Cache-aware static scheduling for hard real-time multicore systems based on communication affinities
Lilia Zaourar, Mathieu Jan, Maurice Pitel

To cite this version:

HAL Id: cea-00919483
https://hal-cea.archives-ouvertes.fr/cea-00919483
Submitted on 16 Dec 2013
Cache-aware static scheduling for hard real-time multicore systems based on communication affinities

Lilia Zaourar and Mathieu Jan
CEA, LIST
Embedded Real Time Systems Laboratory
F-91191 Gif-sur-Yvette, France
Email: Firstname.Lastname@cea.fr

Maurice Pitel
Schneider Electric Industries
37, quai Paul Louis Merlin
F-38050 Grenoble, France
Email: Maurice.Pitel@schneider-electric.com

Abstract—The growing need for continuous processing capabilities has led to the development of multicore systems with a complex cache hierarchy. Such multicore systems are generally designed for improving the performance in average case, while hard real-time systems must consider worst-case scenarios. An open challenge is therefore to efficiently schedule hard real-time tasks on a multicore architecture. In this work, we propose a mathematical formulation for computing a static scheduling that minimize L_1 data cache misses between hard real-time tasks on a multicore architecture using communication affinities.

I. INTRODUCTION

Multicore processors have become the norm in many execution platforms in various fields. Such architectures come with a cache memory hierarchy made of several levels, shared or not between cores. Figure 1 represents the typical cache hierarchy that can be found in a multicore architecture with two levels of cache, noted L_{1x} and L_2 where x is the number of the core (in the figure x ranges from 1 to 4). In such architectures, the L_2 cache is larger but provides slower access time than the L_1 cache. Generally, the L_2 cache is unified and shared among all cores, while at the L_1 level data and instruction caches are separated and private to each core. However, in this work we focus only on the data caches.

![Classical cache memory hierarchy of a multicore architecture.](image)

Using such multicore architectures for developing hard real-time systems is an important research area. Multicore are generally tuned for optimizing performance for the average case, while hard real-time systems must consider worst-case scenarios due to certification constraints. A major problem lies in the management of cache for mastering the impact of conflicts on the Worst-Case Execution Time (WCET) of each task. Designing cache-aware scheduling policies is becoming a popular research area. In this work, we show how a static scheduling that minimizes L_1 data cache misses between hard real-time tasks on a multicore architecture can be computed.

II. RELATED WORK

[2] focuses on the memory-to-L_2 traffic in the cache hierarchy of soft real-time systems. They propose a two steps method to discourage the co-scheduling of the tasks generating such traffic. First, the tasks that may induce significant memory-to-L_2 traffic are gathered into groups. Then at runtime, they use a scheduling policy that reduces concurrency within groups. [1] also proposes several global multi-core scheduling strategies for soft real-time systems to minimize the L_2 cache trashing. Co-scheduling of the tasks of a same group is used to optimize the efficient use of the L_2 shared cache. Task promotion is another example of a studied scheduling policy.

When considering hard real-time systems, to the best of our knowledge we are only aware of [4]. Cache-partitioning techniques are used to avoid interferences, at the L_2 cache level, between the tasks that are running simultaneously. In addition to regular temporal constraints used within a schedulability test, cache constraints due to cache-partitioning are added and steer the computation of the scheduling. They propose a linear programming formulation to solve this problem and an approximation of this formulation for larger task sets.

The closest work to ours is [5]. While proposed cache-aware scheduling strategies are evaluated using a soft-real time kernel, the results can also be used for hard real-time systems. They propose a bin packing approach to evenly distribute the Working Set Size (WSS) of the tasks on all cores in order to reduce conflicts. The resolution algorithm is based on the next fit decreasing heuristic applied on the tasks ordered by their decreasing WSS. Besides, they rely on a notion of distance between caches of non-uniform memory architectures to further optimize the solution. This is only used for the tasks that share some common memory area and are gathered into groups. However, it is unclear how the common memory area
defines a group as well as how groups are reduced when the heuristic fails to allocate a group.

To summarize, most of the existing cache-aware scheduling proposal have focused on the efficient use of the L_2 cache.

III. TASK MODEL AND NOTATIONS

Let $\Gamma = \{\tau_1, \tau_2, ..., \tau_n\}$ be a set of n independent, synchronous, preemptible and periodic tasks. Γ is handled using the implicit deadline periodic task model. Each task $\tau_i \in \Gamma$ has the following temporal parameters $\tau_i = (P_i, C_i)$. P_i is the period of the task and C_i is the WCET. A job i represents an instance of a task with C_i its WCET. Let H be the hyper-period of task set. It equals to the least common multiple of all periods of tasks in Γ.

As in [6], the hyper-period H is divided in intervals, an interval being delimited by two task releases. A job can be present on several intervals, and we note $w_{j,k}$ the weight of job j on interval k. We denote by I the set of intervals and $|I_k|$ the duration of the kth interval, $|I_k| = t_{k+1} - t_k$. The weight of each job is the amount of processor necessary to execute job i on interval $|I_k|$ only (it is not an execution time but a fraction of it). J is the job set of all jobs of Γ scheduled during the hyper-period H.

Then, temporal schedulability constraints are expressed using a linear program described in [7] to compute the optimal job weights on each interval for all tasks $T_i \in \Gamma$. First, the sum of all job weights on an interval does not exceed the processor maximum capacity:

$$\sum_{i \in I_k} w_{i,k} \leq M, \forall k \quad (1)$$

Then each job weight does not exceed each processor maximum capacity:

$$0 \leq w_{i,k} \leq 1, \forall k, \forall i \quad (2)$$

Finally, jobs must be completely executed:

$$\sum_{k \in E_i} w_{i,k} \times |I_k| = C_i, \forall i \quad (3)$$

IV. PROBLEM FORMULATION

The problem we address in this work is to reduce L_1 data cache misses when scheduling hard real-time tasks on a multicore architecture. To this end, we maximize the co-scheduling on a same core of tasks that exchange data while still ensuring temporal schedulability constraints. We assume a static knowledge of data exchange between the tasks of an application. Therefore, we extend the classical periodic task model with the WSS parameter for each task and model this problem using a variant of the knapsack problem. We also assume that the system is schedulable and hence we only seek to optimize the allocation of the tasks on the L_1 caches. In addition, we suppose that the size of a L_1 cache enables to host several tasks simultaneously, a valid hypothesis in the case studies we consider. We leave as future work the management of cache conflicts, using techniques such as in [9].

The multicore platform is made of m cores and we note C_{L_1} the capacity of each data cache L_1 (we assume the L_1 caches to have an equal size). Finally, from the data of the application we can calculate WSS_i which is the WSS of job J_i. This is computed by adding the size of each data section from the binary of an application. We note a_{ij} the affinity between the job i and the job j. The affinity between two tasks is defined as the number of communication flows between them. Higher is the number of communication flow, higher is the affinity between two tasks. Communication flows between tasks are extracted using the software architecture of the considered hard real-time application.

Then, integrating into the previously described schedulability constraints require to introduce a decision variable representing the allocation of the tasks on cores for each intervals. Let x_{ijk} be this decision variable that is equal to 1 if the job i is assigned to cache j during time interval $I_k, k \in \{1, ..., T\}$ and 0 otherwise. The sum of the WSS of the jobs allocated to a cache should not exceed its capacity:

$$\sum_{i=1}^{n} WWS_i \times x_{ijk} \leq C_{L_1}, \forall j, \forall k \quad (4)$$

In addition, each job must be assigned to a single cache:

$$\sum_{j=1}^{m} x_{ijk} \leq 1, \forall i, \forall k \quad (5)$$

Besides, to link the temporal schedulability constraints with the aforementioned cache constraints, the following relationship can be define: if $\sum_{i=1}^{n} x_{ijk} = 0$ then $w_{i,k} = 0$ and if $\sum_{i=1}^{n} x_{ijk} = 1$ then $w_{i,k} > 0$. Finally, since our aim is to maximise affinity L_1, we obtain the following objective function:

$$Max(Z) = \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{k=1}^{T} a_{ij,k} \times x_{ijk} \times x_{i'j,k}, \forall i, \forall j, \forall k \quad (6)$$

V. CONCLUSION AND FUTURE WORK

In this work, we show how we can extend classical (temporal) schedulability constraints to minimize L_1 data cache miss between communicating hard real-time tasks on a multicore architecture. In future work, we plan to generalise the formulation to address other level of a cache memory hierarchy. As our formulation of the problem uses a quadratic knapsack, known to be NP-hard [8], another next step is therefore the linearization of the objective function. Then, we plan to implement it using the CPLEX solver to generate the static scheduling of hard real-time tasks. Finally, we plan to test our method on several hard real-time industrial applications.

REFERENCES

