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Abstract

Within a living body, cells are constantly exposed to vasianechanical con-
straints. As a matter of fact, these mechanical factors alaital role in the
regulation of the cell state. It is widely recognized thdiscean sense, react and
adapt themselves to mechanical stimulation. However shiyations aimed at
studying cell mechanics directiy vivoremain elusive. An alternative solution is
to study cell mechanics via vitro experiments. Nevertheless, this requires im-
plementing means to mimic the stresses that cells natunatigrgo in their phys-
iological environment. In this paper, we survey variousnogtectromechanical
systems (MEMS) dedicated to the mechanical stimulatioivirfg cells. In par-
ticular, we focus on their actuation means as well as thberent capabilities to
stimulate a given amount of cells. Thereby, we report acinaheans dependent
upon the fact they can provide stimulation tsiaglecell, target a maximum of a
hundredcells, or deal withthousand®f cells. Intrinsic performances, strengths
and limitations are summarized for each type of actuatoralde discuss recent
achievements as well as future challenges of cell mechiamalstion.

Keywords: Cell mechanostimulation, cell stretching, cell loadingj) c
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indentation, microelectromechanical systems (MEMS).

1. Introduction

Itis widely recognized that mechanical and biochemicas@ezurring at the
cellular level prove to be intimately correlated througtipeocal mechanochem-
ical conversion pathways. Indeed, numerous studies haldidinted the fact
that surrounding mechanical stresses sensed by a cell naaycellular bio-
chemical signals, which in turn may direct and mediate ¢ate cellular pro-
cesses. Thereby, externally applied forces may inducepnaf éfects on cel-
lular functions as essential as apoptosis (programmedleath), growth, pro-
liferation, contractility, migration or dierentiation (see Bao and Suresh, 2003;
Wang and Thampatty, 2006; Janmey and McCulloch, 2007; Lte#.,e2007;
Hoffman and Crocker, 2009 and references therein). This aptitudhodulate
cell biochemical reactions constitutes the essence of ya aetive field of re-
search which might lead to promising applications in bibtestogy as well as in
medicine. Dysfunctions in mechanotransduction processesibute to the un-
derlying causes of major diseases including osteoporogiertension, asthma,
malaria or cancer (Lee and Lim, 2007). By regulating ceflbimchemical re-
actions via proper mechanical signals, development ofgbagiical conditions
might be ideally limited. For instance, one might ultimgtehvision cell-based
therapies wherein mechanicdfects on cell fate and growth couldfect tissue

remodeling and regeneration (Kim et al., 2009a)
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Email addressesdenis.desmaele@cea. fr (Denis Desmaéle),
mehdi.boukallel@cea. fr (Mehdi Boukallel),stephane.regnier@upmc.fr (Stéphane
Régnier)

Preprint submitted to Journal of Biomechanics May 25, 2015



22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Several articles have already reviewed the large panelmdraxental tech-
niques and microelectromechanical systems (MEMS) re@dde conducting
mechanobiology studies at the cell level (Van Vliet et a002, Huang et al.,
2004; Geitmann, 2006; Addae-Mensah and Wikswo, 2008; Nomhal., 2008;
Loh et al., 2009; Sen and Kumar, 2010). These references usedly dis-
cussed tools for cell mechanics at a systemic level, wheregsfew reports
have independently analyzed the actuation or measuremenotgbes involved
in these systems. To the best of our knowledge, only Browpgsed a review
focused on actuation techniques intending to replicateliffierent types of me-
chanical stresses that cells fanevivo (Brown, 2000). Brown discussed systems
able to mimic compressive strains (cartilage and bone egflfgerience compres-
sive loads), elongations (lung and heart cells endurecsired cycles during
breathing and beating), as well as shear stresses (in bessekhs, cells are con-
tinuously subjected to fluid shear stress from blood flow).wekzer, Brown’s
review focused mainly on early laboratory apparatus whienenonly able to
address large cell cultures or tissues. Meanwhile, recavdrees in micro-
fabrication techniques have facilitated interactiondwisblated cells and more
realistic complex cellular environment. Thereby, MEMS eaptoday as ideal
interfaces to integrate mone vivo-like stimuli in in vitro settings.

The aim of this paper is to provide an updated overview ofatatn tech-
niques dedicated to the mechanical stimulation of livintisceia MEMS. In
particular, we report initial characterization of prinlgp as a function of their
inherent capabilities to target a given amount of cells .gdéer, sections present
various MEMS intended for the stimulation of a single cedihg of cells (e.g.,
maximum 200 cells), and large populations of cells (e.gnimim 1 cells).

Finally, discussion of the strengths and limitations focleenethodology and a
3
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comparative analysis are also included.

2. MEMS for the mechanical stimulation of one cell

This section introduces several MEMS that have been repantehe lit-
erature for the mechanical stimulation of a single isolatell By definition,
the terminology MEMS employed throughout the paper wilereto systems
encompassing electrical, optical, or mechanical partsufisatured via micro-
fabrication processes. It is however worth noticing that pnesence of micro-
scopic components is not always dfstient condition to consider a system as
a MEMS. For instance, micropipettes (e.g., Evans and Yel®§9; Sato et al.,
1990; Miyazaki et al., 2000) or microcantilevers used inn@toforce micro-
scopes (e.g., Lekka et al., 1999; van der Rijt et al., 200@&ztlal., 2008; Cross
et al., 2008; Pillarisetti et al., 2008; Boukallel et al.02) are usually considered
as experimental tools by the research community (see ftanne the classifica-
tion adopted in the reviews of Kim et al., 2009a or Loh et &09). Accordingly,
and even though they are implicitly considered later in malsis, they will not
be described in details in this paper.

In order to avoid too many subcategories in our classifioatiee also state
the following assumptions. Although mechanical stimuin ¢ applied upon
cells either by a controlled force or a controlled displaeamactuation means
are reported hereafter independent of the type of physigaiti Similarly, no
particular distinction is made between systems providingdation globally
(i.e., stimulation is provided to the entire cell structuce locally (i.e., only
a given cellular region is excited). In addition, we do ndfetentiate actua-
tion means as a function of the type of cells they can target, @dherent or

suspended cells). Finally, the consideration of auxileguipments (e.g., laser
4



72 sources, peristaltic pumps, electric power supplies) tsobuhe scope of this

73 paper.

2.1, Electromagnetic fields

Magnetic fields have been used for studying the physicalgitms of cell
cultures for decades (e.g., Crick and Hughes, 1950). Howésehnological
evolutions have been recently reported with the manufexgusf microscopic
magnetic manipulators able to locally stress an isolatddeg., Chiou et al.,
2006; Kanger et al., 2008; Yapici et al., 2008). For instamntéde Vries et al.,
2004, 2005), the authors implemented three magnetic notesn a glass sub-
strate (see Fig. 1) in order to enable the stimulation of @flerctwo dimensions.
Each pole tip was 4m wide, 6 um thick and had a surface roughness ofiirb
Poles spacing was about 26 to ensure the placement of a single cell between
them. To transfer mechanical stimuli, magnetic microspsevere functional-
ized (i.e. coated with biochemicals) to allow their binditmgspecific cellular
receptors. Once anchored, such microbeads could drarzdles Indeed, in
the presence of a spatially varying magnetic field, the féigg experienced by

such a magnetic particle is:
I:mag = V(m' B) (1)

wheremis the magnetic moment of the microparticle @ the magnetic flux
density. Assuming the induced moment is parallel to the reagfield, and the
field is large enough such that the magnetization of the @arsaturates, the
force acting on the magnetic particle can be approximatettiédgquation:

Fmag= MV — 2
= MV @
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whereM andV are the magnetization and the volume of the particle, respec
tively. Thereby, by controlling the amplitude and the direc of the magnetic
flux gradient generated at the center of the three micropde¥ries et al. ex-
perimentally validated actuation forces up to 12 pN on mégmeicrobeads of

350 nm diameter.

cell
@ bead magnetic
poles

Figure 1: Top: sketch illustrating the setup designed by des\et al.: a cell anchored to a glass
plate and embedding a magnetic microbead is placed betivedips of magnetic poles. Bottom:
microscope image showing the extremities of three magnaticopoles. Images adapted from
(de Vries et al., 2005)

2.2. Microactuators generating electric fields

Non-uniform electric fields fber an alternative option to physically deform
an isolated cell (e.g., Engelhardt and Sackmann, 1988; Woal, 2005; Riske
and Dimova, 2006; Dimova et al., 2007; Guido et al., 2010; Qaeen et al.,
2010). Indeed, when a cell is subjected to an electric fieltipale can be in-
duced due to interfacial polarization on the cell membrabepending on the

electric field strength and thetective polarization of the cell, stress can then
6
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occur at the interfaces and result in a deforming force. muminor deforma-
tion, the elastic strain of the cell along the electric fieiicbdtion is estimated as
(Sukhorukov et al., 1998):

Ale _ Ks E?Re[U (w)] (3)
LCO

whereALc represents the deformation of the célc is the original length of
the cell,Ks is a constant representing the elastic properties of thewés the

angular frequency of the AC electric field applied, ddflv) is the complex
Clausius-Mossotti factor that depends on the internattiras of the cell and is

cell-type specific.

Ne

VLN

Figure 2: a) A GUV trapped between the electrodes of a midtbéiage. b) The GUV is de-

formed by electric field. Images adapted from (Korlach et24105)

lllustration of an octode microfield cage able to capturdd hmtate and de-
form isolated giant unilamellar vesicles (GUVSs) is giverrig. 2 (Korlach et al.,
2005). Modulation of the amplitude and frequency of theagdt applied to the
electrode edges permitted the authors to conduct stretthedax experiments

on isolated GUVs, whose size ranged from 5 tq#%n

2.3. Microactuators based on optical gradients

Both refraction and reflection of light exert forces on aljests. If these

forces are negligible in the macroworld, they become sicguifi for microscopic
7
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objects weighing less thanuy. Thereby, light has been used to manipulate
microparticles for four decades (e.g., Ashkin, 1970). Tyatical fibers can be
used to guide the light emanating from a laser source andeceedual beam
laser trap system (e.g., Constable et al., 1993; Singer.,e2@03). In (Guck
et al., 2001, 2002), the authors made use of optical fibers svidiameter of
125um to trap and stretch biological entities. The divergen¢ldseams were
directed at diametrically opposite portions of a susperadidplaced between
them, as shown in Fig. 3. Often termed as optical stretch8) (®the literature,
the net stretching forcEs exerted by such a configuration on a single cell can

be expressed by the following equation (Van Vliet et al.,200

Fos = (4)
(nm -(1-R)nc+ R.nm) (%) +

(nc —(1-R) Ny + R.nc)((l _R) E)

wheren,, andn. are the refractive indices of the surrounding media and cell
respectivelyR s the fraction of reflected light is the speed of light in vacuum,
andP is the total light power. With a 500 mW power laser sources #pproach
allowed Guck and co-workers to generate uniaxial stretcfonces up to 400
pN in aqueous media. This facilitated cell elongations leetw7-30um. Guck

et al. even predicted that given a higher power laser, tharmar stretching

force could achieve or exceed 1 nN.

2.4. Electrothermal microactuators

Thermal expansion caused by electric currents heating eiterial of a

microstructure constitutes another well known actuatiomgple used in MEMS
8
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oplical liber « ¢1-03mm » oplical fiber

Figure 3: Top: representation of the all-fiber OS put forwaydsuck et al. Bottom: a red blood
cell, approximately 1@m in diameter, trapped by OS: before (a) and during (b) sthet(Guck
etal.,, 2001, 2002)

s (€.g., Zhu et al., 2006; Lu et al., 2006; Espinosa et al., 2Qbiristopher et al.,
2« 2010). In particular, large rectilinear displacement par#o the device sub-
125 Strate can be achieved withevron(or V-shaped beam) configurations. Such a

compliant beam is depicted in Fig. 4.

Figure 4: Main dimensions of a V-shaped beam ¢hevror) anchored at its two ends: Joules
heating causes thermal expansion and pushes the apex duwivan an electric current passes

through the structure (Kushkiev and Jupina, 2005)

126

Displacement of the beam ap@&¥ can be approximated via the formula

(Girbau et al., 2003):
L+AL\ . 2L,
AY = ( 5 ) sin arccos{L n AgL)

- Yo (5)
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wherelL is the total beam lengtlh,, is theX axis projection ol /2, andA, is the

increment in length of the beam which can be expressed by:

3 aql®
-7 12k

(6)

In equation 64 is the thermal expansion cieient, k is the thermal con-
ductivity, g = V2/(LWtR) is the heat generation per unit volunveis the voltage
applied between anchors, wheregd , R are the width, thickness and electrical
resistance of the beam, respectively. Multiple pairs ohsvishaped beams can
be serially combined in order to reach higher force disptea®. Indeed, for
small displacement, the total actuation force of severah&ped beams can be
approximated by:

Ewt
413

where E is the Young’s modulus and N is the number of beams.
Compression of a mouse fibroblast (NIH3T3) with an array & ¢ivevrons

has been reported by Zhang et al. (2008) (see Fig. 5). Thistane cell loading

system was power supplied either by low continuous voltgge2 V) when

operating in air, or by high frequency (800 kHz) sinusoidaltages in liquids.

In ambient conditions, itfdered a maximum translation along one direction of

9um. This MEMS allowed the authors to apply compressive ssramto 25%

of the initial cell size.

2.5. Electrostatic microactuators

Many MEMS intended to the fatigue investigation of micro arahomate-
rials have been actuated by interdigitated comb fingersoéipy electrostatic
phenomena (e.g., Kahn et al., 1999; Kiuchi et al., 2007; gtdrand Chasio-
tis, 2009; Takahashi et al., 2009). Bil%logical applicasitiave been reported by
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V-shaped
M electrothermal
actuator array

Figure 5: Electrothermal MEMS cell loader designed for nieiag the compliance of cells.

Image adapted from (Zhang et al., 2008)

Eppell et al. (2006) and Shen et al. (2008), who carried oasststrain exper-
iments on individual collagen fibrils. A multidimensiongd@oach based on a
single linear electrostatic structure was also reporteSduor et al. (2006), who
conceived a micro in-plane biaxial cell stretcher (see Big. The quadrants of
a sliced circular plate were actuated in mutually-orthajalirections, that is
to say that the quadrants moved in horizontal and vertigactions simultane-

ously. The net force developed by such a comb drive actuatgiven by:
et
I:electro =N (5) V2 (8)

where N is the number of comb electrodess the permittivity constant of the
dielectric mediumt is the comb thicknesgj is the comb electrode gap akds
the driving voltage. Theoretically, Scuor et al. claimedtth nominal voltage of
100 V permitted such an electrostatic structure to genexctigation forces up
to 60uN. In practice, only translation amplitudes of the plate evexported. In
ambient conditions, a power supply of 100 V led to a maximuacsgbetween

the quadrants of 3.4m.

11
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Figure 6: lllustration a comb drive system actuating a bakeell stretcher. Drawing adapted
from (Scuor et al., 2006)

2.6. Micro-nanopositioning stages

Commercial micro or nanopositioning stages (or micro-m@mslators) may
be classified asff-chip actuators. Unlike the actuation means presented so far,
they are distantly linked to the microstructure they confsee Fig. 10 for an
illustration). It is worth noticing that the prefixicro-nanooften encountered in
the literature is not related the size of these actuatotstabilneir displacement
resolution. However, they are one of the most widespreadmfir ensuring the
actuation of passive MEMS dedicated to the stimulation 86 c&hereby, posi-
tioning stages are conventionally used to actuate passerestructures such as
microplates (e.g., Thoumine et al., 1999; Desprat et aD6268ernandez et al.,
2006; Gladilin et al., 2007; Chan et al., 2008) or microinees (e.g., Koay et al.,
2003; Peeters et al., 2005; Sato et al., 2007).

Similarly, positioning stages were used by Yang and Sa®$2@006, 2009)
12
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Figure 7: Microscope image of an adherent MKF indented iedltimensions by a force sensor
(Yang and Saif, 2005)

to translate compliant microstructures. The extremityuaflsMEMS is shown
in Fig.7. Piezoelectric stagedfering an intrinsic resolution of 1 nm were se-
lected in order to apply large strains to adherent fibroblasthree dimensions.
However, these stages were subsequently mounted on a xechamical sta-
tion which lowered the resolution toudn. During experiments, monkey kidney
fibroblasts (MKFs) could be infferently subjected to indentation or stretching
with amplitude as large as on, which was about twice the initial size of the
cells.

An oft-chip piezoelectric stage was also required to actuate t®IBtbased
cell puller of Serrell et al. (2007, 2008). Fig. 8 shows themiabricated struc-
ture which was based on a circular platform split in two paste of them being
movable. The latter, which was linked to the piezoelectiags, could be trans-
lated along one direction with maximum travel range o5 a displacement

resolution of 0.4 nm and a bandwidth of 520 Hz.

13
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Figure 8: Close-up of a MEMS-based tensometer: an adhee#irgrchored in the middle of a
disk can be stretched via the translation of a movable parage adapted from (Serrell et al.,
2007)

3. MEMS for the mechanical stimulation of a small group of cels

Rather than conduct experiments by repetitively stressingle cells one

after the other, several studies have tried to speed upticelllation by targeting

a larger number of cellsoncurrently To this end, several research teams have

extended concepts initially intended for the stimulatidgnralividual cells by

duplicating given patterns.

3.1. Parallelized stimulation with an array of electromagic microactuators

In Sniadecki et al. (2007, 2008), the authors fabricatedyatterized and
tested a dense bed of soft micropillars arranged in a patieay. Spatial res-
olution of the array was 8m, whereas each pillar measured 4n% in radius,
10um in height and had a low $iness of 32 ni{im. With such dimensions,
the investigators were able to provide local stimulatioadberent cells lying on
the surface of the micropillars through the use of a horialmtiform magnetic
field. The latter was generated by external NdFeB magnetshad¢ontrolled

the bending of certain pillars (see Fig. 9). Indeed, magn&ibalt nanowires
14
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(350 nm in diameter, 5-#m long) were incorporated within some pillars during
the fabrication process of the array (1 nanowire per 20@nsijl Attracted mag-
netic wires enabled the bending of the magnetized pillartoul® relative to
the pillars’ longitudinal axis. Such bending led to a piltasplacement ranging
from 100 nm to Jum. For a cell positioned at the top of a magnetic pillar, this
displacement transferred a punctual force to the focal ildhesites of the cell.
The magnitude of this force was a function of the pillar ashaslthe nanowire
dimensions, in accordance with the following equation:

3y B(L + Lw)

9
2(L2 + LwL + LZ) ®

FMag =

wherelL and Ly are the lengths of the post and the length of the embedded
nanowire respectively, and, is the component of the dipole moment perpen-

dicular to the magnetic fielB, as represented in the inset c) of Fig. 9.

a) Gas Gas
Inlet Outlet
H

:q—h-
B an/off

Figure 9: a) Experimental setup of Sniadecki et al. wherenpeent magnets generate a mag-
netic field surrounding a cell culture chamber. b) Close-iifhe cell culture chamber: an ad-
herent cell is lying on a bed of micropillars, one of them irpmrating a magnetic nanowire. c)
Parameters influencing the bending of a magnetic pillar acoatance with Equation (9). Draw-

ings adapted from (Sniadecki et al., 2007, 2008)
15
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For a nanowire of length=5um, a magnetic field B of 0.31 T created
a torque of 210 niim. During experiments, a maximum force of 27 nN was
validated by the authors. One may note that this work wasraily intended
for the local stimulation and study of individual mouse fiblasts. However,
and considering the simple structure adopted by the authwesbelieve that
such system could be further extended, and readily traesjgoshe stimulation

of tens of cells.

3.2. Parallelized stimulation with an array of microbeantstaated by positioning

stages

Sasoglu et al. (2007, 2008) manufactured a comparable afreagmpliant
microposts for stretching axons of multiple neurons aldyimea regular pattern.
Pillars were however larger, with a diameter ofi40, a length of 12@m. The
separation at the base of the pillars was also wider. As @uptsthe device
proposed by Sniadecki et al., this array was not intendedfer subcellular
spatial resolution. Instead, each cell was attached tor#ednd of a pillar
and could be entirely stretched. To control the bending efrtiicropillars, the
authors favored a distant micromanipulation station (sge F0) which dfered
a precision of 40 nm. With this configuration, the authorsncéd that tensile
forces as small as 256- 50 nN and as great as 23- 2.5 uN could be exerted

on the specimens under investigation.

3.3. Parallelized stimulation with an array of Electro-Aa Polymer (EAP)

microactuators

EAP are polymers that change in shape or size in response eteetnical

stimulation. An array of 100x100m? EAP microactuators was built by Ak-
16
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Figure 10: Concept of a micropost array where axons of tenseafons can be stretched in
parallel via the translation of a distant micropositionstgge. Drawings adapted from (Sasoglu
et al., 2007, 2008)

bari et al. (2010) to perform the individual stretching oBl&lls. In this array
(see Fig. 11), compliant gold electrodes (1@ wide) were deposited by low
energy ion implantation on each side of g0 thick, 30% pre-stretched, PDMS
(polydimethylsiloxane) membrane. Next, the membrane asegd over a rigid
PDMS support composed of 20éh wide channels. The membrane provided
flexibility and could expand over the channels when highagdts were applied
to the electrodes. This design permitted to restrict thawdation areas to in-
tersections between electrodes and channels. Althougtigbinnique was not
applied to living cells, the investigators predict thatleaell could potentially

receive up to 10-20% uniaxial strains.

4. MEMS for the mechanical stimulation of a large cell populdion

The possibility to stimulate larger cell samples may be seea logical next
step. In this section, we arbitrarily define that the acturaprinciples described

hereafter can deal with a cell population including at I#astisands of cellsThe
17



218

219

220

221

222

223

224

225

226

227

228

229

230

231

232
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Channels
Cells
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Figure 11: Concept of an array of EAP microactuators. Leftice at OV with four cells placed
at the intersection between electrodes and channels. :Righiice when high voltage (2kV) is
applied; the four cells are stretched along the channelawibgs adapted from (Akbari et al.,
2010)

only objective of this minimum is to ensure afcient diference in the number
of cells to be stimulated in order to guarantee that suctelaggmples cannot be

addressed by the limited throughput configurations preskintSection 3.

4.1. Simultaneous stimulation

Hereafter, we introduce some MEMS able to inherently stateuvery large
amounts of cells concurrently. In order to do this, such ME##®ctly stress

entire cell populations.

4.1.1. Simultaneous stimulation with cell substrate defaion

Laboratory devices for the stretching of tissues or lardiepogulations cul-
tured on thin compliant substrates served as initial tapisvestigate theféects
of mechanical cues on living cells (e.g., Norton et al., 1998toudeh et al.,
1998; Clark et al., 2001, Pfister et al., 2003). This conceptlee scaled down
to the microscale level, and MEMS devoted to the distentiooetl substrates
have been actuated by electrostatic actuators (Wu et &5)2fluids (Kim et al.,

2007), and air pressure (Sim et al., 2007; Tan et al., 2008abkoet al., 2010).
18
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In (Kamotani et al., 2008), the authors designed a refrdshBfaille dis-
play to individually bend up to 24 deformable microwellsgdég. 12). Each
well measured 1.7 mm in diameter, and the bottom was coteslitnf a PDMS
membrane, with a Young’s modulus approximately 750 kPa,issBo ratio’s of
0.49, and a thickness ranging between 100480 Cells to be stressed were
directly cultured on the PDMS membranes, and the pins of tiadl8 display
were piezoelectrically actuated. The frequency and dumatdf the stretching ap-
plied by each pin could be controlled via a computer. Maxinaxtension of the
pins decreased from 0.7 mm for no load to 0.3 mm when the pisisglia mem-
brane 20Q«m thick. A pushing force of 0.18 N was experimentally valethby

the authors.

Large Reservoir Stretch
Microwell *
’-‘q
Cells
3
LY F

_ Membrane
Pin

Figure 12: Bending and stretching of soft microwells viaiBeadisplay pins. Scale bar respre-
sents 1.25mm (Kamotani et al., 2008)

4.1.2. Simultaneous stimulation with fluid flows

At the macroscale, experimental apparatus such as conplaredrotating
chambers (e.g., Furukawa et al., 2001) or parallel-plateclmannels (e.g., Dong
and Lei, 2000) are conventional tools to impose hydrodycashear-stress on
large cell cultures. With advances in microfabricatiorhtemogies, microscopic
parallel-plate channels have been reported (e.g., Sorlg 2085; Young et al.,
2007; Tkachenko et al., 2009). In (Lu et al., 2004), the argthategrated four
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parallel-plate channels of fierent cross-sections on a single miniature fluidic
chip. Channel height was 2&n whereas channel width ranged from 260 to
1000um. Such small dimensions guaranteed a low Reynolds numleet (RD),

ensuring a laminar flow with no turbulence within the micrachels.

flow direction

1 —

flow chamber

Figure 13: Top: sketch representing the principle of a nfiardic channel imposing shear stress
to a culture of adherent cells (Tsou et al., 2008). Bottontrascope view of fibroblasts cultured
in one of a parallel-plate flow chambers. Average fibroblaaeter was about 20m after

attachment (Lu et al., 2004)

For a parallel-plate channel with an infinite aspect ratie, generated wall
shear stress can be expressed as:
6u
Tw = (m) Q (10)
where u denotes the fluid viscositip andw are the height and the width of the
chamber, respectively, and Q is the volumetric flow rate.ré&foee, by varying

the width of the channels, Lu et al. could expose a culturelwblilasts to
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multiple shear stress conditions. This allowed the auth@n®imic a variety
of stresses that vascular cells naturally undergo in theeleschitecture of the
arterial system. During experiments, shear stresses upad dyn¢cny were

generated by the authors.

4.2. Serial approaches for high throughput stimulation

Serial approaches constitute an alternative option touséite thousands of
cells. Hereafter, we introduce some MEMS able to stresatedlcells sequen-

tially at high stimulation rates.

4.2.1. Serial stimulation with constricted channels

If fluids can naturally expose cells to shearing stressey,¢hn also be used
to transport suspended cells toward excitation areas.rivd{Bet al., 1995; Youn
et al., 2008; Hou et al., 2009), suspended cells were segaltied toward syn-
thetic lattices of constricted areas. This approach alibkGen et al. (2009b) to
mimic the segmental contractions undergone by bovine eosbiry a oviduct.
As shown in Fig. 14, compressive stresses occurred whileriteyos traveled
through the constricted areas (i.e., circular channelsrparating areas with a
smaller inner diameter). For embryos with a diameter ragp@ipproximately

from 150 to 19Qum, the authors reported compressive forces up ta.8

4.2.2. Serial stimulation with optical stretchers (OS) afelctric fields

In (Lai et al., 2008; Remmerbach et al., 2009; Lautensahlag al., 2009),
OS similar the one depicted in Fig. 3 were combined with ndbemnels. Fluid
flows ensured the continuous and fast delivery of suspenelésitoward the di-
vergent laser beams emanating from the two optical fiberserélly, flowing

cells could be trapped one by one. Variations of light initgrthen allowed the
21



282

283

284

285

286

287

288

289

290

291

292

293

294

296

constricted

area \

Figure 14: Microfluidic channelincluding a constrictivear The image shows a bovine embryo
being compressed while crossing the narrow section of taardl. Image adapted from (Kim

et al., 2009b)

modulation of the amount of stretching applied to the trabpell. In particu-
lar, stimulation rate up to to 100 cet®ur was reported with such an approach
(Lincoln et al., 2007).

Similarly, microchannels have been associated with sadimng electric fields.
In (Bao et al., 2008), electric field intensity was concetetldoward the narrow
section of a microchannel (see Fig. 15). During experiméigkl intensities
of 200 V/cm, 400 VVcm as well as 600 ¥m were applied. Stress indirectly
arose from the electroporation phenomena. fiea, cells may open up pores
when they experience an external electric field with an sitgibeyond a certain
threshold. Material exchange across the membrane may tean. oA direct
consequence was the swelling of human breast epithelilal while they were
flowing through the microchannel. Even though the amountrefss induced
was not explicitly quantified by the authors, such methoovedd to strain sus-

pended cells at stimulation rates as high as 5 fslls
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Figure 15: Top: electric fields used in conjunction with mitwidic channel to provoke cell elec-
troporation. Inset: swelling evolution atftérent times for a cell experiencing electroporation

while progressing through a microchannel (Bao et al., 2008)

5. Mechanical stimulation of cells: discussion about the nmber of cells

targeted

On the basis of the details presented in the previous sactiba following
guestions might be legitimately asked: why aim to stimalgatmore than one
cell? What are the éierences between actuation systems targeting tens of cells
and those targeting thousands of cells? Are the latterrsttgly because they
can deal with a larger amount of cells? As a matter of factatievers to these
guestions are rather complex. Indeed, in the specific coofecell mechanos-
timulation, engineering specifications become interdateel to biological fac-

tors. Hereafter, we discuss some parts of the answers.

5.1. Mechanical stimulation of a single cell: strengths avehknesses

The large variety of actuation methods that were summaiizegkection 2
demonstrates that the stimulation of a single isolatediasl been largely ad-

dressed. Indeed, forfiierent but complementary reasons, both life sciences and
23
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engineering communities have been highly involved in theettgpment of sys-
tems able to interact with a single cell. Recent achievesienthis enterprise
have marked a milestone in cell mechanics. The possibdiinteract with an
individual cell has enabled tremendous breakthroughs Ipirigecell biologists
to elucidate how a cell receives and processes extragethdahanical signals.

A major advantage attributed to almost all devices of Sac®ds that both
localization and magnitude of the stress applied upon aceellbe finely tuned.
This is certainly a necessary condition to conduct sucaksgperiments on liv-
ing cells. On the other hand, one may highlight the fact thatost works cited,
delicate and time-consuming steps are often required tpeplp place the cell
prior to stimulation. For instance, in (Eppell et al., 20@hen et al., 2008),
the authors used small drops of epoxy to attach a fibril betvtee two pads of
their uniaxial cell tenser. It is reasonable to assume that &gluing” chemicals
may interact with the living cell, having a certain impact i intrinsic cell
mechanical properties.

It is important to note that cells are often considered asipasand ho-
mogeneous viscoelastic materials. Keet, such assumptions greatly simplify
the modeling of living cells (Lim et al., 2006). In actualityells are highly
anisotropic entities whose mechanical properties canvevobth in time and
space over a variation of several orders of magnitude. Dyerehas been ex-
perimentally observed that an identical mechanostimulag actually engender
variable cell mechanical responses from cell to cell, evé&himwa given cell
line. A more representative overview of the cellular bebaebuld be obtained
by considering the averaged responses of many individlial subjected to the
same mechanical stress. A new tendency based on statsticiés has hence

progressively emerged (see for instance Mizutani et aD826liratsuka et al.,
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2009). Unfortunately, MEMS of Section 2 do not ideally leheémselves to the
fast stimulation of many cells since they usually involvedgrotocols aimed at
properly preparing the cell prior to experiment (e.g., eimgua suficient attach-

ment of the cell on functionalized probes), the stimulatdjust a few cells may

still take several hours.

5.2. Mechanical stimulation of tens of cells: strengths am@knesses

To increase cell stimulation rate, arrays of microactusat@ve been devel-
oped to stimulate small groups of isolated cells, as seereatic 3. Via the
duplication of structures (e.g., microposts, microcantts) originally intended
for the stimulation of an isolated cell, these devices trgreserve the initial ad-
vantages of single actuators. It is however worth notingjithadividual access
to each cell remains possible, actuators are usually natichahlly controlled.
Although the possibility to independently control sevagalups of EAP actua-
tors has been recently reported in (Akbari et al., 2010)athkty to individually
tune the magnitude and localization of the stress applieh @gach cell is of-
ten partly lost. However, the real shortcoming of theseyac@nfigurations is
relative to their lack otcalability.

Indeed, the duplication of perfectly identical structua¢she microscale re-
mains limited to a certain extent. Indeed, the fabricatibaarray which would
include thousands of microactuators still poses formiglablallenges. This is
representative of technological gapThis limit is represented in Fig. 16, which
also illustrates the fact that, in addition to technical ptemity, large replication
of patterns will usually induce a significant increase intcdfereby, and to the

best of our knowledge, no array configuration can presetittysgate thousands
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Figure 16: Prediction highlighting the limitation of cuntanicroactuators arrays (blue triangle):
they cannot be easily transposed to the stimulation of \&egelcell populations. In contrast with
an ideal stimulation system (green area), we indeed fortbsdeven the replication of simple
repetitive patterns could not be indefinitely extended authdrastic increase in both cost and

technological complexity (dashed lines).

of isolated cells. Meanwhile, studies conducted on ten&l$ eay still appear
as modest populations compared to the colossal numberlsticat constitute a

living organism.

5.3. Mechanical stimulation of thousands of cells: strésgind weaknesses

Alternative configurations targeting thousands of cellgehaso been devel-
oped. As presented in Section 4, the culture of a large popuolaf adherent
cells on a thin compliant substrate (see Fig. 12) can fat#lithe transfer of me-
chanical stress to the whole cell population by simply digtg the substrate.
While this approach permits the stimulation of a very largenber of cells in a

simple manner, several restrictions apply. Generally ldpgaand independent
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of the type of actuator used to induce substrate deformasinass distribution
remains usually inhomogeneous. Indeed, depending on tissd?ds ratio of
the material used, even if one stretches (or bends) the whistisate solely along
one dimension, coupling between radial and tangentiahstccurs during sub-
strate distention. Therefore, based on their position erstlbstrate, all cells are
not subjected to the same amount of stress. Most importantynlike the ma-
trix configuration of Section 3, the individual stimulatioha particular cell is
completely lost.

To mitigate the latter restriction, configurations invelgimicrochannels with
fluid flows that allow the serial delivery of individual susyked cells toward ex-
citation areas have also been explored. In particular, whapled to laser beams
or external electric fields, microfluidic chips such as the ohFig. 15 dfer the
possibility to modulate the stress intensity applied upaohecell while also
achieving relatively high stimulation rates. This paveelway for microsystems
aimed at dfering high throughput cell stimulation. Despite these ndalale ad-
vantages, these configurations work exclusively with sadpd cells showing
high degree of symmetry arat high optical uniformity. Unfortunately, this ex-

cludes studies of adherent cells.

6. Actuation means of MEMS for the mechanical stimulation ofcells: com-

parative analysis

It is now clear that a large number offidirent actuation means are available
for the mechanical stimulation of living cells. Among thisde variety, one
might wonder if aranking could be established comparing these technologies.

In other words, is one actuation principle better than am&@hNhich actuation
27
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type should be used in the design of a new MEMS intended to/apgthanical
stimuli upon cells? In this section, we discuss some of eleaspects of cell

mechanostimulation that make it such a complex and deliaate

6.1. Notion of stress control

During the mechanical excitation of living cells, an optiraatuation mean
should dfer a high degree of accuracy in the control of the physicattamt
applied. Ultimately, it is critical to mimic the constragttaced by cellsn vivo.
Moreover, it is vital to avoid the generation of stress withproper orders of
magnitude that could cause irreversible damages to livilg.cThe chart from
Fig. 17 gives an overview of the inherent performances fonégpe of actuation
mean and relates their respective resolutions both in tefrdsplacement and
force.

Additionally, the orders of magnitude in the chart have bgealed accord-
ing to relevant information and data collected from varisasrces. Therefore,
our set of actuation techniques were not based purely ortrected number of
particular MEMS. For instance, performances of positignstages have been
evaluated based on the large panel of product referencedaiadheets avail-
able from manufacturers such Blysik InstrumentéPl). Likewise, lower and
upper bounds fixing global performances of piezoelecttaxsteostatic, as well
as electrothermal microactuators have been extrapoleigd(Bell et al., 2005;
Hubbard et al., 2006; Naraghi et al., 2010). In order to aately characterize
the overall capabilities of each actuation technique,atss essential to consider
several cell studies conducted via experimental configurat For air pressure,
data have been extracted from (Hochmuth et al., 1993; Hotthnr2000; Chu
et al., 2004; Sanchez et al., 2008). Values for fluid flows Hasen based on
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Figure 17: Bar graph evaluating the inherent performantedgierent actuation means that have
been (or might be) found in MEMS for stressing living cellglies reported here are not limited
to the microdevices of this paper, but also take considerati overall orders of magnitude found

in several references (see text for further details)

(Bussolari et al., 1982; Usami et al., 1993; Malek et al.,53Bao et al., 1997,
Blackman et al., 2000; Dong and Lei, 2000; Hsiai et al., 200)r magnetic
fields, displacement and force amplitudes have been awkfag® the analy-
sis of several magnetic tweezers (MT) setups (Evans et395;1Bausch et al.,
1998; Simson et al., 1998; Alenghat et al., 2000; Huang eaD5; Garcia-
Webb et al., 2007; Kollmannsberger and Fabry, 2007; Reed, &0#8; Spero
etal., 2008). Data for electric fields have been fixed acogrth (Engelhardt and
Sackmann, 1988; Zimmermann et al., 2000; Zhang and Liu, R@8ally, in-

formation about optical gradients has been collected freverml optical tweez-
ers (OT) based assays (Hénon et al., 1999; Sleep et al.; D2@Oet al., 2003;
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Lim et al., 2004; Li et al., 2009).

In Fig. 17, positioning stages appear as the most advaniagaean to ac-
tuate MEMS. Indeed, theyfier the versatility to combine large travel and force
ranges along with very high resolutions. Furthermore, ancesthey are com-
mercially available, they do not involve complex fabricatiprocesses, which
greatly simplify their implementation. It is indisputalileat displacement and
force are parameters of high relevance. Nevertheles§igiucomparison is re-
quired since these features are noffisient to fairly assess a set of actuation

means. Hereafter, some additional specifications are siscl

6.2. Notion of size and functional density

At the microscale, the volume of an actuator is a parametgrsimould not
be ignored. Since many of the MEMS actuators presented srptper can be
scaled to dierent dimensions, an evaluative parameter able to neadrélose
variations should be introduced in order to objectively pane diferent types
of actuators. Such a parameter has for instance been pbpog$€arlen and
Mastrangelo, 2002):

Fae
Va

P, = (12)

whereF,, €, andV, are the actuating force, the maximum displacement and
the total volume of the actuator considered. By definitiBp,represents the
functional densityexpressed id/m?).

In the specific context of cell stimulation, one could try &dateP, to the
number of cells that can be actuated by a single actuator.isssissed in Sec-
tion 4.2.2, ideal microactuators could independently @ty large number of
isolated cells, in a minimal volume. Unfortunately, tryitayexpres$, in such
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a way for various types of actuation principles is not an @asl¢. This is espe-
cially true in the case of contact-based approaches (eks,are directly touched

by the actuator’s tip), where the quantity of cells that canargeted directly de-
pends on the type of endfector used. Therefore, a given translation stage could
be inditerently linked to a single microcantilever or a matrix enp@assing tens

of cantilevers, such as the one reported in (Polesel-Ma&k,e2007).

Although we are aware of the fact that Equation (11) failat@tinto account
the number of samples that can be actuated by a given actuagan,P, re-
mains a valuable parameter to consider in our context (adlfgmpes of MEMS).
For instance, it allows one to confirm that the important wedwof a commercial
positioning stage will actually drastically limit its futional density. Presently,
MEMS conceived for high throughput cell screening do notgauiily aim at
providing autonomous and portable devices. However, tweflmctional den-
sity offered by actuators such as positioning stages might limitéurprogress
in the development of future MEMS for cell mechanics. Cosedyr, on-chip
microactuators (e.g., electrothermal, electrostatiaators) showing high func-

tional density may unlock some of the technological gapeetully encountered.

6.3. Notion of biocompatibility

Actuators intended to mechanically stimulate biologielscmust deal with
additional constraints. Thereby, it appears essentiabbserve cells in specific
solutions during manipulation. Indeed, cell medium alldiaescontinuous deliv-
ery of vital nutrients in order to maintain cells alive. Medrile, the performance
validated in ambient conditions for some actuators may deifscantly altered
in the presence of liquids.

This is the case for electrostatic comb drives, such as teeroRig. 6. Due
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to the hydrophobic nature of the silicon-water interfagdricate phenomena
such as air trapping between the comb drive teeth and the M&@g$hd plane
may arise. Furthermore, the enhanced electrical condtycti’liquids usually
reduce their initial stroke.

Likewise, electrothermal microactuators also cope withlleimging phenom-
ena when they are plunged in a liquid environment. For itgadhang et al.
(2008) underlined the fact that continuous power supphhefdevice shown in
Fig. 5 proves to be unsuitable for underwater operation dedetctrolysis Al-
though alternating voltages allowed the authors to opéhnate actuator in elec-
trolytic solution, its initial travel range of m measured in air was restricted
to 4um in liquids. An additional feature of electrothermal adtura relates to
the high temperature that they can reach during operatiorceSells are par-
ticularly sensitive to temperature fluctuations, high tenapures may potentially
cause irreversible damages. Special precautions shontskHee taken accord-
ingly.

This remark might be extended to all types of contact-bastétion means.
For instance, in (Boukallel et al., 2009), the authors atieéduse of conventional
cantilevers with sharp tip (i.e., such as the ones used fovesdional AFM),
since the latter could cause damage to external lipid bioonanes during the
loading of cells. Regardless of the shape of the mechamtareity used, con-
tamination may occur once the tool touches the cell. Thezetbe tips should
be properly cleaned before each new experiment. This additlaborious step
may however prevent repetitive analysis.

Non-contact actuation techniques would allow to circunt\grch a restric-
tion. For example, electric fields generated by microfielgesasuch as the one

presented in Fig.2 stretch cells without touching them. Elav, electric fields
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can directly &ect cells under test (Voldman, 2006). Although no directtaon
occurs during stimulation, electric fields cause poweripsn in the form of
Joules heating in a conductive medium. Therefore, and aseicase of elec-
trothermal actuators, the usage of electric fields requar@sonitor changes in
temperature that carffact the phenotype of cells.

Alternatively, suspended cells can also be stretched witbontact with op-
tical gradients. Nonetheless, it is admitted that highlgaamtrated laser beams
used in conventional optical tweezers (OT) may be hazarftmusells (Knig
et al., 1996; Liang et al., 1996; Neuman et al., 1999; Peterenal., 2003). In-
troduced in Section 2.3, OS made of two optical fibers avdidsgroblem by
reducing the light intensity transmitted to the cell of netgt. Indeed, divergent
laser beams that stretch the cell are necessarily unfocliseting the risk of
radiation damage. Consequently, high power lasers candzbwishout damag-
ing the cell. Unfortunately, to date, OS were only proven¢cshitable for the
stimulation of cells showing a high degree of symmetry andhiéoum optical
density.

Comparatively, MT (see Fig.1) are nowadays consideredfsafeells. In-
deed, magnetic fields do not significantly disturb fieet the cell response upon
short times of exposure required for the application of ahmaatcal stimulus.
Despite this appealing advantage, several restrictianasually associated with
these types of configurations. First, if MTter the possibility to remotely control
magnetic microbeads locally attached to a cell membramemiignetic forces
applied on the microbeads strongly depends on the beads’ Bleanwhile, it
may be dificult to avoid size variations from bead to bead in experileran-
ditions. Likewise, material properties of the beads usagl (enagnetic moment)

cannot be easily controlled and may hence influence the anoddorce gener-
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ated by a given surrounding magnetic field upon the micrapest Moreover,
the adhesion procedure of the beads remains an unpreéigtaaess. By defini-
tion the position of the binding sites as well as the numbenafnetic particles
adhering to a cell membrane cannot be accurately definedordicgly, for-
mation of bead aggregates may appear. Additionally, siee& mmersion is
unpredictable, the force distribution around adhesiassian actually be highly
heterogeneous.

According to our comparative analysis, no actuation meay beaclearly
considered as ideal. Indeed, each actuation method hagetstrengths and
weaknesses. Accordingly, selection of an appropriateastmtiappears mostly
possible based ontaade-gf related to the type of cell investigations that have
to be carried out. To sum up this complexity, we propose twartshin Fig.18
for further evaluation between contact and non-contactadicin types. In these
charts, desired aspects of key properties required in teeifspcontext of cell
stimulation are reported at the extremity of each axis. Inseguence, pen-
tagons covering larger surfaces should theoreticallyessgnt most appropriate
techniques. We however highlight the fact that these cliacterporate criteria
that are dificult to objectively estimate. For instance, scientific evides allow-
ing to quantitatively evaluate the risk of sidffexts caused by a given actuation
technique remain complex to collect. Therefore, critezj@arted have been qual-
itatively ranked based on authors’ personal opinions. Nbeess, and despite
their qualitative nature, we believe that these factorsaiarrelevant and should

absolutely be considered before selection of an actuatidmique.
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Figure 18: Additional criteria considered for further ccemigon of the actuation means found

in MEMS dedicated to cell stimulationFunctional Densitycorresponds td?, as defined in

Equation (11). It complements the notionAdtuator Sizéy relating the volume with the stress

control accuracy that can be achieved by a given actuatatmmigue.Cell Medium Compatibility

refers the capability of each technique to operate in liguitfrom a physical principle, the

criterionEasiness of Implementatidries to consider the complexity and numbers of processes

needed to obtain a functional actuator. Techniques thakmaogn to induce ffects on cell

phenotype are distinguished in the brakctown Side Fects on Cells

ss1 (. Concluding remarks

5!

a
)

This paper reports the majority of actuation means cuwyargéd in MEMS

s for the mechanical stimulation of living cells. Additiohglwe classify actuation

s« Means as a function relative to the amount of cells that tbejdgotentially tar-

sss - get. This allowed us to realize that the stimulation of sells has already been

5!

a

s« largely addressed. Indeed, manffelient actuation means have already allowed

ss» {0 accurately stress isolated cells. However, a recend tagming at stimulating

s large amounts of cells emanates from the literature. Targltis mainly justified

35



559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

by the fact that, beyond the technological breakthrougbsodered at the single
cell level, new applications require large amounts of ialeacells to perform
statistical analyses and result in a better understanditigecell behavior.

To date, parallel and serial cell stimulations remain comiyased by the re-
search community. We discussed both approaches, and ati@erent types
of actuators. It is interesting to notice that relativelgthstimulation rates were
achieved using the serial approach which involves opticadlignts or electric
fields combined with microfluidic channels. However, suchfigurations are
efficient with restrictive types of suspended cells. To our kieolge, stimula-
tion rate of adherent cells remains low, even though most ee¢ anchored to
the extracellular matrixn vivo, and hence might be in a sense considered as
physiologically more relevant. As a matter of fact, thdividual stimulation of
adherent cells in &igh throughputmanner remain presently challenging, and

still need to be further addressed.
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