle points of the potential. Chalker and Coddington in [55] have shown that one
can obtain a larger exponent, of the order of the expected one, if one includes in the
percolation picture quantum tunneling1. This model is an example of network model
whose properties will be discussed in details in the next sections.

3.1.2 Quantum transport in the network model

The Chalker-Coddington (CC) model [55] is a lattice model proposed to describe the
universality class of the IQH transition. As discussed above, under the assumptions
of slowly varying potential on the scale of the magnetic length, the motion of guiding
centers of electrons is confined to isopotential lines. This motion is unidirectional due to
the presence of a magnetic field, breaking time reversal invariance. At a saddle point of
the disordered potential, wave functions can tunnel. This quantum dynamics is encoded
in a scattering matrix S, relating incoming waves to outgoing ones. There are two
possibilities according to the chiralities of links, that we label as vertices of type A or
B, see figure 3.7. Call ψ(e) the wavefunction amplitude on link e of the lattice, so that
Ss, s = A,B, is defined by:(

ψ(e′1)
ψ(e′2)

)
= Ss

(
ψ(e1)
ψ(e2)

)
=

(
α β
γ δ

)(
ψ(e1)
ψ(e2)

)
. (3.2)

e1

e2e′1

e′2
A

e′2

e′1e2

e1

B

Figure 3.7: Vertices corresponding to saddle points. A and B are the two sublattices.

Since we want to model a disordered potential, we choose to take the scattering
matrices as random U(2) matrices. Ss ∈ U(2) admits the polar decomposition:

Ss =

(
eiϕ1 0

0 eiϕ2

)(√
1− t2s ts
−ts

√
1− t2s

)(
eiϕ3 0

0 eiϕ4 .

)
(3.3)

which we interpret as assigning random phases ϕi’s to links rather than to nodes, while
t parametrizes an orthogonal matrix, describing tunneling at the node. Note that taking
all transitions amplitudes to be positive would violate unitarity.

1The value of ν determined numerically with the network model heavily suffers from finite size
corrections. However the most recent estimate of this exponent at the moment of writing, is [155]
ν = 2.62± 0.06. This value is actually larger than the one observed experimentally, questioning the va-
lidity of the Chalker and Coddington model (and more generally of a single particle model) as a theory
for the IQH transition, but we will not discuss this issue here.
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Describing the situation of figure 3.6 would require to study a topologically disordered
network. Instead, following [55] we suppose that randomness in link phases alone is
sufficient, and we study only a directed square network, like that of figure 3.8, where
“+” and “−” correspond to valleys and hills of the disordered potential. We choose to

+ +

+ +

− − −

Figure 3.8: The square directed network of the Chalker-Coddington model. Vertices are
the saddle points of the disordered potential, dividing maxima (+) and minima (−).

take the parameters ts in (3.3) to depend only on the type of sublattice A,B, and not on
the node under consideration. t2A (t2B) is the probability for the scatterers to turn right
(left) at node A (B). The isotropic point is t2A + t2B = 1. We remark that the lattice is
the same as the medial lattice of the classical Potts model of section 1.1.

The wave function of the network at given time t is the collection of link wave
functions ψt(e), and we consider the discrete time evolution given by the scattering
matrices S. Calling the unitary evolution operator U , the dynamics is

ψt+1(e′) = U(e′, e)ψt(e) .

U is an |E| × |E| sparse matrix (|E| being the number of links in the lattice) whose
building blocks are given by (3.3).

While the phases of (3.3) are taken to be random, the parameter t is not. To
understand why, it is useful to consider the geometry of a strip, and take the two extreme
limits tA = 1, tB = 0, or tA = 0, tB = 1, see figure 3.9. In the first case left turns are
suppressed and only closed loops corresponding to localized states are present, and the
system is in an insulating phase, with zero conductance. In the second case right turns
are suppressed, and while in the bulk of the system there are closed loops corresponding
to localized states, at the boundaries there are chiral edge states escaping localization,
and the system is in the ν = 1 quantum Hall state, with non-zero Hall conductance.
We see that t plays the role of filling fraction ν in the IQHE, and we expect the plateau
transition to occur at the symmetric value tA = tB = 1/

√
2 (at the isotropic point),

where probabilities for turning left or right at a node are equal.
We define the Green function for propagation from link e to e′ in the network as2:

G(e, e′; z) = 〈e| (1− zU)−1 |e′〉 (3.4)

2In the case of continuous time, one has the usual definition using the resolvent (E ± i0 −H)−1, ±
corresponding to advanced and retarded Green functions.
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A

B

Insulator tc = 1√
2

A

B

QH state ν = 1

Figure 3.9: Extreme limits of the Chalker-Coddington model. Left, tA = 1, tB = 0, the
system is insulating phase, right tA = 0, tB = 1 the system is in a quantum Hall phase.
The plateau transition occurs at tA = tB = 1/

√
2.

where |e〉 are states corresponding to the wavefunctions ψ(e). ε = −i log(z), |z| < 1, plays
the role of quasi-energies (related to the eigenphases of the evolution operator). Retarded
and advanced Green functions are defined by GR,A(e, e′; eiε) = G(e, e′; eiε±i0). An im-
portant quantity for studying the transition is the diffusion propagator [78] Π(e, e′;ω) =
〈GR(e, e′; ei(ε+ω/2))GA(e, e′; ei(ε−ω/2))〉, whose behavior is power law in the delocalized
regime and exponentially decaying in the localized phase. We can define in a stan-
dard way the local density of states as the discontinuity of the Green function across
|z = eiε| = 1:

ρ(e, ε) =
1

2π

(
GR(e, e; eiε)−GA(e, e; eiε)

)
. (3.5)

The evolution operator U is defined for a closed network where each link starts and
ends at a node. We discuss now transport properties of the open system. Cutting an
oriented link of the network produces two halves, one going into the network i and the
other out o. Current can be injected in i and drained in o. We define now the point
contact conductance (PCC) [120]. Cut two links of a closed network in disjoint parts
i1, o1 and i2, o2, see figure 3.10.

i1 o1

o2 i2

Figure 3.10: Open links where current can be injected (i1, i2) and drained (o1, o2).
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The amplitudes at these links are related by a scattering matrix:(
ψ(o1)
ψ(o′2)

)
=

(
r1,1 t1,2
t2,1 r2,2

)(
ψ(i1)
ψ(i2)

)
,

consisting of transmission tab and reflection coefficients rab. The Landauer formula states
then that the dimensionless PCC from the in-link b to the out-link a, is given by the
transmission probability

g = |tab|2 . (3.6)

The transmission amplitude can be written in terms of U if we impose boundary con-
ditions on the evolution operator U|o1〉 = U|o2〉 = U†|i1〉 = U†|i2〉 = 0, as tab =
〈oa| (1− U)−1 U|ib〉. Assuming that the two point contacts are separated by more than
one lattice unit, 〈oa|U|ib〉 = 0, then

tab = 〈oa| (1− U)−1 |ib〉 . (3.7)

More generally we will be interested in considering a set of incoming edges Cin = {ib},
to form one contact and another set of outgoing edges Cout = {oa} to form the other
contact. The transmission matrix between these contacts is a rectangular matrix with
entries tab of eq. (3.7). The conductance will be given by the multi-channel Landauer
formula:

g =
∑

a∈Cout

∑
b∈Cin

|tab|2 = Tr tt† . (3.8)

Typically we will consider a two-terminal probe where contacts are put on the bottom
and top of a strip (or cylinder).

3.1.3 Bosonic representation of observables

The Green function introduced in (3.4) has a natural Feynman expansion (for |z| < 1)
in terms of directed paths γ(e, e′):

G(e, e′, z) = 〈e| (1− zU)−1 |e′〉 =
∑
γ(e,e′)

· · · zUejsj · · · (3.9)

γ(e, e′) is an ordered collection of neighboring links starting at e and ending at e′. A given
link can be visited an arbitrary number of times, and can coincide with the starting or
ending point. Each link ej visited contributes to the weight of the path by the random

phase Uej = eiϕej , the fugacity z, and the matrix element sj =
√

1− t2 or sj = ±t
according to the the right or left turn at next step.

This interpretation of quantum mechanical amplitudes as classical paths (albeit with
in general complex Boltzmann weights), allows us to write the interesting observables in
the network model, a quantum mechanical system in 2+1D, as a 2D statistical mechanics
problem. In this way the solution of the network model can be investigated using tools
of statistical mechanics like those developed in chapters 1 and 2. The discussion of the
consequences of this remark will occupy the majority of the rest of the thesis.
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Path integrals and transfer matrices

A path integral representation of the sum over Feynman paths contributing to the Green
function is readily obtained using Gaussian integral representations of matrix elements
of the resolvent (1 − zU)−1. Introduce complex variables x(e) for each link e of the
lattice. Then

G(ei, eo, z) =
1

Z

∫
dµ(x)x(ei)x

∗(eo) exp
(
zx∗(e′)U(e′, e)x(e)

)
, (3.10)

with the Gaussian measure

dµ(x) =
∏
e∈E

d<x(e)d=x(e)

π
e−x

∗(e)x(e) ,

and partition function:

Z = (Det(1− zU))−1 =

∫
dµ(x) exp

(
zx∗(e′)U(e′, e)x(e)

)
.

This is the bosonic representation of G. Consider now the vertex of figure 3.11, where
we spelled out the S-matrix elements of eq. (3.2).

e1

e2e′1

e′2

α

β

δ

γ

Figure 3.11: A vertex together with S-matrix elements α, β, γ, δ.

The corresponding evolution operator in the path integral formulation for this vertex
is (we set z = 1 for convenience):

exp
(
βx∗(e′1)x(e2) + αx∗(e′1)x(e1) + δx∗(e′2)x(e2) + γx∗(e′2)x(e1)

)
. (3.11)

We want to derive the transfer matrix in terms of bosonic oscillators bi, b
†
i , b̄j , b̄

†
j satisfying

canonical commutation relations (bi, b̄j are associated to different sites, so commute),
for which this is the expression in coherent state basis, see section 1.1.2. We then make
the change of variables

x(e2)↔ x∗(e2) , x∗(e′2)↔ x(e′2) ,

in the path integral, such that (3.11) becomes

exp
(
βx∗(e′1)x∗(e2) + αx∗(e′1)x(e1) + δx∗(e2)x(e′2) + γx(e′2)x(e1)

)
.
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Then the transfer matrix for this node is3:

T01 = eβb
†b̄†αb

†bδb̄
†b̄eγbb̄ ,

Expanding the exponential, this expression has a geometrical interpretation associating
to occupation numbers of bosons, bits of Feynman paths [103]. 0 and 1 stand for labels
of sites (adjacent links on the same row of the lattice). T01 acts on the tensor product
of Fock spaces living at sites 0 and 1, spanned by b†mb̄†n|0〉, |0〉 being the vacuum. In
the coherent states picture the single Fock space corresponds to the polynomial algebra
C[x], and the action of b, b† is given by x, ∂.

The diagonal-to-diagonal transfer matrix T for the evolution in one step of time along
the vertical direction of the lattice can be constructed analogously to that for the Potts
model, described in section 1.1.1 by concatenating transfer matrices acting on adjacent
links. This time however T acts on the product of Fock spaces for every site in a row. In
the derivation of the path integral (3.10) we supposed a network with periodic boundary
conditions in the vertical (discrete imaginary time) direction, of length say L′. That
expression can be written using T as [103] :

G(ei, eo) =
Tr Tτ bri(τi)b

†
ro(τo)T

L′

TrTL′
, (3.12)

where the coordinates of the links are ei = (ri, τi), eo = (ro, τo), and Tτ ensures time
ordering.

Observables more complicated than a single Green function require the introduction
of more species of bosons (replicas). For example, for representing the PCC of eq. (3.6),
we introduce two types of bosons, retarded b+ and advanced b−, so that

g = 〈o| (1− U)−1 |i〉〈i|
(

1− U†
)−1
|o〉

=
1

|Z|2

∫
dµ(x+, x−)x+(eo)x

∗
+(ei)x−(ei)x

∗
−(eo)

× exp
(
x∗+(e′)U(e′, e)x+(e) + x∗−(e)U∗(e′, e)x−(e′)

)
.

Correspondingly, we introduce bosons of opposite U(1) charges b+, b− and the two-sites
transfer matrix associated to the computation of the conductance is

T01 = eβb
†
+b̄
†
++β∗b†−b̄

†
−αb

†
+b+(α∗)b

†
−b−δb̄

†
+b̄+(δ∗)b̄

†
−b̄−eγb+b̄++γ∗b−b̄− . (3.13)

Note that the Fock space on site 0 is

F = span{b†n+ b
†m
− |0〉,m, n ∈ Z≥0} ,

and on site 1
F̄ = span{b̄†n+ b̄

†m
− |0〉,m, n ∈ Z≥0} .

3Note that evaluating αb
†b and δb̄

† b̄ in coherent states basis produces the terms eαx
∗(e′1)x(e1) and

eδx
∗(e2)x(e′2) coming from the norm of the coherent states.
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They correspond in coherent state basis to the polynomial algebra C[x+, x−] and C[x̄+, x̄−].
We now discuss the symmetry of the transfer operator (3.13) following [102, 103].

Define the pseudounitary group U(1, 1) as the group of matrices g satisfying

g† = σzg
−1σz , (3.14)

with the metric σz = diag(1,−1) in advanced-retarded space. The Lie algebra u(1, 1)
consists of matrices

Y =

(
A B
C D

)
(3.15)

satisfying (from the parametrization g = eiY ) Y † = σzY σz, so that A = A∗, D =
D∗, C = −B∗. The generators Eab of u(1, 1) satisfy the commutation relations

[Eab, Ecd] = −δbcEad + δadEbc ,

where the presence of the minus sign distinguishes these from those of u(2). u(1, 1) is
represented on Fock space F by Eab 7→ Jab:

J =

(
b+b
†
+ − 1

2 b+b−
−b†+b

†
− −b†−b− − 1

2

)
,

and on F̄ by

J̄ =

(
−b̄†+b̄+ − 1

2 −b̄†+b̄
†
−

b̄+b̄− b̄−b̄
†
− − 1

2

)
.

It is a straightforward computation now to show that the transfer matrix T01 of eq. (3.13)
has global u(1, 1) symmetry:

[J + J̄ , T01] = 0 .

This result holds only if the parameters α, β, γ, δ are the matrix elements of a unitary S-
matrix [102,103], and establishes the global u(1, 1) invariance of the diagonal-to-diagonal
transfer matrix T .

Random matrix limit and Howe duality

We now give more symmetry considerations by focusing on the simplest case of a net-
work consisting of a single node with a directed edge traversing it, closing to a loop.
Some remarks presented in this section appeared in [32, 205]. Call the amplitude for
propagation through this node α, which is constrained by unitarity to |α|2 = 1. First
we note that in this setup the equivalence between path integral and transfer matrix
formulation is transparent. For example, Z is

Z =
1

1− α
=

∫
d2xe−x

∗(1−α)x = TrF α
b†b =

∑
n≥0

αn ,

where − log(α) plays the role of chemical potential. Now we consider a more general
situation where we have n species of advanced and retarded bosons ba+, b

a
−, with the

102



(flavor) index a = 1, . . . , n. We also allow to have N channels in the network, like in
figure 3.12. The scattering amplitude at this node is given by U ∈ U(N). This is the
random matrix limit since the whole amplitude is given by a single unitary random
matrix, although for the moment no integration over the realization of U is implied. We

write U = exp
(∑N

k,l=1X
klEkl

)
, where Ekl are the generators of the Lie algebra u(N),

and introduce another (color) index for bosons ba,k+ , ba,k− , k = 1, . . . , N .

N

U

Figure 3.12: The single node network with N channels.

We consider the partition function given by:

|Z|2n = |Det (1− U) |−2n = TrF exp

 n∑
a=1

N∑
k,l=1

Xkl
(
bk,a†+ bl,a+ − b

l,a†
− bk,a−

) .

F is the Fock space spanned by monomials of the bosons, and corresponds to the sym-
metric algebra

F = S
(
CN ⊗ C2n

)
=
∞⊕
d=0

Sd
(
CN ⊗ C2n

)
,

with Sd(V ) means the quotient of V ⊗d to the symmetric power. Now we note that there
are two algebras (and corresponding Lie groups by exponentiation) acting on F . The
first is u(N) whose action is given by

X 7→
n∑
a=1

N∑
k,l=1

Xkl
(
bk,a†+ bl,a+ − b

l,a†
− bk,a−

)
.

The other action is that of u(n, n), defined by replacing σz in the definitions of u(1, 1),
eq. (3.14), with σz ⊗ 1n. Denoting Y ∈ u(n, n) as in (3.15), with now A,B,C,D n × n
blocks, the representation on Fock space is

Y 7→
N∑
k=1

n∑
a,b=1

(
Aabbk,a+ bk,b†+ +Babbk,a+ bk,b− − Cabb

k,a†
+ bk,b†− −Dabbk,a†− bk,b−

)
.

Note that generators for one group are obtained by tracing the bosons on the degrees of
freedom of the other group. The natural commuting action of u(N) and u(n, n) on CN ⊗
C2n (they act on different indices) induces a commuting action on Fock space. Further
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this property is maximal, the algebra of u(N)-invariants in the space of transformations of
the Fock space (the Weyl algebra) is generated by u(n, n) and vice-versa. (u(N), u(n, n))
is a dual pair in the sense of R. Howe [110] (see also the review [57], in particular in the
context of Lie superalgebras). As a consequence, one can use the general theory to study
the algebraic aspects of the computation of partition functions we are after. The main
consequence of the centralizing property is that the Fock space admits a multiplicity free
decomposition into irreducible representations as a (u(N), u(n, n))-bimodule:

F =
⊕
λ

Vλ ⊗ Ṽλ . (3.16)

Vλ is an irreducible representation of u(N) and Ṽλ is the corresponding irreducible of
u(n, n). This result follows from Schur-Weyl duality on each summand Sd of F [57]:

Sd
(
CN ⊗ C2n

)
=

⊕
λ`d

`(λ)≤min(N,2n)

Vλ ⊗ Ṽλ ,

where λ ` d means partition of d, and `(λ) is the number of parts (rows of the associated
Young diagram). The modules in (3.16) are infinite dimensional.

Let us now restrict to the case of interest for the CC model, N = 1. Representations

of U(1) are labeled by the value of the integer charge
∑n

a=1

(
ba†+ b

a
+ − b

a†
− b

a
−

)
(this is the

generator of the algebra). In particular we will be interested below in U(1) singlets,
representations where the charge vanishes. The Howe duality construction give access
to the corresponding u(n, n) representation (or its supersymmetric generalizations).

3.1.4 Supersymmetry method

The observables in the network models are random variables. To compare the theoretical
predictions with experiments, one is interested not in the value of an observable for a
given realization of disorder, but rather in its statistics, like its mean value and its
moments. Denote the disorder average by overlines, which in the CC model amounts to
integrating over the uniform measure of U(1) link phases, and let us consider first the
mean value of a single Green function G(e, e′; z). Clearly the problem is the presence of
the denominator in our expression (3.10). To get rid of it two tricks are mainly used,
replicas and supersymmetry. If we think about the graphical expansion of G in terms
of Feynman paths, the role of the denominator is divide out loops which do not connect
the points e, e′. Giving a weight zero to these loops is precisely what replicas (involving
an a priori ill-defined zero limit of the number of replicas) and supersymmetry do. We
will consider supersymmetry only here. The supersymmetry method for performing
the disorder average was introduced and popularized by Efetov [75]. In the context of
network models it was discussed among others in [103] and [50,206].

Let us introduce Grassmann variables η(e), η∗(e) for each link e of the network, so
that the inverse of the partition function Z−1 appearing in (3.10) can be written as:

Z−1 = (Det(1− zU)) =

∫
dµ(η) exp

(
zη∗(e′)U(e′, e)η(e)

)
,
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where
dµ(η) =

∏
e∈E

dη∗(e)dη(e)e−η
∗(e)η(e) .

If we define the supervector φ ∈ C1|1

φ =

(
x
η

)
,

then the supersymmetric representation of the Green function is:

G(ei, eo, z) =

∫
dµ(φ)φ1(ei)φ

∗1(eo) exp
(
zφ∗p(e′)Ue′,eφp(e)

)
. (3.17)

Recalling the form of the evolution operator for the CC model, we can define the non-
random (real) evolution operator Ũ by

U(e′, e) = Ũe′,eeiϕ(e) .

Integrating over the phases ϕ(e), one readily finds that:

G(ei, eo, z) = δio .

The local density of states eq. (3.5) is trivial for the CC model. Let us compute now
the mean value of the conductance ḡ. Introducing retarded and advanced supervectors
φ+, φ−, g can be written as:

g =

∫
dµ(φ+, φ−)φ1

+(o)φ∗1+ (i)φ1
−(i)φ∗1− (o)

× exp
(
Ũe′,e

(
eiϕ(e)φ∗p+ (e′)φp+(e) + e−iϕ(e)φ∗q− (e)φq−(e′)

))
.

As in section 1.1.2, we define the grade of the superindex p by |p| = 0 if bosonic or
|p| = 1 if fermionic. It is convenient to perform the change of variables φp− → (−1)|p|φ∗p− ,
φ∗p− → φp−, so that:

g =

∫
dµ(φ+, φ−)φ1

+(o)φ∗1+ (i)φ∗1− (i)φ1
−(o)

× exp
(
Ũe′,e

(
eiϕ(e)φ∗p+ (e′)φp+(e) + e−iϕ(e)φ∗q− (e′)φq−(e)

))
.

Let us now integrate over a single phase ϕ(e). Define

φ̂σ(e) := Ũ(e′, e)φ∗pσ (e′) ,

then the result of integration can be written compactly as

Ω =

∫ 2π

0

dϕ

2π
exp

(
eiϕφ̂p+φ

p
+ + e−iϕφ̂q−φ

q
−

)
=
∑
m≥0

1

(m!)2

(
φ̂p+φ

p
+φ̂

q
−φ

q
−

)m
. (3.18)
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This imposes that the number of advanced and retarded particles on a given link must
be equal, and is the interaction produced by disorder averaging.

Let us discuss how this result is expressed in terms of the transfer matrix associated
to this coherent state path integral. We introduce fermions fσ, f̄σ, σ = ±. As already
discussed for the Potts model if section 1.1.2 we choose that f satisfies canonical an-
ticommutation relations, and f̄σ the modified ones {f̄ , f̄ †} = −1. This is necessary to
ensure cancellation of closed loops not contributing to the conductance. Recall also the
compact notation for superoscillators

apσ =

{
bpσ if |p| = 0

fp−2
σ if |p| = 1

; āpσ =

{
b̄pσ if |p| = 0

f̄p−2
σ if |p| = 1

.

The transfer matrix in the supersymmetric theory associated to the coherent state path
integral representing conductances is (see eq. (3.13))

T01 = eβa
p†
+ āp†+ +β∗aq†− ā

q†
− αa

p†
+ ap+(α∗)a

q†
− a

q
−δ(−)|p|āp†+ āp+(δ∗)(−)|q|āq†− ā

q
−eγā

p
+a

p
++γ∗āq−a

q
− .

In the representation of observables using the supersymmetric transfer matrices, the
trace of eq. (3.12) is replaced by the supertrace Str(·) = Tr((−1)F ·), appropriate to
weight zero spurious loops, as discussed in section 1.1.2. The extra minus for δ and δ∗ is
due to the fact that the number of f̄σ fermions is −f̄σfσ. This transfer matrix acts in the
tensor product of bosonic and fermionic Fock spaces. For example on site 0 the space of
states is spanned by (b†+)n(b†−)m(f †+)i(f †−)j |0〉, m,n ∈ Z≥0, i, j ∈ {0, 1}, and corresponds
to the supersymmetric algebra

F = S(C1 ⊗ C2|2) = S(C2)⊗
∧

(C2) ,

with
∧

(C2) the antisymmetric algebra corresponding in coherent states picture to the
Grassmann algebra of polynomials in η, η∗. All the statements done above in the bosonic
case generalize quite easily to the supersymmetric setting. The transfer matrix T has
global invariance under the Lie superalgebra u(1, 1|2) for any realization of the disorder
4 [102,103]. The disorder average projects the Fock space onto the subspace with equal

4The supergroup U(1, 1|2) is defined by replacing σz in eq. (3.14) by Λ = diag(1, 1,−1, 1) in advanced-
retarded base. The algebra u(1, 1|2) acts on Fock space by the following representation of generators in
terms of oscillators:

J =


b+b
†
+ − 1

2
b+f

†
+ b+b− b+f−

f+b
†
+ f+f

†
+ − 1

2
f+b− f+f−

−b†−b
†
+ −b†−f

†
+ −b†−b− − 1

2
−b†−f−

f†−b
†
+ f†−f

†
+ f†−b− f†−f− − 1

2



J̄ =


−b̄†+b̄+ − 1

2
−b̄†+f̄+ −b̄†+b̄

†
− −b̄†+f̄

†
−

−f̄†+b̄+ −f̄†+f̄+ − 1
2

−f̄†+b̄
†
− −f̄†+f̄

†
−

b̄−b̄+ b̄−f̄+ b̄−b̄
†
− − 1

2
b̄−f̄

†
−

−f̄−b̄+ −f̄−f̄+ −b̄−b̄†− −f̄−f̄†− − 1
2

 .

u(1, 1|2) is a non-compact real form of gl(2|2), and representations of u(1, 1|2) are also representations
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number of advanced and retarded particles (recall that due to commutation relations,
for f̄ fermions, −f̄ †f̄ is the number of particles):

b†+b+ + f †+f+ = b†−b− + f †−f−

b̄†+b̄+ − f̄
†
+f̄+ = b̄†−b̄− − f̄

†
−f̄− .

The representations left after disorder average have been discussed in few papers [102,
103,203]. The space left on site 0 is the irreducible representation V given by the linear
span of all the states satisfying the above constraint. The fact that the representation
is irreducible is also guaranteed by the supersymmetric version of Howe duality [57]. Its
highest weight λ is given by the eigenvalues of Cartan generators Jaa, a = 1, . . . , 4 on
the vacuum, which is the highest weight vector. This yields λ = 1

2(1, 1,−1,−1). The
space on on site 1 is the dual space V ∗ with highest weight λ̄ = −λ. The space of states
of the transfer matrix for a system of width 2L, will then be (V ⊗ V ∗)⊗L. Calling the
projector onto this subspace P, then the transfer matrix used to compute the disorder
averaged conductance is

T = PTP .

Expanding the transfer matrix T as ts → 0 (keeping tA/tB = ε fixed), allows to
derive the quantum spin chain describing the anisotropic limit [102,168,203]:

H = −ε
∑
i∈IA

Str JiJ̄i+1 − ε−1
∑
i∈I−B

Str J̄iJi+1 , (3.19)

where J and J̄ are the generators of u(1, 1|2) acting on V and V̄ respectively, and IA,
I−B are defined as in section 1.1.1, IA = {0, 2, . . . , 2L − 2}, I−B = {1, 3, . . . , 2L − 3}.
Setting ε = 1 we reach the critical point of the CC model. This chain has the form of
the Heisenberg chain (1.11), given by the quadratic Casimir of the algebra and which
we have already encountered in the study of the Potts model. However in that case the
space of states was the alternation of the fundamental and dual representations. In the
present case we are dealing with infinite dimensional irreducible representations, and
this makes the study of the problem very difficult even to approach. In section 3.1.5 we
will discuss a geometrical formulation of the problem and the idea of truncation of the
space to a finite dimensional one, as possible strategies to attack the study of this spin
chain. Before that we will discuss the field theory associated to the spin chain describing
the conductance.

Sigma models

The relation between sigma models and antiferromagnetic spin chains was discussed in
section 1.1.4. We apply now that procedure to derive the field theory describing the

of gl(2|2). The generators of gl(2|2) (see e. g. section 1.1.2) can be obtained from those of u(1, 1|2) by
performing a canonical transformation to new bosons c∗ = −b−, c = b†−, c̄∗ = −b+, c̄ = b†+, after which
however c∗ and c̄∗ are no more the adjoint of c and c̄. See also the discussion in [207].
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conductance in the CC model starting from the the super-spin chain whose Hamiltonian
is (3.19). In this case the sigma model field Q belongs to the symmetric superspace
U(1, 1|2)/U(1|1) × U(1|1). Indeed U(1, 1|2) is the symmetry group of that spin chain,
and U(1|1) × U(1|1) is the isotropy group of the highest weight, the vacuum, since
it corresponds to transforming the advanced and retarded sectors independently. The
bosonic base of this target space is H2 × S2, where H2 ' U(1, 1)/U(1) × U(1) is the
(non-compact) hyperboloid and S2 ' U(2)/U(1) × U(1) is the (compact) sphere. The
presence of a non-compact part is a new feature with respect to the case of CPM+N−1|N

models discussed in 1.1.4. Topological properties are determined by the compact sector
only, and the field theory admits a θ-term. The Lagrangian of the sigma model (which
can be derived in a semiclassical limit of large representation weight, as in 1.1.4) will
then be of the same type of (1.34):

S =
1

16g2
σ

∫
d2z Str ∂µQ∂µQ−

θ

16π

∫
d2z εµν StrQ∂µQ∂νQ . (3.20)

Here the field Q is a matrix parametrizing the coset U(1, 1|2)/U(1|1)×U(1|1):

Q = g

(
12 0
0 −12

)
g−1 ,

g ∈ U(1, 1|2), on which U(1, 1|2) acts globally by Q 7→ hQh−1. The variables Za (sat-
isfying Z†Z = 1) used in the definition of the action (1.34) of the CPM+N−1|N models
can be expressed in terms of a matrix field Q as

Qab = 2Z∗aZb − δab ,

to obtain an expression for (1.34) identical to (3.20)—though with different target spaces.
Other formulations in terms of more natural coordinates on the target space, and many
more insights can be found in [203].

The field theory (3.20), or rather its replica formulation where Q ∈ U(2n)/U(n) ×
U(n) with n = 0, was proposed by Pruisken [163] some years before the CC model
was invented, and the supersymmetric version we have reproduced here appeared first
in [196]. The idea of [163] was to identify the sigma model coupling with the bare
longitudinal conductivity and the topological angle with the bare Hall conductivity:

g2
σ =

1

2σxx
, θ = 2πσxy . (3.21)

Note that the θ-term breaks parity and is then consistent with the presence of a magnetic
field in the microscopic theory. Then a renormalization group flow qualitatively similar
to that of the O(3) sigma model of figure 1.11 was proposed [163], where non-trivial
critical points at σxy = Z + 1

2 correspond to the plateau transitions. This picture is
usually accepted to be the correct one.
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3.1.5 Geometrical models

We have seen that for the study of spin chains related to to the Potts model, a good
understanding of the geometrical formulation of these models in terms of loops was
crucial. In this section we want to discuss more precisely what are the geometrical
models associated to the the above supersymmetric formulation of conductance in the
CC model.

We derive the graphical interpretation from the coherent state path integrals us-
ing the supersymmetric Wick’s theorem, which is a direct generalization of its bosonic
counterpart. Consider for example the simple integral

I2 =

∫
dµ(φ)(φ∗pφp)2 ,

where we allow now φ ∈ CN+M |N , and dµ(φ) is the notation for Gaussian measure. A
direct computation gives I2 = M2 +M . Graphically this is obtained by considering two
diagrams, one where the lines connect planarly to form two loops plus another where
they are permuted, they cross and give only a single loop, see figure 3.13. Since loops
weight M , then we get the expected result. Clearly it coincides with a M bosonic replica
formulation where φ ∈ CM , as one should have expected.

Figure 3.13: The two diagrams contributing to the integral I2. The diagram on the left
weights M2, that on the right M .

As a starting point we describe the geometrical model for computing the Green
function in a clean version of the CC model, where the random phases are set to zero5

in (3.17). Consider a vertex in coherent state basis. Naming edges as in figure 3.11, and
expanding the exponential it is:

T =
∑

m,n,k,l

zm+n

(
φ∗p(e′1)φp(e1)

√
1− t2

)k
k!

(φ∗p(e′2)φp(e1)(−t))m−k

(m− k)!

×

(
φ∗p(e′1)φp(e2)

√
1− t2

)l
l!

(φ∗p(e′2)φp(e2)t)n−l

(n− l)!
.

The vertices of the associated loop model are clear. First, φp(e)φq(e′)δpq corresponds to
a path connecting e, e′. Second, integration over fields imposes the constraint that the

5Note that this restricts phases to be real, changing the symmetry class of the model (class D in
notation of section 3.1.6). This problem is described in the continuum by a Dirac fermion (equivalent
to two uncoupled Ising models) with central charge c = 1 plus a β − γ ghost system (c = −1) for the
bosonic part. See [139].
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number of lines, say i, leaving the vertex on the edge e = (v, v′), should be the same
as that of lines entering the vertex v′ and further, these i lines are joined in i! ways.
For each choice of m,n, k, l we have m! × n! vertices with the same local weight, and
all vertices of the model are obtained by varying m,n, k, l. The geometrical model is
obtained by joining all these vertices in all possible ways. See figure 3.14 for an example
of a vertex. The weights of vertices are not positive since they correspond to quantum
mechanical amplitudes, and the resulting geometrical model is not unitary. The Green
function G(e, e; z) will then be given by all the closed loops passing through the edge
e weighted by zl, l being the number of monomers of the loop. Any other loop formed
which does not contain e weights zero.

m

n

lk

(1−t2)
k+l
2 (−t)m−ktn−l

k!(m−k)!l!(n−l)!

Figure 3.14: A vertex of the loop model associated to single Green function in the clean
(no random phases) CC model. Here m = 3, n = 2, k = 1, l = 1.

We now move to the geometrical model associated to the mean conductance in the
CC model. Before disorder averaging, the geometrical model is exactly two copies (cor-
responding to retarded and advanced paths) of that described above for a single Green
function (though different boundary conditions are concerned). Let us now consider
what we obtain after disorder averaging. We have seen in the previous section that av-
eraging constrains the number of advanced particles (bosons plus fermions) to be equal
to that of retarded particles. Explicitly, the vertex of the resulting model is:

T =
∑
m,n≥0

∑
i+k=j+l

(
φ∗p+ (e′1)φp+(e1)

√
1− t2

)i
i!

(
φ∗p+ (e′2)φp+(e1)(−t)

)m−i
(m− i)!

×

(
φ∗q− (e′1)φq−(e1)

√
1− t2

)j
j!

(
φ∗q− (e′2)φq−(e1)(−t)

)m−j
(m− j)!

×
(
φ∗r+ (e′1)φr+(e2)t

)k
k!

(
φ∗r+ (e′2)φr+(e2)

√
1− t2

)n−k
(n− k)!

×
(
φ∗r− (e′1)φr−(e2)t

)l
l!

(
φ∗r− (e′2)φr−(e2)

√
1− t2

)n−l
(n− l)!
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Clearly if i + k 6= j + l the Gaussian integration gives zero, since on outgoing links the
number of advanced paths is different from that of retarded ones, so we have restricted
the sum above. On link e1 and e2 there are respectively m and n bits of advanced and
retarded paths. A vertex of this geometrical model is illustrated in figure 3.15. As above
every closed loop formed weights zero.

m m

n n

l

k
i j

(1−t2)
i+j
2 (−t)2m−i−j(1−t2)

2n−k−l
2 tk+l

i!(m−i)!j!(m−j)!k!(n−k)!l!(n−l)!

Figure 3.15: A vertex of the geometrical model for computing mean conductance in the
CC model. Red and blue paths correspond to advanced and retarded ones.

Again the weight of a vertex can be negative and the model is not unitary. An
interesting remark has been made recently in [23], where the authors are able to partly
resum these paths and obtain a geometrical formulation in terms of “pictures” with
positive definite Boltzmann weights.

Truncations

The main practical problem in studying the vertex models above is clearly the presence
of an infinite number of possible interactions at the vertex. Indeed usual methods of
statistical mechanics, like those discussed in chapter 1 for the Potts model, work for
models with a finite number of degrees of freedom. Recently it was proposed then to
truncate the space of states to obtain a finite (dilute, two-colors) loop model which
can be solved [111]. This is reminiscent of what done for the O(n) spin model on the
hexagonal lattice [152]: the spin model defined by the action JSi · Sj with Si ∈ Sn−1,
the (n− 1)-dimensional sphere, can be mapped to a geometrical model where edges can
be visited an arbitrary number of times, but the substitution JSi · Sj → log(JSi · Sj)
lead to a finite loop model preserving the O(n) symmetry of the original spin model.

To illustrate the truncation for the CC model, we first introduce for each link e
fugacities zn(e) for the presence of n monomers. The N -th truncation [111] is then
defined by setting zn(e) = 0 if n > N . The original model had zn(e) = 1 for every
n. This corresponds to restricting the sum over states in the path integral formulation,
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eq. (3.18) to

ΩN =
N∑
m=0

zm
(m!)2

(
φ̂p+φ

p
+φ̂

q
−φ

q
−

)m
.

The couplings zm(e) are now free parameters. This procedure has clearly an equivalent
within the formulation in terms of transfer matrices. There it corresponds to quotient
the space of states V, V ∗ by relations (b†)N+1|0〉 = 0. In this form, but considering
a slightly different model than the CC one, the truncations were considered earlier in
[132,140].

In [111] the first truncation N = 1 was considered. The parameter z = z1(e) plays
the same role as the monomer fugacity in the O(n) model and we expect that at a critical
value the length of loops becomes infinite[111]. The first truncation however does not
describe the physics of the original model. Indeed the divergence of the correlation
length has been determined numerically to be governed by an exponent ν ' 1.1, more
than two times smaller than the one of the untruncated CC model.

The hope is that studying the truncations leads to understand the full untruncated
theory. We note that studying numerically higher truncations than the first requires
however big computational resources. Numerical studies of the geometrical model of
pictures defined in [23] could be more efficient.

3.1.6 Symmetry classes

Disordered non-interacting electronic systems fit into a classification scheme referred
to as the Altland-Zirnbauer classification [11, 204]. In this perspective the IQHE is a
possible type of universal behavior in a particular symmetry class. The classification
applies in any dimension, and is a classification of random matrices. It describes the
space of possible Hamiltonians for a quantum mechanical system respecting a given
symmetry. Very good reviews exist on this topic [78,208,209]. We mention also that this
classification has recently found applications in the homotopy classification of topological
insulators and superconductors [128, 179]. Here we will only state the results and the
main ideas, which we use to put network models in this general scheme.

The outcome of the classification is that there exists (in the sense explained below)
only ten classes6, which are in correspondence with classical compact symmetric spaces.
This statement has been proved rigorously in [109]. Before proceeding we recall that
symmetric spaces of compact type are constructed in the following way. Let U be a
connected compact Lie group (U = SO(N),Sp(N),SU(N)) and τ an involutive (τ2 = 1)
automorphism of U . Let K ⊂ U be the subgroup of τ -fixed points τ(k) = k. Then the
coset space U/K is a compact symmetric space. Denoting u and k the Lie algebras of
U and K, then u decomposes into positive and negative eigenspaces of the linearized
involution dτ : u = k⊕ p. p is the tangent space to U/K which does not have a structure

6By considering the Dirac structure of the Hamiltonian a refinement can be done to obtain 13 classes
[20].
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of Lie algebra in general. Non compact symmetric spaces U∗/K are constructed from the
Lie algebra u∗ = k⊕ ip. Note also that compact Lie groups K themselves are symmetric
spaces by choosing U = K ×K and τ(k, k′) = (k′, k).

The first column in table 3.1 corresponds to the name given by Cartan to the symmet-
ric space to which the evolution operator eitH belongs. We distinguish three subclasses:
Wigner-Dyson (WD), chiral and superconductor (BdG, Bogoliubov De Gennes) classes.
The last column refers to the target space of the low energy effective supersymmetric
field theory describing products of retarded and advanced Green functions. This space
also depends only on symmetries and is fixed by the space to which the microscopic
Hamiltonian belongs. The precise definition requires the notion of Riemannian symmet-
ric superspaces developed by Zirnbauer in [204].

H-class eitH NLσM

A U(N) GL(n|n)/GL(n−|n−)×GL(n+|n+)
AI U(N)/O(N) Osp(2n|2n)/Osp(2n−|2n−)×Osp(2n+|2n+)
AII U(2N)/Sp(2N) Osp(2n|2n)/Osp(2n−|2n−)×Osp(2n+|2n+)

AIII U(p+ q)/U(p)×U(q) GL(n|n)
BDI O(p+ q)/O(p)×O(q) GL(2n|2n)/Osp(2n|2n)
CII Sp(p+ q)/Sp(p)×Sp(q) GL(2n|2n)/Osp(2n|2n)

C Sp(2N) Osp(2n|2n)/GL(n|n)
CI Sp(2N)/U(N) Osp(2n|2n)
D SO(2N) Osp(2n|2n)/GL(n|n)

DIII SO(2N)/U(N) Osp(2n|2n)

Table 3.1: The ten classes. First column H-class is the Cartan label corresponding to the
compact symmetric space type to which the evolution operator exp(iH) belongs. N, p, q
are related to size of the Hilbert space. The column NLσM contains the target space of
the super sigma model description of corresponding localization problems. n+, n− and
n = n+ + n− are related to the number of retarded and advanced particles needed to
represent products of Green functions. The first three are WD, next three chiral, last
four BdG classes.

We discuss now WD classes with some details of the main ideas and then present
only the results for the other classes. In his threefold way [74] Dyson reverses the usual
reasoning in quantum mechanics of starting from a Hamiltonian and then discussing
the symmetries, and instead assumes the knowledge of the (finite-dimensional) Hilbert
space V of a quantum system and of the group G of symmetries. V will be reducible
in general and the goal is to enumerate the possible Hamiltonians occurring in each
irreducible block which commute with G. In general G = G0 ∪ TG0, where G0 is the
group of unitary symmetries and T is antiunitary: T (zψ) = z̄Tψ for z ∈ C, ψ ∈ V , and
〈Tψ1, Tψ2〉 = 〈ψ1, ψ2〉. We choose the antiunitary symmetry to be time reversal, and
in that case T 2 = ±1. Instead of Hamiltonians, one focuses for convenience on time

113



evolution operators U , such that

U = g0Ug
−1
0 = g1U

−1g−1
1 ,

for g0 ∈ G0 and g1 ∈ TG0. The idea behind Dyson’s classification is a familiar tool
when discussing symmetries, the Schur duality, used to transfer information from the
symmetries to the Hamiltonians (see the discussion in section 1.1.3). The Hilbert space
is supposed to have the following decomposition under the reductive action of the unitary
symmetries G0:

V =
⊕
λ

Vλ =
⊕
λ

Cmλ ⊗Rλ . (3.22)

Rλ are irreducible representations of G0 (e. g. spaces of given spin for SU(2) representa-
tions) and Cmλ are multiplicity spaces. Note now that the space of evolution operators
we are looking for is precisely defined as the centralizer Z of G0 in U(V ). The double
commutant theorem discussed in section 1.1.3 then applies, and Cmλ are recognized as
representation spaces of evolution operators, so that Z is the direct product of unitary
groups:

Z '
∏
λ

U(mλ) .

Focus sing on a single summand of the decomposition (3.22), we have found that the
evolution operator of a system in presence of only unitary symmetries, are unitary ma-
trices (and the corresponding Hamiltonians are Hermitian). This is class A. The IQHE
provides a realization of this class, the breaking of time reversal symmetry being caused
by the magnetic field.

Suppose now that time reversal symmetry is present. If T acting on a summand Vλ
of (3.22) produces another Vλ′ , λ

′ 6= λ, no further constraints arise and one is back to
class A. Consider now λ′ = λ and focus on Vλ, and denote U = U(mλ). The set of
evolutions we are looking for is

M = {u ∈ U|u = τ(u)−1} ,

where τ is the involutive automorphism given by τ(u) = TuT−1. Call K the set of τ -
fixed points k = τ(k). An element of M can be written as u = kτ(k)−1, and M is given
by the symmetric space U/K. The precise reasoning for finding K is a bit intricate
[208, 209]. The idea is that the condition k = τ(k) can be written as the invariance
under K of a bilinear form associated to T . If T 2 = 1 the bilinear form is symmetric and
K = O(N), if T 2 = −1 the form is skew symmetric and K = Sp(N) (N even). Then we
get two more possibilities in the WD classification scheme, classes AI and AII of table
3.1. AI class arises typically in systems with time reversal and spin conservation, while
AII is obtained by breaking spin symmetry, for example by strong spin orbit scatterers7.

7From fundamental principles of quantum mechanics an electron has spin 1/2, so global time reversal
(the product of time reversal acting on Cm, denoted by T in the text, and that acting on Rλ), if present,
squares to −1. The action of time reversal in the representation space Rλ of SU(2) also squares to −1
[209], and this implies that the sign of T 2, acting on Cm, must be +1.
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We now follow [11] and ask the classification question for superconducting systems
described at mean field level by the Hamiltonian:

H =

N∑
α,β=1

hα,βc
†
αcβ +

1

2

N∑
α,β=1

(
∆α,βc

†
αc
†
β −∆∗α,βcαcβ

)
.

c†, c are fermionic creation and annihilation operators satisfying canonical anticommu-
tation relations, and indices refer to position and spin degrees of freedom. New classes
arise by asking the classification questions in this setting because of the extra structure
given by the fermionic Fock space ∧(V ) [209]. These new constraints are built in the
particle-hole form of the Hamiltonian H = (c†, c)H(c, c†)T , with the BdG-Hamiltonian
H given by:

H =

(
h ∆
−∆∗ −hT

)
,

where Hermiticity (H† = H) implies h = h†,∆T = −∆. This structure corresponds to
the relation

H = −τxHT τx ,

with τx = σx ⊗ 1N . This condition is defining (in an appropriate basis, that of Majo-

rana fermions cα + c†α, i(cα − c†α)) the so(2N) algebra (class D), which is the space of
Hamiltonians of a superconductor without any symmetry, G = Id.

Consider now a BdG Hamiltonian with spin rotation invariance G = SU(2). The
Hamiltonian reads

H =

N∑
ij

hij ∑
a=↑,↓

c†iacja + ∆ijc
†
i↑c
†
j↓ + ∆∗ijcj↓ci↑

 . (3.23)

Hermiticity requires h = h† and spin rotation invariance ∆T = ∆. These conditions give
the symmetry property (τy = σy ⊗ 1N ):

H = −τyHT τy , (3.24)

which characterize the Lie algebra sp(2N) (class C). We will discuss d-wave supercon-
ductors belonging to class C and exhibiting the spin quantum Hall effect in section 3.2.
When time reversal is present two more classes corresponding to the following symmetric
spaces are found: DIII: SO(2N)/U(N) and CI: Sp(2N)/U(N).

A last set of symmetry classes is given by Hamiltonians with a chiral form:

H =

(
0 h
h† 0

)
.

These Hamiltonians satisfy τzHτz = −H, τz = σz ⊗ 1N , a condition which singles out
the symmetric space U(p + q)/U(p) × U(q) (in the case of h being a p × q matrix)
for the corresponding evolution operator. A typical realization of chiral symmetry in
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mesoscopic physics is the block structure of random fermions hopping on a bipartite
lattice [90, 91]. In analogy with WD classes, time reversal symmetry singles out an
orthogonal O(p + q)/O(p) × O(q) (class BDI) and symplectic Sp(p + q)/Sp(p) × Sp(q)
(class CII) structure.

Each of the ten classes can be realized by a network model by trading the U(1) phases
of the CC model for matrices belonging to the appropriate symmetric space [135]. In
the next section we will see a realization of class C.

3.2 The spin quantum Hall transition

3.2.1 Physics of the spin quantum Hall effect

The spin quantum Hall effect (SQHE) is the quantization of the spin Hall conductance,
analogously to the charge conductance quantization in the IQHE. For spin transport, the
role of the electric field is played by an external Zeeman magnetic field, and the spin Hall
conductance σsxy is defined as the response to the spatial variation of the field. Suppose
the Zeeman field Bz(y) to be directed along z and to depend only on the coordinate y.
Denoting the z component of the spin current along the x direction jzx, σsxy is defined
by:

jzx = σsxy

(
−dBz(y)

dy

)
.

The SQHE may occur in singlet superconductors described by the Hamiltonian H of
eq. (3.23). For a superconductor particle number is not a conserved quantity and there
is not transport of charge. However since the gap function ∆ij is symmetric, H commutes
with the generators of global spin rotations

~S =
1

2

∑
i

∑
a,b=↑,↓

c†ia~σabcib ,

and spin is conserved. If ∆ is complex, time reversal is broken8 and σsxy can have non-zero
value. Recall from section 3.1.6 that SU(2) invariance and no time reversal symmetry,
defines class C. Note that relation (3.24) implies that eigenvalues of H occurs in pairs
(ε,−ε).

Consider now a d + id superconductor, for which the gap function ∆ has Fourier
transform

∆k = ∆0 cos(2θk)− i∆xy sin(2θk) ,

with tan(θk) = ky/kx. This form allows for the SQHE, and computing spin transport
shows that [183]:

σsxy = 2 sgn(∆xy) .

8Time reversal symmetry for spinful fermions is defined by

Tc↑T
−1 = c↓ , T c↓T

−1 = −c↑
Tc†↑T

−1 = c†↓ , T c†↓T
−1 = −c†↑ .
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We see that in the time reversal invariant case ∆xy = 0, the system is in a (spin)
insulating phase. For ∆xy 6= 0, a value σsxy = ±2 defines a spin quantum Hall phase,
topologically distinct from the insulating phase [192]. Analogously to the IQH case,
on a system with boundary, transport is carried by chiral edge states which come in
couples (up and down spin). These edge states are robust to weak disorder (hence it is
the quantization of spin Hall conductance), but for strong enough disorder the system
undergoes an Anderson transition from localized to quantum Hall phase [183], see figure
3.16.

∆xy

D

Spin insulator
σsxy = 0

SQH
σsxy = 2

SQH
σsxy = −2

Figure 3.16: Schematic phase diagram as a function of ∆xy and disorder D [183]. SQH
refers to the spin quantum Hall phase.

The nature of this phase transition will be investigated in the rest of this chapter
using the network model description, and in chapter 4 we will discuss boundary critical
phenomena at the SQH transitions and their relation to topological properties and edge
states.

Before presenting the network model, we point out that despite a great theoretical
understanding of the SQH transition, no experimental realization exists up to date,
though there are some proposals in the literature [183].

3.2.2 The network model

The network and symmetries

To study the plateau transition in the SQHE, we introduce a network model which
generalizes the CC model for the IQHE [122]. We associate the links of the network
to internal edge states separating puddles of spin quantum Hall fluid, so that each link
will now carry a doublet of complex fluxes. Specifically we consider the same network
as that of the CC model, figure 3.8, and the wavefunction now will be given by ψ(e)σ,
σ =↑, ↓ corresponding to spin degrees of freedom.

Symmetry properties of class C (3.24) require the evolution operator U = eiH of the
network to satisfy:

U = τyU∗τy , (3.25)

so that U ∈ Sp(2N), where N is the number of links. As in the CC case, U has a
block structure connecting only wavefunctions on adjacent links and we denote again
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the two types of vertices s = A,B. Random U(1) phases of the CC model are replaced
by Sp(2) = SU(2) random matrices mixing up and down particles on links. The node
scattering matrix S̃s is chosen diagonal in spin index S̃s = S̃s↑ ⊕ S̃s↓, with

S̃sσ =

(√
1− t2sσ tsσ
−tsσ

√
1− t2sσ

)
.

The system is isotropic when t2Aσ + t2Bσ = 1, and tAσ = tBσ = 1/
√

2 is the critical point
at which the SQH transition occurs. Repeating the argument of section 3.1.2 about
the extreme limit values of tsσ’s we see that on a strip the SQH phase is characterized
correctly by two chiral counter-propagating edge states, responsible for a value of the
spin Hall conductance σsxy = 2. Note that taking ts↑ 6= ts↓ breaks SU(2) symmetry and
splits the transition into two IQH transitions.

An important difference between the SQH and the IQH transitions is given by the
behavior of the density of states ρ(ε), eq. (3.5). As discussed above in class C it has the
property ρ(ε) = ρ(−ε), and as ε ∼ 0, the value at which the SQH occurs, it is critical:

ρ(ε) ∼ εα ,

as will be derived below.
The Green functions G(e, e′; z) = 〈e|(1− zU)−1|e′〉 are SU(2) matrices (we omit the

spin index in the notation |e〉), which thanks to the symmetry (3.25) are related by

G†(e, e′; z) = 12δee′ −G(e′, e; (z∗)−1) .

At the transition ε = 0 (corresponding to z real, recall z = ei(ε±i0)), the above relation
is between retarded and advanced Green functions.

PCC of an open system will be given in terms of the transmission matrix t (3.7)
by the multi-channel Landauer formula, g = Tr tt†, where the trace is over spin degrees
of freedom. We remark that t (or G) being a linear combination of products of SU(2)
matrices can be written in the form t = λt̃, with λ ∈ R and t̃ ∈ SU(2). This follows from
the representation

U = cos(α) + i(~σ · ~n) sin(α) , (3.26)

for any U ∈ SU(2). Then Det(t) = λ2 and tt† = λ21, so the PCC is [18]

g = 2 Det(t) (3.27)

This equation is another way of rephrasing the SU(2) symmetry relating advanced and
retarded Green functions.

Supersymmetry method for the SQH network

The supersymmetry method discussed in section 3.1.4 for the CC model can be adapted
straightforwardly to the case we are after in this section. The following discussion is
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based on [50,101]. We consider a single Green function first. For each lattice link e and
σ =↑, ↓ we introduce the supervectors φσ(e), φ∗σ(e) ∈ C1|1:

φσ(e) =

(
xσ
ησ

)
,

and φ∗ is defined similarly by conjugating the complex variables x and introducing
fermions η∗σ. Denote the ensemble average in the supersymmetric lattice field theory as:

〈•〉 =

∫
dµ(φ) • exp

(
zφ∗pγ (e′)Uγδ(e′, e)φpδ(e)

)
,

with dµ(φ) Gaussian measure over all bosons and fermions and as needed, 〈1〉 = 1. The
supersymmetric representation of the Green function then is:

Gαβ(ei, eo, z) = 〈xα(ei)x
∗
β(eo)〉 = 〈ηα(ei)η

∗
β(eo)〉 .

Representing the PCC conductance does not need the introduction of replicas, thanks
to eq. (3.27). Noting that 〈x(o)x∗(i)〉〈η(o)η∗(i)〉 = 〈x(o)x∗(i)η(o)η∗(i)〉, we have:

g = 2 Det(t) = 2〈 1√
2

(x↑(o)η↓(o)− x↓(o)η↑(o)) 1√
2

(
x∗↑(i)η

∗
↓(i)− x∗↓(i)η∗↑(i)

)
〉 . (3.28)

Clearly the ensemble average above is understood for an open system with appropriate
boundary conditions for U and where we set z = 1.

This formalism can be rewritten in terms of transfer matrices acting on a Fock space
spanned by bosonic and fermionic oscillators for up and down particles. The transfer
matrix associated to the evolution operator is easy to guess having done the exercise for
the CC model in section 3.1.4. Keeping notation of that section, the two sites transfer
matrix acting at a vertex of type A (a act on site 0, ā on site 1), is [101]:

T01 =
∏
σ=↑,↓

etAσa
p†
σ ā

p†
σ
(
1− t2Aσ

) 1
2

(
ap†σ a

p
σ+(−)|p|āp†σ ā

p
σ

)
e−tAσ ā

p
σa
p
σ . (3.29)

This transfer matrix commutes with combinations of bosonic and fermionic operators
which are SU(2) singlets, in analogy with the case of the CC model, for which the
(global) symmetry was given by U(1) singlets. These operators are the generators of an
osp(2|2) = sl(2|1) Lie superalgebra [101] (see appendix of [186] for details). We remark
that sl(2|1) and SU(2) (or rather osp(2|2) and Sp(2)) form an Howe pair [57], but we
will not discuss here more of these representation theoretic aspects.

3.2.3 Exact solutions

Disorder average

We now proceed to the computation of disorder averaged quantities. There are several
articles discussing from different point of view this computation [18, 50, 101, 143]. Here
we follow [50], but with some modifications (we use in particular half of the fields used
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there). Disorder averaging (noted as overlines) is defined as the integration over the Haar
measure of SU(2) on every link. Parametrizing U ∈ SU(2) as in (3.26), the integration
is ∫

SU(2)
dU =

2

π

∫ π

0
dα sin2(α)

∫
d~n ,

~n being a unit vector, and the moments of U are very simple:

Uk = ck1 , ck =


1 if k = 0

−1
2 if k = ±2

0 otherwise.

This result has very remarkable consequences for the solution of the SQH network model.
Indeed, considering the sum over Feynman paths associated to the Green function (3.9),
we see that paths visiting a node a number of times different from 0 or 2 will not
contribute. This has to be compared with the case of the IQH transition, where also
after disorder average, an infinite number of paths contribute to the (products of two)
Green functions.

We will now translate this remark in the supersymmetric formalism. Define the non-
random (real) evolution operator Ũ acting as identity in spin indices by factoring out
the random SU(2) matrix on link e:

Uαβ(e′, e) = Ũ(e′, e)(Ue)αβ .

Then define
φ̂pσ(e) := zφ∗pσ (e′)Ũ(e′, e) .

For example, for a link e1 entering a vertex of type A, with labeling of of figure 3.7, it

would be φ̂pσ(e1) = −ztAφ∗pσ (e′1) + z
√

1− t2Aφ
∗p
σ (e′2), where we set ts = ts↑ = ts↓ as will

be assumed from now on. Then the integration on a single link will be:

Ω =

∫
SU(2)

dU exp
(
φ̂pαUαβφ

p
β

)
.

A general integral of this type can be written as a modified Bessel function of the first
kind Iν(z):

Ω =
1

2π2

∫ π

0
dα sin2 α

∫ π

0
dθ sin θ

∫ 2π

0
dφ

× exp
[
B0 cosα+ i sinα

(
sin θ sinφB1 + sin θ cosφB2 + cos θB3

)]
=

2√
BµBνΛµ,ν

I1

(√
BµBνΛµ,ν

)
=
∑
k≥0

(
BµBνΛµ,ν

4

)k 1

k!(k + 1)!
,
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where Λµ,ν is the matrix diag(+,−,−,−). In our case (σµ = (1, ~σ))

Bµ = zφ̂pασ
µ
α,βφ

p
β ,

so that

BµBνΛµν = z2φ̂pαφ
p
βφ̂

q
γφ

q
δ

(
σµαβσ

ν
γδΛµν

)
= 2z2φ̂pαφ

p
βφ̂

q
γφ

q
δ(δαβδγδ − δαδδβγ) .

The terms with β = δ or α = γ gives zero, meaning that only SU(2) singlets contribute9.
Since bosonic SU(2) singlets vanish, x↑x↓ − x↓x↑ = 0, disorder average gives only three
terms:

Ω = 1 + z2 [η̂↓η̂↑] [η↑η↓] + z2
[

1√
2

(x̂↑η̂↓ − x̂↓η̂↑)
] [

1√
2
(x↑η↓ − x↓η↑)

]
. (3.30)

Integration over the SU(2) invariant Haar measure projects the Fock space F = S(C2⊗
C1|1) onto the irreducible three-dimensional singlet representation. Note that the super-
symmetric structure is spoiled, and this suggests introducing new supervectors Ψ,Ψ∗ ∈
C2|1 corresponding to the only particles which can propagate:

Ψ =
(

1, η↑η↓,
1√
2
(x↑η↓ − x↓η↑)

)
Ψ∗ =

(
1, η∗↓η

∗
↑,

1√
2
(x∗↑η

∗
↓ − x∗↓η∗↑)

)
.

We now consider the interaction vertex of type A in the notation of figure 3.7, which
is given by Ω(e1)Ω(e2), where Ω(e) is defined in (3.30). Expanding the product and
expressing the result in terms of Ψ,Ψ∗ (dropping terms which are not singlets and whose
integral is zero), we get

Ω(e1)Ω(e2) = (1− t2A)Ψ∗p(e′1)Ψp(e1)Ψq(e2)Ψ∗q(e′2) + t2AΨ∗p(e′1)Ψp(e2)Ψq(e1)Ψ∗q(e′2) .

After redefinition Ψ∗(e′2) ↔ Ψ(e′2), Ψ(e2) ↔ Ψ∗(e2), we find the interaction vertices
(1.24) of the coherent state representation of the percolation model with identification:

pA = t2A , pB = 1− t2B .

This result can actually be understood more straightforwardly using the transfer matrix
formulation, as done in the original paper [101]. Indeed, after disorder average, the
SU(2) singlets on up links

|0〉 , 1√
2

(b†↑f
†
↓ − b

†
↓f
†
↑)|0〉 , f †↑f

†
↓ |0〉 ,

constitute the fundamental representation V of sl(2|1). On down links,

|0〉 , 1√
2

(b̄†↑f̄
†
↓ − b̄

†
↓f̄
†
↑)|0〉 , −f̄ †↑ f̄

†
↓ |0〉 ,

9Note that more generally for a group G, integrating over the G-invariant Haar measure will project
the integrand over G singlets.

121



constitute the dual fundamental V ?. The transfer matrix on neighboring sites, eq.(3.29)
will now act on the tensor product V ⊗V ?, which decomposes as (one-dimensional) singlet
plus (eight-dimensional) adjoint representation [99]. Then the most general coupling will
be given by the projector onto the singlet (since projector onto singlet and adjoint sum to
identity), and the correct weights are readily found, leaving us with the supersymmetric
vertex model of percolation, which was discussed in section 1.1.2.

Mapping to percolation and results

We have seen in the previous section that the disorder averaged paths contributing to
Green functions and conductance are percolation loops (also called hulls). This allows
for the exact computation of several quantities at the SQH transition.

Loops of classical percolation correspond to localized states, and the length of these
loops diverges at the critical point pc = 1/2. The correlation length diverges as ξ ∼
|p−pc|−4/3, and we find that the exponent of the quantum localization length is ν = 4/3.
While the percolation model for the IQHE discussed in 3.1.1 does not provide the right
exponent, percolation turns out to exactly describe localized states in the SQHE.

In the following discussion we will focus on the computation of a single Green function
and the conductance. We mention however that the mapping to percolation allows also
to derive some multifractal exponents governing scaling of moments of wavefunctions at
Anderson transitions [143,186].

Let us consider first the single Green function. Since single bosons or fermions cannot
propagate alone, G(eo, ei; z) will be zero unless eo = ei. In this case, one can insert at
no cost a pair of fermionic fields η↓(e)η

∗
↓(e) in the correlator 〈η(e)↑η

∗
↑(e)〉, where now 〈•〉

denotes ensemble average in the disorder averaged model. Then G(e, e; z) is given by a
correlation function of (ηη) fields running along a single loop, which is weighted as z2L,
L being the length of the loop. This shows that [18,101]

TrG(e, e; z) =

{
2−

∑
L>0 P (L, e)z2L if |z| < 1∑

L>0 P (L, e)z−2L if |z| > 1
.

P (L, e) is the probability that the edge e belongs to a loop of length L. Note that
the energy is the conjugate variable to the length of loops. The local density of states
defined as the discontinuity of the Green functions (3.5) (which now are traced over spin
indices), can be written in terms of percolation probabilities as [18,101]:

ρ(e, ε) =
1

2π

(
1−

∑
L>0

P (L, e) cos(2Lε)

)
. (3.31)

If we consider the point e in the bulk of the system, then the length of a loop is related
to its size ξ by L ∼ ξdf , with df the fractal dimension, which for percolation is given
by the dimension of the two-leg bulk operator hb = 1/4 as df = 2 − hb = 7/4 [178].
This implies using standard scaling arguments P (e, L) ∼ Lhb/(2−hb) = L−8/7, and the
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following behavior of the bulk LDOS10:

ρb(e, ε) ∼ |ε|1/7 .

If the point e is located at the boundary, which is a natural case when the strip geometry
is considered, then P (e, L) ∼ L−1−hs/df (L ∼ ξdf holds also if loops touch the bound-
ary since we consider an ordinary surface transition, driven by the divergence of bulk
correlation length). Using the dimension of the boundary two-leg exponent hs = 1/3,
P (e, L) = L−25/21, giving the boundary LDOS scaling [186]:

ρs(e, ε) ∼ |ε|4/21 .

We now consider the PCC conductance. From the mapping to percolation, we find
that after disorder average (3.28) is given by twice the probability P (i, o) that a perco-
lation hull connects the incoming link i to the outgoing one, o:

ḡ = 2P (i, o) .

If more generally a set of incoming edges Cin = {ib}, and another Cout = {oa} of outgoing
ones, is considered, Landauer formula (3.8) gives

ḡ = 2
∑

a∈Cout

∑
b∈Cin

P (ib, oa) ,

which, after regrouping of configurations in the sum, is the mean number of lines connect-
ing incoming to outgoing links. The probability P (i, o) coincides with the probability
that the two points lie on the same loop since the segment joining i to o comes always
paired with another going back from o to i. Then P (i, o) is given by the two point
function of two-leg operators. If the two point are in the bulk at a distance r, ḡ ∼ r−1/2,
while if the points are on the boundary (of the upper half plane) ḡ ∼ r−2/3.

We remark that not every observable in the SQHE can be computed using perco-
lation. Indeed percolation describes the averaged paths contributing to the product of
up to three Green functions only [143]. All higher powers of Green functions require
to introduce bosonic and fermionic replicas, and to deal with a theory with an infinite
number of degrees of freedom on each link, sharing similar difficulties with the model
for the IQHE.

Conductance of a strip

Now we consider the more realistic case of a two terminal probe, when the SQH network
has the geometry of a strip of width 2L and length 2LT , and contacts are connected to
the bottom and the top of the strip. We recall that in this situation all configurations
of the loop model fall into disjoint sectors labeled by the number of through lines 2k.

10The absolute value comes from the fact that eigenenergies (ε,−ε) occur in pairs in class C, as
discussed above.
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The lowest energy state in each sector corresponds in the CFT to the boundary 2k-leg
(primary) field of dimension h1,1+2k, see section 1.2.4.

We put the source of current at the bottom and the drain at the top (an equal result
would be obtained by switching drain and source) and consider the mean conductance
given by the average number of through lines going from the source to the drain of the
current, times 2 for spin:

ḡ = 2
∑∞

k=1
kP (k, LT /L,LT /ξ) . (3.32)

P (k, LT /L,LT /ξ) is the probability that exactly 2k paired through lines (k connecting
source to drain) run through the system, and ξ is the bulk correlation length. At the
transition, ξ = ∞, and for large LT /L we expect that P (k, LT /L, 0) ∼ e−πh1,1+2kLT /L

from conformal invariance. For LT /L � 1 the sum in eq. (3.32) for ḡ is dominated
by k = 1, and the first subleading correction is controlled by the two-leg exponent
h1,3 = 1/3.

One can do more than that, and compute the exact conductance (3.32), as shown
by Cardy in [47, 48]. The idea behind this computation is simple and thanks to our
discussion of rectangular partition functions, the computation is immediate. Consider
now the loop model with generic fugacity of loops β. Denote the ensemble averaging
over loop configurations as 〈•〉, and the number of loops touching the bottom boundary,
the top, both or none as Nb, Nt, Nc, No respectively, see figure 3.17.

z2 z3

z4z1

c

b

t

o

o

Figure 3.17: Loops touching the boundary on the bottom (b), top (t), both (c) and none
of the two (o).

Then the conductance will be given by 2〈Nc〉, which can be written as:

〈Nc〉 = lim
β→1

∂

∂β
〈βNc〉

This would require the knowledge of the partition function for a rectangle where we
count loops touching both boundaries β and all the other as 1. It should be possible
to obtain this result using boundary loop models, but we do not have developed the
formalism of rectangular amplitudes in this direction yet. Instead we use the following
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trick [47]. If we call Z(β1, β2) the partition function where loops touching the bottom
are weighted β1 and those touching the top β2, then

Z(β, β) = 〈βNb+Nt+Nc+No〉 , Z(1, β) = 〈βNt+No〉
Z(β, 1) = 〈βNb+No〉 , Z(1, 1) = 〈βNo〉 .

In terms of these partition functions the mean number will be:

〈Nc〉 = lim
β→1

∂

∂β
(Z(β, β)− Z(1, β)− Z(β, 1) + Z(1, 1))

= lim
β→1

∂

∂β

Z(β, β)Z(1, 1)

Z(β, 1)Z(1, β)
, (3.33)

where in the second line we used the fact that every partition function is one at the per-
colation point β = 1. Again the computation of these partition functions would require
in principle the knowledge of rectangular amplitudes for boundary loop models. How-
ever their expression can be obtained easily by thinking in terms of Fortuin-Kasteleyn
clusters. Indeed loops touching a boundary get a weight one if the cluster they encircle is
weighted one. Then Z(β, β) corresponds to the partition function of the Potts model in
the FK representation with free boundary conditions on every side, Z(1, β) and Z(β, 1)
to that with fixed boundary conditions on top and bottom respectively, and Z(1, 1) to
the case of fixed on both bottom and top boundaries. The boundary condition changing
operator between fixed (F ) and free (f) boundary conditions in the Potts model is φF,f1,2

as discussed in section 2.2.2, whose weight we will denoted here by h. According to the
discussion of that section, these partition functions are given by

Z(β, β) = ZR(L,L′)

Z(1, β) = ZR(L,L′)〈φf,F1,2 (z2)φF,f1,2 (z3)〉

Z(β, 1) = ZR(L,L′)〈φF,f1,2 (z1)φf,F1,2 (z4)〉

Z(1, 1) = ZR(L,L′)〈φF,f1,2 (z1)φf,F1,2 (z2)φF,f1,2 (z3)φf,F1,2 (z4)〉 ,

where ZR(L,L′) is the partition function for homogeneous boundary conditions, eq. (2.21).
We transform the correlators to the upper half plane w. The expression of the Jacobian
was given in (2.27), and we have

Z(β, β)Z(1, 1)

Z(β, 1)Z(1, β)
=
〈φF,f1,2 (w1)φf,F1,2 (w2)φF,f1,2 (w3)φf,F1,2 (w4)〉H
〈φf,F1,2 (w1)φF,f1,2 (w4)〉H〈φf,F1,2 (w2)φF,f1,2 (w3)〉H

.

The four point function involved is precisely a correlator computed in section 2.2.2 (F and
f correspond to boundary labels 0 and 1/2 in notation that section, ζ = w12w34/w13w24):

〈φF,f1,2 (w1)φf,F1,2 (w2)φF,f1,2 (w3)φf,F1,2 (w4)〉H = N 0

(
w13w24

w12w23w14w34

)2h

G0(1− ζ) .
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with G0 given by (1.45) and N 0 = β (2.31). The two point functions are

〈φf,F1,2 (w1)φF,f1,2 (w4)〉H〈φf,F1,2 (w2)φF,f1,2 (w3)〉H = (w14w23)−2h ,

and putting everything together one can evaluate the derivative in (3.33) to have [47,48]:

ḡ = 1−
√

3
(
log(1− ζ)− (ζ − 1) 3F2

(
1, 1, 4

3 ; 5
3 , 2; 1− ζ

))
2π

.

Using now (2.28) we express ζ in terms of the modular parameter q = e2πiτ , where
τ = iLT /L. This yields the conductance for short wires (L� LT ):

ḡ =

√
3

2

L

LT
,

predicting an irrational value of the conductivity σ =
√

3
2 . The other limit can be

accessed by a modular transform:

ζ =

(
θ2(q̃)

θ3(q̃)

)4

, q̃ = e−2πLT /L ,

yielding the exact amplitude of the conductance of long wires (LT � L):

ḡ =
Γ
(
−1

3

)
Γ
(
−1

6

)
√

3π3/2
exp

(
−π

3

LT
L

)
.

Note correctly the presence of the boundary two-leg exponent h1,3 = 1/3 in ḡ ∼
exp(−πh1,3LT /L).

Conductance of a cylinder

We consider now the geometry of a cylinder, where contacts are put on the bottom
and top of the cylinder, and ask what is the conductance predicted by CFT in this case.
Denote the circumference of the cylinder W and its length L, and note that this geometry
is equivalently to an annulus of width L and length W , a remark already exploited
to derive Cardy constraints in section 1.2.3. The disorder averaged two terminal SQH
conductance in this geometry will be given by the number of percolation hulls connecting
the two boundaries of the annulus.

Consider percolation on an annulus and give a weight β12 to loops touching both
boundaries while all other loops, contractible or not, are weighted one. Call the ensemble
of such loop configurations L and for a given configuration the number of loops touching
both boundaries N12. This coincides with the number of contractible spanning clusters
(called Nc in [47]), which does not include spanning clusters Nw wrapping around the
cycle of the annulus. Then defining the partition function

Z =
∑
L
βN12

12 , (3.34)
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the conductance will be

ḡ = 2〈N12〉 = 2 lim
β12→1

∂

∂β12
Z .

We will present the computation of Z, using the results of [70] about boundary loop
models discussed partly in section 1.2.5. In [70] the authors conjectured the partition
function for a loop model on an annulus in which loops are weighted differently depending
on homotopy and which boundary they touch.

Parametrize the weight of loops β12 in terms of r12 by (we use p = 2, r1 = r2 = 1 in
formula (1.62))

β12 =
4

3
cos2

(π
6
r12

)
,

and recall the definition of the modular parameter

q := exp (2iπτ) ; q̂ :=
√
q ; τ := i

W

L
.

The partition function (3.34) is11:

Z =
1

P (q̂)

∑
n∈Z

q̂hr12−2n,r12 + . . .

where P (q̂) is the generating function of integer partitions and hr,s is the Kac table for
percolation (p = 2 in (1.43)). The dots contain the contribution of sectors with 2j non
contractible lines through the annulus, and clearly do not depend on β12. Then we get

ḡ = 2
1

P (q̂)

∑
n∈Z

(
−3
√

3
π

)
lim
r12→1

∂

∂r12
q̂hr12−2n,r12

= −
√

3

2π

1

P (q̂)

∑
n∈Z

(1− 6n)q̂
1
2
n(3n−1) log(q̂)

= −
√

3

2π
log(q̂)

(
1− 4q̂ + 4q̂2 + 4q̂4 + . . .

)
= −
√

3

2
iτθ4(τ)2 ,

where
θ4(τ) :=

∑
n∈Z

(−1)nqn
2/2 ,

or in terms of η(τ) = q1/24
∏∞
n=1(1− qn),

ḡ = −
√

3

2
iτ
η(τ/2)4

η(τ)2
.

11Here we used Z formula (6) of [70]. Note that here we did not use formula (67) of [70], which gives
the partition function for the Potts model in which also wrapping clusters are weighted β12, and which
could be used to compute 〈Nc +Nw〉.
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In the limit q → 0 corresponding to W/L→∞, we have

ḡ (W/L→∞) ∼
√

3

2

W

L
,

correctly coinciding with the expression for a very wide strip. For the opposite limit
q̃ := exp(−2iπ/τ) → 0, corresponding to W/L → 0, we use the properties of the
conductance under modular inversion τ → −1/τ :

ḡ =

√
3

2
θ2(−1/τ)2 = 2

√
3
η(−2/τ)4

η(−1/τ)2

= 2
√

3q̃1/4(1 + 2q̃ + q̃2 + 2q̃3 + . . . ) ,

where θ2(τ) :=
∑

n∈Z q
(n+1/2)2/2. So we have

ḡ (W/L→ 0) ∼ 2
√

3 exp

(
−π

2

L

W

)
.

Note that correctly in this limit ḡ ∼ const ·exp(−2πx1L/W ), where x1 = 1/4 is the bulk
1-hull exponent, the leading contribution.

The formula derived above is not entirely a new result. Cardy derived the generating
function of probabilities that there are Nc percolation spanning clusters in the annular
geometry in [49]. However in that work the author does not give a closed formula for
the mean number of spanning clusters. We have verified that the formula given above
coincides with the results given by Cardy from a series expansion up to very high order.
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Chapter 4

Boundary criticality at quantum
Hall transitions

In this chapter we present the main results of the thesis, building on the several con-
cepts discussed in the previous chapters. In section 4.1 we discuss edge states in network
models. We focus on the spin quantum Hall case, for which we describe the edge states
in the various formulations of the models for the transition, both from a microscopic
and from a field theory point of view. In section 4.2 we present the technical details
of the computation of exact critical exponents of the boundary conformal field theo-
ries describing higher plateaus transitions in the spin quantum Hall effect. The results
obtained allow to predict the scaling of the mean conductance in the network model,
and are verified against extensive numerical simulations. This chapter contains original
research material published by the author in [27,28].

4.1 Edge states in network models

4.1.1 Chalker-Coddington model with extra edge channels

The motivation for introducing the Chalker-Coddington (CC) model in section 3.1.2 was
the semiclassical picture of electrons moving on isopotential contours of the disordered
potential to which the two-dimensional electron gas is subjected. At the boundary the
presence of a confining potential allows for propagation of chiral edge states. The origi-
nal formulation of the CC model [55] however does only account for the possibility of a
single pair of counter propagating edge states at the boundary, see figure 3.9. It is the
purpose of this section to introduce a new extended network model with extra channels
at the boundary modeling higher filling fractions in the quantum Hall sample. Similar
ideas were already discussed in [14, 131, 154], and the relevance of perfect conducting
channels has been already appreciated in the wire (quasi 1D) limit, as reviewed in [78].
Higher fillings ν require the introduction of ν chiral counter-propagating channels at the
boundaries of the network. More generally chiral edge states appear at the interface
between two quantum Hall states distinguished by different values of the bulk conduc-
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tance, see figure 4.1, the usual case considered so far corresponding to terminate the
sample to vacuum (having σ = 0). This property is the bulk-boundary correspondence
of topological insulators, see for example [108] for a review of these general ideas.

σL σR

Figure 4.1: σR and σL are Hall conductances characterizing the two samples put to
contact. The number of edge states is given by |σR − σL| and their chirality by the sign
of σR − σL.

If we imagine our sample in a topologically non-trivial background, there are four
possible networks to be studied, where extra links can be directed up or down at each
edge, see figure 4.2. The bulk of width 2L contains alternating up- and down-going
columns of links. In addition, m (n) extra columns with the same chirality are added at
the left (right) edge. We label the four possible variants by (L = ±m,R = ±n); positive
labels (L,R) mean the same direction of the edge links and the closest bulk link. The
physics of the m → m + 1 plateau transition1 can be investigated with the choice
L = R = m > 0, and is the most physically motivated case. Note that L = R = m < 0
corresponds simply to invert the direction of the magnetic field.

The boundary nodes where the fluxes on the extra edge links scatter, are described
by matrices of the form of the bulk nodes (3.3), but with new independent transmission
amplitudes, tL and tR, one for each edge of the system. Note that now in the Feynman
expansions of Green functions (3.9) paths at the edge nodes can either turn (left or right,
depending on which incoming edge they are visiting) or go straight, and eventually can
cross. Transport properties will be drastically affected by the presence of extra channels.
Consider for definiteness the strip geometry with open links at the top and bottom of
the strip. We imagine a two-probe measurement, where the source of current is put at
the bottom of the strip and the drain at the top. The transmission matrix t we have to
use in Landauer formula (3.8) can be defined from the scattering matrix of the whole
network, relating open incoming to open outgoing links at the two extremities:

Snet =

(
r′ t
t′ r

)
.

t (t′) relates incoming links at the bottom (top) to outgoing at the top (bottom) and
r, r′ are reflection matrices. We see that if we consider a network with L 6= R, t and t′

are different rectangular matrices, so the bottom-to-top and top-to-bottom conductance,
defined respectively as

gb,t := Tr tt† , gt,b := Tr t′t′† ,

1We note that incorporating extra channels in the CC model neglects electron interactions which
could be relevant at the edge in experimental realizations of the QH effect, as discussed in [27].
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(L = +m,R = +n)

m 2L n

(L = −m,R = +n)

m 2L n

(L = +m,R = −n)

m 2L n

(L = −m,R = −n)

m 2L n

Figure 4.2: The four possible networks with extra chiral edge channels.
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are different. Denoted the length and width (without counting extra edges) of the strip
2LT and 2L respectively, we expect that in the limit of very long wires, the conductance
tends to a non-zero asymptotic value:

gb,t ' max(0,L −R) +A exp

(
− 1

λ

LT
L

)
.

Our primary interest is to characterize the decay length λ at criticality using confor-
mal field theory. For this purpose, we will not deal with the CC model with extra edges,
since as discussed in the section 3.1.5, no analytical solution of the CC model has been
found so far. Instead we will focus our attention on the SQH network, introduced in
section 3.2.2, defined by replacing U(1) phases on each link of the CC model with SU(2)
ones, relating up and down fluxes.

Before proceeding to the study of the SQH case, we note that more generally one
could investigate any network model [135] with extra chiral edge channels. This is an
interesting perspective from transport properties, but we remark that this procedure has
an interpretation in terms of plateaus transitions like in the IQHE, only in some cases.
Apart from the CC model and the network model for the SQHE, another interesting case
is the one describing the thermal quantum Hall effect [56], which shows a phenomenology
similar to the IQHE and belongs to class D in the symmetry classification discussed in
section 3.1.6. Extra edges have already been considered in [131,154] for a network model
describing the quantum spin Hall effect (not to be confused with the SQHE, despite the
unfortunate choice of names in the literature) belonging to class AII. In that case, time
reversal symmetry requires two counter-propagating channels on each link of the network,
and the possible boundary phenomena are reduced to having an even or odd number of
channels in the strip, consistent with the Z2 quantization of the spin conductance in the
quantum spin Hall effect [123].

4.1.2 Edge states in loop models and spin chains

Geometrical models for the SQH network model with extra edge channels

We have seen in section 3.2.2 that disorder averaged Feynman paths contributing to the
computation of a single Green function or the conductance in the SQH network are of
a simple form: they are percolation hulls. In the presence of extra edges, the super-
symmetric formulation of observables in the network is straightforwardly generalized.
Integration over Haar measure of random SU(2) phases on each link will again project
onto a three dimensional space, but this time the interaction at the new boundary ver-
tices is modified and immediately interpreted geometrically: lines can either go through
or cross. The resulting geometrical model is no more percolation, but it can nonetheless
be formulated as a loop model. The vertices are depicted in figure 4.3, and the corre-
sponding transfer matrices acting on neighboring sites i, i + 1, at the different types of
vertices s = A,B,L,R are:

TA,i = (1− t2A)I + t2AEi, A↔ B, (4.1)

TL,i = (1− t2L)I + t2LPi,i+1, L↔ R . (4.2)
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Ei is the Temperley-Lieb generator, introduced for the Potts model in section 1.1.1, and
Pi,i+1 is the permutation operator of neighboring strands i, i + 1. Expanding all the
vertices into pieces of oriented loops we end up with a sum over configurations like the
one illustrated in figure 4.4. As in the case of no extra edges, the loop orientation is a
property of the underlying lattice, not of the loop itself, and in particular no sum over
orientations is implied. The weight of loops is β = 1.

A = (1− t2A) +t2A

B = (1− t2B) +t2B

L = (1− t2L) +t2L

R = (1− t2R) +t2R

Figure 4.3: Vertices of the model resulting after disorder average in the SQH network
with extra edge channels. ts, s = A,B,L,R, refers to the type of vertex.

Figure 4.4: A configuration of the loop model in the case L = R = 2, 2L = 6. Each loop
carries a weight of 1.

The couplings t2s, 1 − t2s are all positive and have an interpretation as Boltzmann
weights of the statistical mechanics model of loops. The critical point is reached by
tuning bulk couplings tA = tB, and in the anisotropic limit, all ts � 1, the transfer matrix
is approximated by exp

(
− tAtBH

)
. The four possible Hamiltonians corresponding to
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different choices of (L,R) are

(m;n) : H = HL>0 +Hbulk +HR>0

(m;−n) : H = HL>0 +Hbulk +HR<0

(−m;n) : H = HL<0 +Hbulk +HR>0

(−m;−n) : H = HL<0 +Hbulk +HR<0 .

where the bulk critical Hamiltonian is that of percolation

Hbulk = −
2L+m−2∑
i=m

Ei ,

while the boundary Hamiltonians are as follows:

HL>0 =− u
m−1∑
i=0

Pi,i+1 HR>0 = −v
2L+m+n−2∑
i=2L+m−1

Pi,i+1

HL<0 =− u
m−2∑
i=0

Pi,i+1 − t′Em−1 (4.3)

HR<0 =− t′′E2L+m−1 − v
2L+m+n−2∑
i=2L+m

Pi,i+1 . (4.4)

The couplings t′, t′′ are not taken to be equal to 1 despite they correspond to vertices of
type A,B since we would like to consider them as boundary couplings, and u = (tL/tA)2,
v = (tR/tA)2 are arbitrary positive numbers.

Spin chain formulation

Using the supersymmetric transfer matrix method to deal with disorder average, we
found that the Fock space of bosons and fermions are projected onto the fundamental V
(dual-fundamental V ?) 3-dimensional irreducible representations of sl(2|1) on up links
(resp. down links) [101]. In this formulation the node transfer matrices Ts,i (4.1)-(4.2),
act in the tensor products Vi ⊗ V ?

i+1 in the bulk and Vi ⊗ Vi+1 or V ?
i ⊗ V ?

i+1 in the extra
edge regions. Thus, we have four types of supersymmetric spin chains

(m;n) : V ⊗m ⊗ (V ⊗ V ?)⊗L ⊗ (V ?)⊗n, (4.5)

(m;−n) : V ⊗m ⊗ (V ⊗ V ?)⊗L ⊗ V ⊗n, (4.6)

(−m;n) : (V ?)⊗m ⊗ (V ⊗ V ?)⊗L ⊗ (V ?)⊗n, (4.7)

(−m;−n) : (V ?)⊗m ⊗ (V ⊗ V ?)⊗L ⊗ V ⊗n. (4.8)

All tensor products between neighboring sites of these chains decompose into the direct
sum of two sl(2|1) representations [99]. We note that, while in the bulk these spin chains
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are antiferromagnetic since V ⊗V ? contains the singlet representation, in the boundary,
they have a ferromagnetic nature2.

For understanding the loop model associated to the SQH network with extra chan-
nels, it is useful and interesting from a statistical mechanics point of view, to consider a
more general problem, where the fugacity of loops is an arbitrary number β. As for the
case with no extra edges (the Potts model), when β = M integer we can represent the
model using gl(N +M |N) spin chains. In the case we are after, the space of states will
have the form of (4.5)-(4.8), where V and V ? correspond to the fundamental and dual
fundamental representations of gl(N +M |N).

4.1.3 Conformal boundary conditions in sigma models

According to the discussion of sections 3.1.4 and 3.2.2, the field theory description of the
IQH and SQH transitions is given by a non-linear sigma model with topological θ-term,
eq. (3.20). The target space in the IQH case is non-compact and is U(1, 1|2)/U(1|1) ×
U(1|1), while for the SQH case, it is compact and is the complex projective superspace
CP1|1. On a closed worldsheet, we have already stressed that the θ-term is a topological
invariant, and the physics depends on θ (mod 2π). Identifying θ with σxy, this implies
that all plateau transitions have identical universal properties, and one has to face the
problem that the integral part of σxy cannot be predicted.

The solution to this issue is obtained by considering a system with boundaries, as
first noticed in [198]. Strictly speaking, in a finite system with boundaries, there are
no well defined topologically distinct sectors. One does not expect the behavior of the
RG for the bulk properties to change—the standard analysis should still apply provided
the equivalent of the instantons (configurations such that the ‘topological term’ Q ap-
proaches a constant in the core, far from the boundary) are well localized within the
system. But boundary properties are expected to now depend on the exact value of θ;
in particular, θ can now be expected to affect perturbation theory. It is the purpose of
this section to explain the role of the exact value of θ using intuitions from the lattice
discretizations discussed above in the case of the SQH network. We expect that the
qualitative considerations apply also to the sigma model for the IQH transition.

Mapping on sigma models: the role of boundaries

We now map the spin chains with extra edge states at the boundaries to sigma models
using the spin coherent state quantization and the semiclassical approximation described
in section 1.1.4. The role of edge states in this mapping has been discussed in [150,
165]. Consider for definiteness the case of the O(3) sigma model. Denote by Ω(i) the
elementary Berry phase for a spin at site i (recall that the Berry phase is the area enclosed
by the loop the sigma model field ni(t) traces on the surface of the target space, the

2Ferromagnetic spin chains describing edge states in the IQHE were considered in [103].
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sphere). The total phase for the usual antiferromagnetic chain of spin s would read

Stop = s
2L∑
i=1

(−1)iΩ(i) ≈ s

2

∫ 2L

0

∂Ω

∂x
dx =

s

2
[Ω(2L)− Ω(0) + 4πQ] , (4.9)

where Q is an integer measuring the number of times the spin configuration n(x, t) covers
the surface of the sphere. For a closed chain Ω(2L) = Ω(0), while for an open chain the
terms Ω(2L),Ω(0) correspond to the Berry phase of edge states at the boundaries. Recall
also the identification θ = π for s = 1/2.

Let us now suppose we have for instance the first chain of eq. (4.5). Since on the
boundary we have representations of the same kind, the Berry phase on that side comes
unstaggered, so we have (from now on we set the “spin” s = 1/2, which is the right value
for our spin chain [170]):

Stop = −m
2

Ω(0) +
n

2
Ω(2L) +

1

2

2L∑
i=1

(−1)iΩ(i) ≈ n+ 1/2

2
Ω(2L)− m+ 1/2

2
Ω(0) + πQ .

This result suggests that the value of θ is replaced in the presence of extra edge states
in the spin chains by two new couplings no more periodic in 2π, Θ1 = θ

π + 2m for the

left boundary and Θ2 = θ
π + 2n for the right boundary. Meanwhile, say for the chain of

eq. (4.6) we have

Stop = −m
2

Ω(0)− n
2

Ω(2L)+
1

2

2L∑
i=1

(−1)iΩ(i) ≈ −n+ 1/2

2
Ω(2L)−m+ 1/2

2
Ω(0)+πQ .

In this case instead the identification is Θ1 = θ
π + 2m for the left boundary and Θ2 =

θ
π − 2n for the right boundary. From this heuristic argument we have that the spin
chains with extra edge states will map to a sigma model where, thanks to the presence
of boundaries, the bulk periodic coupling θ gets replaced by two real valued couplings:

Θ1 =
θ

π
+ 2L , left boundary

Θ2 =
θ

π
+ 2R , right boundary .

(4.10)

The precise meaning of this statement will be discussed below. Note that in this kind of
argument, the exact nature of the couplings on the boundary is irrelevant. Note also that
it does not make a difference whether the spins on the boundary are actually projected
onto the fully symmetric representation or not.

We now set θ = π and L = R = p 6= 0. This choice is equivalent to the same model
with θ = π + 2πp and L = R = 0, so that shifting θ by multiples of 2π leads to the
apparition of extra edge states. Further, we see that considering a system with bound-
aries reconciles the possibility of describing the integral part of the Hall conductance
σEH = L = R, corresponding to the number of extra channels in the network model.
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Figure 4.5: The edge (σEH , thick line) and the bulk (σBH , dashed line) parts of the Hall
conductance.

σBH = θ/2π can then be thought of as a “bulk” property, varying between (−1/2, 1/2],
see figure 4.5. In the microscopic model σBH is controlled by staggering the bulk coupling.
We refer also to [164] for similar considerations.

The phenomenology described so far is well known in the language of QED (see [58]),
to which the CPM−1 model is equivalent at large M , with M flavors and a weak gauge
coupling e2 ≈ 1

M . The F 2
µν term in the action is generated by expanding around the

saddle point at large M , see [3] for a review of this mapping.
The topological term is equivalent to a background electrostatic field F in the one-

dimensional universe, with F = eθ
2π . If this field is too large, it is energetically favorable

to produce quark-antiquark pairs. For one such pair the difference in energy per unit
length between the state with and without the pair is

∆E = 1
2

[
(F − e)2 − F 2

]
.

While it is not energetically favorable for the vacuum to produce a pair if F ≤ 1
2e, it

becomes so if F > 1
2e. Pairs will in fact be produced until F is brought down to a

value Fscreened ≤ 1
2e. So if π < θ < 3π, one pair is produced, and more generally if

(2n − 1)π < θ < (2n + 1)π, n pairs are produced. This is in fact for F positive. If
F is negative, that is if θ < 0, things are quite similar, only one produces this time
antiquark-quark pairs.

The picture is thus in agreement with the previous findings in the case where there
are extra representations V p on the left and (V ∗)p on the right (L = R = p), or (V ∗)p

on the left and V p on the right (L = R = −p), with Θ = θ
π + 2R = 1 + 2R. This

is once we have identified the chain with no extra representations as corresponding to
θ = π (s = 1/2). We remark however that nucleation of quark-antiquark pairs in CPM−1

models at large M corresponds to a first order phase transition [1], while in our case it
is of second order.

Restricting now to the case L = R, we observe from eq. (4.9) that another way to have
the same physics would be, instead of taking a spin chain with s = 1/2 in the bulk and
adding edge states by hand, to take directly a chain with spin s = 1/2 +L = (1 + 2L)/2.

137



In other words, with a spin s (s half an odd integer) chain in the bulk, we expect physics
of edge states with L = s − 1/2, which corresponds in turn to a spin on the boundary
with value s′ = (s− 1/2)/2. This is a bulk-boundary correspondence.

In the usual case of the CP1 model—that is, the O(3) model and the Heisenberg
XXX spin chain—all this discussion is somewhat irrelevant. Although edge states still
present interesting features, we anticipate that adding extra spins (maybe in a higher
dimensional representation) on the boundary does not give rise to new exponents, and
the spectrum will in the end coincide with that of the XXX chain with an odd or an
even number of sites. This is consistent with the fact that the SU(2)1 WZW model
has only two symmetric conformal boundary conditions [9]. In the case of CPN+M−1|N

sigma models however, an infinity of conformal boundary conditions of the corresponding
irrational (non-unitary) logarithmic CFT is available, leading to a much richer behavior.

Symmetric conformal boundary conditions in CPN+M−1|N models

Consider the action of the CPN+M−1|N sigma model with θ-term, eq. (1.34), on a world-
sheet with boundary, say the upper half plane. Imposing vanishing of the action under
arbitrary variations of the fields Zα, Z

†
α (such that (δZ†α)Zα+Z†α(δZα) = 0), one obtains

that the boundary conditions induced by the topological term are

(∂y + iay)Zα =
θ

π
g2
σ(∂x + iax)Zα ,

(∂y − iay)Z†α = − θ
π
g2
σ(∂x − iax)Z†α ,

for z = z̄ < 0 and a similar condition along the right half z = z̄ > 0 of the boundary.
While in the weak coupling limit the value of θ is irrelevant (and we recover purely
Neumann boundary conditions), in general, θ appears explicitly.

Note that the identification of θ and g2
σ with the Hall (σxy) and longitudinal (σxx)

conductance as in (3.21), gives:

γ =
θ

π
g2
σ =

σxy
σxx

.

This ratio defines the Hall angle θH by γ = tan(θH), which was introduced in [198]
(see also the recent discussion in [23]) in the study of the classical limit of the quantum
Hall effect. The classical limit can be defined from a network model where we neglect
quantum interference. The problem then is that of a directed random walk, leading to
diffusive behavior (in high magnetic field) in the continuum limit. At the boundaries
(reflecting walls) vanishing of normal current, gives the equation for the probability
density (∂y − γ∂x)ρ = 0, resembling the boundary conditions for the sigma model field
Za. In the classical network model γ is given by the ratio of probabilities that the
random walker turns left or right at nodes, and the Hall angle is related to the direction
at which the random walker moves away from the boundary.

The mapping of spin chains with extra edge states to sigma models seen in the
previous section, suggests that the following more general boundary conditions exist for
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the sigma model:

(∂y + iay)Zα = Θ1g
2
σ(∂x + iax)Zα ,

(∂y − iay)Z†α = −Θ1g
2
σ(∂x − iax)Z†α ,

(4.11)

for z = z̄ < 0 and a similar condition with Θ1 replaced by Θ2, along the right half
z = z̄ > 0 of the boundary. The parameters Θ1 and Θ2 were defined in eq. (4.10).

For 0 < M ≤ 2, we expect that these boundary conditions are conformally invariant
at the fixed point theory. In other words, we expect that, in the conformally invariant
fixed points of superprojective sigma models CPN+M−1|N at θ = π, there is a discrete
family of conformal boundary conditions labeled by the integer R,L ∈ Z.

These boundary conditions were derived in [38] for the caseM = 0. The strategy used
there to solve the model is to start with the so-called minisuperspace (or semi-classical)
approximation [95,181] consisting in neglecting the fluctuations around the longitudinal
coordinate of the worldsheet, leaving with the study of a one-dimensional sigma model,
which is considerably simpler. This approach is valid as gσ tends to zero (infinite radius),
and the result in this limit can be continued to finite values of the couplings, thanks to
the existence of a line of fixed points when M = 0, see eq. (1.35). However the value
g2
σ = 1 which is the one of relevance for us could not be studied with the techniques of

[38]. In the case of generic M we are after, we cannot use the minisuperspace technique,
and we have to solve the model at finite coupling. The solution of the problem will be
presented in section 4.2.2 and is based on the lattice discretizations. We now discuss
some interesting considerations done in [38] about the geometrical character of boundary
conditions (4.11), which apply also in the general case. A precise derivation of these
results would lead us too far from the goal of computing the critical exponents, and we
limit ourselves to state the main points.

To discuss the geometrical nature of the boundary conditions we have first to outline
some facts about complex projective superspaces. A standard reference for the differen-
tial geometry concepts treated (in the bosonic case) is [148]. CPN+M−1|N is a Kähler
manifold of complex dimension 2N + M − 1 (and superdimension M − 1). Choosing
the homogeneous coordinates wi (i = 1, . . . , N + M − 1 bosonic, i = N + M, . . . , 2N
fermionic, wı̄ ≡ w̄i), its metric

ds2 = gi,̄(dw
̄dwi + (−1)|i||j|dwidw̄) = 2gi,̄dw

̄dwi ,

is given by the U(N +M |N)-invariant Fubini-Study metric:

gi,̄ = g(∂i, ∂̄) =
(1 + w† · w)δij − (−1)|j|wı̄wj

(1 + w† · w)2
,

where w† · w = wı̄wi is the scalar product on CPN+M−1|N . The metric determines the
Kähler 2-form ω (which is closed, dω = 0) in the following way:

ω = −igi,̄dw̄ ∧ dwi . (4.12)
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We consider the second integral cohomology group H2(CPN+M−1|N ;Z), given by the
2-forms which are closed but not exact (recall, exact means α = dβ). As for its bosonic
cousin, H2(CPN+M−1|N ;Z) = Z, and a generator of it is given by ω/(2π), which satisfies:∫

CP1

ω

2π
= 1 .

Indeed if ω were exact, then by Stokes’ theorem integration on CP1 would give zero3.
We denote by L a complex line bundle over the projective superspace. Recall that
a complex line bundle is a fiber bundle with one dimensional fiber C, which in our
case can be thought of as the tangent bundle of a sphere. A general result is that
isomorphism classes of complex line bundles Ll are in correspondence with elements of
H2(CPN+M−1|N ;Z), so they are labeled by l ∈ Z. For example the trivial line bundle
is L0 = CPN+M−1|N × C. When the bundle is not trivial, it cannot be written globally
as a product, and the number l ∈ Z tells us how the local pieces are twisted when glued
together.

We now come back to the sigma model. Considering a local patch where Z1 6= 0, the
coordinates wi introduced above are related to the Zα’s as follows:

Z1 = Z†1 =
1√

1 + w† · w
, wi = Z1Zi+1 , wı̄ = Z†1Z

†
i+1 .

In these coordinates the action takes the form [38]:

S =
1

2g2
σ

∫
d2z gī∂µw

̄∂µw
i +

iθ

2π

∫
ω , (4.13)

where g is the Fubini-Study metric defined above and the Kähler form ω (4.12) can be
written as:

ω = d2z εµνigī∂νw
̄∂µw

i .

We now look for boundary conditions which arise from adding to the action (4.13)
boundary terms of the form

Sb =

∫ 0

−∞
dx
(
ALi (w, w̄)∂xw

i +ALı̄ (w, w̄)∂xw
ı̄
)

+

∫ ∞
0

dx (L ↔ R ) .

Here we imagine the boundary being the real axis, and AL(R) = A
L(R)
i dwi+A

L(R)
ı̄ dwı̄ are

one-forms which are at least locally defined on CPN+M−1|N . We now demand invariance
of these boundary conditions under global action of U(N+M |N). The important point is

3ω plays the role of a magnetic field B (which is a two-form). Using language of three-dimensional
electrodynamics, the fact that B is not exact means that there are no globally defined vector potentials
A, such that ~B = ∇ × ~A. Indeed if that was the case, using Gauss theorem we will encounter the
contradiction:

0 6=
∫
∂U

~B · d2~n =

∫
U

d3x∇ · (∇× ~A) = 0 ,

where U is a three dimensional manifold having ∂U as boundary.
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that on any irreducible complex symmetric superspace, there is only one invariant closed
2-form, the Kähler form ω. Then denoted ΩL(R) the curvature two-forms associated to
the connection AL(R), invariance of the boundary conditions with respect to the global
symmetry requires that [38]

ΩL = iLω , ΩR = iRω ,

where ω is the Kähler form (4.12). If we now derive the boundary conditions associated
to the invariance of the sigma model under arbitrary variations, we would find exactly
the twisted Neumann boundary conditions (4.11), see [38] for details. However, in the
above discussion L,R are arbitrary real numbers. This is indeed the case of the classical
theory, but in the quantum theory they assume integer values.

The quantization of L,R is analogue to the quantization of magnetic charge in the
problem of the Dirac monopole on the sphere (reviewed in [148]), which corresponds to
the target space when N = 0,M = 2 (for this reason, L,R were referred to as monopole
numbers in [38]). This can be understood from the minisuperspace limit, where we
neglect the σ dependence of wi(σ, τ), for the theory defined on the strip [0, π]×R. The
θ-term is zero, and integrating over σ, we are left with the following one-dimensional
sigma model

S =

∫ ∞
−∞

dτ

(
π

2g2
σ

gīẇ
̄ẇi +Aiẇ

i +Aı̄ẇ
ı̄

)
,

where
A = AR −AL .

This theory is interpreted as the path integral of a quantum mechanical problem of a
particle living on CPN+M−1|N in the presence of a gauge potential A, and the problem
is thus that of a magnetic monopole at the center of the complex projective superspace.
Wavefunctions (functions on the superspace) have to be reinterpreted as sections of
Hermitian complex line bundles Ll, since as the gauge potential, cannot be defined
globally. The usual case of wavefunctions as function from the position space to C, is
recovered in the case of trivial bundle L0, when the connection A is flat (zero curvature).
Different local expressions of wavefunctions are related by transition functions which are
uniquely defined only if4:

Ω = ilω , l ∈ Z ,
4We recall the reasoning behind the quantization condition in the case of the sphere S2 = CP1 [148].

With (θ, φ) coordinates on S2, we consider the two local expressions of the gauge potential

AN = ig(1− cos(θ))dφ , AS = −ig(1 + cos(θ))dφ ,

defined (such that the associated magnetic field ΩN,S = dAN,S has no singularities) respectively on the
southern US = {(θ, φ)|π

2
− ε ≤ θ ≤ π} and northern UN = {(θ, φ)|0 ≤ θ ≤ π

2
+ ε} hemispheres. AN,S are

related on UN ∩ US by the gauge transformation

AN = AS + 2igdφ ,

which in vector notation is ~AN = ~AS + ~∇(2igφ). We denote ψN and ψS the wavefunctions (local
expressions of global sections) defined on UN and US . These are related by the phase

ψS = e−i2gφψN .
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where Ω is the curvature of the connection A = AL − AR, and ω is the Kähler form.
l represents the cohomology class of the base space CPN+M−1|N of the bundle. The
above quantization condition means that l = L − R ∈ Z and taking AL = 0 (AR = 0)
gives L ∈ Z (R ∈ Z). Further details and connections with representation theory
(decomposition of the space of sections of bundles on CPN |N onto representations of
gl(N |N)) can be found in [38].

In summary, we have seen that the number of edge states L,R appearing in the
twisted Neumann boundary conditions (4.11) label complex line bundles on CPN+M−1|N .

The case CP0|1

To make things more concrete, we investigate now the simplest case of CP0|1 (N =
1,M = 0), which is equivalent to symplectic fermions. In this case the θ-term vanishes
and the bulk action is

S =
1

2g2
σ

∫
d2z∂µξ∂µξ

† .

The boundary conditions are then of the form

∂yξ = Θ g2
σ ∂xξ

∂yξ
† = −Θ g2

σ ∂xξ
† ,

and can be represented in terms of a gluing automorphism(
∂ξ
∂ξ†

)
= Ω

(
∂̄ξ
∂̄ξ†

)
where

Ω =
1 +W (Θ)

1−W (Θ)
, W (Θ) = ig2

σ

(
Θ 0
0 −Θ

)
.

If we now have two different values of Θ on the left and right boundaries in the upper
half plane, going around the insertion of the boundary condition changing operator at

the origin in the complex plane gives rise to a monodromy of
(
∂ξ, ∂ξ†

)T
expressed by

Ω12 = Ω1Ω−1
2 =

κ+W (Θ1 −Θ2)

κ−W (Θ1 −Θ2)
,

where we have set κ = 1 + g4
σΘ1Θ2. Of course, Ω12 is of the form

Ω12 =

(
e2iπλ 0

0 e−2iπλ

)
,

If we set θ = π/2 and go around the equator from φ = 0 to φ = 2π, demanding that the wavefunctions
are single valued implies 2g ∈ Z, which is the quantization condition we were looking for. Lastly we note
that the monopole strength g is l/2 by computing the flux:

2πil =

∫
S2

Ω =

∫
UN

dAN +

∫
US

dAS =

∫
S1

(AN −AS) = 2ig

∫ 2π

0

dφ = 4πig .
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with the twist parameter λ given by 2 cos 2πλ = Tr Ω12:

cos 2πλ =
(1 + g4

σΘ1Θ2)2 − (Θ1 −Θ2)2g4
σ

(1 + g4
σΘ1Θ2)2 + (Θ1 −Θ2)2g4

σ

.

The twist parameter vanishes when L = R, which corresponds to identical boundary
conditions for symplectic fermions, and similarly it vanishes when g2

σ = 0. A similar
discussion of twisted boundary conditions in symplectic fermions can be found in [61].

In general, the ground state of the theory (which has central charge c = −2) in the
twisted sector scales with the conformal weight [126]

hgr
λ =

1

2
λ(λ− 1) .

We remark that λ has in general irrational values, leading to irrational conformal di-
mensions. The full operator content in this sector is encoded in the U(1)×Vir character
[126]

dµ,λ = tr
(
e2iµJ0qL0−c/24

)
=

= e−2iπµλq(1−6λ(1−λ))/12
∞∏
n=1

(
1 + e2iπµqn+λ−1

)(
1 + e−2iπµqn−λ

)
or

dµ,λ = η−1e−2iπµλ
∑
m∈Z

e2iπµmq
1
2

(m+λ− 1
2

)2
,

where q denotes the modular parameter and η is the Dedekind eta function.
The problem is thus fully solved in this case. We now move to address the general

case, where the solution will be obtained using lattice regularizations in terms of spin
chains and loop models discussed above.

4.2 Exact exponents for the spin quantum Hall transition
in the presence of extra edge channels

In this section we solve the loop model with intersecting loops at the boundaries, and
apply the results to higher plateaus SQH transitions.

4.2.1 Algebraic remarks

We first discuss some algebraic properties of the lattice models defined in section 4.1.2.
The general problem we would like to address is solving the loop model with loop fugac-
ities β, and the associated gl(N +M |N) spin chains.

We start by giving the explicit action of the operators Ei and Pi,i+1 on the super
spin chains (the action of Ei in terms of oscillators was already given in section 1.1.2).
Let ej , with j = 1, . . . , 2N + M , be a basis of V , and ej , with j = 1, . . . , 2N + M , be
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the corresponding dual basis of V ?, and let |j| denote the grade of ej . Then the graded
permutation Pi,i+1 acts on two copies of the same representation by interchanging them
with a minus sign if both the elements are odd:

Pi,i+1 ej0 ⊗ · · · ⊗ ejm+2L+n−1 = (−)|ji||ji+1|ej0 ⊗ · · · ⊗ eji+1 ⊗ eji ⊗ · · · ⊗ ejm+2L+n−1 .

The Temperley-Lieb operator Ei projects onto the singlet in the decomposition of V ⊗V ?

(and V ? ⊗ V ):

Ei ej0 ⊗ · · · ⊗ ejm+2L+n−1 = (−)|ji||ji+1|δi+1
i

N+M∑
k=1

ej0 ⊗ · · · ⊗ eji−1⊗

⊗ek ⊗ ek ⊗ eji+2 ⊗ · · · · ⊗ ejm+2L+n−1 .

Adding the P generators to the Temperley-Lieb (TL) generators E as needed to
define the transfer matrices (4.1)-(4.2), completes the TL relations by additional ones,
which define a certain subalgebra of the Brauer algebra.

The full Brauer algebra on 2L sites B2L(β) is generated by the permutation operators
Pi(:= Pi,i+1), with i = 0, . . . , 2L− 2, and the TL generators Ei, with i = 0, . . . , 2L− 2,
and is specified by the parameter β. Analogously to the TL algebra, words in B2L(β)
can be represented graphically using diagrams composed by rows of dots connected in
pairs. The generators I (identity), Ei (TL operator) and Pi (permutation operator) are
shown in figure 4.6 in this graphical representation. The product of two words is given
by stacking diagrams, and we replace every loop formed by the (complex) weight β. In
representation theory, the Brauer algebra plays for the orthogonal group the same role
that the symmetric group does for the general linear group in Schur-Weyl duality [30].

I = · · · Ei = · · · · · ·

i i+ 1

Pi = · · · · · ·

i i+ 1

Figure 4.6: Identity, the Temperley-Lieb generator Ei and the permutation operator Pi,
in the diagrammatic representation.

In the case we wish to study, the full Brauer algebra B2L(β) is not needed, since we
restrict to having permutations on boundary sites only (the Temperley-Lieb generators
still act in the bulk). The corresponding subalgebra will be denoted A2L,L,R(β), and its
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generators satisfy the relations

P 2
i = 1, E2

i = βEi, EiPi = PiEi = Ei, (4.14)

PiPi±1Pi = Pi±1PiPi±1, EiEi±1Ei = Ei,

EiPi±1Ei = Ei, (4.15)

PiPj = PjPi, EiEj = EjEi, EiPj = PjEi , (4.16)

which can be easily verified by expressing the generators as diagrams.
As already observed, the spin chains (4.5)-(4.8) are representations of the algebra

A2L,L,R(β), with loop fugacity β = StrV 1 = M . A subtle point however is the following.
This representation is not faithful: in addition to (4.14)–(4.16), the generators acting on
the spin chain satisfy additional relations. These additional relations define a quotient
of A2L,L,R(M), which we now discuss.

First we note that the algebra A2L,L,R(M) as defined by (4.14)–(4.16) is infinite
dimensional. We can understand why by considering the simple system with L = L =
R = 1. If we call W = E1P2P0E1, then the word W p (see figure 4.7) cannot be reduced
using the defining relations, and increasing the power p, the dimension of the algebra
becomes arbitrarily large.

W = W 2 = M W 3 = M2

Figure 4.7: The diagrams corresponding to the words W = E1P2P0E1, W 2 and W 3 in
A2L,L,R(M) with L = L = R = 1. Here and in the following dotted lines separate bulk
and boundary sites.

The additional relation in the spin chain is P0E1P0P2E1 = P2E1P0P2E1. Indeed if
we compute the action of E1P0P2E1 on the spin chain, we have:

E1P0P2E1 ej0 ⊗ ej1 ⊗ ej2 ⊗ ej3 = (−)|j1|δj2j1δ
j3
j0

M+N∑
k,r=1

(−)|k|(|j0|+|j3|) ·

· ek ⊗ er ⊗ er ⊗ ek ,

which is invariant under the action of P0P2. Note that the additional relations just
introduced correctly reduce those words that made the algebra infinite dimensional. We
denote the quotient of A2L,L,R(β) by the additional relations present in the spin chain
representation by Q2L,L,R(β). A complete description of the quotient is possible, but we
refer the interested reader to [28] for that. To make things concrete, it is useful to rep-
resent diagrammatically the relations. Then the quotient tells us that when intertwined
top arcs intersect bottom arcs, their relative intertwining does not matter, and could be
disentangled, see for example the reduction of the diagram of figure 4.8. The link states
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obtained by cutting in two halves the full diagrams, are rather natural in the quotient:
we identify two link states if they have the same connectivities, see the example of figure
4.9

β2 ≡ β2

Figure 4.8: The two identified words in the quotient Q2L,L,R(β) corresponding to figure
4.4.

≡

Figure 4.9: Two identified link states in Q2L,L,R(β).

Another issue is that we have argued in [28] that the representation of the quotient
itself on gl(N + M |N) spin chains is not faithful for the gl(1|1) case (we will comment
more on this point at the end of section 4.2.2).

The geometrical model we have to study for understanding the SQH transition is
that based on the quotient Q2L,L,R(β). Note that, except when β = M is an integer,
we do not know of any spin chain representation of the corresponding algebras, be they
A,Q or Brauer. This situation has to be contrasted with the ordinary Temperley-Lieb
algebra, where the XXZ spin chain provides such a representation for all values of the
loop fugacity, as discussed in section 1.1.1. Clearly the presence of loop crossings—even
if only between boundary lines—makes the problem considerably more involved. These
crossings also make impossible a Coulomb gas approach to the underlying conformal
field theory (for essentially the same technical reasons).

We remark that the bulk part of the Hamiltonian of the edge states problem, does
not follow from the usual Yang-Baxter construction for alternating fundamental and
dual representations of gl(M +N |N) [77]. However, being that of the Potts model, the
bulk Hamiltonian is exactly solvable, since it belongs to the Temperley-Lieb algebra, and
the realization of this algebra in the Uq(sl(2))-invariant XXZ spin chain leads to Bethe
ansatz equations. We do not know what the situation for our model with boundary
interactions might be.

We now launch into the technical problem of determining the critical exponents of
the geometrical model. In particular, we focus now on the case L = m,R = n, for which
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the Hamiltonian results:

H = −u
m−1∑
i=0

Pi,i+1 −
2L+m−2∑
i=m

Ei − v
2L+n+m−2∑
i=2L+n−1

Pi,i+1 .

This corresponds in spin chain formulation to equation (4.5), which we recall:

V ⊗m ⊗ (V ⊗ V ?)⊗L ⊗ (V ?)⊗n .

The results for the other values of L,R will be derived from this case thanks to symme-
tries of the exponents.

4.2.2 Solution of the general loop model

One boundary case

We will start by investigating the one boundary problem. Setting n = 0, the Hamiltonian
we want to study is

H = −u
m−1∑
i=0

Pi −
2L+m−2∑
i=m

Ei . (4.17)

Sectors of this Hamiltonian will be indexed now not only by the number of through
lines (or “strings”), but also by the action of the symmetric group Sm+1 on the m + 1
boundary strings which can be permuted, according to its irreducible representations
(Specht modules). Then the Hamiltonian (4.17) can be put in a block form, each block
indexed by the number of strings and a Young diagram referring to a Specht module.
Accordingly the Hilbert space will be decomposed in terms of these subspaces. Numerical
diagonalization5 shows that the lowest eigenvalue of the Hamiltonian always lies in the
trivial (fully symmetric) representation of the symmetric group, where permutations act
as the identity in the Specht module. So for the purpose of computing the leading critical
exponents we can restrict to this sector.

Apart from exact diagonalization of the Hamiltonian, we can have insights on the
spectrum using the following argument. We recall first that the one boundary TL algebra
(1BTL) [118, 141] is defined by adding to TL a blob operator b acting on the leftmost
strand, which we will label m for making easier the connection with our model. By
definition, b is idempotent and satisfies the relation (see section 1.2.5)

EmbEm = β1Em , (4.18)

whose geometrical interpretation is that marked loops get a weight β1. For the particular
case m = 1 the lattice algebra underlying our problem is isomorphic to the 1BTL algebra
with a given value of β1. The isomorphism is given by P0 = 2b− 1 (using b2 = b we get

5Numerical diagonalizations are performed using the Arnoldi algorithm, allowing to efficiently deter-
mine the lowest part of the spectrum. We use the libraries ARPACK++ [97].
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(P0)2 = 1 as required). So the boundary interaction is proportional to b indeed. The
corresponding weight of boundary loops follows from

E1
1 + P0

2
E1 =

1 + β

2
E1 ,

where we have used (4.15). This shows that we are dealing with β1 = 1+β
2 .

For higher values m > 1 there is no such mapping to the one-boundary loop model.
However we now argue that we can replace the boundary interaction in eq. (4.17) with
the sum over all possible permutations of the boundary strands without affecting the
universal part of the spectrum we are looking at. Intuitively this says that if we act
a sufficiently large number of times with

∑m
i=1 Pi, all the permutations are generated

and the interaction can be replaced by
∑

σ∈Sm+1
σ. Concretely the following modified

Hamiltonian

H̃ = −u 1

(m+ 1)!

∑
σ∈Sm+1

σ −
2L+m−2∑
i=m

Ei ,

is naively expected to have the same critical exponents of the original Hamiltonian (4.17)
in the continuum limit6. We support this universality hypothesis with strong numerical
evidence in table 4.1. Fitting of numerical data is done using formula (1.59), adding a
term of order 1/L2.

β j h h̃ h2,0(j)

0 0 −0.07606± 0.00010 −0.07615± 0.00015 −0.076068

0 1 0.1099± 0.0004 0.1090± 0.0006 0.111099

0 2 1.339± 0.010 1.321± 0.006 1.298266

1 0 0 0 0

1 1 0.33478± 0.00009 0.33478± 0.00009 1/3

1 2 2.099± 0.016 2.099± 0.016 2√
2 0 0.01374± 0.00016 0.01302± 0.00021 0.014542√
2 1 0.4384± 0.0011 0.4432± 0.0007 0.438772√
2 2 2.4256± 0.0013 2.4410± 0.0009 2.363001

Table 4.1: Comparison of critical exponents h of the model described by the original
Hamiltonian H, and h̃ of the one described by H̃, listed for different values of β and j, the
number of bulk through lines, in a system with m = 2, n = 0. The values are obtained
by fitting eigenvalues for bulk sizes 2L = 12 → 20, and although these numbers should
be equal when L→∞, already with these relatively small sizes we find good agreement
between the values of the exponents in the model and the exact value predicted in the
continuum limit h2,0(j), given in the last column.

6We remark that for having this universal behavior, it is crucial that the signs in front of the per-
mutation generators are all negative. In this case, adding to the Hamiltonian (4.17) other terms of the
symmetric group than the generators, is a redundant perturbation (see the discussion in [28] for more
on this point).
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Working with H̃ rather than H has the advantage that it realizes a representation of
1BTL. First we recognize that bt1 := 1

(m+1)!

∑
σ∈Sm+1

σ is idempotent, being the Young

symmetrizer associated to the standard Young tableau7 t1 = 0 · · · m. Further bt1
satisfies:

Embt1Em = β1Embt̂1 , (4.19)

where t̂1 = 0 · · · m− 1 and

β1 =
m+ β

m+ 1
. (4.20)

To prove formula (4.19) we can use the following simple identity

bt1 =
1

m+ 1
bt̂1(1 + (0,m) + (1,m) + · · ·+ (m− 1,m)) ,

(i, j) denoting the transposition of i and j, and the relations of the algebra. Relation
(4.18) now follows with our value of β1 (4.20) if we replace Ei by Ẽi = Eibt̂1 , an operation
which does not affect relations of the algebra A2L,L,R. We depict this finding in figure
4.10.

≡

Figure 4.10: Symmetrization (here represented by horizontal gray bars) over the m+ 1
leftmost strands can be interpreted as blobbing the first bulk strand.

Then, the critical exponents of (4.17) are expected to be described by those of a one
boundary loop model with fugacity of loops touching the left boundary given by (4.20).
The exponents follow then from eq. (1.65):

hm,0(j) = hr1(m),r1(m)+2j ,

where r1(m) is given explicitly by

r1(m) =
1 + p

π
arctan

(
(1+m) sin

(
π
p+1

)
m−(m−1) cos

(
π
p+1

)
)
.

7In what follows we will adopt the convention of labeling the boxes of a Young diagram of size m+ 1
with the elements of the set {0, . . . ,m} when related to the left boundary action of the permutation
group
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We have checked these results with extensive numerical diagonalizations of the Hamil-
tonian, see table 4.1. In particular we have verified that the exponents do not depend
on the coupling u as long as we take it positive, as expected for the 1BTL models, see
section 1.2.5. This property should be interpreted in terms of boundary renormalization
group flow. The situation is akin to that of the Ising model with a boundary field, where
the fixed boundary condition is a stable fixed point, and the free boundary condition an
unstable one [6]. At a given non-zero value of the boundary field, there is a crossover,
and the system flows to the stable fixed point for a sufficiently large system. In our
case, the boundary perturbation to the Lagrangian is uφr1(m),r1(m), and it drives the
system from the m = 0 to the m > 0 boundary condition. Since the dimension of the
field φr1(m),r1(m) is hr1(m),r1(m), by dimensional arguments the relevant length scale in

this boundary flow is given by L1−hr1(m),r1(m) . We have explicitly checked that curves
describing the critical exponents as a function of u, collapse after appropriate rescaling
in the gl(1|1) case, where we can access large sizes of the system thanks to the free
fermion realization [28], see figure 4.11.
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Figure 4.11: h vs u in the gl(1|1) chain for different sizes of the bulk length (here in
different colors) and m = 1, n = 0. In figure (a) the variable u is not rescaled (the plot
shows only very small values of u). In figure (b) we rescale u as u′ = L1−hr1(1),r1(1)u, and
we observe a perfect collapse of all curves.

We note also that when β = 1 (whence β1 = r1(m) = 1 for all m), the case of interest
for the applications to the SQH transitions, the exponents are trivial, equal to those of
the free boundary case8. For general m and u positive when β = 1 we have found the
following relation λ0

m = −u+λ0
m−1, λ0

m being the lowest eigenvalues of the Hamiltonian
with m boundary lines in a given sector, which implies the same scaling in 1/L of the
two eigenvalues.

8If we think of the case m = 1, one intuitive argument supporting this triviality goes as follows. Every
time a loop crosses the boundary line, we can think of this configuration as a loop with weight 1 and a
straight line times the coupling −u:

= −u

and u can be set to u = 1 thanks to universality.

150



Finally we have numerical evidence that the universality class of H and H̃ is more
general, and that, in particular, the following Hamiltonian also has the same continuum
limit: ˜̃

H = bt̂1Hbt̂1 ,

corresponding to the case where the m strands on the boundary are fully symmetrized9.
From an algebraic point of view this version of the model is equivalent to replacing
the m copies of the fundamental representation of the superalgebra in the spin chain
formulation with a higher-dimensional one.

Two boundary case

We now move to the two boundary problem, which is obviously much richer. In this case
we again index sectors by the number k of paired bulk plus boundary through lines (or
strings). We will see below that, defined m = min(m,n), the two cases k > m and k ≤ m
will have different behaviors. Calling ` = |m − n|, we will refer to the lowest exponent
in a sector k as the (2k + `)-leg exponent, hm,n(k).

We recall that the two boundary problem which we would like to address is described
by

H = −u
m−1∑
i=0

Pi −
2L+m−2∑
i=m

Ei − v
2L+m+n−2∑
i=2L+m−1

Pi . (4.21)

By naive analogy with the solution of the one boundary case, we expect the following
Hamiltonian to be in the same universality class as our starting problem (4.21):

H̃ = −u 1

(m+ 1)!

∑
σ∈Sleft

σ −
2L+m−2∑
i=m

Ei − v
1

(n+ 1)!

∑
σ∈Sright

σ

= −u bt1 −
2L+m−2∑
i=m

Ei − v bt2 (4.22)

where we have introduced the symmetric group of the m + 1 leftmost and the n + 1
rightmost strands:

Sleft = S{0,...,m} , Sright = S{2L+m−1,...,2L+m+n−1} ,

as well as the standard Young tableaux

t1 = 0 · · · m , t2 = 2L+m− 1 · · · 2L+m+ n− 1 .

As before bt stands for the Young symmetrizer related to the tableau t. We have checked
numerically the hypothesis that adding these additional permutations to our former
Hamiltonian H is a redundant perturbation also in this two boundary case. See table
4.2 for a sample of evidence in the case m = n = 2. As in the one boundary case, we
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β k h h̃ h2,2(k)

0 0 −0.0026± 0.0010 −0.0041± 0.0013 0

0 1 −0.0026± 0.0010 −0.0041± 0.0013 0

0 2 0.0504± 0.0015 0.0479± 0.0021 0.054734

0 3 0.247± 0.003 0.238± 0.005 0.257230

0 4 1.670± 0.007 1.601± 0.006 1.631564

1 0 0 0 0

1 1 0.0152± 0.0002 0.0147± 0.0004 0.015906

1 2 0.0700± 0.0012 0.0678± 0.0018 0.073136

1 3 0.3346± 0.0003 0.3346± 0.0003 1/3

1 4 2.118± 0.008 2.118± 0.008 2

Table 4.2: Comparison of critical exponents h of the model described by the original
Hamiltonian H, and h̃ of the one described by the modified one H̃, in a system with
m = 2, n = 2, listed for different values of β, and k, the number of bulk plus boundary
strings. The values are obtained by fitting eigenvalues for bulk sizes 2L = 8 → 16, and
although these numbers should be equal when L → ∞, already with these relatively
small sizes we have good agreement between these two values and with the exact value
predicted, given in the last column.

claim that the results are unchanged as long as u and v are taken positive, as we have
verified numerically.

The advantage of studying H̃ is that it can be related to the two boundary analogue
of the blob algebra, the two boundary TL algebra, defined in section 1.2.5. In the
language of the two boundary loop model (2BLM), loops marked on the left boundary
have weight (4.20) and those marked on the right boundary

β2 =
n+ β

n+ 1
. (4.23)

All that remains to be done is to compute β12, the value of loops marked by both blob
operators, as expressed in the following algebraic relation (we can consider for simplicity
the situation with L = 1):

Emb1b2Em = β12Em ,

where b1 and b2 act respectively on the first and second strand labeled m and m + 1.
Loops marked by both blob operators can appear only if there are no strings in the
2BLM. In our model (4.22), as long as k ≤ m we can interpret strings as being inserted
at the boundary, and we expect that any of the sectors k ≤ m map to a different quotient
of 2BLM with a value of β12 depending on k, which we note βk12. Defining

Ẽm = Embt̂1bt̂2 ,

9Note that this is not equivalent to projecting to the sector where the symmetric group acts trivially
on strings, since on the thick boundary we may have arcs too.
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we would like that the following equation holds for a certain value of βk12:

Ẽmbt1bt2Ẽm = βk12Ẽm ,

for k ≤ m.
To make things concrete we discuss in detail the case m = n = 2, L = 1. First it is

convenient to express bt1 and bt2 using the following identities:

bt1 =
1

3
bt̂1(1 + (0, 2) + (1, 2)) =

1

3
bt̂1(1 + P1(1 + P0))

bt2 =
1

3
(1 + (3, 4) + (3, 5))bt̂2 =

1

3
(1 + (1 + P4)P3)bt̂2 .

Then, using the commutation relations of the algebra, we have:

Ẽ2bt1bt2Ẽ2 =
1

9
E2bt̂1(1 + P1(1 + P0))(1 + (1 + P4)P3)bt̂2E2 =

=
1

9

(
(β + 4)Ẽ2 + 4bt̂1bt̂2E2P1P3E2bt̂1bt̂2

)
. (4.24)

The first piece of equation (4.24) is already in the desired form, while the second piece
is not proportional to Ẽ2. As anticipated, we can only achieve this by fixing a sector
k, and computing the action of the operator W := bt̂1bt̂2E2P1P3E2bt̂1bt̂2 on the states

belonging to the sector. The graphical representation of W and Ẽ2 is depicted in figure
4.12.

W = Ẽ2 =

Figure 4.12: The words W and Ẽ2 in the diagram representation. As before, the gray
bars indicate symmetrization over the lines and W is obtained using the quotient algebra
Q2L,L,R(β) discussed above.

Let us first consider the case k = 2, when no contractions of boundary lines is
allowed. It is clear from figure 4.12 that W acts as zero on every state in this sector,
since it diminishes the number of strings from 4 to 2. So, we have found that every state
of the sector k = 2 is in the kernel of the operator

R :=
(
Ẽ2bt1bt2 − βk12

)
Ẽ2 ,

with

β2
12 =

β + 4

9
.

We now move to k = 1. In this sector we have 18 states. They are drawn in figure 4.13,
where we have grouped those related by the action of bt̂1bt̂2 = (1 + P0 + P1 + P0P1)/4.
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Figure 4.13: The 18 reduced states of the sector k = 1, for a system with m = n =
2, L = 1. Those related by the action of bt̂1bt̂2 are grouped together.

Acting with Ẽ2 on an arbitrary state will always produce the sum of the four states
contained in the box in figure 4.13 times a constant which can eventually be zero, as
when E2 acts on two strings. The role of Ẽ2 is indeed to project onto the state in which
the boundary strands are fully symmetrized and the bulk ones are contracted. This
remark is of crucial importance since it tells us that the action of R is zero on every
state, with the same value of βk12 then characterizing this sector. We can evaluate R on
a reference state, say the one on the top left in figure 4.13 to obtain the value of βk12. R
on this state is zero if:

β1
12 =

2β + 6

9
.

The last case we have to consider is k = 0, when no strings are left. In this sector
we have 6 states depicted in figure 4.14, where again we have grouped those connected
by the action of bt̂1bt̂2 . As in the previous case, we realize that Ẽ2 acting on every such
states produces the sum of the two states contained in the box in figure 4.14 times a
constant. Then, evaluating R on a given state gives

β0
12 =

β + 2

3
.

The general case can be worked out similarly. The values of βk12 in the general case
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Figure 4.14: The 6 reduced states of the sector k = 0, for a system with m = n = 2, L =
1. States on top and on bottom grouped together are related by the action of bt̂1bt̂2 .

m,n are found to be [28]:

βk12 =


(n− k + 1)(m+ β + k)

(m+ 1)(n+ 1)
if m ≥ n,

(m− k + 1)(n+ β + k)

(m+ 1)(n+ 1)
if m < n.

(4.25)

Note that βk12 is symmetric in exchanging m,n, as it should in our problem. The com-
putation of the weights βk12 in the model described by H̃, equation (4.22), concludes the
analysis of the sectors k ≤ m.

When k > m, strings cannot be thought as being a boundary property as before,
and the model maps to the 2BLM in the sector with (k−m) strings without any further
issue.

The (2k+ `)-leg exponents hm,n(k) in the model (4.22) are finally listed in table 4.3
where we have used the parametrization of β1, β2, β

k
12 in terms of r1, r2, r

k
12 introduced

in (1.62), which we recall:

β1 =
sin
(

(r1 + 1) π
p+1

)
sin
(
r1

π
p+1

) , β2 =
sin
(

(r2 + 1) π
p+1

)
sin
(
r2

π
p+1

)
β12 =

sin
(

(r1 + r2 + 1− r12) π
2(p+1)

)
sin
(

(r1 + r2 + 1 + r12) π
2(p+1)

)
sin
(
r1

π
p+1

)
sin
(
r2

π
p+1

) .

Recall also that β1 and β2 are simple functions of β and of respectivelym and n, equations
(4.20) and (4.23), and that m is the minimum between m and n.

When the number of legs is between ` and m+n, the exponents hrk12,r
k
12

are computed

from our expression of βk12, equation (4.25). When we have instead m + n + 2j legs,
with j > 0, we are in the sector j of a 2BLM which is completely described by the
two parameters β1 and β2, equations (4.20) and (4.23), and the exponents then follow
from fusion of the boundary conformal weights of the one-boundary case, the leading
exponents in a sector being hr1+r2−1,r1+r2−1+2j .
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k #(legs) = `+ 2k hm,n(k)

0 ` hr0
12,r

0
12

1 `+ 2 hr1
12,r

1
12

...
...

...
m m+ n hrm12,r

m
12

m + 1 m+ n+ 2 hr1+r2−1,r1+r2−1+2
...

...
...

m + j m+ n+ 2j hr1+r2−1,r1+r2−1+2j
...

...
...

Table 4.3: Critical exponents for the two-boundary problem.

Invoking the usual universality hypothesis—namely that the critical behavior is un-
changed upon adding permutations other than the generators to the Hamiltonian H—
the above expressions completely determine the critical exponents in our original model
(4.21).

Lastly, we have verified that as in the one-boundary case, the version of the model

with higher spins on the boundary, ˜̃H = bt̂1bt̂2Hbt̂1bt̂2 , is in the same universality class
as well.

Symmetries and other cases

We now discuss the other cases with negative values of L and/or R. Note first that the
exponents hL,R(k) are symmetric in L andR by obvious invariance of the spectrum under
left-right reflection. Further exponent relations follow from symmetries of the critical
spin chains (4.5)–(4.8) (or equivalently of the corresponding graphical formulations).
Recall that in each case V ⊗ V ? (and V ? ⊗ V ) interacts through Ei, and V ⊗ V (and
V ?⊗V ?) through Pi, and the couplings u, v can be set to one thanks to the universality.
The same applies to the couplings t′, t′′ of the boundary Hamiltonians (4.3)-(4.4). Then
the top-bottom reflection switching V and V ? induces a mapping between the chains
(sometimes with different lengths of the bulk region): (L,R) ↔ (−L − 1,−R − 1), see
top of figure 4.15. This implies:

hL,R(k) = h−L−1,−R−1(k). (4.26)

In particular, this relates pairwise exponents for the chains (4.5), (4.8), as well as for
(4.6), (4.7): h−m,−n(k) = hm−1,n−1(k), h−m,n(k) = hm−1,−n−1(k). When the total
number of legs in the model (4.8) is smaller than m+ n, then

h−m,−n(k) = hrk12(m−1,n−1),rk12(m−1,n−1) , #(legs) < m+ n ,

while when the number of legs equals m+n+2j with j ≥ 0, the corresponding exponent
is:

h−m,−n(k) = hr1(m−1)+r2(n−1)−1,r1(m−1)+r2(n−1)−1+2(j+1) , #(legs) = m+n+2j , j ≥ 0 ,
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since in this case we must write the total number of legs as (m− 1) + (n− 1) + 2j + 2.
Finally, for the chain (4.7), considering the rightmost site on the left boundary as

part of the bulk, and noting that we have identical chiralities at the two boundaries
(so that ` = m + n, boundary lines cannot be contracted), the only exponents are the
following (m+ n+ 2j)-leg exponents:

h−m,n(k) = hr1(m−1)+r2(n)−1,r1(m−1)+r2(n)−1+2j+1 , j = 0, 1, . . .

Note the presence of 2j + 1, see bottom of figure 4.15. Results for (4.6) easily follow
from (4.26): the (m+ n+ 2j)-leg exponents are

hm,−n(k) = hr1(m)+r2(n−1)−1,r1(m)+r2(n−1)−1+2j+1 , j = 0, 1, . . .

m 2L n

≡

−m−1 2L−2 −n−1

−m 2L n

≡

m−1 2L+1 n

Figure 4.15: Symmetries of the configurations relating different values of L,R. The
relation on the top leads to h−m,−n(k) = hm−1,n−1(k), that on the bottom to h−m,n(k) =
hm−1,n(k). Note that the number of bulk strands changes in the mapping.

Final remarks

So far we have been able to solve the problem of computing the leading exponents in each
sector with fixed number of through lines. This will be enough for the applications to the
SQHE we will discuss in section 4.2.3, but clearly the understanding of the (logarithmic)
conformal field theories describing the loop models or spin chains with extra edge states
require more work.

One first incomplete aspect of our study is that we have not determined all the
geometrical exponents: there are definitely plenty of subleading eigenvalues in a given
sector. The mapping to a 2BLM involves a quotient version of the latter, and we do
not find all the subleading eigenvalues predicted for the 2BLM, see eq. (1.63)–(1.64). In
general we do not have full control of which subleading eigenvalues appear. However
we expect that the value of possible eigenvalues should be of the form given by the
2BLM conformal weights with some possible omissions and blobbed/unblobbed sectors
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mixing, as we have indeed observed in the systems studied numerically. Clearly a deeper
algebraic understanding of the problem is needed here to characterize the full spectrum.

The other incomplete aspect is that we lack a clear understanding of the degeneracies.
One way to understand these (for the super spin chains) is to think of the generating
function of eigenvalues, which could in principle be computed as the modified partition
function of a loop model where non-contractible loops are weighted differently [170], using
the result of eq. (1.61). In algebraic terms, this generating function would be written as
a sum over irreducible representations of the algebra to which the Hamiltonian belongs.
The multiplicities of summands would then be the dimensions of irreducibles of the
commutant algebra in the Hilbert space at hand; the problem is that very little is known
in general about this commutant.

Let us finally recall that the gl(1|1) super spin chain—alias symplectic fermions; see
appendix of [28]—seems to be the only case where the spin chain representation is not
faithful. In particular this manifests itself in the fact that for m = n, the spectrum in
this chain is equal to that obtained for free (m = n = 0) boundary conditions, when the
Hamiltonian belongs to the Temperley-Lieb algebra and the critical exponents are those
of the conformal field theory of symplectic fermions. Instead, in the case m = n 6= 0,
the gl(N |N) spin chain when N > 1 possesses an infinity of new exponents which are
not contained in symplectic fermion theory. Note that these exponents in general are
not rational—a rather unusual feature in conformal field theory.

4.2.3 Applications to the spin quantum Hall effect

We will now describe quantitatively how the presence of extra edge channels modifies
the boundary critical behavior of the SQH network model.

We first set the fugacity of loops to one (p = 2) in the formulas of table 4.3. In this
case the result simplifies, and is reproduced in table 4.4. There hr,s =

[
(3r−2s)2−1

]
/24,

m = min(m,n) and the parameter rk is given in terms of m,n and k for m ≥ n (if m < n
exchange m and n) by

rk =
6

π
arccos

(√
3

2

√
(m+ 1 + k)(n+ 1− k)

(m+ 1)(n+ 1)

)
.

Note that for number of legs greater than n + m, they no more depend on m,n and
coincide with those of percolation, a phenomenon already observed in the one boundary
case above. However when the number of legs is between ` and n+m, they are far from
trivial and irrational.

Similarly, the exponents for the other values of L,R are simplified. When the total
number of legs in the model (L = −m,R = −n) equals m + n + 2j with j > 0, the
corresponding exponent is h1,3+2j = (j+1)(2j+1)/3, and the (m+n+2j)-leg exponents
are h1,2+2j = j(2j + 1)/3 in both models (L = −m,R = n), (L = m,R = −n).

Now we recall from section 3.2.3 that the disorder averaged Green function for a
point at the boundary is related to the probability that the point belongs to a loop of
given length. This observable is governed by the operator creating two lines in the loop
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k #(legs) = `+ 2k hm,n(k)

0 ` hr0,r0 = 0
1 `+ 2 hr1,r1
...

...
...

m n+m hrm,rm
m + 1 n+m+ 2 h1,3 = 1/3

...
...

...
m + j n+m+ 2j h1,1+2j = j(2j − 1)/3

...
...

...

Table 4.4: The watermelon exponents for fugacity of loops equal to one, of interest
for the SQHE. k is the number of paired through lines on top of ` unpaired ones and
m = min(m,n).

model with extra edge channels, which now has scaling dimension hL,R(1). From this
consideration we see that the boundary local density of states (3.31) becomes:

ρL,R(e, ε) ∼ |ε|hL,R(1)/df = |ε|
4
7
hL,R(1) .

The critical exponent of the local density of states at the boundary gets smaller with
increasing the number of edge channels, see figure 4.16.

hm,m(1)

m0.01

0.05

0.3

0 1 2 3 4 5

Figure 4.16: The behavior of hL,R(1) when L = R = m as a function of m. We see that
the value for the case m = 0, h0,0(1) = 1/3, gets smaller very rapidly by increasing the
number of edge channels. Lines are guides for the eyes.
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Scaling of conductance

We now move on to see how the extra edges affect transport properties by considering the
conductance in the strip geometry, generalizing the discussion for L = R = 0 presented
in section 3.2.3.

We have discussed in section 4.1.1 general transport properties of the networks with
extra edge channels. Here we consider the mean conductance ḡL,R with the source at
the bottom and the drain at the top of the strip. In the mapping to the geometrical
model, the conductance is given by the average number of through lines going from the
source to the drain of the current, times 2 for the spin. The minimal number of available
through lines is kL,Rmin = max(0,L −R), as already pointed out in section 4.1.1, whence

ḡL,R = 2kL,Rmin + 2
∑∞

k=1
kP (k, LT /L,LT /ξ), (4.27)

where P (k, LT /L,LT /ξ) is the probability (symmetric in L and R) that exactly 2k
“paired” through lines run through the system of size 2LT by 2L + m + n, and ξ is
the bulk correlation length. At the transition, ξ = ∞. We refer to figure 4.17 for an
illustration.

P (k, LT /L) =

k2LT

source

drain

Figure 4.17: The probability that there are 2k paired through lines in the rectangle,
contributing to the mean conductance. Source is on the bottom and the drain is on the
top of the rectangle.

Using the transfer matrix T of the loop model we rewrite the mean conductance as

ḡ = 〈D|TLT |S〉 , (4.28)

where |S〉 and 〈D| are two boundary states for the semirectangular geometries describing
the source and the drain. We do not know exactly how to write these states in terms
of links states (even for the case L = R = 0, as was pointed out in [46]). What we

160



know is that they are symmetric under any permutation of the incoming channels from
the Landauer formula (3.8), so that only the block of the transfer matrix respecting
this symmetry will couple to them. Further, we know that the boundary states will be
symmetric under left-right reflection only if L = R. This observation is lifted in the
continuum limit by saying that only even descendants of whatever primary field present
in the BCFT will couple to the boundary state when L = R 10.

Although we do not control these boundary states, we expect from conformal invari-
ance that for large LT /L, P (k, LT /L, 0) ∼ e−πh

L,R(k)LT /L. The exponents hL,R(k) are
exactly the conformal dimensions we have computed above. For LT /L � 1 the sum in
Eq. (4.27) for ḡ is dominated by k = 1:

ḡL,R ∼ 2kL,Rmin + C1e
−πhL,R(1)

LT
L . (4.29)

We predict that the decay length of the conductance in the strip geometry is governed
by the exponents hL,R(1), whose numerical value can be read from table 4.4.

Numerical checks

In [27] we have presented extensive numerical computations of the conductance of critical
SQH networks with extra channels in the strip geometry. The conductance is computed
for a given realization of disorder from the Landauer formula, eq. (3.8), and the top-to-
bottom transmission matrix t of the network using the transfer matrix method [135].

We compare the numerical value of the exponent governing the decay of the con-
ductance obtained by fitting eq. (4.29) with the analytical prediction. The results are
presented in table 4.5 for several values of L,R. The ratio of LT /L in the system simu-
lated is typically [2, 40], and the number of disorder realizations over which we average
is of the order of 105, 106. The numerical results are always very close to the analytical
predictions, which we stress once again are irrational small number in most of the cases.
Further, the numerical simulations confirm also that the results are independent on the
choice of boundary couplings tL,R (of the boundary scattering matrices) and agree with
the symmetry relation (4.26).

More remarks and details of the numerical simulations can be found in [27]. In
particular [27] contains also results for γL,R, the subleading corrections to ḡL,R:

ḡL,R ∼ 2kL,Rmin + C1e
−πhL,R(1)

LT
L + C2e

−πγL,R LT
L .

The value of γL,R is not completely under control from the theoretical point of view.
Conformal invariance implies that the exponential corrections to the conductance are
given by conformal dimensions in the theory, see (4.28). γL,R is then the minimum
among hL,R(2) and dimensions of certain primary and descendant fields in the sector
k = 1. Unfortunately, the analysis of section 4.2.2 is not sufficient to identify all the
fields contributing to ḡL,R in the general case.

10Odd descendants are odd under left-right symmetry, think as performing the transformation z → −z,
under which the field with dimension h transforms with (−)h.
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L,R numerics analytical
hL,R(1) hL,R(1)

0, 0 0.3333(12) 1/3

0, 1 0.3330(7) 1/3

0, 10 0.3325(24) 1/3

1, 1 0.03775(25) 0.037720

2, 2 0.01600(2) 0.015906

1, 2 0.0520(25) 0.052083

2, 4 0.02954(7) 0.029589

−2,−2 0.0377(4) 0.037720

−3,−2 0.0522(2) 0.052083

−1, 0 0.999(9) 1

−2, 0 0.999(3) 1

−2, 1 0.998(3) 1

Table 4.5: The numerical values of the exponent governing the decay of the mean con-
ductance (column “numerics”) and the analytical prediction (column “analytical”).
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Conclusion and outlook

In this thesis we have discussed several aspects of lattice models and conformal field
theories, together with their applications to the study of quantum Hall transitions.

The major achievement presented is the quantitative understanding of how critical
behavior at higher spin quantum Hall plateau transitions is modified. Higher plateaus
are distinguished by the presence of edge states at the boundary of the sample, and in
a first place, we have discussed how to extend network models for Anderson transitions
to include extra channels at the boundaries. Then, we have focused on the case of the
spin quantum Hall effect. The network model for this transition enjoys a very special
status among other models. We gave a detailed review of how in the bulk or in the
presence of reflecting boundaries, the model can be mapped to the problem of classical
percolation on a square lattice, allowing the exact determination of critical properties.
Then we generalized this mapping to the case of networks with extra edges, leading
to the study of a new loop model with crossings at the boundaries. For fugacity of
loops M , this model discretizes CPN+M−1|N super sigma models, where the edge states
in the lattice formulation label in field theory language symmetric conformal boundary
conditions for the fields. The computation of the critical exponents of these theories is
quite intricate and required a lengthy discussion of lattice algebras and relations with
boundary loop models. The outcome of this technical analysis is the exact expression of
critical exponents, which turn out to be irrational in the general case, a rather unusual
feature in conformal field theory (CFT). These irrational exponents govern the boundary
critical behavior at higher spin quantum Hall plateau transitions, and in particular, they
give the decay length of the mean spin conductance in the strip geometry. Our analytical
predictions are corroborated by extensive numerical simulations of the network models.

The study of the conductance of network models in the rectangular geometry mo-
tivated also another result obtained in this thesis, the extension of the notion of CFT
boundary states, commonly used to describe cylindrical geometries, to the rectangular
ones. These objects are the continuum limit of incoming and outgoing states for lattice
models defined on a strip, and have potentially several other applications, for example
to quenches in 1D gapless quantum systems. Despite they appear as natural as cylinder
boundary states from a statistical mechanics perspective, rectangular boundary states
have been discussed very little in the literature and offers interesting technical challenges.
We have developed a general theory allowing to describe rectangular geometries with
different boundary conditions in an arbitrary CFT. In the general case these boundary
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states have a rather complicated expression, depending on the operators implementing
the conformal mapping from the upper half plane to the rectangle, and on the fusion of
boundary condition changing operators. However for the case of free theories they take
simple coherent states forms. Further, we have applied these results to loop models,
giving a geometrical interpretation of rectangular amplitudes. An interesting outcome
of the analysis is the derivation of formulas for probabilities of self-avoiding walks, which
contain the indecomposability parameters of logarithmic CFTs.

The work presented in this thesis leaves a variety of interesting directions for future
research. In general the geometrical language of edge states we have uncovered should
have a broader range of applicability to other models describing topological properties
of matter. We now list some concrete proposals of further developments, some of which
are under investigation.

• Geometrical models derived from network models pertaining to any symmetry class
can be formulated, and truncations amenable to exact solutions in any of such
cases can be studied, generalizing the recent work done in [111] for the Chalker-
Coddington model.

There are plenty of questions that arise once the geometrical models have been
set up, and in particular it is interesting to see if in some case the approximations
provided by the truncations become exact. These ideas are the basis of work in
progress with E. Vernier, H. Saleur and J. Jacobsen.

• The study of edge states developed in this thesis for the spin quantum Hall network
paves the way for investigating more generally boundary critical behaviors at other
Anderson transitions. The drastic influence of extra edge channels we have pointed
out, is of immediate relevance for the integer quantum Hall transition and the
thermal quantum Hall transition in class D. Some numerical studies discussing
extra channels in network models have also already appeared in the literature
[14, 131, 154]. However a general picture is definitely lacking. It could be also
interesting to quantitatively investigate the role of edge states in the truncated
geometrical models.

• Quantum transport properties of disordered wires (quasi 1D geometry) in a given
symmetry class are related to diffusion in a corresponding Riemannian symmetric
superspace [144, 201, 202]. We think that crucial topological considerations of the
problem, related to transport at higher plateaus in quantum Hall-like systems, are
missing in the literature, and an interesting direction could be to discuss those in
a quantitative way.

Indeed, we have discussed in this thesis how the symmetric conformal boundary
conditions in the CPN+M−1|N models are related in the minisuperspace (quasi
1D) limit to the monopole problem. Concretely, one could generalize the results of
[144,201,202] to the case of open boundaries corresponding to the presence of extra
edge channels in the lattice models. This would need to study Hamiltonians of the
monopole problem on Riemannian symmetric superspaces, where the possibility of

164



having extra edge channels should emerge as twisting of the associated complex
line bundles.

We remark that for having quantitative results in the wire limit an alternative
route to the 1D sigma model is available, and is known as the DMPK equation,
see the discussion and references in [78]. Without entering any detail here, we
point out that exact results for the conductance of wires with extra edge channels
(also called perfectly conducting channels) have been obtained, as reviewed in
[78]. However, rederiving these results, together with the topological interpretation
sketched above, would be a very interesting exercise both from a physical and a
mathematical perspective.

• One of the motivations for discussing rectangular amplitudes was the exact com-
putation of conductance at high spin quantum Hall plateaus in the strip geometry.
In this thesis we did not carry out fully this program. Indeed this would require
extending our results for boundary states to the case of blobbed loop models, since
for computing the mean number of lines crossing the rectangle, we need to weight
differently loops touching different boundaries. Unfortunately, difficulties in un-
derstanding the fusion rules of boundary fields in blobbed loop models, require
more work to complete this project.

• As a last outlook, we point out the need to improve our understanding of logarith-
mic conformal field theories. Although in this thesis we did not deal explicitly with
formal aspects of these theories, it is clear that a better understanding of those is
vital for studying disordered critical points. By now, there are several examples
of understood boundary logarithmic CFTs (for example see [88, 172]), and recent
research is focusing more on the case of bulk logarithmic CFTs. As interesting
perspectives in this direction, we mention the lattice approach [92–94], and the
bulk-boundary correspondence of [89,174] built on a formal algebraic framework.
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