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ABSTRACT

Modern compilers integrate recent advances in compiler con-
struction, intermediate representations, algorithms and pro-
gramming language front-ends. Yet code generation for appli-
cation-specific architectures benefits only marginally from
this trend, as most of the effort is oriented towards popular
general-purpose architectures. Historically, non-orthogonal
architectures have relied on custom compiler technologies,
some retargettable, but largely decoupled from the evolu-
tion of mainstream tool flows.

Very Long Instruction Word (VLIW) architectures have
introduced a variety of interesting problems such as clusteri-
zation, packetization or bundling, instruction scheduling for
exposed pipelines, long delay slots, software pipelining, etc.
These have been addressed in the literature, with a focus
on the exploitation of Instruction Level Parallelism (ILP).
While these are well known solutions already embedded into
existing compilers, they rely on common hardware function-
alities that are expected to be present in a fairly large subset
of VLIW architectures.

This paper presents our work on back-end compiler for
Mephisto, a high performance low-power application-specific
processor, based on LLVM. Mephisto is specialized enough
to challenge established code generation solutions for VLIW
and DSP processors, calling for an innovative compilation
flow. Conversely, even though Mephisto might be seen a
somewhat exotic processor, its hardware characteristics such
as addressable register files benefit from existing analyses
and transformations in LLVM. We describe our model of
the Mephisto architecture, the difficulties we encountered,
and the associated compilation methods, some of them new
and specific to Mephisto.
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1. INTRODUCTION
Modern telecommunication algorithms for Software De-

fined Radio (SDR) demand high performance computing
and flexibility along with hard real-time requirements. Such
algorithms are embedded into high-end mobile devices where
low power consumption is of primary concern. To meet
all these needs, a VLIW-based Application-Specific Instruc-
tion set Processor (ASIP), Mephisto, has been proposed by
Bernard et al. [3]. Mephisto is part of a Network-on-Chip
(NoC) based digital baseband for telecommunication proto-
cols such as Long Term Evolution (LTE) [4]. It implements
a powerful instruction set specifically designed to provide
high-throughput complex number processing. In [3], a code
generation framework that represents the instruction set us-
ing C++ classes is proposed. This framework has a very low
level model of the architecture, directly exposing Mephisto
complexity to the programmer. In this paper, we propose
a full compilation process based on LLVM, an open source
compiler infrastructure [14]. LLVM has already been ported
to VLIW architectures, e.g. the Hexagon processor from
Qualcomm. However, to our knowledge, it has not been
faced to highly constrained VLIW application-specific pro-
cessors. We also propose new algorithms compatible with
generic compilation flows like LLVM, and harnessing the
partitioned memory architecture and clustered, addressable
register files of Mephisto.

The next section gives an overview of Mephisto, hinting at
the implied issues on the compiler side. Section 3 introduces
LLVM and presents some of its limitations regarding the im-
plementation of VLIW and DSP back-ends. Section 4 de-
scribes the dedicated C programming interface of Mephisto.
Our main contributions are discussed in Section 5, highlight-
ing the handling of isolated register files and allocation for
addressable register files. Finally, Sections 6 and 7 present
some preliminary results and related research work.

2. MEPHISTO ARCHITECTURE
Mephisto is a high performance low-power application-

specific processor. It is based on a VLIW architecture aim-



ing high throughput complex number processing with accu-
mulation-based and saturated fixed-point arithmetic. It pro-
vides different hardware data paths for memory addresses
(or register file addresses) and actual algorithm results. At
the bottom of figure 1 are listed some of its operators. They
are extensively enumerated here: two Multiply-and-Accu-
mulate (MAC), two CORDIC implementations for Cartesian-
polar conversions, a divider, a compare and select unit for
fast comparisons, input and output FIFOs. These opera-
tors are available for data processing but not intended to
be used for address computing. On top of figure 1, there is
an overview of the address computing system. The pointer
arithmetic is computed by multiple Address Generators, one
for each memory (AGma and AGmb) and three for the data
register file (AGa, AGb and AGw). The data register file
can be indirectly addressed through the use of these address
generators. It has two output ports, ra and rb, that can be
loaded with dedicated load instructions. Each output port
has an associated address generator, AGa and AGb for ra
and rb, respectively. Addresses for write accesses are taken
from AGw. The data register file contains 64 slots with 32
bits wide registers (two 16 bits paired registers) while each
address generator contains 8, 10 bits wide register pointers.
Further details are given in the following sections.
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AGa AGb AGw

Arithmetic unit

Address Generator

Date Register File
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rb

ra rb wr
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RAM A
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Data-Path
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MemoryData Memories
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Figure 1: Mephisto: organization of data and ad-
dress computing units.

2.1 Register files
Mephisto has strong partitioned register files, i.e. inter

register file communication is partial or not supported at
all. Similar to other register pointer architectures proposed
in [20, 23], Mephisto implements Pointer and Data registers
as well but in a more segregated fashion.

• Data register file: It is read by means of two output
ports or registers, ra and rb.

• Pma and Pmb: Pointer registers that are used to ad-
dress memories A and B. Contained in address gener-
ators AGma and AGmb, respectively.

• Pra and Prb: Pointer registers that are used to address
the data register file for read accesses, associated to its
output ports, ra and rb respectively.

• Pw: Pointer registers used to address the data register
file for write accesses.

Figure 2 shows all register files and valid transfers between
them with directed arrows. We can see that copies between
register pointers and from them to data registers are not
supported.

Data Registers

Pointer Registers

Pma
Pmb

Pw

Prb

Pra

Figure 2: Register files and valid transfers between
them.

Data and pointer registers have its own arithmetic units,
the multiply-and-accumulate and the address generator unit,
respectively. They are introduced in the next sections.

2.2 Multiply and accumulate unit
Mephisto contains two Multiply and Accumulate units,

called MAC0 and MAC1, with two accumulators each one.
The MAC can perform multiple pipelined operations: two
multiplications, addition, accumulation, right arithmetic shift-
ing and saturation (see figure 3). Two output ports connect
the data registers to the MAC’s. Its structure is optimized
for complex number multiplications. Note that a complex
multiplication, described hereafter, has four scalar multipli-
cations, one addition and one subtraction

Re{a× b} = Re{a} ×Re{b} − Im{a} × Im{b}

Im{a× b} = Re{a} × Im{b}+ Im{a} ×Re{b}

where a and b are two complex numbers and Re{a} and
Im{a} denote the real and imaginary part of a, respectively.
Therefore, Mephisto is able to perform one complex multi-
plication per cycle.

In despite of its flexibility, the compiler needs to handle
multiple constraints regarding its internal accumulator reg-
isters, which are inherent to the MAC behavior:

1. Copies between accumulators are not allowed.
2. Accumulators cannot be spilled. They serve strictly to

hold intermediate results.
3. Accumulation is performed on a single accumulator,

i.e. two different registers cannot be specified as source
and destination of an accumulation operation.

Section 5.3 details how these constraints has been ad-
dressed.
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Figure 3: MAC functional representation.

2.3 Address generators
Each pointer register file is contained inside a functional

block called Address Generator. It is designed to provide
address computing support to access data register file and
memories. It is composed by a dedicated arithmetic block,
which is able to perform modulo n additions, bit shuffling,
etc. This specialized computational unit homogeneity im-
ply additional compiler-side work to identify operations for
data processing from those for addresses computing. Fur-
thermore, operations for address computing needs to be al-
located to the corresponding address generator.

This identification mechanism is called contextualization
and it is discussed in section 5.1.

2.4 Zero-cost loops
Mephisto provides a limited set of instructions for control

flow. It comes from the fact that most of the ported algo-
rithms for Software Defined Radio (SDR) have predictable
paths of execution. Unconditional branches are supported
as well as conditional ones but within certain functional spe-
cific goals. Outside this context, conditionally branching is
considered unusual and induces a performance penalty. As
other existing DSP’s, Mephisto implements zero-overhead
loops. Section 5.2 gives detailed information about the hard-
ware loop construction pass.

3. LLVM COMPILER
LLVM is an open source compiler infrastructure composed

by a collection of reusable state-of-the-art compiler technolo-
gies [14]. Its highly modular design, in form of well-defined
libraries, allows it to be used in multiple environments that
aims code analysis, optimization and/or generation. LLVM
has originally started as a research project at the University
of Illinois. Nowadays, it has become a cutting-edge pro-
duction compiler capable of generating code for a variety of
targets, such as x86, ARM, MIPS, PowerPC and more.

3.1 Distance between the semantics of
application-specific VLIWs and LLVM

Aside from super-scalar compiler related support, repre-
sentations of common VLIW functionalities have been added
to the code base mainly motivated by the integration of
Hexagon back-end, a DSP processor designed by Qualcomm.1

Thus, recent versions of LLVM include a fairly amount of
traditional VLIW needs, e.g. representation of instruction
bundles, target-independent packetizer, deterministic finite

1https://developer.qualcomm.com/hexagon-processor

automaton (DFA) for packet validation. Nevertheless, there
is work to be done in order to have a good base of widely
known optimizations [9]. On the other hand, a lot of effort
has been put to improve existing analysis and optimizations
to enhance code generation for VLIW’s. For example, the
instruction scheduler uses alias information at machine code
level to aggressively build the data dependency graph, thus
achieving better code schedules. New bundle-aware schedul-
ing heuristics, well suited for these architectures, have been
also added to LLVM [13].

MAC-based arithmetic implies new semantics that are
normally handled at compiler back-end side, e.g. accumu-
lations. Depending on the MAC internal structure, this ap-
proach might require more sophisticated implementations.
Front-end support that takes into account this kind of arith-
metic would be desirable here to relieve the instruction selec-
tor from complex pattern matching logic. Extensions speci-
fied by the technical report ISO/IEC 18037 [11] concerning
saturated fixed point operations are not yet supported by
clang, the default C front-end of LLVM. To our knowledge,
only address spaces are integrated and fully supported. This
constraint has led us to the insertion of new target-specific
intrinsic functions to provide explicit saturation semantics.

4. PROGRAMMING INTERFACE
Mephisto is integrated into a data-flow based environ-

ment. Its common interface to the external processing units
is composed by input and output FIFOs. Two specific func-
tions allow the programmer to read and write them, readf
and writef. The accumulation example of listing 1 performs
a simple mathematical operation that can be defined as:

R1 =

400∑

i=1

ūi × vi (1)

where ui and vi are two complex numbers and v̄ represents
the conjugate of v. The values of u and v are interleaved
in the input data stream and read one by one. Finally, the
result of (1) is sent to the output FIFO.

Listing 1: accumulation.c – Accumulation example
// in t2 = LLVM vec tor type <2 x int>
i n t2 D1 , D2 , R1 ;
long long acc0 = 0 , acc1 = 0 ;
for ( int i =0; i <400; i++) {

// read FIFO
D1 = read f ( ) ;
D2 = read f ( ) ;
// conj (D1) ∗ D2
acc0 += D1 . x ∗ D2 . x + D1 . y ∗ D2 . y ;
acc1 += D1 . x ∗ D2 . y − D1 . y ∗ D2 . x ;

}
// ar i t hme t i c s h i f t and sa tu ra t i on
R1 . x = a s r s a t ( acc0 , 1 8 ) ;
R1 . y = a s r s a t ( acc1 , 1 8 ) ;
// wr i t e FIFO
wr i t e f (R1 ) ;

As explained in section 3.1, saturation is introduced with
intrinsic functions: asrsat. An arithmetical right shift of the
accumulator is performed, 18 bits for precision reasons, be-
fore its value get saturated to 16 bits. The approach exposes
several target-specific behaviors offering a good trade-off be-
tween programmability and control on the generated code.



However, the former needs to be improved and high-level
language constructs are required.

5. WORK DESCRIPTION
The general overview of the compilation flow is shown

in figure 4. It describes the most important passes of our
code generation pipeline starting from “target-independent”
passes, till instruction selection, and ending at assembler
code emission. All along the section 2, we have introduced
the principal constraints imposed by the architecture. The
following sections further develop those constraints and ex-
plain how we have addressed them.

Loop Builder

Instruction

Selection

Contextualizer

Specializer

Register

Allocation

Scheduling

Bundling

Emit

Assembler

Clusterizer

Figure 4: General overview of the code generation
flow for Mephisto

5.1 Contextualization
As introduced in section 2.3, Mephisto implements five

address generators. They proposes distinct computing con-
texts for address calculation that are intended to access dif-
ferent memories. Thus, operations cannot be arbitrarily af-
fected to operators without knowing before to which context
they belong to. One important context element from the C
language is its type system. However, there is no direct
relation to the execution contexts imposed by address gen-
erators. In other words, address and data can be either ex-
plicitly (casts) or implicitly (array indexation) mixed. The
greedy instruction selector of LLVM uses a two dimensional
approach, i.e. machine instructions are mainly selected fol-
lowing the operation type and its associated data types.
Nevertheless, the aforementioned constraint shows that the
granularity of the instruction selector is not precise enough
and instructions need to be contextualized in order to be
correctly selected. For technical reasons, we have decided to
not modify it but rather to fix its output.

Contextualization can be done at different instruction rep-
resentation levels. The higher in the CodeGen pipeline is
executed, the more optimization phases we benefit from.2

A pass at IR level has been implemented to separate data
dependent instructions used to compute addresses belong-
ing to distinct memories and even different access types,
e.g. when addressing data registers. Given the Directed
Acyclic Graph (DAG) G = (I, E) of data-dependent in-
structions, where I is the set of instructions, it walks G
starting from a random load or store i0, save its address

2In particular the Length Strength Reduce (LSR) optimiza-
tion pass

space number and look if it finds a cross address space us-
age at some other data-related load or store in. The data
path P = (i1, in−1) → P ′ is then cloned and in, the faulty
memory access, is modified to use i′n−1 as its new operand.
Cloned instructions are remembered and reused if necessary.
The process is repeated until all conflicting paths are elimi-
nated. As an example, listings 2 and 3 show a simple C code
and its corresponding IR output.

Listing 2: ireg.c – Array mapped to the data register
file
stat ic i n t2 a t t r i b u t e ( ( addre s s space ( 257 ) ) )

reg [ 3 2 ] ;
for ( int index = 0 ; index <16; index++) {

reg [ index ] = read f ( ) ;
reg [ index+16] = read f ( ) ;
reg [ index ] = reg [ index ] + reg [ index +16] ;

}

Listing 3: IR output of ireg.c
for . body :

%index .08 = phi i 16 [ 0 , %entry ] ,
[ %inc , %for . body ]

. . .
%array idx = gete l ementptr inbounds

[32 x <2 x i16 >] addrspace (257)∗ @ireg . reg ,
i 16 0 , i 16 %index .08

s t o r e <2 x i16> %0, <2 x i16>
addrspace (257)∗ %array idx

%add = add nsw i16 %index . 08 , 16
%array idx2 = gete l ementptr inbounds

[32 x <2 x i16 >] addrspace (257)∗ @ireg . reg ,
i 16 0 , i 16 %add

s t o r e <2 x i16> %1, <2 x i16>
addrspace (257)∗ %array idx2

%2 = load <2 x i16> addrspace (257)∗ %array idx
; de f %add6
s t o r e <2 x i16> %add6 , <2 x i16>

addrspace (257)∗ %array idx
%inc = add nsw i16 %index . 08 , 1 ; IV
. . .

Here, we have an array mapped to the data register file
for which three stores and one load appear in the IR output.
Following Mephisto’s specifications, load and stores from/to
the data register file must use register pointers from Pra/b
and Pw, respectively, as well as its associated operators.
Figure 5 shows the data relationship between the address
computing of load and stores. Such relationship must be
broken to have independent address computing operations
between read and write memory accesses.

Picking the load node, it finds the path (3, 2) first and
clone it. Then it discovers (3, 4, 5, 6, 7, 8, 9) and clone it,
reusing already cloned nodes such as arrayidx’, breaking the
data dependency. The conflict resolution is also applied to
address computing regarding memories A and B.

The IR-side contextualizer enables high level optimiza-
tions but it is not used to guide the instruction selector. Be-
cause LLVM preserves the SSA form at machine level code,
the contextualizer was easily ported to handle machine in-
structions, transforming generic selected instructions to its
context-based versions.

5.2 Zero-cost loop construction
Mephisto provides zero-cost loops, i.e. a pair of instruc-

tions that hide loop counter decrements and verification for
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Figure 5: Steps toward contextualization: (a) The
data dependency graph (b) The cloned node ar-

rayidx eliminates the data dependency between the
first two stores and the load (c) Another conflicting
path has been found and cloned in order to break
the dependency between the load and the last store.

exit condition. Another back-end in LLVM has exactly the
same support, Hexagon. Contrary to Hexagon’s implemen-
tation of the hardware loop builder, we have put our loop
builder logic on IR side. New intrinsics representing the
hardware loop semantics are inserted automatically by our
IR pass. While it requires new intrinsics and additional code
for instruction selection, it benefits from the ability of LLVM
Scalar Evolution pass to detect trip counts.

Listing 4: cloop.c – Simple C loop
for ( int i =0; i <200; i++)

w r i t e f ( r ead f ( ) ) ;

Listing 5: IR output of cloop.c
for . body :

%i . 01 = phi i 16 [ 0 , %entry ] ,
[ %inc , %for . body ]

. . .
%inc = add nsw i16 %i . 0 1 , 1
%ex i tcond = icmp eq i16 %inc , 200
br i 1 %exitcond , l a b e l %for . end ,

l a b e l %for . body

for . end :
r e t void

Listings 4 and 5 show a simple C loop and its IR output.
The transformed code is listed in 6.

The intrinsics llvm.meph.enter.loop and llvm.meph.end.loop
are inserted. This transformation will replace induction vari-
able uses that might become dead after replacement, such

as %inc and %i.01 in the transformed code below. We run
dead code elimination to clean up the output.

Listing 6: Hardware loop construction
entry :

; I n t r i n s i c s
c a l l void @llvm .meph . ente r . loop ( i 16 199)
br l a b e l %for . body

for . body :
%i . 01 = phi i 16 [ 0 , %entry ] ,

[ %inc , %for . body ]
; Dead IV
%inc = add nsw i16 %i . 0 1 , 1
; Dead comparison
%ex i tcond = icmp eq i16 %inc , 200
; I n t r i n s i c s
%1 = c a l l i 16 @llvm .meph . end . loop ( )
%2 = icmp eq i16 %1, 0
br i 1 %2, l a b e l %for . end ,

l a b e l %for . body

5.3 Clusterization
The cluster assignation of instructions is a well known

problem and many solutions has been proposed in the liter-
ature [6, 19, 5]. Starting from the DAG of data-dependent
instructions, they try to find a k-way partitioning solution of
the DAG based on multiple criteria or cost functions. A lot
of effort has been put to the cluster assignation in order to
reduce inter-cluster copies, register pressure, balance clus-
ter load, among other parameters, while looking for better
overall schedule latency. The problem is addressed either be-
fore, during or after instruction scheduling. Unfortunately,
Mephisto does not fill the hardware functionalities expected
by all these solutions.3Even if it provides replicated opera-
tors, we have seen that they cannot be arbitrarily associated
to instructions. Nevertheless, clusterization still applies on
accumulators but under more constrained conditions than
previous research work. In section 2.2, accumulator related
constraints have been introduced. For the sake of simplicity,
we re-enumerate them below:

1. Copies between accumulators are not allowed.
2. Accumulators cannot be spilled. They serve strictly to

hold intermediate results.
3. Accumulation is performed on a single accumulator,

i.e. two different registers cannot be specified as source
and destination of an accumulation operation.

While (2) is addressed by memory promotion passes,4 (1)
and (3) remain open problems and will be handled here.

Mephisto contains two MAC’s, MAC0 and MAC1, with
two accumulators each one. We have named acc0-1 and
acc2-3 the accumulators belonging to MAC0 and MAC1,
respectively. Accumulator groups, that we simply called
MAC0 and MAC1, are considered as register files or clusters.
Widely known clusterization algorithms could have been
used here if copies would have been fully, or at least partially,
supported. Because register values cannot be transferred,

3Homogeneous usage of operators and support for inter-
cluster copies.
4On the other hand, register allocation might try to add
spill code if it runs out of accumulators. Rematerialization
has been forced to address this issue



we need to resort to different algorithms for clusterization
in order to avoid inter and intra-cluster copies.

Our clusterization pass builds the data dependency graph
called AccDef tree. Nodes of this tree represent virtual ac-
cumulator definitions, and edges definition-use relationships.
Property AccDef tree does not have join points other than
those introduced by φ nodes.

This result follows from the fact that there is no instruc-
tion in Mephisto ISA that defines an accumulator register
while taking two or more accumulators as source operands.

We deduce from the above property that leafs of AccDef
cannot have more than one predecessor.
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Figure 6: Clusterization steps: (a) The AccDef tree
(b) Preclusterization (c) Cloning based on previous
phase to avoid conflictive nodes.

We have divided the accumulator clusterizer into two phases:
Pre-Clusterization and Clusterization and Cloning. The“Pre-
Clusterization” phase starts by assigning a cluster to each
tail or leaf node. Then, it traverses the tree in a depth-
first manner looking for dominance properties between the
current node and tails. According to this information, the
node is assigned to the cluster to which the dominated tail
belongs. If it cannot decide, it is left unassigned and con-
flicts are resolved later by the next phase. Strong connected
components in the tree are taken into account and kept in
the same cluster.

The “Clusterization and Cloning” phase consists in node
clustering or duplication if conflicting edges are found. Con-
flicting edges are those that link either non-clustered and
clustered nodes or simply nodes with different affected clus-
ters. The former case is handled by cluster assignation if
possible while the latter will duplicate nodes to break data
dependencies.

Figure 6 shows the AccDef tree of an existing algorithm.

We can see that virtual accumulator %vreg15 is duplicated
because it cannot decide whether %vreg15 should be as-
signed to MAC0 or to MAC1. It is worth to note that cloning
does not always imply a performance penalty in Mephisto
as newly inserted nodes can be hidden by the packetizer.

We have designed the clusterizer to avoid inter-cluster
copies but intra-cluster ones have not been treated yet. We
strongly rely on the register coalescer for intra-cluster copy
elimination.

5.4 Register allocation
Register allocation in LLVM is performed after SSA de-

struction, like most production compilers, e.g. gcc.5 It is
currently far from the effectiveness of register allocations in
older compilers, but very flexible and relatively easy to re-
target. Figure 7 show the standard pipeline of passes for
register allocation.

PHI

Elimination

Two Address

Instructions

Liveness

Analysis

Register

Coalescing

Basic

RegAlloc

Fast

RegAlloc

Greedy

RegAlloc

PBQP

RegAlloc

Figure 7: Standard register allocation pipeline in
LLVM.

The main register allocator is the Greedy one. Addition-
ally, LLVM provides several allocators for research purposes.
The Greedy allocator is based on the linear scan technique
detailed in [21] with advanced heuristics for live interval
splitting and spilling [18]. Because of the implemented back-
end model, register allocation in Mephisto becomes some-
what special.

The data register file organization cannot be compared to
other widely known VLIW architectures, such as TriMedia
[24] or TI C6000 [10], where the output ports are not explic-
itly included in the ISA. A similar register file organization
is proposed in [26] for which no compilation-related work
has been found. Hence, we propose a multi-phase allocation
scheme, described in figure 8, to efficiently handle both allo-
catable spaces: the data register file and its output register
ports. The approach is simple, an allocation level is associ-
ated to register classes and registers are allocated in-order
following the register class they belong to.

We expose data register file slots as usual static registers
in order to let the allocator make an efficient use of this
space. Actually, the allocated registers are memory slots,6

and loads/stores should be used to read/write its values.

5http://gcc.gnu.org
6From a hardware point of view, it is designed as an array
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Figure 8: Multi-phase register allocation for
Mephisto.

Then, the greedy allocation output requires additional trans-
formations.

The Register Indexer pass will come after to insert loads
and stores according to the access required at each instruc-
tion.7 It will also add precise alias information in order
to avoid unnecessary memory dependencies improving the
scheduled code. The output ports are then allocated by the
basic allocator at level two.

Spill code. The level two basic allocator selects one register
from the available list or, if it is empty, adds spill code to
remove the interference. Listing 7 shows an example where
two loads are inserted by the register indexer and two new
virtual registers are created in consequence. These virtual
registers represents the output ports and will be allocated
at level two.

Listing 7: Register indexer: add loads to virtual
output registers
acc += mul r1 , r2
// ∗∗∗ Trans lated to ∗∗∗ //
load %v i r t ou t0 , [ $1 ]
load %v i r t ou t1 , [ $2 ]
acc += mul %v i r t ou t0 , %v i r t ou t 1

Mephisto provides only two output ports and spill code
plays an important role. Our approach makes spill code of
output ports straightforward.

Every time the allocator needs to save and reload the cur-
rent value of certain virtual output register, load remate-
rialization is performed. The loaded value comes from an
allocated slot at allocation level one and it is guaranteed to
be preserved until its last use. Therefore, the spiller can
rematerialize new loads at every virtual output port use if
necessary without incurring in memory aliasing problems.

The main drawback of this approach is the lack of indi-
rect register addressing, which is one of the key features of
Mephisto. In order to tackle this issue, we have allowed a
dynamic management of the register file.

Dynamic allocated registers. The data register file is split
in two regions: static and dynamic. The static region is
statically managed by the greedy allocator as detailed above,
while the dynamic one is user-defined and represented as an
array of integer vectors from high level languages. It exposes
virtual output ports earlier in the compilation pipeline but
its allocation is delayed till after the register indexer pass.

of registers with indirect addressing capabilities via register
pointers as introduced earlier.
7Redundant loads are eliminated.

Dynamic regions enable full use of address generators ca-
pabilities. As an indirect consequence, the scheduler will be
able to remove false positive memory dependencies based on
the fact that both regions do not overlap.

The contextualizer. Each output port has distinct associ-
ated register pointer files (Pra and Prb) with its correspond-
ing arithmetic units. Therefore, the bank of register point-
ers to be used will be fixed only after the second allocation
level. For this reason, virtual registers intended to address
the dynamic region are left to the last allocator.

Following the selected output register, the Contextualizer
splits address calculations to fit into the right arithmetic unit
along with its register pointer file. Its behavior is equivalent
to the contextualizer already described in section 5.1.

6. PRELIMINARY RESULTS
The work presented in this paper is mainly focused on the

correctness of generated code. The full set of constraints
introduced by Mephisto has been successfully modeled in
LLVM allowing us to go further in the compilation process.
Currently, a custom assembler verifies code correctness and
produces binary code. The preliminary results come from
an evaluation of our back-end from a code size perspective.
Functional simulations have been performed successfully on
a subset of algorithms. Unfortunately, the functional sim-
ulator does not allow us to make performance quantifica-
tions regarding execution time. In order to fully understand
the results, we will give a brief introduction to the binary
organization in Mephisto. For further details, we strongly
recommend to read [3].

Mephisto implements a two-level instruction cache organi-
zation. The instruction is 64 bit wide and split into indexes,
which are used to address the second level cache. At the
second level, there is a total of 8 tables called profile tables.
The set of profile table entries specified by the indexes of the
instruction at the first level cache forms the VLIW instruc-
tion, which is 270 bit wide. Therefore, the actual desired
behavior of operators is specified in this cache. Figure 9
shows the cache relationship. The last field of the instruc-
tion is a sequence command for control flow specification.
Table 1 details the controlled operators per profile table.
This organization enables a great level of code compression
by reusing table profiles entries.

VLIW instruction indexes

... Profile

Tables

Sequence

270 bits

64 bits

Figure 9: Instruction cache architecture

We use two algorithms for the evaluation, which are a
part of the LTE implementation: MIMO encoding and Car-
rier Frequency Offset (CFO) Tracking. Table 2 shows the
size of profile tables and first level cache between the code
automatically generated by LLVM and its handwritten ver-
sion (implemented using the framework proposed in [3]).



Table 1: Profile table and operators
Profile Table Operators

MACt MAC0 & MAC1
AGmat Address Generator of memory A
AGmbt Address Generator of memory B
AGat Address Generator of register file

Port a
AGbt Address Generator of register file

Port b
AGwt Address Generator of register file

for write accesses
Auxt CORDICs, Divider, Comparison
FIFOt Input and output FIFOs

Table 2: Size of profile tables and first level cache
Code generated by LLVM Handwritten code
MIMO encoding CFO MIMO encoding CFO

MACt 8 16 3 9
AGmat 1 6 0 0
AGmbt 0 1 0 0
AGat 3 3 4 8
AGbt 1 2 0 5
AGwt 8 15 2 6
Auxt 0 4 0 4
FIFOt 2 2 1 3

Size of first level VLIW cache
32 75 10 26

First of all, we notice that certain address generators are
not used at all in the second case. This is due to the fact
that both cases have not been implemented exactly in the
same way. For instance, we have used local variables instead
of using data register file mapped arrays. Local variables are
stored in memory A and hence increments its corresponding
profile table size.

The generated code is ISA compliant but not fully opti-
mized. Many architecture specific optimizations are possi-
ble in Mephisto. For example, it implements the delayed
issue technique introduced in [9]. Given its cache organiza-
tion, this technique allows a high degree of code compaction,
which will reduce the usage of first level cache. In [3], a
lot of hardware particularities must be taken into account
when coding, including exposed instruction latencies, valid
instruction bundles, etc. Low level coding is an error-prone
and time consuming task. LLVM offers a good trade-off be-
tween programmability and efficiency but we still need to
work on custom optimizations passes in order to improve
the code performance.

7. RELATED AND FUTURE WORK
Code generation for embedded processors, micro-controllers

and ASIPs is a mature domain of research and innovation,
with branches and challenges in many technical areas [17,
12].

Among these, code generation for clustered VLIW proces-
sors is a difficult problem and has been an active research
area until recently, starting with Ellis and the bottom-up
greedy (BUG) algorithm [6]. The unified cluster assignment
(UAS) [19] is also a popular heuristic. Eriksson et al.[7] pro-
pose a comprehensive survey of the combined scheduling and
cluster assignment problem, as well as an optimal (albeit non
scalable) algorithm. On the other hand, post register alloca-
tion scheduling with accurate information about instruction

latencies is necessary when targeting non-interlocked pro-
cessors such as Mephisto. We have implemented a custom
scheduler with additional heuristics complementing the cur-
rent VLIW-aware LLVM scheduler. However, we lack of
interesting scheduling techniques, e.g. software pipelining
[2], which are quite profitable considering the underlying ar-
chitecture and our application domain.

Induction variable detection has been studied extensively
because of its central role in loop optimizations [25]. LLVM
implements a variation of the technique proposed by Pop
[22]. In this paper, it is primarily useful to support induc-
tion variable canonicalization [16], and to generate code for
address generators [8, 15].

SDR algorithms are difficult to implement efficiently in
classical languages such as C, even with its DSP extensions
[11]. Usually these integer-based algorithms result from a
discretization of a floating point-based algorithm. But the
C language, even with DSP extensions, makes it difficult
to reflect and take into account all the peculiarities, con-
straints and opportunities that come with the discretization
decisions. These decisions are highly correlated with middle-
end optimizations such as partial redundancy elimination
and vectorization, and back-end passes such as instruction
selection, scheduling, and register allocation. The co-design
of data types and operators (possibly in a domain-specific
language) is one promising direction, with some interesting
advances in high-level synthesis [27]. A more comprehen-
sive study of the optimization space and operations research
modeling should also be conducted.

8. CONCLUSION
Application specific VLIW processors are well suited to

the implementation of complex algorithms within highly con-
strained environments. Application specialization and pow-
er/energy optimizations tend to go against programmability
and to raise the barrier for the automatic generation of effi-
cient code.

We presented some important architectural constraints of
Mephisto, a highly specialized and power-optimized VLIW
processor. We also presented our implementation of an auto-
matic code generator based on LLVM that overcomes these
constraints. Among these, we isolated the addressable reg-
ister files as one of the most interesting scientific and engi-
neering challenges. We introduced contextualization, an al-
gorithm to partition the dependent computing of data and
addresses, going beyond the decoupling induced by tradi-
tional address generators. We also proposed a specific back-
end compilation flow, decomposing register allocation into
three-steps. Many other constraints not included in this
paper—but not less important—have handled, to allow the
generation of ISA compliant code. Our preliminary evalua-
tion is encouraging, but further work on code optimization
and on language extensions is required to improve the per-
formance of the generated code.
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